transaction.c 40 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543
  1. /*
  2. * Copyright (C) 2007 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/fs.h>
  19. #include <linux/slab.h>
  20. #include <linux/sched.h>
  21. #include <linux/writeback.h>
  22. #include <linux/pagemap.h>
  23. #include <linux/blkdev.h>
  24. #include "ctree.h"
  25. #include "disk-io.h"
  26. #include "transaction.h"
  27. #include "locking.h"
  28. #include "tree-log.h"
  29. #include "inode-map.h"
  30. #include "volumes.h"
  31. #define BTRFS_ROOT_TRANS_TAG 0
  32. void put_transaction(struct btrfs_transaction *transaction)
  33. {
  34. WARN_ON(atomic_read(&transaction->use_count) == 0);
  35. if (atomic_dec_and_test(&transaction->use_count)) {
  36. BUG_ON(!list_empty(&transaction->list));
  37. WARN_ON(transaction->delayed_refs.root.rb_node);
  38. WARN_ON(!list_empty(&transaction->delayed_refs.seq_head));
  39. memset(transaction, 0, sizeof(*transaction));
  40. kmem_cache_free(btrfs_transaction_cachep, transaction);
  41. }
  42. }
  43. static noinline void switch_commit_root(struct btrfs_root *root)
  44. {
  45. free_extent_buffer(root->commit_root);
  46. root->commit_root = btrfs_root_node(root);
  47. }
  48. /*
  49. * either allocate a new transaction or hop into the existing one
  50. */
  51. static noinline int join_transaction(struct btrfs_root *root, int nofail)
  52. {
  53. struct btrfs_transaction *cur_trans;
  54. spin_lock(&root->fs_info->trans_lock);
  55. loop:
  56. /* The file system has been taken offline. No new transactions. */
  57. if (root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
  58. spin_unlock(&root->fs_info->trans_lock);
  59. return -EROFS;
  60. }
  61. if (root->fs_info->trans_no_join) {
  62. if (!nofail) {
  63. spin_unlock(&root->fs_info->trans_lock);
  64. return -EBUSY;
  65. }
  66. }
  67. cur_trans = root->fs_info->running_transaction;
  68. if (cur_trans) {
  69. if (cur_trans->aborted) {
  70. spin_unlock(&root->fs_info->trans_lock);
  71. return cur_trans->aborted;
  72. }
  73. atomic_inc(&cur_trans->use_count);
  74. atomic_inc(&cur_trans->num_writers);
  75. cur_trans->num_joined++;
  76. spin_unlock(&root->fs_info->trans_lock);
  77. return 0;
  78. }
  79. spin_unlock(&root->fs_info->trans_lock);
  80. cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS);
  81. if (!cur_trans)
  82. return -ENOMEM;
  83. spin_lock(&root->fs_info->trans_lock);
  84. if (root->fs_info->running_transaction) {
  85. /*
  86. * someone started a transaction after we unlocked. Make sure
  87. * to redo the trans_no_join checks above
  88. */
  89. kmem_cache_free(btrfs_transaction_cachep, cur_trans);
  90. cur_trans = root->fs_info->running_transaction;
  91. goto loop;
  92. }
  93. atomic_set(&cur_trans->num_writers, 1);
  94. cur_trans->num_joined = 0;
  95. init_waitqueue_head(&cur_trans->writer_wait);
  96. init_waitqueue_head(&cur_trans->commit_wait);
  97. cur_trans->in_commit = 0;
  98. cur_trans->blocked = 0;
  99. /*
  100. * One for this trans handle, one so it will live on until we
  101. * commit the transaction.
  102. */
  103. atomic_set(&cur_trans->use_count, 2);
  104. cur_trans->commit_done = 0;
  105. cur_trans->start_time = get_seconds();
  106. cur_trans->delayed_refs.root = RB_ROOT;
  107. cur_trans->delayed_refs.num_entries = 0;
  108. cur_trans->delayed_refs.num_heads_ready = 0;
  109. cur_trans->delayed_refs.num_heads = 0;
  110. cur_trans->delayed_refs.flushing = 0;
  111. cur_trans->delayed_refs.run_delayed_start = 0;
  112. cur_trans->delayed_refs.seq = 1;
  113. init_waitqueue_head(&cur_trans->delayed_refs.seq_wait);
  114. spin_lock_init(&cur_trans->commit_lock);
  115. spin_lock_init(&cur_trans->delayed_refs.lock);
  116. INIT_LIST_HEAD(&cur_trans->delayed_refs.seq_head);
  117. INIT_LIST_HEAD(&cur_trans->pending_snapshots);
  118. list_add_tail(&cur_trans->list, &root->fs_info->trans_list);
  119. extent_io_tree_init(&cur_trans->dirty_pages,
  120. root->fs_info->btree_inode->i_mapping);
  121. root->fs_info->generation++;
  122. cur_trans->transid = root->fs_info->generation;
  123. root->fs_info->running_transaction = cur_trans;
  124. cur_trans->aborted = 0;
  125. spin_unlock(&root->fs_info->trans_lock);
  126. return 0;
  127. }
  128. /*
  129. * this does all the record keeping required to make sure that a reference
  130. * counted root is properly recorded in a given transaction. This is required
  131. * to make sure the old root from before we joined the transaction is deleted
  132. * when the transaction commits
  133. */
  134. static int record_root_in_trans(struct btrfs_trans_handle *trans,
  135. struct btrfs_root *root)
  136. {
  137. if (root->ref_cows && root->last_trans < trans->transid) {
  138. WARN_ON(root == root->fs_info->extent_root);
  139. WARN_ON(root->commit_root != root->node);
  140. /*
  141. * see below for in_trans_setup usage rules
  142. * we have the reloc mutex held now, so there
  143. * is only one writer in this function
  144. */
  145. root->in_trans_setup = 1;
  146. /* make sure readers find in_trans_setup before
  147. * they find our root->last_trans update
  148. */
  149. smp_wmb();
  150. spin_lock(&root->fs_info->fs_roots_radix_lock);
  151. if (root->last_trans == trans->transid) {
  152. spin_unlock(&root->fs_info->fs_roots_radix_lock);
  153. return 0;
  154. }
  155. radix_tree_tag_set(&root->fs_info->fs_roots_radix,
  156. (unsigned long)root->root_key.objectid,
  157. BTRFS_ROOT_TRANS_TAG);
  158. spin_unlock(&root->fs_info->fs_roots_radix_lock);
  159. root->last_trans = trans->transid;
  160. /* this is pretty tricky. We don't want to
  161. * take the relocation lock in btrfs_record_root_in_trans
  162. * unless we're really doing the first setup for this root in
  163. * this transaction.
