caamhash.c 54 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852
  1. /*
  2. * caam - Freescale FSL CAAM support for ahash functions of crypto API
  3. *
  4. * Copyright 2011 Freescale Semiconductor, Inc.
  5. *
  6. * Based on caamalg.c crypto API driver.
  7. *
  8. * relationship of digest job descriptor or first job descriptor after init to
  9. * shared descriptors:
  10. *
  11. * --------------- ---------------
  12. * | JobDesc #1 |-------------------->| ShareDesc |
  13. * | *(packet 1) | | (hashKey) |
  14. * --------------- | (operation) |
  15. * ---------------
  16. *
  17. * relationship of subsequent job descriptors to shared descriptors:
  18. *
  19. * --------------- ---------------
  20. * | JobDesc #2 |-------------------->| ShareDesc |
  21. * | *(packet 2) | |------------->| (hashKey) |
  22. * --------------- | |-------->| (operation) |
  23. * . | | | (load ctx2) |
  24. * . | | ---------------
  25. * --------------- | |
  26. * | JobDesc #3 |------| |
  27. * | *(packet 3) | |
  28. * --------------- |
  29. * . |
  30. * . |
  31. * --------------- |
  32. * | JobDesc #4 |------------
  33. * | *(packet 4) |
  34. * ---------------
  35. *
  36. * The SharedDesc never changes for a connection unless rekeyed, but
  37. * each packet will likely be in a different place. So all we need
  38. * to know to process the packet is where the input is, where the
  39. * output goes, and what context we want to process with. Context is
  40. * in the SharedDesc, packet references in the JobDesc.
  41. *
  42. * So, a job desc looks like:
  43. *
  44. * ---------------------
  45. * | Header |
  46. * | ShareDesc Pointer |
  47. * | SEQ_OUT_PTR |
  48. * | (output buffer) |
  49. * | (output length) |
  50. * | SEQ_IN_PTR |
  51. * | (input buffer) |
  52. * | (input length) |
  53. * ---------------------
  54. */
  55. #include "compat.h"
  56. #include "regs.h"
  57. #include "intern.h"
  58. #include "desc_constr.h"
  59. #include "jr.h"
  60. #include "error.h"
  61. #include "sg_sw_sec4.h"
  62. #include "key_gen.h"
  63. #define CAAM_CRA_PRIORITY 3000
  64. /* max hash key is max split key size */
  65. #define CAAM_MAX_HASH_KEY_SIZE (SHA512_DIGEST_SIZE * 2)
  66. #define CAAM_MAX_HASH_BLOCK_SIZE SHA512_BLOCK_SIZE
  67. #define CAAM_MAX_HASH_DIGEST_SIZE SHA512_DIGEST_SIZE
  68. /* length of descriptors text */
  69. #define DESC_AHASH_BASE (4 * CAAM_CMD_SZ)
  70. #define DESC_AHASH_UPDATE_LEN (6 * CAAM_CMD_SZ)
  71. #define DESC_AHASH_UPDATE_FIRST_LEN (DESC_AHASH_BASE + 4 * CAAM_CMD_SZ)
  72. #define DESC_AHASH_FINAL_LEN (DESC_AHASH_BASE + 5 * CAAM_CMD_SZ)
  73. #define DESC_AHASH_FINUP_LEN (DESC_AHASH_BASE + 5 * CAAM_CMD_SZ)
  74. #define DESC_AHASH_DIGEST_LEN (DESC_AHASH_BASE + 4 * CAAM_CMD_SZ)
  75. #define DESC_HASH_MAX_USED_BYTES (DESC_AHASH_FINAL_LEN + \
  76. CAAM_MAX_HASH_KEY_SIZE)
  77. #define DESC_HASH_MAX_USED_LEN (DESC_HASH_MAX_USED_BYTES / CAAM_CMD_SZ)
  78. /* caam context sizes for hashes: running digest + 8 */
  79. #define HASH_MSG_LEN 8
  80. #define MAX_CTX_LEN (HASH_MSG_LEN + SHA512_DIGEST_SIZE)
  81. #ifdef DEBUG
  82. /* for print_hex_dumps with line references */
  83. #define debug(format, arg...) printk(format, arg)
  84. #else
  85. #define debug(format, arg...)
  86. #endif
  87. static struct list_head hash_list;
  88. /* ahash per-session context */
  89. struct caam_hash_ctx {
  90. struct device *jrdev;
  91. u32 sh_desc_update[DESC_HASH_MAX_USED_LEN];
  92. u32 sh_desc_update_first[DESC_HASH_MAX_USED_LEN];
  93. u32 sh_desc_fin[DESC_HASH_MAX_USED_LEN];
  94. u32 sh_desc_digest[DESC_HASH_MAX_USED_LEN];
  95. u32 sh_desc_finup[DESC_HASH_MAX_USED_LEN];
  96. dma_addr_t sh_desc_update_dma;
  97. dma_addr_t sh_desc_update_first_dma;
  98. dma_addr_t sh_desc_fin_dma;
  99. dma_addr_t sh_desc_digest_dma;
  100. dma_addr_t sh_desc_finup_dma;
  101. u32 alg_type;
  102. u32 alg_op;
  103. u8 key[CAAM_MAX_HASH_KEY_SIZE];
  104. dma_addr_t key_dma;
  105. int ctx_len;
  106. unsigned int split_key_len;
  107. unsigned int split_key_pad_len;
  108. };
  109. /* ahash state */
  110. struct caam_hash_state {
  111. dma_addr_t buf_dma;
  112. dma_addr_t ctx_dma;
  113. u8 buf_0[CAAM_MAX_HASH_BLOCK_SIZE] ____cacheline_aligned;
  114. int buflen_0;
  115. u8 buf_1[CAAM_MAX_HASH_BLOCK_SIZE] ____cacheline_aligned;
  116. int buflen_1;
  117. u8 caam_ctx[MAX_CTX_LEN];
  118. int (*update)(struct ahash_request *req);
  119. int (*final)(struct ahash_request *req);
  120. int (*finup)(struct ahash_request *req);
  121. int current_buf;
  122. };
  123. /* Common job descriptor seq in/out ptr routines */
  124. /* Map state->caam_ctx, and append seq_out_ptr command that points to it */
  125. static inline void map_seq_out_ptr_ctx(u32 *desc, struct device *jrdev,
  126. struct caam_hash_state *state,
  127. int ctx_len)
  128. {
  129. state->ctx_dma = dma_map_single(jrdev, state->caam_ctx,
  130. ctx_len, DMA_FROM_DEVICE);
  131. append_seq_out_ptr(desc, state->ctx_dma, ctx_len, 0);
  132. }
  133. /* Map req->result, and append seq_out_ptr command that points to it */
  134. static inline dma_addr_t map_seq_out_ptr_result(u32 *desc, struct device *jrdev,
  135. u8 *result, int digestsize)
  136. {
  137. dma_addr_t dst_dma;
  138. dst_dma = dma_map_single(jrdev, result, digestsize, DMA_FROM_DEVICE);
  139. append_seq_out_ptr(desc, dst_dma, digestsize, 0);
  140. return dst_dma;
  141. }
  142. /* Map current buffer in state and put it in link table */
  143. static inline dma_addr_t buf_map_to_sec4_sg(struct device *jrdev,
  144. struct sec4_sg_entry *sec4_sg,
  145. u8 *buf, int buflen)
  146. {
  147. dma_addr_t buf_dma;
  148. buf_dma = dma_map_single(jrdev, buf, buflen, DMA_TO_DEVICE);
  149. dma_to_sec4_sg_one(sec4_sg, buf_dma, buflen, 0);
  150. return buf_dma;
  151. }
  152. /* Map req->src and put it in link table */
  153. static inline void src_map_to_sec4_sg(struct device *jrdev,
  154. struct scatterlist *src, int src_nents,
  155. struct sec4_sg_entry *sec4_sg,
  156. bool chained)
  157. {
  158. dma_map_sg_chained(jrdev, src, src_nents, DMA_TO_DEVICE, chained);
  159. sg_to_sec4_sg_last(src, src_nents, sec4_sg, 0);
  160. }
  161. /*
  162. * Only put buffer in link table if it contains data, which is possible,
  163. * since a buffer has previously been used, and needs to be unmapped,
  164. */
  165. static inline dma_addr_t
  166. try_buf_map_to_sec4_sg(struct device *jrdev, struct sec4_sg_entry *sec4_sg,
  167. u8 *buf, dma_addr_t buf_dma, int buflen,
  168. int last_buflen)
  169. {
  170. if (buf_dma && !dma_mapping_error(jrdev, buf_dma))
  171. dma_unmap_single(jrdev, buf_dma, last_buflen, DMA_TO_DEVICE);
  172. if (buflen)
  173. buf_dma = buf_map_to_sec4_sg(jrdev, sec4_sg, buf, buflen);
  174. else
  175. buf_dma = 0;
  176. return buf_dma;
  177. }
  178. /* Map state->caam_ctx, and add it to link table */
  179. static inline void ctx_map_to_sec4_sg(u32 *desc, struct device *jrdev,
  180. struct caam_hash_state *state,
  181. int ctx_len,
  182. struct sec4_sg_entry *sec4_sg,
  183. u32 flag)
  184. {
  185. state->ctx_dma = dma_map_single(jrdev, state->caam_ctx, ctx_len, flag);
  186. dma_to_sec4_sg_one(sec4_sg, state->ctx_dma, ctx_len, 0);
  187. }
  188. /* Common shared descriptor commands */
  189. static inline void append_key_ahash(u32 *desc, struct caam_hash_ctx *ctx)
  190. {
  191. append_key_as_imm(desc, ctx->key, ctx->split_key_pad_len,
  192. ctx->split_key_len, CLASS_2 |
  193. KEY_DEST_MDHA_SPLIT | KEY_ENC);
  194. }
  195. /* Append key if it has been set */
  196. static inline void init_sh_desc_key_ahash(u32 *desc, struct caam_hash_ctx *ctx)
  197. {
  198. u32 *key_jump_cmd;
  199. init_sh_desc(desc, HDR_SHARE_SERIAL);
  200. if (ctx->split_key_len) {
  201. /* Skip if already shared */
