sh_eth.c 38 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551
  1. /*
  2. * SuperH Ethernet device driver
  3. *
  4. * Copyright (C) 2006-2008 Nobuhiro Iwamatsu
  5. * Copyright (C) 2008-2009 Renesas Solutions Corp.
  6. *
  7. * This program is free software; you can redistribute it and/or modify it
  8. * under the terms and conditions of the GNU General Public License,
  9. * version 2, as published by the Free Software Foundation.
  10. *
  11. * This program is distributed in the hope it will be useful, but WITHOUT
  12. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  14. * more details.
  15. * You should have received a copy of the GNU General Public License along with
  16. * this program; if not, write to the Free Software Foundation, Inc.,
  17. * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  18. *
  19. * The full GNU General Public License is included in this distribution in
  20. * the file called "COPYING".
  21. */
  22. #include <linux/init.h>
  23. #include <linux/dma-mapping.h>
  24. #include <linux/etherdevice.h>
  25. #include <linux/delay.h>
  26. #include <linux/platform_device.h>
  27. #include <linux/mdio-bitbang.h>
  28. #include <linux/netdevice.h>
  29. #include <linux/phy.h>
  30. #include <linux/cache.h>
  31. #include <linux/io.h>
  32. #include <linux/pm_runtime.h>
  33. #include <asm/cacheflush.h>
  34. #include "sh_eth.h"
  35. /* There is CPU dependent code */
  36. #if defined(CONFIG_CPU_SUBTYPE_SH7724)
  37. #define SH_ETH_RESET_DEFAULT 1
  38. static void sh_eth_set_duplex(struct net_device *ndev)
  39. {
  40. struct sh_eth_private *mdp = netdev_priv(ndev);
  41. u32 ioaddr = ndev->base_addr;
  42. if (mdp->duplex) /* Full */
  43. ctrl_outl(ctrl_inl(ioaddr + ECMR) | ECMR_DM, ioaddr + ECMR);
  44. else /* Half */
  45. ctrl_outl(ctrl_inl(ioaddr + ECMR) & ~ECMR_DM, ioaddr + ECMR);
  46. }
  47. static void sh_eth_set_rate(struct net_device *ndev)
  48. {
  49. struct sh_eth_private *mdp = netdev_priv(ndev);
  50. u32 ioaddr = ndev->base_addr;
  51. switch (mdp->speed) {
  52. case 10: /* 10BASE */
  53. ctrl_outl(ctrl_inl(ioaddr + ECMR) & ~ECMR_RTM, ioaddr + ECMR);
  54. break;
  55. case 100:/* 100BASE */
  56. ctrl_outl(ctrl_inl(ioaddr + ECMR) | ECMR_RTM, ioaddr + ECMR);
  57. break;
  58. default:
  59. break;
  60. }
  61. }
  62. /* SH7724 */
  63. static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
  64. .set_duplex = sh_eth_set_duplex,
  65. .set_rate = sh_eth_set_rate,
  66. .ecsr_value = ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
  67. .ecsipr_value = ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
  68. .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x01ff009f,
  69. .tx_check = EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
  70. .eesr_err_check = EESR_TWB | EESR_TABT | EESR_RABT | EESR_RDE |
  71. EESR_RFRMER | EESR_TFE | EESR_TDE | EESR_ECI,
  72. .tx_error_check = EESR_TWB | EESR_TABT | EESR_TDE | EESR_TFE,
  73. .apr = 1,
  74. .mpr = 1,
  75. .tpauser = 1,
  76. .hw_swap = 1,
  77. };
  78. #elif defined(CONFIG_CPU_SUBTYPE_SH7763)
  79. #define SH_ETH_HAS_TSU 1
  80. static void sh_eth_chip_reset(struct net_device *ndev)
  81. {
  82. /* reset device */
  83. ctrl_outl(ARSTR_ARSTR, ARSTR);
  84. mdelay(1);
  85. }
  86. static void sh_eth_reset(struct net_device *ndev)
  87. {
  88. u32 ioaddr = ndev->base_addr;
  89. int cnt = 100;
  90. ctrl_outl(EDSR_ENALL, ioaddr + EDSR);
  91. ctrl_outl(ctrl_inl(ioaddr + EDMR) | EDMR_SRST, ioaddr + EDMR);
  92. while (cnt > 0) {
  93. if (!(ctrl_inl(ioaddr + EDMR) & 0x3))