  164. *
  165. * Normally we'd use root->last_trans as a flag to decide
  166. * if we want to take the expensive mutex.
  167. *
  168. * But, we have to set root->last_trans before we
  169. * init the relocation root, otherwise, we trip over warnings
  170. * in ctree.c. The solution used here is to flag ourselves
  171. * with root->in_trans_setup. When this is 1, we're still
  172. * fixing up the reloc trees and everyone must wait.
  173. *
  174. * When this is zero, they can trust root->last_trans and fly
  175. * through btrfs_record_root_in_trans without having to take the
  176. * lock. smp_wmb() makes sure that all the writes above are
  177. * done before we pop in the zero below
  178. */
  179. btrfs_init_reloc_root(trans, root);
  180. smp_wmb();
  181. root->in_trans_setup = 0;
  182. }
  183. return 0;
  184. }
  185. int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
  186. struct btrfs_root *root)
  187. {
  188. if (!root->ref_cows)
  189. return 0;
  190. /*
  191. * see record_root_in_trans for comments about in_trans_setup usage
  192. * and barriers
  193. */
  194. smp_rmb();
  195. if (root->last_trans == trans->transid &&
  196. !root->in_trans_setup)
  197. return 0;
  198. mutex_lock(&root->fs_info->reloc_mutex);
  199. record_root_in_trans(trans, root);
  200. mutex_unlock(&root->fs_info->reloc_mutex);
  201. return 0;
  202. }
  203. /* wait for commit against the current transaction to become unblocked
  204. * when this is done, it is safe to start a new transaction, but the current
  205. * transaction might not be fully on disk.
  206. */
  207. static void wait_current_trans(struct btrfs_root *root)
  208. {
  209. struct btrfs_transaction *cur_trans;
  210. spin_lock(&root->fs_info->trans_lock);
  211. cur_trans = root->fs_info->running_transaction;
  212. if (cur_trans && cur_trans->blocked) {
  213. atomic_inc(&cur_trans->use_count);
  214. spin_unlock(&root->fs_info->trans_lock);
  215. wait_event(root->fs_info->transaction_wait,
  216. !cur_trans->blocked);
  217. put_transaction(cur_trans);
  218. } else {
  219. spin_unlock(&root->fs_info->trans_lock);
  220. }
  221. }
  222. enum btrfs_trans_type {
  223. TRANS_START,
  224. TRANS_JOIN,
  225. TRANS_USERSPACE,
  226. TRANS_JOIN_NOLOCK,
  227. };
  228. static int may_wait_transaction(struct btrfs_root *root, int type)
  229. {
  230. if (root->fs_info->log_root_recovering)
  231. return 0;
  232. if (type == TRANS_USERSPACE)
  233. return 1;
  234. if (type == TRANS_START &&
  235. !atomic_read(&root->fs_info->open_ioctl_trans))
  236. return 1;
  237. return 0;
  238. }
  239. static struct btrfs_trans_handle *start_transaction(struct btrfs_root *root,
  240. u64 num_items, int type)
  241. {
  242. struct btrfs_trans_handle *h;
  243. struct btrfs_transaction *cur_trans;
  244. u64 num_bytes = 0;
  245. int ret;
  246. if (root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
  247. return ERR_PTR(-EROFS);
  248. if (current->journal_info) {
  249. WARN_ON(type != TRANS_JOIN && type != TRANS_JOIN_NOLOCK);
  250. h = current->journal_info;
  251. h->use_count++;
  252. h->orig_rsv = h->block_rsv;
  253. h->block_rsv = NULL;
  254. goto got_it;
  255. }
  256. /*
  257. * Do the reservation before we join the transaction so we can do all
  258. * the appropriate flushing if need be.
  259. */
  260. if (num_items > 0 && root != root->fs_info->chunk_root) {
  261. num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
  262. ret = btrfs_block_rsv_add(root,
  263. &root->fs_info->trans_block_rsv,
  264. num_bytes);
  265. if (ret)
  266. return ERR_PTR(ret);
  267. }
  268. again:
  269. h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
  270. if (!h)
  271. return ERR_PTR(-ENOMEM);
  272. if (may_wait_transaction(root, type))
  273. wait_current_trans(root);
  274. do {
  275. ret = join_transaction(root, type == TRANS_JOIN_NOLOCK);
  276. if (ret == -EBUSY)
  277. wait_current_trans(root);
  278. } while (ret == -EBUSY);
  279. if (ret < 0) {
  280. kmem_cache_free(btrfs_trans_handle_cachep, h);
  281. return ERR_PTR(ret);
  282. }
  283. cur_trans = root->fs_info->running_transaction;
  284. h->transid = cur_trans->transid;
  285. h->transaction = cur_trans;
  286. h->blocks_used = 0;
  287. h->bytes_reserved = 0;
  288. h->delayed_ref_updates = 0;
  289. h->use_count = 1;
  290. h->block_rsv = NULL;
  291. h->orig_rsv = NULL;
  292. h->aborted = 0;
  293. smp_mb();
  294. if (cur_trans->blocked && may_wait_transaction(root, type)) {
  295. btrfs_commit_transaction(h, root);
  296. goto again;
  297. }
  298. if (num_bytes) {
  299. trace_btrfs_space_reservation(root->fs_info, "transaction",
  300. h->transid, num_bytes, 1);
  301. h->block_rsv = &root->fs_info->trans_block_rsv;
  302. h->bytes_reserved = num_bytes;
  303. }
  304. got_it:
  305. btrfs_record_root_in_trans(h, root);
  306. if (!current->journal_info && type != TRANS_USERSPACE)
  307. current->journal_info = h;
  308. return h;
  309. }
  310. struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
  311. int num_items)
  312. {
  313. return start_transaction(root, num_items, TRANS_START);
  314. }
  315. struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
  316. {
  317. return start_transaction(root, 0, TRANS_JOIN);
  318. }
  319. struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
  320. {