  202. key_jump_cmd = append_jump(desc, JUMP_JSL | JUMP_TEST_ALL |
  203. JUMP_COND_SHRD);
  204. append_key_ahash(desc, ctx);
  205. set_jump_tgt_here(desc, key_jump_cmd);
  206. }
  207. /* Propagate errors from shared to job descriptor */
  208. append_cmd(desc, SET_OK_NO_PROP_ERRORS | CMD_LOAD);
  209. }
  210. /*
  211. * For ahash read data from seqin following state->caam_ctx,
  212. * and write resulting class2 context to seqout, which may be state->caam_ctx
  213. * or req->result
  214. */
  215. static inline void ahash_append_load_str(u32 *desc, int digestsize)
  216. {
  217. /* Calculate remaining bytes to read */
  218. append_math_add(desc, VARSEQINLEN, SEQINLEN, REG0, CAAM_CMD_SZ);
  219. /* Read remaining bytes */
  220. append_seq_fifo_load(desc, 0, FIFOLD_CLASS_CLASS2 | FIFOLD_TYPE_LAST2 |
  221. FIFOLD_TYPE_MSG | KEY_VLF);
  222. /* Store class2 context bytes */
  223. append_seq_store(desc, digestsize, LDST_CLASS_2_CCB |
  224. LDST_SRCDST_BYTE_CONTEXT);
  225. }
  226. /*
  227. * For ahash update, final and finup, import context, read and write to seqout
  228. */
  229. static inline void ahash_ctx_data_to_out(u32 *desc, u32 op, u32 state,
  230. int digestsize,
  231. struct caam_hash_ctx *ctx)
  232. {
  233. init_sh_desc_key_ahash(desc, ctx);
  234. /* Import context from software */
  235. append_cmd(desc, CMD_SEQ_LOAD | LDST_SRCDST_BYTE_CONTEXT |
  236. LDST_CLASS_2_CCB | ctx->ctx_len);
  237. /* Class 2 operation */
  238. append_operation(desc, op | state | OP_ALG_ENCRYPT);
  239. /*
  240. * Load from buf and/or src and write to req->result or state->context
  241. */
  242. ahash_append_load_str(desc, digestsize);
  243. }
  244. /* For ahash firsts and digest, read and write to seqout */
  245. static inline void ahash_data_to_out(u32 *desc, u32 op, u32 state,
  246. int digestsize, struct caam_hash_ctx *ctx)
  247. {
  248. init_sh_desc_key_ahash(desc, ctx);
  249. /* Class 2 operation */
  250. append_operation(desc, op | state | OP_ALG_ENCRYPT);
  251. /*
  252. * Load from buf and/or src and write to req->result or state->context
  253. */
  254. ahash_append_load_str(desc, digestsize);
  255. }
  256. static int ahash_set_sh_desc(struct crypto_ahash *ahash)
  257. {
  258. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  259. int digestsize = crypto_ahash_digestsize(ahash);
  260. struct device *jrdev = ctx->jrdev;
  261. u32 have_key = 0;
  262. u32 *desc;
  263. if (ctx->split_key_len)
  264. have_key = OP_ALG_AAI_HMAC_PRECOMP;
  265. /* ahash_update shared descriptor */
  266. desc = ctx->sh_desc_update;
  267. init_sh_desc(desc, HDR_SHARE_SERIAL);
  268. /* Import context from software */
  269. append_cmd(desc, CMD_SEQ_LOAD | LDST_SRCDST_BYTE_CONTEXT |
  270. LDST_CLASS_2_CCB | ctx->ctx_len);
  271. /* Class 2 operation */
  272. append_operation(desc, ctx->alg_type | OP_ALG_AS_UPDATE |
  273. OP_ALG_ENCRYPT);
  274. /* Load data and write to result or context */
  275. ahash_append_load_str(desc, ctx->ctx_len);
  276. ctx->sh_desc_update_dma = dma_map_single(jrdev, desc, desc_bytes(desc),
  277. DMA_TO_DEVICE);
  278. if (dma_mapping_error(jrdev, ctx->sh_desc_update_dma)) {
  279. dev_err(jrdev, "unable to map shared descriptor\n");
  280. return -ENOMEM;
  281. }
  282. #ifdef DEBUG
  283. print_hex_dump(KERN_ERR,
  284. "ahash update shdesc@"__stringify(__LINE__)": ",
  285. DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1);
  286. #endif
  287. /* ahash_update_first shared descriptor */
  288. desc = ctx->sh_desc_update_first;
  289. ahash_data_to_out(desc, have_key | ctx->alg_type, OP_ALG_AS_INIT,
  290. ctx->ctx_len, ctx);
  291. ctx->sh_desc_update_first_dma = dma_map_single(jrdev, desc,
  292. desc_bytes(desc),
  293. DMA_TO_DEVICE);
  294. if (dma_mapping_error(jrdev, ctx->sh_desc_update_first_dma)) {
  295. dev_err(jrdev, "unable to map shared descriptor\n");
  296. return -ENOMEM;
  297. }
  298. #ifdef DEBUG
  299. print_hex_dump(KERN_ERR,
  300. "ahash update first shdesc@"__stringify(__LINE__)": ",
  301. DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1);
  302. #endif
  303. /* ahash_final shared descriptor */
  304. desc = ctx->sh_desc_fin;
  305. ahash_ctx_data_to_out(desc, have_key | ctx->alg_type,
  306. OP_ALG_AS_FINALIZE, digestsize, ctx);
  307. ctx->sh_desc_fin_dma = dma_map_single(jrdev, desc, desc_bytes(desc),
  308. DMA_TO_DEVICE);
  309. if (dma_mapping_error(jrdev, ctx->sh_desc_fin_dma)) {
  310. dev_err(jrdev, "unable to map shared descriptor\n");
  311. return -ENOMEM;
  312. }
  313. #ifdef DEBUG
  314. print_hex_dump(KERN_ERR, "ahash final shdesc@"__stringify(__LINE__)": ",
  315. DUMP_PREFIX_ADDRESS, 16, 4, desc,
  316. desc_bytes(desc), 1);
  317. #endif
  318. /* ahash_finup shared descriptor */
  319. desc = ctx->sh_desc_finup;
  320. ahash_ctx_data_to_out(desc, have_key | ctx->alg_type,
  321. OP_ALG_AS_FINALIZE, digestsize, ctx);
  322. ctx->sh_desc_finup_dma = dma_map_single(jrdev, desc, desc_bytes(desc),
  323. DMA_TO_DEVICE);
  324. if (dma_mapping_error(jrdev, ctx->sh_desc_finup_dma)) {
  325. dev_err(jrdev, "unable to map shared descriptor\n");
  326. return -ENOMEM;
  327. }
  328. #ifdef DEBUG
  329. print_hex_dump(KERN_ERR, "ahash finup shdesc@"__stringify(__LINE__)": ",
  330. DUMP_PREFIX_ADDRESS, 16, 4, desc,
  331. desc_bytes(desc), 1);
  332. #endif
  333. /* ahash_digest shared descriptor */
  334. desc = ctx->sh_desc_digest;
  335. ahash_data_to_out(desc, have_key | ctx->alg_type, OP_ALG_AS_INITFINAL,
  336. digestsize, ctx);
  337. ctx->sh_desc_digest_dma = dma_map_single(jrdev, desc,
  338. desc_bytes(desc),
  339. DMA_TO_DEVICE);
  340. if (dma_mapping_error(jrdev, ctx->sh_desc_digest_dma)) {
  341. dev_err(jrdev, "unable to map shared descriptor\n");
  342. return -ENOMEM;
  343. }
  344. #ifdef DEBUG
  345. print_hex_dump(KERN_ERR,
  346. "ahash digest shdesc@"__stringify(__LINE__)": ",
  347. DUMP_PREFIX_ADDRESS, 16, 4, desc,
  348. desc_bytes(desc), 1);
  349. #endif
  350. return 0;
  351. }
  352. static int gen_split_hash_key(struct caam_hash_ctx *ctx, const u8 *key_in,
  353. u32 keylen)
  354. {
  355. return gen_split_key(ctx->jrdev, ctx->key, ctx->split_key_len,
  356. ctx->split_key_pad_len, key_in, keylen,
  357. ctx->alg_op);
  358. }
  359. /* Digest hash size if it is too large */
  360. static int hash_digest_key(struct caam_hash_ctx *ctx, const u8 *key_in,
  361. u32 *keylen, u8 *key_out, u32 digestsize)
  362. {
  363. struct device *jrdev = ctx->jrdev;
  364. u32 *desc;
  365. struct split_key_result result;
  366. dma_addr_t src_dma, dst_dma;
  367. int ret = 0;
  368. desc = kmalloc(CAAM_CMD_SZ * 8 + CAAM_PTR_SZ * 2, GFP_KERNEL | GFP_DMA);
  369. if (!desc) {
  370. dev_err(jrdev, "unable to allocate key input memory\n");
  371. return -ENOMEM;
  372. }
  373. init_job_desc(desc, 0);
  374. src_dma = dma_map_single(jrdev, (void *)key_in, *keylen,
  375. DMA_TO_DEVICE);
  376. if (dma_mapping_error(jrdev, src_dma)) {
  377. dev_err(jrdev, "unable to map key input memory\n");
  378. kfree(desc);
  379. return -ENOMEM;
  380. }
  381. dst_dma = dma_map_single(jrdev, (void *)key_out, digestsize,
  382. DMA_FROM_DEVICE);
  383. if (dma_mapping_error(jrdev, dst_dma)) {
  384. dev_err(jrdev, "unable to map key output memory\n");
  385. dma_unmap_single(jrdev, src_dma, *keylen, DMA_TO_DEVICE);
  386. kfree(desc);
  387. return -ENOMEM;
  388. }
  389. /* Job descriptor to perform unkeyed hash on key_in */
  390. append_operation(desc, ctx->alg_type | OP_ALG_ENCRYPT |
  391. OP_ALG_AS_INITFINAL);
  392. append_seq_in_ptr(desc, src_dma, *keylen, 0);
  393. append_seq_fifo_load(desc, *keylen, FIFOLD_CLASS_CLASS2 |
  394. FIFOLD_TYPE_LAST2 | FIFOLD_TYPE_MSG);
  395. append_seq_out_ptr(desc, dst_dma, digestsize, 0);
  396. append_seq_store(desc, digestsize, LDST_CLASS_2_CCB |
  397. LDST_SRCDST_BYTE_CONTEXT);