  94. break;
  95. mdelay(1);
  96. cnt--;
  97. }
  98. if (cnt < 0)
  99. printk(KERN_ERR "Device reset fail\n");
  100. /* Table Init */
  101. ctrl_outl(0x0, ioaddr + TDLAR);
  102. ctrl_outl(0x0, ioaddr + TDFAR);
  103. ctrl_outl(0x0, ioaddr + TDFXR);
  104. ctrl_outl(0x0, ioaddr + TDFFR);
  105. ctrl_outl(0x0, ioaddr + RDLAR);
  106. ctrl_outl(0x0, ioaddr + RDFAR);
  107. ctrl_outl(0x0, ioaddr + RDFXR);
  108. ctrl_outl(0x0, ioaddr + RDFFR);
  109. }
  110. static void sh_eth_set_duplex(struct net_device *ndev)
  111. {
  112. struct sh_eth_private *mdp = netdev_priv(ndev);
  113. u32 ioaddr = ndev->base_addr;
  114. if (mdp->duplex) /* Full */
  115. ctrl_outl(ctrl_inl(ioaddr + ECMR) | ECMR_DM, ioaddr + ECMR);
  116. else /* Half */
  117. ctrl_outl(ctrl_inl(ioaddr + ECMR) & ~ECMR_DM, ioaddr + ECMR);
  118. }
  119. static void sh_eth_set_rate(struct net_device *ndev)
  120. {
  121. struct sh_eth_private *mdp = netdev_priv(ndev);
  122. u32 ioaddr = ndev->base_addr;
  123. switch (mdp->speed) {
  124. case 10: /* 10BASE */
  125. ctrl_outl(GECMR_10, ioaddr + GECMR);
  126. break;
  127. case 100:/* 100BASE */
  128. ctrl_outl(GECMR_100, ioaddr + GECMR);
  129. break;
  130. case 1000: /* 1000BASE */
  131. ctrl_outl(GECMR_1000, ioaddr + GECMR);
  132. break;
  133. default:
  134. break;
  135. }
  136. }
  137. /* sh7763 */
  138. static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
  139. .chip_reset = sh_eth_chip_reset,
  140. .set_duplex = sh_eth_set_duplex,
  141. .set_rate = sh_eth_set_rate,
  142. .ecsr_value = ECSR_ICD | ECSR_MPD,
  143. .ecsipr_value = ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
  144. .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
  145. .tx_check = EESR_TC1 | EESR_FTC,
  146. .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT | \
  147. EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE | \
  148. EESR_ECI,
  149. .tx_error_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_TDE | \
  150. EESR_TFE,
  151. .apr = 1,
  152. .mpr = 1,
  153. .tpauser = 1,
  154. .bculr = 1,
  155. .hw_swap = 1,
  156. .rpadir = 1,
  157. .no_trimd = 1,
  158. .no_ade = 1,
  159. };
  160. #elif defined(CONFIG_CPU_SUBTYPE_SH7619)
  161. #define SH_ETH_RESET_DEFAULT 1
  162. static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
  163. .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
  164. .apr = 1,
  165. .mpr = 1,
  166. .tpauser = 1,
  167. .hw_swap = 1,
  168. };
  169. #elif defined(CONFIG_CPU_SUBTYPE_SH7710) || defined(CONFIG_CPU_SUBTYPE_SH7712)
  170. #define SH_ETH_RESET_DEFAULT 1
  171. #define SH_ETH_HAS_TSU 1
  172. static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
  173. .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
  174. };
  175. #endif
  176. static void sh_eth_set_default_cpu_data(struct sh_eth_cpu_data *cd)
  177. {
  178. if (!cd->ecsr_value)
  179. cd->ecsr_value = DEFAULT_ECSR_INIT;
  180. if (!cd->ecsipr_value)
  181. cd->ecsipr_value = DEFAULT_ECSIPR_INIT;
  182. if (!cd->fcftr_value)
  183. cd->fcftr_value = DEFAULT_FIFO_F_D_RFF | \
  184. DEFAULT_FIFO_F_D_RFD;
  185. if (!cd->fdr_value)
  186. cd->fdr_value = DEFAULT_FDR_INIT;
  187. if (!cd->rmcr_value)
  188. cd->rmcr_value = DEFAULT_RMCR_VALUE;
  189. if (!cd->tx_check)
  190. cd->tx_check = DEFAULT_TX_CHECK;
  191. if (!cd->eesr_err_check)
  192. cd->eesr_err_check = DEFAULT_EESR_ERR_CHECK;
  193. if (!cd->tx_error_check)
  194. cd->tx_error_check = DEFAULT_TX_ERROR_CHECK;
  195. }
  196. #if defined(SH_ETH_RESET_DEFAULT)
  197. /* Chip Reset */