  321. return start_transaction(root, 0, TRANS_JOIN_NOLOCK);
  322. }
  323. struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
  324. {
  325. return start_transaction(root, 0, TRANS_USERSPACE);
  326. }
  327. /* wait for a transaction commit to be fully complete */
  328. static noinline void wait_for_commit(struct btrfs_root *root,
  329. struct btrfs_transaction *commit)
  330. {
  331. wait_event(commit->commit_wait, commit->commit_done);
  332. }
  333. int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
  334. {
  335. struct btrfs_transaction *cur_trans = NULL, *t;
  336. int ret;
  337. ret = 0;
  338. if (transid) {
  339. if (transid <= root->fs_info->last_trans_committed)
  340. goto out;
  341. /* find specified transaction */
  342. spin_lock(&root->fs_info->trans_lock);
  343. list_for_each_entry(t, &root->fs_info->trans_list, list) {
  344. if (t->transid == transid) {
  345. cur_trans = t;
  346. atomic_inc(&cur_trans->use_count);
  347. break;
  348. }
  349. if (t->transid > transid)
  350. break;
  351. }
  352. spin_unlock(&root->fs_info->trans_lock);
  353. ret = -EINVAL;
  354. if (!cur_trans)
  355. goto out; /* bad transid */
  356. } else {
  357. /* find newest transaction that is committing | committed */
  358. spin_lock(&root->fs_info->trans_lock);
  359. list_for_each_entry_reverse(t, &root->fs_info->trans_list,
  360. list) {
  361. if (t->in_commit) {
  362. if (t->commit_done)
  363. break;
  364. cur_trans = t;
  365. atomic_inc(&cur_trans->use_count);
  366. break;
  367. }
  368. }
  369. spin_unlock(&root->fs_info->trans_lock);
  370. if (!cur_trans)
  371. goto out; /* nothing committing|committed */
  372. }
  373. wait_for_commit(root, cur_trans);
  374. put_transaction(cur_trans);
  375. ret = 0;
  376. out:
  377. return ret;
  378. }
  379. void btrfs_throttle(struct btrfs_root *root)
  380. {
  381. if (!atomic_read(&root->fs_info->open_ioctl_trans))
  382. wait_current_trans(root);
  383. }
  384. static int should_end_transaction(struct btrfs_trans_handle *trans,
  385. struct btrfs_root *root)
  386. {
  387. int ret;
  388. ret = btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 5);
  389. return ret ? 1 : 0;
  390. }
  391. int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
  392. struct btrfs_root *root)
  393. {
  394. struct btrfs_transaction *cur_trans = trans->transaction;
  395. struct btrfs_block_rsv *rsv = trans->block_rsv;
  396. int updates;
  397. int err;
  398. smp_mb();
  399. if (cur_trans->blocked || cur_trans->delayed_refs.flushing)
  400. return 1;
  401. /*
  402. * We need to do this in case we're deleting csums so the global block
  403. * rsv get's used instead of the csum block rsv.
  404. */
  405. trans->block_rsv = NULL;
  406. updates = trans->delayed_ref_updates;
  407. trans->delayed_ref_updates = 0;
  408. if (updates) {
  409. err = btrfs_run_delayed_refs(trans, root, updates);
  410. if (err) /* Error code will also eval true */
  411. return err;
  412. }
  413. trans->block_rsv = rsv;
  414. return should_end_transaction(trans, root);
  415. }
  416. static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
  417. struct btrfs_root *root, int throttle, int lock)
  418. {
  419. struct btrfs_transaction *cur_trans = trans->transaction;
  420. struct btrfs_fs_info *info = root->fs_info;
  421. int count = 0;
  422. int err = 0;
  423. if (--trans->use_count) {
  424. trans->block_rsv = trans->orig_rsv;
  425. return 0;
  426. }
  427. btrfs_trans_release_metadata(trans, root);
  428. trans->block_rsv = NULL;
  429. while (count < 2) {
  430. unsigned long cur = trans->delayed_ref_updates;
  431. trans->delayed_ref_updates = 0;
  432. if (cur &&
  433. trans->transaction->delayed_refs.num_heads_ready > 64) {
  434. trans->delayed_ref_updates = 0;
  435. btrfs_run_delayed_refs(trans, root, cur);
  436. } else {
  437. break;
  438. }
  439. count++;
  440. }
  441. if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) &&
  442. should_end_transaction(trans, root)) {
  443. trans->transaction->blocked = 1;
  444. smp_wmb();
  445. }
  446. if (lock && cur_trans->blocked && !cur_trans->in_commit) {
  447. if (throttle) {
  448. /*
  449. * We may race with somebody else here so end up having
  450. * to call end_transaction on ourselves again, so inc
  451. * our use_count.
  452. */
  453. trans->use_count++;
  454. return btrfs_commit_transaction(trans, root);
  455. } else {
  456. wake_up_process(info->transaction_kthread);
  457. }
  458. }
  459. WARN_ON(cur_trans != info->running_transaction);
  460. WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
  461. atomic_dec(&cur_trans->num_writers);
  462. smp_mb();
  463. if (waitqueue_active(&cur_trans->writer_wait))
  464. wake_up(&cur_trans->writer_wait);
  465. put_transaction(cur_trans);
  466. if (current->journal_info == trans)
  467. current->journal_info = NULL;
  468. if (throttle)
  469. btrfs_run_delayed_iputs(root);
  470. if (trans->aborted ||
  471. root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
  472. err = -EIO;
  473. }
  474. memset(trans, 0, sizeof(*trans));
  475. kmem_cache_free(btrfs_trans_handle_cachep, trans);
  476. return err;
  477. }
  478. int btrfs_end_transaction(struct btrfs_trans_handle *trans,
  479. struct btrfs_root *root)
  480. {
  481. int ret;
  482. ret = __btrfs_end_transaction(trans, root, 0, 1);
  483. if (ret)