  398. #ifdef DEBUG
  399. print_hex_dump(KERN_ERR, "key_in@"__stringify(__LINE__)": ",
  400. DUMP_PREFIX_ADDRESS, 16, 4, key_in, *keylen, 1);
  401. print_hex_dump(KERN_ERR, "jobdesc@"__stringify(__LINE__)": ",
  402. DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1);
  403. #endif
  404. result.err = 0;
  405. init_completion(&result.completion);
  406. ret = caam_jr_enqueue(jrdev, desc, split_key_done, &result);
  407. if (!ret) {
  408. /* in progress */
  409. wait_for_completion_interruptible(&result.completion);
  410. ret = result.err;
  411. #ifdef DEBUG
  412. print_hex_dump(KERN_ERR,
  413. "digested key@"__stringify(__LINE__)": ",
  414. DUMP_PREFIX_ADDRESS, 16, 4, key_in,
  415. digestsize, 1);
  416. #endif
  417. }
  418. *keylen = digestsize;
  419. dma_unmap_single(jrdev, src_dma, *keylen, DMA_TO_DEVICE);
  420. dma_unmap_single(jrdev, dst_dma, digestsize, DMA_FROM_DEVICE);
  421. kfree(desc);
  422. return ret;
  423. }
  424. static int ahash_setkey(struct crypto_ahash *ahash,
  425. const u8 *key, unsigned int keylen)
  426. {
  427. /* Sizes for MDHA pads (*not* keys): MD5, SHA1, 224, 256, 384, 512 */
  428. static const u8 mdpadlen[] = { 16, 20, 32, 32, 64, 64 };
  429. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  430. struct device *jrdev = ctx->jrdev;
  431. int blocksize = crypto_tfm_alg_blocksize(&ahash->base);
  432. int digestsize = crypto_ahash_digestsize(ahash);
  433. int ret = 0;
  434. u8 *hashed_key = NULL;
  435. #ifdef DEBUG
  436. printk(KERN_ERR "keylen %d\n", keylen);
  437. #endif
  438. if (keylen > blocksize) {
  439. hashed_key = kmalloc(sizeof(u8) * digestsize, GFP_KERNEL |
  440. GFP_DMA);
  441. if (!hashed_key)
  442. return -ENOMEM;
  443. ret = hash_digest_key(ctx, key, &keylen, hashed_key,
  444. digestsize);
  445. if (ret)
  446. goto badkey;
  447. key = hashed_key;
  448. }
  449. /* Pick class 2 key length from algorithm submask */
  450. ctx->split_key_len = mdpadlen[(ctx->alg_op & OP_ALG_ALGSEL_SUBMASK) >>
  451. OP_ALG_ALGSEL_SHIFT] * 2;
  452. ctx->split_key_pad_len = ALIGN(ctx->split_key_len, 16);
  453. #ifdef DEBUG
  454. printk(KERN_ERR "split_key_len %d split_key_pad_len %d\n",
  455. ctx->split_key_len, ctx->split_key_pad_len);
  456. print_hex_dump(KERN_ERR, "key in @"__stringify(__LINE__)": ",
  457. DUMP_PREFIX_ADDRESS, 16, 4, key, keylen, 1);
  458. #endif
  459. ret = gen_split_hash_key(ctx, key, keylen);
  460. if (ret)
  461. goto badkey;
  462. ctx->key_dma = dma_map_single(jrdev, ctx->key, ctx->split_key_pad_len,
  463. DMA_TO_DEVICE);
  464. if (dma_mapping_error(jrdev, ctx->key_dma)) {
  465. dev_err(jrdev, "unable to map key i/o memory\n");
  466. return -ENOMEM;
  467. }
  468. #ifdef DEBUG
  469. print_hex_dump(KERN_ERR, "ctx.key@"__stringify(__LINE__)": ",
  470. DUMP_PREFIX_ADDRESS, 16, 4, ctx->key,
  471. ctx->split_key_pad_len, 1);
  472. #endif
  473. ret = ahash_set_sh_desc(ahash);
  474. if (ret) {
  475. dma_unmap_single(jrdev, ctx->key_dma, ctx->split_key_pad_len,
  476. DMA_TO_DEVICE);
  477. }
  478. kfree(hashed_key);
  479. return ret;
  480. badkey:
  481. kfree(hashed_key);
  482. crypto_ahash_set_flags(ahash, CRYPTO_TFM_RES_BAD_KEY_LEN);
  483. return -EINVAL;
  484. }
  485. /*
  486. * ahash_edesc - s/w-extended ahash descriptor
  487. * @dst_dma: physical mapped address of req->result
  488. * @sec4_sg_dma: physical mapped address of h/w link table
  489. * @chained: if source is chained
  490. * @src_nents: number of segments in input scatterlist
  491. * @sec4_sg_bytes: length of dma mapped sec4_sg space
  492. * @sec4_sg: pointer to h/w link table
  493. * @hw_desc: the h/w job descriptor followed by any referenced link tables
  494. */
  495. struct ahash_edesc {
  496. dma_addr_t dst_dma;
  497. dma_addr_t sec4_sg_dma;
  498. bool chained;
  499. int src_nents;
  500. int sec4_sg_bytes;
  501. struct sec4_sg_entry *sec4_sg;
  502. u32 hw_desc[0];
  503. };
  504. static inline void ahash_unmap(struct device *dev,
  505. struct ahash_edesc *edesc,
  506. struct ahash_request *req, int dst_len)
  507. {
  508. if (edesc->src_nents)
  509. dma_unmap_sg_chained(dev, req->src, edesc->src_nents,
  510. DMA_TO_DEVICE, edesc->chained);
  511. if (edesc->dst_dma)
  512. dma_unmap_single(dev, edesc->dst_dma, dst_len, DMA_FROM_DEVICE);
  513. if (edesc->sec4_sg_bytes)
  514. dma_unmap_single(dev, edesc->sec4_sg_dma,
  515. edesc->sec4_sg_bytes, DMA_TO_DEVICE);
  516. }
  517. static inline void ahash_unmap_ctx(struct device *dev,
  518. struct ahash_edesc *edesc,
  519. struct ahash_request *req, int dst_len, u32 flag)
  520. {
  521. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  522. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  523. struct caam_hash_state *state = ahash_request_ctx(req);
  524. if (state->ctx_dma)
  525. dma_unmap_single(dev, state->ctx_dma, ctx->ctx_len, flag);
  526. ahash_unmap(dev, edesc, req, dst_len);
  527. }
  528. static void ahash_done(struct device *jrdev, u32 *desc, u32 err,
  529. void *context)
  530. {
  531. struct ahash_request *req = context;
  532. struct ahash_edesc *edesc;
  533. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  534. int digestsize = crypto_ahash_digestsize(ahash);
  535. #ifdef DEBUG
  536. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  537. struct caam_hash_state *state = ahash_request_ctx(req);
  538. dev_err(jrdev, "%s %d: err 0x%x\n", __func__, __LINE__, err);
  539. #endif
  540. edesc = (struct ahash_edesc *)((char *)desc -
  541. offsetof(struct ahash_edesc, hw_desc));
  542. if (err) {
  543. char tmp[CAAM_ERROR_STR_MAX];
  544. dev_err(jrdev, "%08x: %s\n", err, caam_jr_strstatus(tmp, err));
  545. }
  546. ahash_unmap(jrdev, edesc, req, digestsize);
  547. kfree(edesc);
  548. #ifdef DEBUG
  549. print_hex_dump(KERN_ERR, "ctx@"__stringify(__LINE__)": ",
  550. DUMP_PREFIX_ADDRESS, 16, 4, state->caam_ctx,
  551. ctx->ctx_len, 1);
  552. if (req->result)
  553. print_hex_dump(KERN_ERR, "result@"__stringify(__LINE__)": ",
  554. DUMP_PREFIX_ADDRESS, 16, 4, req->result,
  555. digestsize, 1);
  556. #endif
  557. req->base.complete(&req->base, err);
  558. }
  559. static void ahash_done_bi(struct device *jrdev, u32 *desc, u32 err,
  560. void *context)
  561. {
  562. struct ahash_request *req = context;
  563. struct ahash_edesc *edesc;
  564. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  565. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  566. #ifdef DEBUG
  567. struct caam_hash_state *state = ahash_request_ctx(req);
  568. int digestsize = crypto_ahash_digestsize(ahash);
  569. dev_err(jrdev, "%s %d: err 0x%x\n", __func__, __LINE__, err);
  570. #endif
  571. edesc = (struct ahash_edesc *)((char *)desc -
  572. offsetof(struct ahash_edesc, hw_desc));
  573. if (err) {
  574. char tmp[CAAM_ERROR_STR_MAX];
  575. dev_err(jrdev, "%08x: %s\n", err, caam_jr_strstatus(tmp, err));
  576. }
  577. ahash_unmap_ctx(jrdev, edesc, req, ctx->ctx_len, DMA_BIDIRECTIONAL);
  578. kfree(edesc);
  579. #ifdef DEBUG
  580. print_hex_dump(KERN_ERR, "ctx@"__stringify(__LINE__)": ",
  581. DUMP_PREFIX_ADDRESS, 16, 4, state->caam_ctx,
  582. ctx->ctx_len, 1);
  583. if (req->result)
  584. print_hex_dump(KERN_ERR, "result@"__stringify(__LINE__)": ",
  585. DUMP_PREFIX_ADDRESS, 16, 4, req->result,
  586. digestsize, 1);
  587. #endif
  588. req->base.complete(&req->base, err);
  589. }
  590. static void ahash_done_ctx_src(struct device *jrdev, u32 *desc, u32 err,
  591. void *context)
  592. {
  593. struct ahash_request *req = context;
  594. struct ahash_edesc *edesc;
  595. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  596. int digestsize = crypto_ahash_digestsize(ahash);
  597. #ifdef DEBUG
  598. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  599. struct caam_hash_state *state = ahash_request_ctx(req);