  484. return ret;
  485. return 0;
  486. }
  487. int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
  488. struct btrfs_root *root)
  489. {
  490. int ret;
  491. ret = __btrfs_end_transaction(trans, root, 1, 1);
  492. if (ret)
  493. return ret;
  494. return 0;
  495. }
  496. int btrfs_end_transaction_nolock(struct btrfs_trans_handle *trans,
  497. struct btrfs_root *root)
  498. {
  499. int ret;
  500. ret = __btrfs_end_transaction(trans, root, 0, 0);
  501. if (ret)
  502. return ret;
  503. return 0;
  504. }
  505. int btrfs_end_transaction_dmeta(struct btrfs_trans_handle *trans,
  506. struct btrfs_root *root)
  507. {
  508. return __btrfs_end_transaction(trans, root, 1, 1);
  509. }
  510. /*
  511. * when btree blocks are allocated, they have some corresponding bits set for
  512. * them in one of two extent_io trees. This is used to make sure all of
  513. * those extents are sent to disk but does not wait on them
  514. */
  515. int btrfs_write_marked_extents(struct btrfs_root *root,
  516. struct extent_io_tree *dirty_pages, int mark)
  517. {
  518. int err = 0;
  519. int werr = 0;
  520. struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
  521. u64 start = 0;
  522. u64 end;
  523. while (!find_first_extent_bit(dirty_pages, start, &start, &end,
  524. mark)) {
  525. convert_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT, mark,
  526. GFP_NOFS);
  527. err = filemap_fdatawrite_range(mapping, start, end);
  528. if (err)
  529. werr = err;
  530. cond_resched();
  531. start = end + 1;
  532. }
  533. if (err)
  534. werr = err;
  535. return werr;
  536. }
  537. /*
  538. * when btree blocks are allocated, they have some corresponding bits set for
  539. * them in one of two extent_io trees. This is used to make sure all of
  540. * those extents are on disk for transaction or log commit. We wait
  541. * on all the pages and clear them from the dirty pages state tree
  542. */
  543. int btrfs_wait_marked_extents(struct btrfs_root *root,
  544. struct extent_io_tree *dirty_pages, int mark)
  545. {
  546. int err = 0;
  547. int werr = 0;
  548. struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
  549. u64 start = 0;
  550. u64 end;
  551. while (!find_first_extent_bit(dirty_pages, start, &start, &end,
  552. EXTENT_NEED_WAIT)) {
  553. clear_extent_bits(dirty_pages, start, end, EXTENT_NEED_WAIT, GFP_NOFS);
  554. err = filemap_fdatawait_range(mapping, start, end);
  555. if (err)
  556. werr = err;
  557. cond_resched();
  558. start = end + 1;
  559. }
  560. if (err)
  561. werr = err;
  562. return werr;
  563. }
  564. /*
  565. * when btree blocks are allocated, they have some corresponding bits set for
  566. * them in one of two extent_io trees. This is used to make sure all of
  567. * those extents are on disk for transaction or log commit
  568. */
  569. int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
  570. struct extent_io_tree *dirty_pages, int mark)
  571. {
  572. int ret;
  573. int ret2;
  574. ret = btrfs_write_marked_extents(root, dirty_pages, mark);
  575. ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
  576. if (ret)
  577. return ret;
  578. if (ret2)
  579. return ret2;
  580. return 0;
  581. }
  582. int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
  583. struct btrfs_root *root)
  584. {
  585. if (!trans || !trans->transaction) {
  586. struct inode *btree_inode;
  587. btree_inode = root->fs_info->btree_inode;
  588. return filemap_write_and_wait(btree_inode->i_mapping);
  589. }
  590. return btrfs_write_and_wait_marked_extents(root,
  591. &trans->transaction->dirty_pages,
  592. EXTENT_DIRTY);
  593. }
  594. /*
  595. * this is used to update the root pointer in the tree of tree roots.
  596. *
  597. * But, in the case of the extent allocation tree, updating the root
  598. * pointer may allocate blocks which may change the root of the extent
  599. * allocation tree.
  600. *
  601. * So, this loops and repeats and makes sure the cowonly root didn't
  602. * change while the root pointer was being updated in the metadata.
  603. */
  604. static int update_cowonly_root(struct btrfs_trans_handle *trans,
  605. struct btrfs_root *root)
  606. {
  607. int ret;
  608. u64 old_root_bytenr;
  609. u64 old_root_used;
  610. struct btrfs_root *tree_root = root->fs_info->tree_root;
  611. old_root_used = btrfs_root_used(&root->root_item);
  612. btrfs_write_dirty_block_groups(trans, root);
  613. while (1) {
  614. old_root_bytenr = btrfs_root_bytenr(&root->root_item);
  615. if (old_root_bytenr == root->node->start &&
  616. old_root_used == btrfs_root_used(&root->root_item))
  617. break;
  618. btrfs_set_root_node(&root->root_item, root->node);
  619. ret = btrfs_update_root(trans, tree_root,
  620. &root->root_key,
  621. &root->root_item);
  622. if (ret)
  623. return ret;
  624. old_root_used = btrfs_root_used(&root->root_item);
  625. ret = btrfs_write_dirty_block_groups(trans, root);
  626. if (ret)
  627. return ret;
  628. }
  629. if (root != root->fs_info->extent_root)
  630. switch_commit_root(root);
  631. return 0;
  632. }
  633. /*
  634. * update all the cowonly tree roots on disk
  635. *
  636. * The error handling in this function may not be obvious. Any of the
  637. * failures will cause the file system to go offline. We still need
  638. * to clean up the delayed refs.
  639. */
  640. static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
  641. struct btrfs_root *root)
  642. {
  643. struct btrfs_fs_info *fs_info = root->fs_info;
  644. struct list_head *next;
  645. struct extent_buffer *eb;
  646. int ret;
  647. ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
  648. if (ret)
  649. return ret;
  650. eb = btrfs_lock_root_node(fs_info->tree_root);
  651. ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
  652. 0, &eb);
  653. btrfs_tree_unlock(eb);
  654. free_extent_buffer(eb);
  655. if (ret)
  656. return ret;
  657. ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
  658. if (ret)
  659. return ret;
  660. ret = btrfs_run_dev_stats(trans, root->fs_info);
  661. BUG_ON(ret);
  662. while (!list_empty(&fs_info->dirty_cowonly_roots)) {
  663. next = fs_info->dirty_cowonly_roots.next;
  664. list_del_init(next);
  665. root = list_entry(next, struct btrfs_root, dirty_list);
  666. ret = update_cowonly_root(trans, root);
  667. if (ret)
  668. return ret;
  669. }
  670. down_write(&fs_info->extent_commit_sem);
  671. switch_commit_root(fs_info->extent_root);
  672. up_write(&fs_info->extent_commit_sem);
  673. return 0;
  674. }
  675. /*
  676. * dead roots are old snapshots that need to be deleted. This allocates
  677. * a dirty root struct and adds it into the list of dead roots that need to
  678. * be deleted
  679. */
  680. int btrfs_add_dead_root(struct btrfs_root *root)
  681. {
  682. spin_lock(&root->fs_info->trans_lock);
  683. list_add(&root->root_list, &root->fs_info->dead_roots);
  684. spin_unlock(&root->fs_info->trans_lock);
  685. return 0;
  686. }
  687. /*
  688. * update all the cowonly tree roots on disk
  689. */
  690. static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
  691. struct btrfs_root *root)
  692. {
  693. struct btrfs_root *gang[8];
  694. struct btrfs_fs_info *fs_info = root->fs_info;
  695. int i;
  696. int ret;
  697. int err = 0;
  698. spin_lock(&fs_info->fs_roots_radix_lock);
  699. while (1) {
  700. ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
  701. (void **)gang, 0,
  702. ARRAY_SIZE(gang),
  703. BTRFS_ROOT_TRANS_TAG);
  704. if (ret == 0)
  705. break;
  706. for (i = 0; i < ret; i++) {
  707. root = gang[i];
  708. radix_tree_tag_clear(&fs_info->fs_roots_radix,
  709. (unsigned long)root->root_key.objectid,
  710. BTRFS_ROOT_TRANS_TAG);
  711. spin_unlock(&fs_info->fs_roots_radix_lock);
  712. btrfs_free_log(trans, root);
  713. btrfs_update_reloc_root(trans, root);
  714. btrfs_orphan_commit_root(trans, root);
  715. btrfs_save_ino_cache(root, trans);
  716. /* see comments in should_cow_block() */
  717. root->force_cow = 0;
  718. smp_wmb();
  719. if (root->commit_root != root->node) {
  720. mutex_lock(&root->fs_commit_mutex);
  721. switch_commit_root(root);
  722. btrfs_unpin_free_ino(root);
  723. mutex_unlock(&root->fs_commit_mutex);
  724. btrfs_set_root_node(&root->root_item,
  725. root->node);
  726. }
  727. err = btrfs_update_root(trans, fs_info->tree_root,
  728. &root->root_key,
  729. &root->root_item);
  730. spin_lock(&fs_info->fs_roots_radix_lock);
  731. if (err)
  732. break;
  733. }
  734. }
  735. spin_unlock(&fs_info->fs_roots_radix_lock);
  736. return err;
  737. }
  738. /*
  739. * defrag a given btree. If cacheonly == 1, this won't read from the disk,
  740. * otherwise every leaf in the btree is read and defragged.
  741. */
  742. int btrfs_defrag_root(struct btrfs_root *root, int cacheonly)
  743. {
  744. struct btrfs_fs_info *info = root->fs_info;
  745. struct btrfs_trans_handle *trans;
  746. int ret;
  747. unsigned long nr;
  748. if (xchg(&root->defrag_running, 1))
  749. return 0;
  750. while (1) {
  751. trans = btrfs_start_transaction(root, 0);
  752. if (IS_ERR(trans))
  753. return PTR_ERR(trans);
  754. ret = btrfs_defrag_leaves(trans, root, cacheonly);
  755. nr = trans->blocks_used;
  756. btrfs_end_transaction(trans, root);
  757. btrfs_btree_balance_dirty(info->tree_root, nr);
  758. cond_resched();
  759. if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN)
  760. break;
  761. }
  762. root->defrag_running = 0;
  763. return ret;
  764. }
  765. /*
  766. * new snapshots need to be created at a very specific time in the
  767. * transaction commit. This does the actual creation
  768. */
  769. static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
  770. struct btrfs_fs_info *fs_info,
  771. struct btrfs_pending_snapshot *pending)
  772. {
  773. struct btrfs_key key;
  774. struct btrfs_root_item *new_root_item;
  775. struct btrfs_root *tree_root = fs_info->tree_root;
  776. struct btrfs_root *root = pending->root;
  777. struct btrfs_root *parent_root;
  778. struct btrfs_block_rsv *rsv;
  779. struct inode *parent_inode;
  780. struct dentry *parent;
  781. struct dentry *dentry;
  782. struct extent_buffer *tmp;
  783. struct extent_buffer *old;
  784. int ret;
  785. u64 to_reserve = 0;
  786. u64 index = 0;
  787. u64 objectid;
  788. u64 root_flags;
  789. rsv = trans->block_rsv;
  790. new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
  791. if (!new_root_item) {
  792. ret = pending->error = -ENOMEM;
  793. goto fail;
  794. }
  795. ret = btrfs_find_free_objectid(tree_root, &objectid);
  796. if (ret) {
  797. pending->error = ret;
  798. goto fail;
  799. }
  800. btrfs_reloc_pre_snapshot(trans, pending, &to_reserve);
  801. if (to_reserve > 0) {
  802. ret = btrfs_block_rsv_add_noflush(root, &pending->block_rsv,
  803. to_reserve);
  804. if (ret) {
  805. pending->error = ret;
  806. goto fail;
  807. }
  808. }
  809. key.objectid = objectid;
  810. key.offset = (u64)-1;
  811. key.type = BTRFS_ROOT_ITEM_KEY;
  812. trans->block_rsv = &pending->block_rsv;
  813. dentry = pending->dentry;
  814. parent = dget_parent(dentry);
  815. parent_inode = parent->d_inode;
  816. parent_root = BTRFS_I(parent_inode)->root;
  817. record_root_in_trans(trans, parent_root);
  818. /*
  819. * insert the directory item
  820. */
  821. ret = btrfs_set_inode_index(parent_inode, &index);