  600. dev_err(jrdev, "%s %d: err 0x%x\n", __func__, __LINE__, err);
  601. #endif
  602. edesc = (struct ahash_edesc *)((char *)desc -
  603. offsetof(struct ahash_edesc, hw_desc));
  604. if (err) {
  605. char tmp[CAAM_ERROR_STR_MAX];
  606. dev_err(jrdev, "%08x: %s\n", err, caam_jr_strstatus(tmp, err));
  607. }
  608. ahash_unmap_ctx(jrdev, edesc, req, digestsize, DMA_FROM_DEVICE);
  609. kfree(edesc);
  610. #ifdef DEBUG
  611. print_hex_dump(KERN_ERR, "ctx@"__stringify(__LINE__)": ",
  612. DUMP_PREFIX_ADDRESS, 16, 4, state->caam_ctx,
  613. ctx->ctx_len, 1);
  614. if (req->result)
  615. print_hex_dump(KERN_ERR, "result@"__stringify(__LINE__)": ",
  616. DUMP_PREFIX_ADDRESS, 16, 4, req->result,
  617. digestsize, 1);
  618. #endif
  619. req->base.complete(&req->base, err);
  620. }
  621. static void ahash_done_ctx_dst(struct device *jrdev, u32 *desc, u32 err,
  622. void *context)
  623. {
  624. struct ahash_request *req = context;
  625. struct ahash_edesc *edesc;
  626. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  627. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  628. #ifdef DEBUG
  629. struct caam_hash_state *state = ahash_request_ctx(req);
  630. int digestsize = crypto_ahash_digestsize(ahash);
  631. dev_err(jrdev, "%s %d: err 0x%x\n", __func__, __LINE__, err);
  632. #endif
  633. edesc = (struct ahash_edesc *)((char *)desc -
  634. offsetof(struct ahash_edesc, hw_desc));
  635. if (err) {
  636. char tmp[CAAM_ERROR_STR_MAX];
  637. dev_err(jrdev, "%08x: %s\n", err, caam_jr_strstatus(tmp, err));
  638. }
  639. ahash_unmap_ctx(jrdev, edesc, req, ctx->ctx_len, DMA_TO_DEVICE);
  640. kfree(edesc);
  641. #ifdef DEBUG
  642. print_hex_dump(KERN_ERR, "ctx@"__stringify(__LINE__)": ",
  643. DUMP_PREFIX_ADDRESS, 16, 4, state->caam_ctx,
  644. ctx->ctx_len, 1);
  645. if (req->result)
  646. print_hex_dump(KERN_ERR, "result@"__stringify(__LINE__)": ",
  647. DUMP_PREFIX_ADDRESS, 16, 4, req->result,
  648. digestsize, 1);
  649. #endif
  650. req->base.complete(&req->base, err);
  651. }
  652. /* submit update job descriptor */
  653. static int ahash_update_ctx(struct ahash_request *req)
  654. {
  655. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  656. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  657. struct caam_hash_state *state = ahash_request_ctx(req);
  658. struct device *jrdev = ctx->jrdev;
  659. gfp_t flags = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
  660. CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
  661. u8 *buf = state->current_buf ? state->buf_1 : state->buf_0;
  662. int *buflen = state->current_buf ? &state->buflen_1 : &state->buflen_0;
  663. u8 *next_buf = state->current_buf ? state->buf_0 : state->buf_1;
  664. int *next_buflen = state->current_buf ? &state->buflen_0 :
  665. &state->buflen_1, last_buflen;
  666. int in_len = *buflen + req->nbytes, to_hash;
  667. u32 *sh_desc = ctx->sh_desc_update, *desc;
  668. dma_addr_t ptr = ctx->sh_desc_update_dma;
  669. int src_nents, sec4_sg_bytes, sec4_sg_src_index;
  670. struct ahash_edesc *edesc;
  671. bool chained = false;
  672. int ret = 0;
  673. int sh_len;
  674. last_buflen = *next_buflen;
  675. *next_buflen = in_len & (crypto_tfm_alg_blocksize(&ahash->base) - 1);
  676. to_hash = in_len - *next_buflen;
  677. if (to_hash) {
  678. src_nents = __sg_count(req->src, req->nbytes - (*next_buflen),
  679. &chained);
  680. sec4_sg_src_index = 1 + (*buflen ? 1 : 0);
  681. sec4_sg_bytes = (sec4_sg_src_index + src_nents) *
  682. sizeof(struct sec4_sg_entry);
  683. /*
  684. * allocate space for base edesc and hw desc commands,
  685. * link tables
  686. */
  687. edesc = kmalloc(sizeof(struct ahash_edesc) + DESC_JOB_IO_LEN +
  688. sec4_sg_bytes, GFP_DMA | flags);
  689. if (!edesc) {
  690. dev_err(jrdev,
  691. "could not allocate extended descriptor\n");
  692. return -ENOMEM;
  693. }
  694. edesc->src_nents = src_nents;
  695. edesc->chained = chained;
  696. edesc->sec4_sg_bytes = sec4_sg_bytes;
  697. edesc->sec4_sg = (void *)edesc + sizeof(struct ahash_edesc) +
  698. DESC_JOB_IO_LEN;
  699. edesc->sec4_sg_dma = dma_map_single(jrdev, edesc->sec4_sg,
  700. sec4_sg_bytes,
  701. DMA_TO_DEVICE);
  702. ctx_map_to_sec4_sg(desc, jrdev, state, ctx->ctx_len,
  703. edesc->sec4_sg, DMA_BIDIRECTIONAL);
  704. state->buf_dma = try_buf_map_to_sec4_sg(jrdev,
  705. edesc->sec4_sg + 1,
  706. buf, state->buf_dma,
  707. *buflen, last_buflen);
  708. if (src_nents) {
  709. src_map_to_sec4_sg(jrdev, req->src, src_nents,
  710. edesc->sec4_sg + sec4_sg_src_index,
  711. chained);
  712. if (*next_buflen) {
  713. sg_copy_part(next_buf, req->src, to_hash -
  714. *buflen, req->nbytes);
  715. state->current_buf = !state->current_buf;
  716. }
  717. } else {
  718. (edesc->sec4_sg + sec4_sg_src_index - 1)->len |=
  719. SEC4_SG_LEN_FIN;
  720. }
  721. sh_len = desc_len(sh_desc);
  722. desc = edesc->hw_desc;
  723. init_job_desc_shared(desc, ptr, sh_len, HDR_SHARE_DEFER |
  724. HDR_REVERSE);
  725. append_seq_in_ptr(desc, edesc->sec4_sg_dma, ctx->ctx_len +
  726. to_hash, LDST_SGF);
  727. append_seq_out_ptr(desc, state->ctx_dma, ctx->ctx_len, 0);
  728. #ifdef DEBUG
  729. print_hex_dump(KERN_ERR, "jobdesc@"__stringify(__LINE__)": ",
  730. DUMP_PREFIX_ADDRESS, 16, 4, desc,
  731. desc_bytes(desc), 1);
  732. #endif
  733. ret = caam_jr_enqueue(jrdev, desc, ahash_done_bi, req);
  734. if (!ret) {
  735. ret = -EINPROGRESS;
  736. } else {
  737. ahash_unmap_ctx(jrdev, edesc, req, ctx->ctx_len,
  738. DMA_BIDIRECTIONAL);
  739. kfree(edesc);
  740. }
  741. } else if (*next_buflen) {
  742. sg_copy(buf + *buflen, req->src, req->nbytes);
  743. *buflen = *next_buflen;
  744. *next_buflen = last_buflen;
  745. }
  746. #ifdef DEBUG
  747. print_hex_dump(KERN_ERR, "buf@"__stringify(__LINE__)": ",
  748. DUMP_PREFIX_ADDRESS, 16, 4, buf, *buflen, 1);
  749. print_hex_dump(KERN_ERR, "next buf@"__stringify(__LINE__)": ",
  750. DUMP_PREFIX_ADDRESS, 16, 4, next_buf,
  751. *next_buflen, 1);
  752. #endif
  753. return ret;
  754. }
  755. static int ahash_final_ctx(struct ahash_request *req)
  756. {
  757. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  758. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  759. struct caam_hash_state *state = ahash_request_ctx(req);
  760. struct device *jrdev = ctx->jrdev;
  761. gfp_t flags = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
  762. CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
  763. u8 *buf = state->current_buf ? state->buf_1 : state->buf_0;
  764. int buflen = state->current_buf ? state->buflen_1 : state->buflen_0;
  765. int last_buflen = state->current_buf ? state->buflen_0 :
  766. state->buflen_1;
  767. u32 *sh_desc = ctx->sh_desc_fin, *desc;
  768. dma_addr_t ptr = ctx->sh_desc_fin_dma;
  769. int sec4_sg_bytes;
  770. int digestsize = crypto_ahash_digestsize(ahash);
  771. struct ahash_edesc *edesc;
  772. int ret = 0;
  773. int sh_len;
  774. sec4_sg_bytes = (1 + (buflen ? 1 : 0)) * sizeof(struct sec4_sg_entry);
  775. /* allocate space for base edesc and hw desc commands, link tables */
  776. edesc = kmalloc(sizeof(struct ahash_edesc) + DESC_JOB_IO_LEN +
  777. sec4_sg_bytes, GFP_DMA | flags);
  778. if (!edesc) {
  779. dev_err(jrdev, "could not allocate extended descriptor\n");
  780. return -ENOMEM;
  781. }
  782. sh_len = desc_len(sh_desc);
  783. desc = edesc->hw_desc;
  784. init_job_desc_shared(desc, ptr, sh_len, HDR_SHARE_DEFER | HDR_REVERSE);
  785. edesc->sec4_sg_bytes = sec4_sg_bytes;
  786. edesc->sec4_sg = (void *)edesc + sizeof(struct ahash_edesc) +
  787. DESC_JOB_IO_LEN;
  788. edesc->sec4_sg_dma = dma_map_single(jrdev, edesc->sec4_sg,
  789. sec4_sg_bytes, DMA_TO_DEVICE);
  790. edesc->src_nents = 0;
  791. ctx_map_to_sec4_sg(desc, jrdev, state, ctx->ctx_len, edesc->sec4_sg,