  822. BUG_ON(ret); /* -ENOMEM */
  823. ret = btrfs_insert_dir_item(trans, parent_root,
  824. dentry->d_name.name, dentry->d_name.len,
  825. parent_inode, &key,
  826. BTRFS_FT_DIR, index);
  827. if (ret == -EEXIST) {
  828. pending->error = -EEXIST;
  829. dput(parent);
  830. goto fail;
  831. } else if (ret) {
  832. goto abort_trans_dput;
  833. }
  834. btrfs_i_size_write(parent_inode, parent_inode->i_size +
  835. dentry->d_name.len * 2);
  836. ret = btrfs_update_inode(trans, parent_root, parent_inode);
  837. if (ret)
  838. goto abort_trans_dput;
  839. /*
  840. * pull in the delayed directory update
  841. * and the delayed inode item
  842. * otherwise we corrupt the FS during
  843. * snapshot
  844. */
  845. ret = btrfs_run_delayed_items(trans, root);
  846. if (ret) { /* Transaction aborted */
  847. dput(parent);
  848. goto fail;
  849. }
  850. record_root_in_trans(trans, root);
  851. btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
  852. memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
  853. btrfs_check_and_init_root_item(new_root_item);
  854. root_flags = btrfs_root_flags(new_root_item);
  855. if (pending->readonly)
  856. root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
  857. else
  858. root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
  859. btrfs_set_root_flags(new_root_item, root_flags);
  860. old = btrfs_lock_root_node(root);
  861. ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
  862. if (ret) {
  863. btrfs_tree_unlock(old);
  864. free_extent_buffer(old);
  865. goto abort_trans_dput;
  866. }
  867. btrfs_set_lock_blocking(old);
  868. ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
  869. /* clean up in any case */
  870. btrfs_tree_unlock(old);
  871. free_extent_buffer(old);
  872. if (ret)
  873. goto abort_trans_dput;
  874. /* see comments in should_cow_block() */
  875. root->force_cow = 1;
  876. smp_wmb();
  877. btrfs_set_root_node(new_root_item, tmp);
  878. /* record when the snapshot was created in key.offset */
  879. key.offset = trans->transid;
  880. ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
  881. btrfs_tree_unlock(tmp);
  882. free_extent_buffer(tmp);
  883. if (ret)
  884. goto abort_trans_dput;
  885. /*
  886. * insert root back/forward references
  887. */
  888. ret = btrfs_add_root_ref(trans, tree_root, objectid,
  889. parent_root->root_key.objectid,
  890. btrfs_ino(parent_inode), index,
  891. dentry->d_name.name, dentry->d_name.len);
  892. dput(parent);
  893. if (ret)
  894. goto fail;
  895. key.offset = (u64)-1;
  896. pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
  897. if (IS_ERR(pending->snap)) {
  898. ret = PTR_ERR(pending->snap);
  899. goto abort_trans;
  900. }
  901. ret = btrfs_reloc_post_snapshot(trans, pending);
  902. if (ret)
  903. goto abort_trans;
  904. ret = 0;
  905. fail:
  906. kfree(new_root_item);
  907. trans->block_rsv = rsv;
  908. btrfs_block_rsv_release(root, &pending->block_rsv, (u64)-1);
  909. return ret;
  910. abort_trans_dput:
  911. dput(parent);
  912. abort_trans:
  913. btrfs_abort_transaction(trans, root, ret);
  914. goto fail;
  915. }
  916. /*
  917. * create all the snapshots we've scheduled for creation
  918. */
  919. static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
  920. struct btrfs_fs_info *fs_info)
  921. {
  922. struct btrfs_pending_snapshot *pending;
  923. struct list_head *head = &trans->transaction->pending_snapshots;
  924. list_for_each_entry(pending, head, list)
  925. create_pending_snapshot(trans, fs_info, pending);
  926. return 0;
  927. }
  928. static void update_super_roots(struct btrfs_root *root)
  929. {
  930. struct btrfs_root_item *root_item;
  931. struct btrfs_super_block *super;
  932. super = root->fs_info->super_copy;
  933. root_item = &root->fs_info->chunk_root->root_item;
  934. super->chunk_root = root_item->bytenr;
  935. super->chunk_root_generation = root_item->generation;
  936. super->chunk_root_level = root_item->level;
  937. root_item = &root->fs_info->tree_root->root_item;
  938. super->root = root_item->bytenr;
  939. super->generation = root_item->generation;
  940. super->root_level = root_item->level;
  941. if (btrfs_test_opt(root, SPACE_CACHE))
  942. super->cache_generation = root_item->generation;
  943. }
  944. int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
  945. {
  946. int ret = 0;
  947. spin_lock(&info->trans_lock);
  948. if (info->running_transaction)
  949. ret = info->running_transaction->in_commit;
  950. spin_unlock(&info->trans_lock);
  951. return ret;
  952. }
  953. int btrfs_transaction_blocked(struct btrfs_fs_info *info)
  954. {
  955. int ret = 0;
  956. spin_lock(&info->trans_lock);
  957. if (info->running_transaction)
  958. ret = info->running_transaction->blocked;
  959. spin_unlock(&info->trans_lock);
  960. return ret;
  961. }
  962. /*
  963. * wait for the current transaction commit to start and block subsequent
  964. * transaction joins
  965. */
  966. static void wait_current_trans_commit_start(struct btrfs_root *root,
  967. struct btrfs_transaction *trans)
  968. {
  969. wait_event(root->fs_info->transaction_blocked_wait, trans->in_commit);
  970. }
  971. /*
  972. * wait for the current transaction to start and then become unblocked.
  973. * caller holds ref.
  974. */
  975. static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
  976. struct btrfs_transaction *trans)
  977. {
  978. wait_event(root->fs_info->transaction_wait,
  979. trans->commit_done || (trans->in_commit && !trans->blocked));
  980. }
  981. /*
  982. * commit transactions asynchronously. once btrfs_commit_transaction_async
  983. * returns, any subsequent transaction will not be allowed to join.
  984. */
  985. struct btrfs_async_commit {
  986. struct btrfs_trans_handle *newtrans;
  987. struct btrfs_root *root;
  988. struct delayed_work work;
  989. };
  990. static void do_async_commit(struct work_struct *work)
  991. {
  992. struct btrfs_async_commit *ac =