  792. DMA_TO_DEVICE);
  793. state->buf_dma = try_buf_map_to_sec4_sg(jrdev, edesc->sec4_sg + 1,
  794. buf, state->buf_dma, buflen,
  795. last_buflen);
  796. (edesc->sec4_sg + sec4_sg_bytes - 1)->len |= SEC4_SG_LEN_FIN;
  797. append_seq_in_ptr(desc, edesc->sec4_sg_dma, ctx->ctx_len + buflen,
  798. LDST_SGF);
  799. edesc->dst_dma = map_seq_out_ptr_result(desc, jrdev, req->result,
  800. digestsize);
  801. #ifdef DEBUG
  802. print_hex_dump(KERN_ERR, "jobdesc@"__stringify(__LINE__)": ",
  803. DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1);
  804. #endif
  805. ret = caam_jr_enqueue(jrdev, desc, ahash_done_ctx_src, req);
  806. if (!ret) {
  807. ret = -EINPROGRESS;
  808. } else {
  809. ahash_unmap_ctx(jrdev, edesc, req, digestsize, DMA_FROM_DEVICE);
  810. kfree(edesc);
  811. }
  812. return ret;
  813. }
  814. static int ahash_finup_ctx(struct ahash_request *req)
  815. {
  816. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  817. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  818. struct caam_hash_state *state = ahash_request_ctx(req);
  819. struct device *jrdev = ctx->jrdev;
  820. gfp_t flags = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
  821. CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
  822. u8 *buf = state->current_buf ? state->buf_1 : state->buf_0;
  823. int buflen = state->current_buf ? state->buflen_1 : state->buflen_0;
  824. int last_buflen = state->current_buf ? state->buflen_0 :
  825. state->buflen_1;
  826. u32 *sh_desc = ctx->sh_desc_finup, *desc;
  827. dma_addr_t ptr = ctx->sh_desc_finup_dma;
  828. int sec4_sg_bytes, sec4_sg_src_index;
  829. int src_nents;
  830. int digestsize = crypto_ahash_digestsize(ahash);
  831. struct ahash_edesc *edesc;
  832. bool chained = false;
  833. int ret = 0;
  834. int sh_len;
  835. src_nents = __sg_count(req->src, req->nbytes, &chained);
  836. sec4_sg_src_index = 1 + (buflen ? 1 : 0);
  837. sec4_sg_bytes = (sec4_sg_src_index + src_nents) *
  838. sizeof(struct sec4_sg_entry);
  839. /* allocate space for base edesc and hw desc commands, link tables */
  840. edesc = kmalloc(sizeof(struct ahash_edesc) + DESC_JOB_IO_LEN +
  841. sec4_sg_bytes, GFP_DMA | flags);
  842. if (!edesc) {
  843. dev_err(jrdev, "could not allocate extended descriptor\n");
  844. return -ENOMEM;
  845. }
  846. sh_len = desc_len(sh_desc);
  847. desc = edesc->hw_desc;
  848. init_job_desc_shared(desc, ptr, sh_len, HDR_SHARE_DEFER | HDR_REVERSE);
  849. edesc->src_nents = src_nents;
  850. edesc->chained = chained;
  851. edesc->sec4_sg_bytes = sec4_sg_bytes;
  852. edesc->sec4_sg = (void *)edesc + sizeof(struct ahash_edesc) +
  853. DESC_JOB_IO_LEN;
  854. edesc->sec4_sg_dma = dma_map_single(jrdev, edesc->sec4_sg,
  855. sec4_sg_bytes, DMA_TO_DEVICE);
  856. ctx_map_to_sec4_sg(desc, jrdev, state, ctx->ctx_len, edesc->sec4_sg,
  857. DMA_TO_DEVICE);
  858. state->buf_dma = try_buf_map_to_sec4_sg(jrdev, edesc->sec4_sg + 1,
  859. buf, state->buf_dma, buflen,
  860. last_buflen);
  861. src_map_to_sec4_sg(jrdev, req->src, src_nents, edesc->sec4_sg +
  862. sec4_sg_src_index, chained);
  863. append_seq_in_ptr(desc, edesc->sec4_sg_dma, ctx->ctx_len +
  864. buflen + req->nbytes, LDST_SGF);
  865. edesc->dst_dma = map_seq_out_ptr_result(desc, jrdev, req->result,
  866. digestsize);
  867. #ifdef DEBUG
  868. print_hex_dump(KERN_ERR, "jobdesc@"__stringify(__LINE__)": ",
  869. DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1);
  870. #endif
  871. ret = caam_jr_enqueue(jrdev, desc, ahash_done_ctx_src, req);
  872. if (!ret) {
  873. ret = -EINPROGRESS;
  874. } else {
  875. ahash_unmap_ctx(jrdev, edesc, req, digestsize, DMA_FROM_DEVICE);
  876. kfree(edesc);
  877. }
  878. return ret;
  879. }
  880. static int ahash_digest(struct ahash_request *req)
  881. {
  882. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  883. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  884. struct device *jrdev = ctx->jrdev;
  885. gfp_t flags = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
  886. CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
  887. u32 *sh_desc = ctx->sh_desc_digest, *desc;
  888. dma_addr_t ptr = ctx->sh_desc_digest_dma;
  889. int digestsize = crypto_ahash_digestsize(ahash);
  890. int src_nents, sec4_sg_bytes;
  891. dma_addr_t src_dma;
  892. struct ahash_edesc *edesc;
  893. bool chained = false;
  894. int ret = 0;
  895. u32 options;
  896. int sh_len;
  897. src_nents = sg_count(req->src, req->nbytes, &chained);
  898. dma_map_sg_chained(jrdev, req->src, src_nents ? : 1, DMA_TO_DEVICE,
  899. chained);
  900. sec4_sg_bytes = src_nents * sizeof(struct sec4_sg_entry);
  901. /* allocate space for base edesc and hw desc commands, link tables */
  902. edesc = kmalloc(sizeof(struct ahash_edesc) + sec4_sg_bytes +
  903. DESC_JOB_IO_LEN, GFP_DMA | flags);
  904. if (!edesc) {
  905. dev_err(jrdev, "could not allocate extended descriptor\n");
  906. return -ENOMEM;
  907. }
  908. edesc->sec4_sg = (void *)edesc + sizeof(struct ahash_edesc) +
  909. DESC_JOB_IO_LEN;
  910. edesc->sec4_sg_dma = dma_map_single(jrdev, edesc->sec4_sg,
  911. sec4_sg_bytes, DMA_TO_DEVICE);
  912. edesc->src_nents = src_nents;
  913. edesc->chained = chained;
  914. sh_len = desc_len(sh_desc);
  915. desc = edesc->hw_desc;
  916. init_job_desc_shared(desc, ptr, sh_len, HDR_SHARE_DEFER | HDR_REVERSE);
  917. if (src_nents) {
  918. sg_to_sec4_sg_last(req->src, src_nents, edesc->sec4_sg, 0);
  919. src_dma = edesc->sec4_sg_dma;
  920. options = LDST_SGF;
  921. } else {
  922. src_dma = sg_dma_address(req->src);
  923. options = 0;
  924. }
  925. append_seq_in_ptr(desc, src_dma, req->nbytes, options);
  926. edesc->dst_dma = map_seq_out_ptr_result(desc, jrdev, req->result,
  927. digestsize);
  928. #ifdef DEBUG
  929. print_hex_dump(KERN_ERR, "jobdesc@"__stringify(__LINE__)": ",
  930. DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1);
  931. #endif
  932. ret = caam_jr_enqueue(jrdev, desc, ahash_done, req);
  933. if (!ret) {
  934. ret = -EINPROGRESS;
  935. } else {
  936. ahash_unmap(jrdev, edesc, req, digestsize);
  937. kfree(edesc);
  938. }
  939. return ret;
  940. }
  941. /* submit ahash final if it the first job descriptor */
  942. static int ahash_final_no_ctx(struct ahash_request *req)
  943. {
  944. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  945. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  946. struct caam_hash_state *state = ahash_request_ctx(req);
  947. struct device *jrdev = ctx->jrdev;
  948. gfp_t flags = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
  949. CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
  950. u8 *buf = state->current_buf ? state->buf_1 : state->buf_0;
  951. int buflen = state->current_buf ? state->buflen_1 : state->buflen_0;
  952. u32 *sh_desc = ctx->sh_desc_digest, *desc;
  953. dma_addr_t ptr = ctx->sh_desc_digest_dma;
  954. int digestsize = crypto_ahash_digestsize(ahash);
  955. struct ahash_edesc *edesc;
  956. int ret = 0;
  957. int sh_len;
  958. /* allocate space for base edesc and hw desc commands, link tables */
  959. edesc = kmalloc(sizeof(struct ahash_edesc) + DESC_JOB_IO_LEN,
  960. GFP_DMA | flags);
  961. if (!edesc) {
  962. dev_err(jrdev, "could not allocate extended descriptor\n");
  963. return -ENOMEM;
  964. }
  965. sh_len = desc_len(sh_desc);
  966. desc = edesc->hw_desc;
  967. init_job_desc_shared(desc, ptr, sh_len, HDR_SHARE_DEFER | HDR_REVERSE);
  968. state->buf_dma = dma_map_single(jrdev, buf, buflen, DMA_TO_DEVICE);
  969. append_seq_in_ptr(desc, state->buf_dma, buflen, 0);
  970. edesc->dst_dma = map_seq_out_ptr_result(desc, jrdev, req->result,
  971. digestsize);
  972. edesc->src_nents = 0;
  973. #ifdef DEBUG
  974. print_hex_dump(KERN_ERR, "jobdesc@"__stringify(__LINE__)": ",
  975. DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1);
  976. #endif
  977. ret = caam_jr_enqueue(jrdev, desc, ahash_done, req);
  978. if (!ret) {
  979. ret = -EINPROGRESS;
  980. } else {
  981. ahash_unmap(jrdev, edesc, req, digestsize);
  982. kfree(edesc);
  983. }
  984. return ret;
  985. }
  986. /* submit ahash update if it the first job descriptor after update */
  987. static int ahash_update_no_ctx(struct ahash_request *req)
  988. {
  989. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  990. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  991. struct caam_hash_state *state = ahash_request_ctx(req);
  992. struct device *jrdev = ctx->jrdev;
  993. gfp_t flags = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
  994. CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
  995. u8 *buf = state->current_buf ? state->buf_1 : state->buf_0;
  996. int *buflen = state->current_buf ? &state->buflen_1 : &state->buflen_0;
  997. u8 *next_buf = state->current_buf ? state->buf_0 : state->buf_1;
  998. int *next_buflen = state->current_buf ? &state->buflen_0 :
  999. &state->buflen_1;
  1000. int in_len = *buflen + req->nbytes, to_hash;
  1001. int sec4_sg_bytes, src_nents;
  1002. struct ahash_edesc *edesc;
  1003. u32 *desc, *sh_desc = ctx->sh_desc_update_first;
  1004. dma_addr_t ptr = ctx->sh_desc_update_first_dma;
  1005. bool chained = false;
  1006. int ret = 0;
  1007. int sh_len;
  1008. *next_buflen = in_len & (crypto_tfm_alg_blocksize(&ahash->base) - 1);
  1009. to_hash = in_len - *next_buflen;
  1010. if (to_hash) {
  1011. src_nents = __sg_count(req->src, req->nbytes - (*next_buflen),
  1012. &chained);
  1013. sec4_sg_bytes = (1 + src_nents) *
  1014. sizeof(struct sec4_sg_entry);
  1015. /*
  1016. * allocate space for base edesc and hw desc commands,
  1017. * link tables
  1018. */
  1019. edesc = kmalloc(sizeof(struct ahash_edesc) + DESC_JOB_IO_LEN +
  1020. sec4_sg_bytes, GFP_DMA | flags);
  1021. if (!edesc) {
  1022. dev_err(jrdev,
  1023. "could not allocate extended descriptor\n");
  1024. return -ENOMEM;
  1025. }
  1026. edesc->src_nents = src_nents;
  1027. edesc->chained = chained;
  1028. edesc->sec4_sg_bytes = sec4_sg_bytes;
  1029. edesc->sec4_sg = (void *)edesc + sizeof(struct ahash_edesc) +
  1030. DESC_JOB_IO_LEN;
  1031. edesc->sec4_sg_dma = dma_map_single(jrdev, edesc->sec4_sg,
  1032. sec4_sg_bytes,
  1033. DMA_TO_DEVICE);
  1034. state->buf_dma = buf_map_to_sec4_sg(jrdev, edesc->sec4_sg,
  1035. buf, *buflen);
  1036. src_map_to_sec4_sg(jrdev, req->src, src_nents,
  1037. edesc->sec4_sg + 1, chained);
  1038. if (*next_buflen) {
  1039. sg_copy_part(next_buf, req->src, to_hash - *buflen,
  1040. req->nbytes);
  1041. state->current_buf = !state->current_buf;
  1042. }
  1043. sh_len = desc_len(sh_desc);
  1044. desc = edesc->hw_desc;
  1045. init_job_desc_shared(desc, ptr, sh_len, HDR_SHARE_DEFER |
  1046. HDR_REVERSE);
  1047. append_seq_in_ptr(desc, edesc->sec4_sg_dma, to_hash, LDST_SGF);
  1048. map_seq_out_ptr_ctx(desc, jrdev, state, ctx->ctx_len);
  1049. #ifdef DEBUG
  1050. print_hex_dump(KERN_ERR, "jobdesc@"__stringify(__LINE__)": ",
  1051. DUMP_PREFIX_ADDRESS, 16, 4, desc,
  1052. desc_bytes(desc), 1);
  1053. #endif
  1054. ret = caam_jr_enqueue(jrdev, desc, ahash_done_ctx_dst, req);
  1055. if (!ret) {
  1056. ret = -EINPROGRESS;
  1057. state->update = ahash_update_ctx;
  1058. state->finup = ahash_finup_ctx;
  1059. state->final = ahash_final_ctx;
  1060. } else {
  1061. ahash_unmap_ctx(jrdev, edesc, req, ctx->ctx_len,
  1062. DMA_TO_DEVICE);
  1063. kfree(edesc);
  1064. }
  1065. } else if (*next_buflen) {
  1066. sg_copy(buf + *buflen, req->src, req->nbytes);
  1067. *buflen = *next_buflen;
  1068. *next_buflen = 0;
  1069. }
  1070. #ifdef DEBUG
  1071. print_hex_dump(KERN_ERR, "buf@"__stringify(__LINE__)": ",
  1072. DUMP_PREFIX_ADDRESS, 16, 4, buf, *buflen, 1);
  1073. print_hex_dump(KERN_ERR, "next buf@"__stringify(__LINE__)": ",
  1074. DUMP_PREFIX_ADDRESS, 16, 4, next_buf,
  1075. *next_buflen, 1);
  1076. #endif
  1077. return ret;
  1078. }
  1079. /* submit ahash finup if it the first job descriptor after update */
  1080. static int ahash_finup_no_ctx(struct ahash_request *req)
  1081. {
  1082. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  1083. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  1084. struct caam_hash_state *state = ahash_request_ctx(req);
  1085. struct device *jrdev = ctx->jrdev;
  1086. gfp_t flags = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
  1087. CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
  1088. u8 *buf = state->current_buf ? state->buf_1 : state->buf_0;
  1089. int buflen = state->current_buf ? state->buflen_1 : state->buflen_0;
  1090. int last_buflen = state->current_buf ? state->buflen_0 :
  1091. state->buflen_1;
  1092. u32 *sh_desc = ctx->sh_desc_digest, *desc;
  1093. dma_addr_t ptr = ctx->sh_desc_digest_dma;
  1094. int sec4_sg_bytes, sec4_sg_src_index, src_nents;
  1095. int digestsize = crypto_ahash_digestsize(ahash);
  1096. struct ahash_edesc *edesc;
  1097. bool chained = false;
  1098. int sh_len;
  1099. int ret = 0;
  1100. src_nents = __sg_count(req->src, req->nbytes, &chained);
  1101. sec4_sg_src_index = 2;
  1102. sec4_sg_bytes = (sec4_sg_src_index + src_nents) *
  1103. sizeof(struct sec4_sg_entry);
  1104. /* allocate space for base edesc and hw desc commands, link tables */
  1105. edesc = kmalloc(sizeof(struct ahash_edesc) + DESC_JOB_IO_LEN +
  1106. sec4_sg_bytes, GFP_DMA | flags);
  1107. if (!edesc) {
  1108. dev_err(jrdev, "could not allocate extended descriptor\n");
  1109. return -ENOMEM;
  1110. }
  1111. sh_len = desc_len(sh_desc);
  1112. desc = edesc->hw_desc;
  1113. init_job_desc_shared(desc, ptr, sh_len, HDR_SHARE_DEFER | HDR_REVERSE);
  1114. edesc->src_nents = src_nents;
  1115. edesc->chained = chained;
  1116. edesc->sec4_sg_bytes = sec4_sg_bytes;
  1117. edesc->sec4_sg = (void *)edesc + sizeof(struct ahash_edesc) +
  1118. DESC_JOB_IO_LEN;
  1119. edesc->sec4_sg_dma = dma_map_single(jrdev, edesc->sec4_sg,
  1120. sec4_sg_bytes, DMA_TO_DEVICE);
  1121. state->buf_dma = try_buf_map_to_sec4_sg(jrdev, edesc->sec4_sg, buf,
  1122. state->buf_dma, buflen,
  1123. last_buflen);
  1124. src_map_to_sec4_sg(jrdev, req->src, src_nents, edesc->sec4_sg + 1,
  1125. chained);
  1126. append_seq_in_ptr(desc, edesc->sec4_sg_dma, buflen +
  1127. req->nbytes, LDST_SGF);
  1128. edesc->dst_dma = map_seq_out_ptr_result(desc, jrdev, req->result,
  1129. digestsize);
  1130. #ifdef DEBUG
  1131. print_hex_dump(KERN_ERR, "jobdesc@"__stringify(__LINE__)": ",
  1132. DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1);
  1133. #endif
  1134. ret = caam_jr_enqueue(jrdev, desc, ahash_done, req);
  1135. if (!ret) {
  1136. ret = -EINPROGRESS;
  1137. } else {
  1138. ahash_unmap(jrdev, edesc, req, digestsize);
  1139. kfree(edesc);
  1140. }
  1141. return ret;
  1142. }
  1143. /* submit first update job descriptor after init */
  1144. static int ahash_update_first(struct ahash_request *req)
  1145. {
  1146. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  1147. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  1148. struct caam_hash_state *state = ahash_request_ctx(req);
  1149. struct device *jrdev = ctx->jrdev;
  1150. gfp_t flags = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
  1151. CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
  1152. u8 *next_buf = state->buf_0 + state->current_buf *
  1153. CAAM_MAX_HASH_BLOCK_SIZE;
  1154. int *next_buflen = &state->buflen_0 + state->current_buf;
  1155. int to_hash;
  1156. u32 *sh_desc = ctx->sh_desc_update_first, *desc;
  1157. dma_addr_t ptr = ctx->sh_desc_update_first_dma;
  1158. int sec4_sg_bytes, src_nents;
  1159. dma_addr_t src_dma;
  1160. u32 options;
  1161. struct ahash_edesc *edesc;