  993. container_of(work, struct btrfs_async_commit, work.work);
  994. btrfs_commit_transaction(ac->newtrans, ac->root);
  995. kfree(ac);
  996. }
  997. int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
  998. struct btrfs_root *root,
  999. int wait_for_unblock)
  1000. {
  1001. struct btrfs_async_commit *ac;
  1002. struct btrfs_transaction *cur_trans;
  1003. ac = kmalloc(sizeof(*ac), GFP_NOFS);
  1004. if (!ac)
  1005. return -ENOMEM;
  1006. INIT_DELAYED_WORK(&ac->work, do_async_commit);
  1007. ac->root = root;
  1008. ac->newtrans = btrfs_join_transaction(root);
  1009. if (IS_ERR(ac->newtrans)) {
  1010. int err = PTR_ERR(ac->newtrans);
  1011. kfree(ac);
  1012. return err;
  1013. }
  1014. /* take transaction reference */
  1015. cur_trans = trans->transaction;
  1016. atomic_inc(&cur_trans->use_count);
  1017. btrfs_end_transaction(trans, root);
  1018. schedule_delayed_work(&ac->work, 0);
  1019. /* wait for transaction to start and unblock */
  1020. if (wait_for_unblock)
  1021. wait_current_trans_commit_start_and_unblock(root, cur_trans);
  1022. else
  1023. wait_current_trans_commit_start(root, cur_trans);
  1024. if (current->journal_info == trans)
  1025. current->journal_info = NULL;
  1026. put_transaction(cur_trans);
  1027. return 0;
  1028. }
  1029. static void cleanup_transaction(struct btrfs_trans_handle *trans,
  1030. struct btrfs_root *root)
  1031. {
  1032. struct btrfs_transaction *cur_trans = trans->transaction;
  1033. WARN_ON(trans->use_count > 1);
  1034. spin_lock(&root->fs_info->trans_lock);
  1035. list_del_init(&cur_trans->list);
  1036. spin_unlock(&root->fs_info->trans_lock);
  1037. btrfs_cleanup_one_transaction(trans->transaction, root);
  1038. put_transaction(cur_trans);
  1039. put_transaction(cur_trans);
  1040. trace_btrfs_transaction_commit(root);
  1041. btrfs_scrub_continue(root);
  1042. if (current->journal_info == trans)
  1043. current->journal_info = NULL;
  1044. kmem_cache_free(btrfs_trans_handle_cachep, trans);
  1045. }
  1046. /*
  1047. * btrfs_transaction state sequence:
  1048. * in_commit = 0, blocked = 0 (initial)
  1049. * in_commit = 1, blocked = 1
  1050. * blocked = 0
  1051. * commit_done = 1
  1052. */
  1053. int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
  1054. struct btrfs_root *root)
  1055. {
  1056. unsigned long joined = 0;
  1057. struct btrfs_transaction *cur_trans = trans->transaction;
  1058. struct btrfs_transaction *prev_trans = NULL;
  1059. DEFINE_WAIT(wait);
  1060. int ret = -EIO;
  1061. int should_grow = 0;
  1062. unsigned long now = get_seconds();
  1063. int flush_on_commit = btrfs_test_opt(root, FLUSHONCOMMIT);
  1064. btrfs_run_ordered_operations(root, 0);
  1065. btrfs_trans_release_metadata(trans, root);
  1066. trans->block_rsv = NULL;
  1067. if (cur_trans->aborted)
  1068. goto cleanup_transaction;
  1069. /* make a pass through all the delayed refs we have so far
  1070. * any runnings procs may add more while we are here
  1071. */
  1072. ret = btrfs_run_delayed_refs(trans, root, 0);
  1073. if (ret)
  1074. goto cleanup_transaction;
  1075. cur_trans = trans->transaction;
  1076. /*
  1077. * set the flushing flag so procs in this transaction have to
  1078. * start sending their work down.
  1079. */
  1080. cur_trans->delayed_refs.flushing = 1;
  1081. ret = btrfs_run_delayed_refs(trans, root, 0);
  1082. if (ret)
  1083. goto cleanup_transaction;
  1084. spin_lock(&cur_trans->commit_lock);
  1085. if (cur_trans->in_commit) {
  1086. spin_unlock(&cur_trans->commit_lock);
  1087. atomic_inc(&cur_trans->use_count);
  1088. ret = btrfs_end_transaction(trans, root);
  1089. wait_for_commit(root, cur_trans);
  1090. put_transaction(cur_trans);
  1091. return ret;
  1092. }
  1093. trans->transaction->in_commit = 1;
  1094. trans->transaction->blocked = 1;
  1095. spin_unlock(&cur_trans->commit_lock);
  1096. wake_up(&root->fs_info->transaction_blocked_wait);
  1097. spin_lock(&root->fs_info->trans_lock);
  1098. if (cur_trans->list.prev != &root->fs_info->trans_list) {
  1099. prev_trans = list_entry(cur_trans->list.prev,
  1100. struct btrfs_transaction, list);
  1101. if (!prev_trans->commit_done) {
  1102. atomic_inc(&prev_trans->use_count);
  1103. spin_unlock(&root->fs_info->trans_lock);
  1104. wait_for_commit(root, prev_trans);
  1105. put_transaction(prev_trans);
  1106. } else {
  1107. spin_unlock(&root->fs_info->trans_lock);
  1108. }
  1109. } else {
  1110. spin_unlock(&root->fs_info->trans_lock);
  1111. }
  1112. if (now < cur_trans->start_time || now - cur_trans->start_time < 1)
  1113. should_grow = 1;
  1114. do {
  1115. int snap_pending = 0;
  1116. joined = cur_trans->num_joined;
  1117. if (!list_empty(&trans->transaction->pending_snapshots))
  1118. snap_pending = 1;
  1119. WARN_ON(cur_trans != trans->transaction);
  1120. if (flush_on_commit || snap_pending) {
  1121. btrfs_start_delalloc_inodes(root, 1);
  1122. btrfs_wait_ordered_extents(root, 0, 1);
  1123. }
  1124. ret = btrfs_run_delayed_items(trans, root);
  1125. if (ret)
  1126. goto cleanup_transaction;
  1127. /*
  1128. * rename don't use btrfs_join_transaction, so, once we
  1129. * set the transaction to blocked above, we aren't going
  1130. * to get any new ordered operations. We can safely run
  1131. * it here and no for sure that nothing new will be added
  1132. * to the list
  1133. */
  1134. btrfs_run_ordered_operations(root, 1);
  1135. prepare_to_wait(&cur_trans->writer_wait, &wait,
  1136. TASK_UNINTERRUPTIBLE);
  1137. if (atomic_read(&cur_trans->num_writers) > 1)
  1138. schedule_timeout(MAX_SCHEDULE_TIMEOUT);
  1139. else if (should_grow)
  1140. schedule_timeout(1);
  1141. finish_wait(&cur_trans->writer_wait, &wait);
  1142. } while (atomic_read(&cur_trans->num_writers) > 1 ||
  1143. (should_grow && cur_trans->num_joined != joined));
  1144. /*
  1145. * Ok now we need to make sure to block out any other joins while we
  1146. * commit the transaction. We could have started a join before setting
  1147. * no_join so make sure to wait for num_writers to == 1 again.