  1162. bool chained = false;
  1163. int ret = 0;
  1164. int sh_len;
  1165. *next_buflen = req->nbytes & (crypto_tfm_alg_blocksize(&ahash->base) -
  1166. 1);
  1167. to_hash = req->nbytes - *next_buflen;
  1168. if (to_hash) {
  1169. src_nents = sg_count(req->src, req->nbytes - (*next_buflen),
  1170. &chained);
  1171. dma_map_sg_chained(jrdev, req->src, src_nents ? : 1,
  1172. DMA_TO_DEVICE, chained);
  1173. sec4_sg_bytes = src_nents * sizeof(struct sec4_sg_entry);
  1174. /*
  1175. * allocate space for base edesc and hw desc commands,
  1176. * link tables
  1177. */
  1178. edesc = kmalloc(sizeof(struct ahash_edesc) + DESC_JOB_IO_LEN +
  1179. sec4_sg_bytes, GFP_DMA | flags);
  1180. if (!edesc) {
  1181. dev_err(jrdev,
  1182. "could not allocate extended descriptor\n");
  1183. return -ENOMEM;
  1184. }
  1185. edesc->src_nents = src_nents;
  1186. edesc->chained = chained;
  1187. edesc->sec4_sg_bytes = sec4_sg_bytes;
  1188. edesc->sec4_sg = (void *)edesc + sizeof(struct ahash_edesc) +
  1189. DESC_JOB_IO_LEN;
  1190. edesc->sec4_sg_dma = dma_map_single(jrdev, edesc->sec4_sg,
  1191. sec4_sg_bytes,
  1192. DMA_TO_DEVICE);
  1193. if (src_nents) {
  1194. sg_to_sec4_sg_last(req->src, src_nents,
  1195. edesc->sec4_sg, 0);
  1196. src_dma = edesc->sec4_sg_dma;
  1197. options = LDST_SGF;
  1198. } else {
  1199. src_dma = sg_dma_address(req->src);
  1200. options = 0;
  1201. }
  1202. if (*next_buflen)
  1203. sg_copy_part(next_buf, req->src, to_hash, req->nbytes);
  1204. sh_len = desc_len(sh_desc);
  1205. desc = edesc->hw_desc;
  1206. init_job_desc_shared(desc, ptr, sh_len, HDR_SHARE_DEFER |
  1207. HDR_REVERSE);
  1208. append_seq_in_ptr(desc, src_dma, to_hash, options);
  1209. map_seq_out_ptr_ctx(desc, jrdev, state, ctx->ctx_len);
  1210. #ifdef DEBUG
  1211. print_hex_dump(KERN_ERR, "jobdesc@"__stringify(__LINE__)": ",
  1212. DUMP_PREFIX_ADDRESS, 16, 4, desc,
  1213. desc_bytes(desc), 1);
  1214. #endif
  1215. ret = caam_jr_enqueue(jrdev, desc, ahash_done_ctx_dst,
  1216. req);
  1217. if (!ret) {
  1218. ret = -EINPROGRESS;
  1219. state->update = ahash_update_ctx;
  1220. state->finup = ahash_finup_ctx;
  1221. state->final = ahash_final_ctx;
  1222. } else {
  1223. ahash_unmap_ctx(jrdev, edesc, req, ctx->ctx_len,
  1224. DMA_TO_DEVICE);
  1225. kfree(edesc);
  1226. }
  1227. } else if (*next_buflen) {
  1228. state->update = ahash_update_no_ctx;
  1229. state->finup = ahash_finup_no_ctx;
  1230. state->final = ahash_final_no_ctx;
  1231. sg_copy(next_buf, req->src, req->nbytes);
  1232. }
  1233. #ifdef DEBUG
  1234. print_hex_dump(KERN_ERR, "next buf@"__stringify(__LINE__)": ",
  1235. DUMP_PREFIX_ADDRESS, 16, 4, next_buf,
  1236. *next_buflen, 1);
  1237. #endif
  1238. return ret;
  1239. }
  1240. static int ahash_finup_first(struct ahash_request *req)
  1241. {
  1242. return ahash_digest(req);
  1243. }
  1244. static int ahash_init(struct ahash_request *req)
  1245. {
  1246. struct caam_hash_state *state = ahash_request_ctx(req);
  1247. state->update = ahash_update_first;
  1248. state->finup = ahash_finup_first;
  1249. state->final = ahash_final_no_ctx;
  1250. state->current_buf = 0;
  1251. return 0;
  1252. }
  1253. static int ahash_update(struct ahash_request *req)
  1254. {
  1255. struct caam_hash_state *state = ahash_request_ctx(req);
  1256. return state->update(req);
  1257. }
  1258. static int ahash_finup(struct ahash_request *req)
  1259. {
  1260. struct caam_hash_state *state = ahash_request_ctx(req);
  1261. return state->finup(req);
  1262. }
  1263. static int ahash_final(struct ahash_request *req)
  1264. {
  1265. struct caam_hash_state *state = ahash_request_ctx(req);
  1266. return state->final(req);
  1267. }
  1268. static int ahash_export(struct ahash_request *req, void *out)
  1269. {
  1270. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  1271. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  1272. struct caam_hash_state *state = ahash_request_ctx(req);
  1273. memcpy(out, ctx, sizeof(struct caam_hash_ctx));
  1274. memcpy(out + sizeof(struct caam_hash_ctx), state,
  1275. sizeof(struct caam_hash_state));
  1276. return 0;
  1277. }
  1278. static int ahash_import(struct ahash_request *req, const void *in)
  1279. {
  1280. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  1281. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  1282. struct caam_hash_state *state = ahash_request_ctx(req);
  1283. memcpy(ctx, in, sizeof(struct caam_hash_ctx));
  1284. memcpy(state, in + sizeof(struct caam_hash_ctx),
  1285. sizeof(struct caam_hash_state));
  1286. return 0;
  1287. }
  1288. struct caam_hash_template {
  1289. char name[CRYPTO_MAX_ALG_NAME];
  1290. char driver_name[CRYPTO_MAX_ALG_NAME];
  1291. char hmac_name[CRYPTO_MAX_ALG_NAME];
  1292. char hmac_driver_name[CRYPTO_MAX_ALG_NAME];
  1293. unsigned int blocksize;
  1294. struct ahash_alg template_ahash;
  1295. u32 alg_type;
  1296. u32 alg_op;
  1297. };
  1298. /* ahash descriptors */
  1299. static struct caam_hash_template driver_hash[] = {
  1300. {
  1301. .name = "sha1",
  1302. .driver_name = "sha1-caam",
  1303. .hmac_name = "hmac(sha1)",
  1304. .hmac_driver_name = "hmac-sha1-caam",
  1305. .blocksize = SHA1_BLOCK_SIZE,
  1306. .template_ahash = {
  1307. .init = ahash_init,
  1308. .update = ahash_update,
  1309. .final = ahash_final,
  1310. .finup = ahash_finup,
  1311. .digest = ahash_digest,
  1312. .export = ahash_export,
  1313. .import = ahash_import,
  1314. .setkey = ahash_setkey,
  1315. .halg = {
  1316. .digestsize = SHA1_DIGEST_SIZE,
  1317. },
  1318. },
  1319. .alg_type = OP_ALG_ALGSEL_SHA1,
  1320. .alg_op = OP_ALG_ALGSEL_SHA1 | OP_ALG_AAI_HMAC,
  1321. }, {
  1322. .name = "sha224",
  1323. .driver_name = "sha224-caam",
  1324. .hmac_name = "hmac(sha224)",
  1325. .hmac_driver_name = "hmac-sha224-caam",
  1326. .blocksize = SHA224_BLOCK_SIZE,
  1327. .template_ahash = {
  1328. .init = ahash_init,
  1329. .update = ahash_update,
  1330. .final = ahash_final,
  1331. .finup = ahash_finup,
  1332. .digest = ahash_digest,
  1333. .export = ahash_export,
  1334. .import = ahash_import,
  1335. .setkey = ahash_setkey,
  1336. .halg = {
  1337. .digestsize = SHA224_DIGEST_SIZE,
  1338. },
  1339. },
  1340. .alg_type = OP_ALG_ALGSEL_SHA224,
  1341. .alg_op = OP_ALG_ALGSEL_SHA224 | OP_ALG_AAI_HMAC,
  1342. }, {
  1343. .name = "sha256",
  1344. .driver_name = "sha256-caam",
  1345. .hmac_name = "hmac(sha256)",
  1346. .hmac_driver_name = "hmac-sha256-caam",
  1347. .blocksize = SHA256_BLOCK_SIZE,
  1348. .template_ahash = {
  1349. .init = ahash_init,
  1350. .update = ahash_update,
  1351. .final = ahash_final,
  1352. .finup = ahash_finup,
  1353. .digest = ahash_digest,
  1354. .export = ahash_export,
  1355. .import = ahash_import,
  1356. .setkey = ahash_setkey,
  1357. .halg = {
  1358. .digestsize = SHA256_DIGEST_SIZE,
  1359. },
  1360. },
  1361. .alg_type = OP_ALG_ALGSEL_SHA256,
  1362. .alg_op = OP_ALG_ALGSEL_SHA256 | OP_ALG_AAI_HMAC,
  1363. }, {
  1364. .name = "sha384",
  1365. .driver_name = "sha384-caam",
  1366. .hmac_name = "hmac(sha384)",
  1367. .hmac_driver_name = "hmac-sha384-caam",
  1368. .blocksize = SHA384_BLOCK_SIZE,
  1369. .template_ahash = {
  1370. .init = ahash_init,
  1371. .update = ahash_update,
  1372. .final = ahash_final,
  1373. .finup = ahash_finup,
  1374. .digest = ahash_digest,
  1375. .export = ahash_export,
  1376. .import = ahash_import,
  1377. .setkey = ahash_setkey,
  1378. .halg = {
  1379. .digestsize = SHA384_DIGEST_SIZE,
  1380. },
  1381. },
  1382. .alg_type = OP_ALG_ALGSEL_SHA384,
  1383. .alg_op = OP_ALG_ALGSEL_SHA384 | OP_ALG_AAI_HMAC,
  1384. }, {
  1385. .name = "sha512",
  1386. .driver_name = "sha512-caam",
  1387. .hmac_name = "hmac(sha512)",
  1388. .hmac_driver_name = "hmac-sha512-caam",
  1389. .blocksize = SHA512_BLOCK_SIZE,
  1390. .template_ahash = {
  1391. .init = ahash_init,
  1392. .update = ahash_update,
  1393. .final = ahash_final,
  1394. .finup = ahash_finup,
  1395. .digest = ahash_digest,
  1396. .export = ahash_export,
  1397. .import = ahash_import,
  1398. .setkey = ahash_setkey,
  1399. .halg = {
  1400. .digestsize = SHA512_DIGEST_SIZE,
  1401. },
  1402. },
  1403. .alg_type = OP_ALG_ALGSEL_SHA512,
  1404. .alg_op = OP_ALG_ALGSEL_SHA512 | OP_ALG_AAI_HMAC,
  1405. }, {
  1406. .name = "md5",
  1407. .driver_name = "md5-caam",
  1408. .hmac_name = "hmac(md5)",
  1409. .hmac_driver_name = "hmac-md5-caam",
  1410. .blocksize = MD5_BLOCK_WORDS * 4,
  1411. .template_ahash = {
  1412. .init = ahash_init,
  1413. .update = ahash_update,
  1414. .final = ahash_final,
  1415. .finup = ahash_finup,
  1416. .digest = ahash_digest,
  1417. .export = ahash_export,
  1418. .import = ahash_import,
  1419. .setkey = ahash_setkey,
  1420. .halg = {
  1421. .digestsize = MD5_DIGEST_SIZE,
  1422. },
  1423. },
  1424. .alg_type = OP_ALG_ALGSEL_MD5,
  1425. .alg_op = OP_ALG_ALGSEL_MD5 | OP_ALG_AAI_HMAC,
  1426. },
  1427. };
  1428. struct caam_hash_alg {
  1429. struct list_head entry;
  1430. int alg_type;
  1431. int alg_op;
  1432. struct ahash_alg ahash_alg;
  1433. };
  1434. static int caam_hash_cra_init(struct crypto_tfm *tfm)
  1435. {
  1436. struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
  1437. struct crypto_alg *base = tfm->__crt_alg;
  1438. struct hash_alg_common *halg =
  1439. container_of(base, struct hash_alg_common, base);
  1440. struct ahash_alg *alg =
  1441. container_of(halg, struct ahash_alg, halg);
  1442. struct caam_hash_alg *caam_hash =
  1443. container_of(alg, struct caam_hash_alg, ahash_alg);
  1444. struct caam_hash_ctx *ctx = crypto_tfm_ctx(tfm);
  1445. /* Sizes for MDHA running digests: MD5, SHA1, 224, 256, 384, 512 */
  1446. static const u8 runninglen[] = { HASH_MSG_LEN + MD5_DIGEST_SIZE,
  1447. HASH_MSG_LEN + SHA1_DIGEST_SIZE,
  1448. HASH_MSG_LEN + 32,
  1449. HASH_MSG_LEN + SHA256_DIGEST_SIZE,
  1450. HASH_MSG_LEN + 64,
  1451. HASH_MSG_LEN + SHA512_DIGEST_SIZE };
  1452. int ret = 0;
  1453. /*
  1454. * Get a Job ring from Job Ring driver to ensure in-order
  1455. * crypto request processing per tfm
  1456. */
  1457. ctx->jrdev = caam_jr_alloc();
  1458. if (IS_ERR(ctx->jrdev)) {
  1459. pr_err("Job Ring Device allocation for transform failed\n");
  1460. return PTR_ERR(ctx->jrdev);
  1461. }
  1462. /* copy descriptor header template value */
  1463. ctx->alg_type = OP_TYPE_CLASS2_ALG | caam_hash->alg_type;
  1464. ctx->alg_op = OP_TYPE_CLASS2_ALG | caam_hash->alg_op;
  1465. ctx->ctx_len = runninglen[(ctx->alg_op & OP_ALG_ALGSEL_SUBMASK) >>
  1466. OP_ALG_ALGSEL_SHIFT];
  1467. crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
  1468. sizeof(struct caam_hash_state));
  1469. ret = ahash_set_sh_desc(ahash);
  1470. return ret;
  1471. }
  1472. static void caam_hash_cra_exit(struct crypto_tfm *tfm)
  1473. {
  1474. struct caam_hash_ctx *ctx = crypto_tfm_ctx(tfm);
  1475. if (ctx->sh_desc_update_dma &&
  1476. !dma_mapping_error(ctx->jrdev, ctx->sh_desc_update_dma))
  1477. dma_unmap_single(ctx->jrdev, ctx->sh_desc_update_dma,
  1478. desc_bytes(ctx->sh_desc_update),
  1479. DMA_TO_DEVICE);
  1480. if (ctx->sh_desc_update_first_dma &&
  1481. !dma_mapping_error(ctx->jrdev, ctx->sh_desc_update_first_dma))
  1482. dma_unmap_single(ctx->jrdev, ctx->sh_desc_update_first_dma,
  1483. desc_bytes(ctx->sh_desc_update_first),
  1484. DMA_TO_DEVICE);
  1485. if (ctx->sh_desc_fin_dma &&
  1486. !dma_mapping_error(ctx->jrdev, ctx->sh_desc_fin_dma))
  1487. dma_unmap_single(ctx->jrdev, ctx->sh_desc_fin_dma,
  1488. desc_bytes(ctx->sh_desc_fin), DMA_TO_DEVICE);
  1489. if (ctx->sh_desc_digest_dma &&
  1490. !dma_mapping_error(ctx->jrdev, ctx->sh_desc_digest_dma))
  1491. dma_unmap_single(ctx->jrdev, ctx->sh_desc_digest_dma,
  1492. desc_bytes(ctx->sh_desc_digest),
  1493. DMA_TO_DEVICE);
  1494. if (ctx->sh_desc_finup_dma &&
  1495. !dma_mapping_error(ctx->jrdev, ctx->sh_desc_finup_dma))
  1496. dma_unmap_single(ctx->jrdev, ctx->sh_desc_finup_dma,
  1497. desc_bytes(ctx->sh_desc_finup), DMA_TO_DEVICE);
  1498. caam_jr_free(ctx->jrdev);
  1499. }
  1500. static void __exit caam_algapi_hash_exit(void)
  1501. {
  1502. struct caam_hash_alg *t_alg, *n;
  1503. if (!hash_list.next)
  1504. return;
  1505. list_for_each_entry_safe(t_alg, n, &hash_list, entry) {
  1506. crypto_unregister_ahash(&t_alg->ahash_alg);
  1507. list_del(&t_alg->entry);
  1508. kfree(t_alg);
  1509. }
  1510. }
  1511. static struct caam_hash_alg *
  1512. caam_hash_alloc(struct caam_hash_template *template,
  1513. bool keyed)
  1514. {
  1515. struct caam_hash_alg *t_alg;
  1516. struct ahash_alg *halg;
  1517. struct crypto_alg *alg;
  1518. t_alg = kzalloc(sizeof(struct caam_hash_alg), GFP_KERNEL);
  1519. if (!t_alg) {
  1520. pr_err("failed to allocate t_alg\n");
  1521. return ERR_PTR(-ENOMEM);
  1522. }
  1523. t_alg->ahash_alg = template->template_ahash;
  1524. halg = &t_alg->ahash_alg;
  1525. alg = &halg->halg.base;
  1526. if (keyed) {
  1527. snprintf(alg->cra_name, CRYPTO_MAX_ALG_NAME, "%s",
  1528. template->hmac_name);
  1529. snprintf(alg->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
  1530. template->hmac_driver_name);
  1531. } else {
  1532. snprintf(alg->cra_name, CRYPTO_MAX_ALG_NAME, "%s",
  1533. template->name);
  1534. snprintf(alg->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
  1535. template->driver_name);
  1536. }
  1537. alg->cra_module = THIS_MODULE;
  1538. alg->cra_init = caam_hash_cra_init;
  1539. alg->cra_exit = caam_hash_cra_exit;
  1540. alg->cra_ctxsize = sizeof(struct caam_hash_ctx);
  1541. alg->cra_priority = CAAM_CRA_PRIORITY;
  1542. alg->cra_blocksize = template->blocksize;
  1543. alg->cra_alignmask = 0;
  1544. alg->cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_TYPE_AHASH;
  1545. alg->cra_type = &crypto_ahash_type;
  1546. t_alg->alg_type = template->alg_type;
  1547. t_alg->alg_op = template->alg_op;
  1548. return t_alg;
  1549. }
  1550. static int __init caam_algapi_hash_init(void)
  1551. {
  1552. int i = 0, err = 0;
  1553. INIT_LIST_HEAD(&hash_list);
  1554. /* register crypto algorithms the device supports */
  1555. for (i = 0; i < ARRAY_SIZE(driver_hash); i++) {
  1556. /* TODO: check if h/w supports alg */
  1557. struct caam_hash_alg *t_alg;
  1558. /* register hmac version */
  1559. t_alg = caam_hash_alloc(&driver_hash[i], true);
  1560. if (IS_ERR(t_alg)) {
  1561. err = PTR_ERR(t_alg);
  1562. pr_warn("%s alg allocation failed\n",
  1563. driver_hash[i].driver_name);
  1564. continue;
  1565. }
  1566. err = crypto_register_ahash(&t_alg->ahash_alg);
  1567. if (err) {
  1568. pr_warn("%s alg registration failed\n",
  1569. t_alg->ahash_alg.halg.base.cra_driver_name);
  1570. kfree(t_alg);
  1571. } else
  1572. list_add_tail(&t_alg->entry, &hash_list);
  1573. /* register unkeyed version */
  1574. t_alg = caam_hash_alloc(&driver_hash[i], false);
  1575. if (IS_ERR(t_alg)) {
  1576. err = PTR_ERR(t_alg);
  1577. pr_warn("%s alg allocation failed\n",
  1578. driver_hash[i].driver_name);
  1579. continue;
  1580. }
  1581. err = crypto_register_ahash(&t_alg->ahash_alg);
  1582. if (err) {
  1583. pr_warn("%s alg registration failed\n",
  1584. t_alg->ahash_alg.halg.base.cra_driver_name);
  1585. kfree(t_alg);
  1586. } else
  1587. list_add_tail(&t_alg->entry, &hash_list);
  1588. }
  1589. return err;
  1590. }
  1591. module_init(caam_algapi_hash_init);
  1592. module_exit(caam_algapi_hash_exit);
  1593. MODULE_LICENSE("GPL");
  1594. MODULE_DESCRIPTION("FSL CAAM support for ahash functions of crypto API");
  1595. MODULE_AUTHOR("Freescale Semiconductor - NMG");