  1148. */
  1149. spin_lock(&root->fs_info->trans_lock);
  1150. root->fs_info->trans_no_join = 1;
  1151. spin_unlock(&root->fs_info->trans_lock);
  1152. wait_event(cur_trans->writer_wait,
  1153. atomic_read(&cur_trans->num_writers) == 1);
  1154. /*
  1155. * the reloc mutex makes sure that we stop
  1156. * the balancing code from coming in and moving
  1157. * extents around in the middle of the commit
  1158. */
  1159. mutex_lock(&root->fs_info->reloc_mutex);
  1160. ret = btrfs_run_delayed_items(trans, root);
  1161. if (ret) {
  1162. mutex_unlock(&root->fs_info->reloc_mutex);
  1163. goto cleanup_transaction;
  1164. }
  1165. ret = create_pending_snapshots(trans, root->fs_info);
  1166. if (ret) {
  1167. mutex_unlock(&root->fs_info->reloc_mutex);
  1168. goto cleanup_transaction;
  1169. }
  1170. ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
  1171. if (ret) {
  1172. mutex_unlock(&root->fs_info->reloc_mutex);
  1173. goto cleanup_transaction;
  1174. }
  1175. /*
  1176. * make sure none of the code above managed to slip in a
  1177. * delayed item
  1178. */
  1179. btrfs_assert_delayed_root_empty(root);
  1180. WARN_ON(cur_trans != trans->transaction);
  1181. btrfs_scrub_pause(root);
  1182. /* btrfs_commit_tree_roots is responsible for getting the
  1183. * various roots consistent with each other. Every pointer
  1184. * in the tree of tree roots has to point to the most up to date
  1185. * root for every subvolume and other tree. So, we have to keep
  1186. * the tree logging code from jumping in and changing any
  1187. * of the trees.
  1188. *
  1189. * At this point in the commit, there can't be any tree-log
  1190. * writers, but a little lower down we drop the trans mutex
  1191. * and let new people in. By holding the tree_log_mutex
  1192. * from now until after the super is written, we avoid races
  1193. * with the tree-log code.
  1194. */
  1195. mutex_lock(&root->fs_info->tree_log_mutex);
  1196. ret = commit_fs_roots(trans, root);
  1197. if (ret) {
  1198. mutex_unlock(&root->fs_info->tree_log_mutex);
  1199. mutex_unlock(&root->fs_info->reloc_mutex);
  1200. goto cleanup_transaction;
  1201. }
  1202. /* commit_fs_roots gets rid of all the tree log roots, it is now
  1203. * safe to free the root of tree log roots
  1204. */
  1205. btrfs_free_log_root_tree(trans, root->fs_info);
  1206. ret = commit_cowonly_roots(trans, root);
  1207. if (ret) {
  1208. mutex_unlock(&root->fs_info->tree_log_mutex);
  1209. mutex_unlock(&root->fs_info->reloc_mutex);
  1210. goto cleanup_transaction;
  1211. }
  1212. btrfs_prepare_extent_commit(trans, root);
  1213. cur_trans = root->fs_info->running_transaction;
  1214. btrfs_set_root_node(&root->fs_info->tree_root->root_item,
  1215. root->fs_info->tree_root->node);
  1216. switch_commit_root(root->fs_info->tree_root);
  1217. btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
  1218. root->fs_info->chunk_root->node);
  1219. switch_commit_root(root->fs_info->chunk_root);
  1220. update_super_roots(root);
  1221. if (!root->fs_info->log_root_recovering) {
  1222. btrfs_set_super_log_root(root->fs_info->super_copy, 0);
  1223. btrfs_set_super_log_root_level(root->fs_info->super_copy, 0);
  1224. }
  1225. memcpy(root->fs_info->super_for_commit, root->fs_info->super_copy,
  1226. sizeof(*root->fs_info->super_copy));
  1227. trans->transaction->blocked = 0;
  1228. spin_lock(&root->fs_info->trans_lock);
  1229. root->fs_info->running_transaction = NULL;
  1230. root->fs_info->trans_no_join = 0;
  1231. spin_unlock(&root->fs_info->trans_lock);
  1232. mutex_unlock(&root->fs_info->reloc_mutex);
  1233. wake_up(&root->fs_info->transaction_wait);
  1234. ret = btrfs_write_and_wait_transaction(trans, root);
  1235. if (ret) {
  1236. btrfs_error(root->fs_info, ret,
  1237. "Error while writing out transaction.");
  1238. mutex_unlock(&root->fs_info->tree_log_mutex);
  1239. goto cleanup_transaction;
  1240. }
  1241. ret = write_ctree_super(trans, root, 0);
  1242. if (ret) {
  1243. mutex_unlock(&root->fs_info->tree_log_mutex);
  1244. goto cleanup_transaction;
  1245. }
  1246. /*
  1247. * the super is written, we can safely allow the tree-loggers
  1248. * to go about their business
  1249. */
  1250. mutex_unlock(&root->fs_info->tree_log_mutex);
  1251. btrfs_finish_extent_commit(trans, root);
  1252. cur_trans->commit_done = 1;
  1253. root->fs_info->last_trans_committed = cur_trans->transid;
  1254. wake_up(&cur_trans->commit_wait);
  1255. spin_lock(&root->fs_info->trans_lock);
  1256. list_del_init(&cur_trans->list);
  1257. spin_unlock(&root->fs_info->trans_lock);
  1258. put_transaction(cur_trans);
  1259. put_transaction(cur_trans);
  1260. trace_btrfs_transaction_commit(root);
  1261. btrfs_scrub_continue(root);
  1262. if (current->journal_info == trans)
  1263. current->journal_info = NULL;
  1264. kmem_cache_free(btrfs_trans_handle_cachep, trans);
  1265. if (current != root->fs_info->transaction_kthread)
  1266. btrfs_run_delayed_iputs(root);
  1267. return ret;
  1268. cleanup_transaction:
  1269. btrfs_printk(root->fs_info, "Skipping commit of aborted transaction.\n");
  1270. // WARN_ON(1);
  1271. if (current->journal_info == trans)
  1272. current->journal_info = NULL;
  1273. cleanup_transaction(trans, root);
  1274. return ret;
  1275. }
  1276. /*
  1277. * interface function to delete all the snapshots we have scheduled for deletion
  1278. */
  1279. int btrfs_clean_old_snapshots(struct btrfs_root *root)
  1280. {
  1281. LIST_HEAD(list);
  1282. struct btrfs_fs_info *fs_info = root->fs_info;
  1283. spin_lock(&fs_info->trans_lock);
  1284. list_splice_init(&fs_info->dead_roots, &list);
  1285. spin_unlock(&fs_info->trans_lock);
  1286. while (!list_empty(&list)) {
  1287. int ret;
  1288. root = list_entry(list.next, struct btrfs_root, root_list);
  1289. list_del(&root->root_list);
  1290. btrfs_kill_all_delayed_nodes(root);
  1291. if (btrfs_header_backref_rev(root->node) <
  1292. BTRFS_MIXED_BACKREF_REV)
  1293. ret = btrfs_drop_snapshot(root, NULL, 0, 0);
  1294. else
  1295. ret =btrfs_drop_snapshot(root, NULL, 1, 0);
  1296. BUG_ON(ret < 0);
  1297. }
  1298. return 0;
  1299. }