  198. static void sh_eth_reset(struct net_device *ndev)
  199. {
  200. u32 ioaddr = ndev->base_addr;
  201. ctrl_outl(ctrl_inl(ioaddr + EDMR) | EDMR_SRST, ioaddr + EDMR);
  202. mdelay(3);
  203. ctrl_outl(ctrl_inl(ioaddr + EDMR) & ~EDMR_SRST, ioaddr + EDMR);
  204. }
  205. #endif
  206. #if defined(CONFIG_CPU_SH4)
  207. static void sh_eth_set_receive_align(struct sk_buff *skb)
  208. {
  209. int reserve;
  210. reserve = SH4_SKB_RX_ALIGN - ((u32)skb->data & (SH4_SKB_RX_ALIGN - 1));
  211. if (reserve)
  212. skb_reserve(skb, reserve);
  213. }
  214. #else
  215. static void sh_eth_set_receive_align(struct sk_buff *skb)
  216. {
  217. skb_reserve(skb, SH2_SH3_SKB_RX_ALIGN);
  218. }
  219. #endif
  220. /* CPU <-> EDMAC endian convert */
  221. static inline __u32 cpu_to_edmac(struct sh_eth_private *mdp, u32 x)
  222. {
  223. switch (mdp->edmac_endian) {
  224. case EDMAC_LITTLE_ENDIAN:
  225. return cpu_to_le32(x);
  226. case EDMAC_BIG_ENDIAN:
  227. return cpu_to_be32(x);
  228. }
  229. return x;
  230. }
  231. static inline __u32 edmac_to_cpu(struct sh_eth_private *mdp, u32 x)
  232. {
  233. switch (mdp->edmac_endian) {
  234. case EDMAC_LITTLE_ENDIAN:
  235. return le32_to_cpu(x);
  236. case EDMAC_BIG_ENDIAN:
  237. return be32_to_cpu(x);
  238. }
  239. return x;
  240. }
  241. /*
  242. * Program the hardware MAC address from dev->dev_addr.
  243. */
  244. static void update_mac_address(struct net_device *ndev)
  245. {
  246. u32 ioaddr = ndev->base_addr;
  247. ctrl_outl((ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
  248. (ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]),
  249. ioaddr + MAHR);
  250. ctrl_outl((ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]),
  251. ioaddr + MALR);
  252. }
  253. /*
  254. * Get MAC address from SuperH MAC address register
  255. *
  256. * SuperH's Ethernet device doesn't have 'ROM' to MAC address.
  257. * This driver get MAC address that use by bootloader(U-boot or sh-ipl+g).
  258. * When you want use this device, you must set MAC address in bootloader.
  259. *
  260. */
  261. static void read_mac_address(struct net_device *ndev, unsigned char *mac)
  262. {
  263. u32 ioaddr = ndev->base_addr;
  264. if (mac[0] || mac[1] || mac[2] || mac[3] || mac[4] || mac[5]) {
  265. memcpy(ndev->dev_addr, mac, 6);
  266. } else {
  267. ndev->dev_addr[0] = (ctrl_inl(ioaddr + MAHR) >> 24);
  268. ndev->dev_addr[1] = (ctrl_inl(ioaddr + MAHR) >> 16) & 0xFF;
  269. ndev->dev_addr[2] = (ctrl_inl(ioaddr + MAHR) >> 8) & 0xFF;
  270. ndev->dev_addr[3] = (ctrl_inl(ioaddr + MAHR) & 0xFF);
  271. ndev->dev_addr[4] = (ctrl_inl(ioaddr + MALR) >> 8) & 0xFF;
  272. ndev->dev_addr[5] = (ctrl_inl(ioaddr + MALR) & 0xFF);
  273. }
  274. }
  275. struct bb_info {
  276. struct mdiobb_ctrl ctrl;
  277. u32 addr;
  278. u32 mmd_msk;/* MMD */
  279. u32 mdo_msk;
  280. u32 mdi_msk;
  281. u32 mdc_msk;
  282. };
  283. /* PHY bit set */
  284. static void bb_set(u32 addr, u32 msk)
  285. {
  286. ctrl_outl(ctrl_inl(addr) | msk, addr);
  287. }
  288. /* PHY bit clear */
  289. static void bb_clr(u32 addr, u32 msk)
  290. {
  291. ctrl_outl((ctrl_inl(addr) & ~msk), addr);
  292. }
  293. /* PHY bit read */
  294. static int bb_read(u32 addr, u32 msk)
  295. {
  296. return (ctrl_inl(addr) & msk) != 0;
  297. }
  298. /* Data I/O pin control */
  299. static void sh_mmd_ctrl(struct mdiobb_ctrl *ctrl, int bit)
  300. {
  301. struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
  302. if (bit)
  303. bb_set(bitbang->addr, bitbang->mmd_msk);
  304. else
  305. bb_clr(bitbang->addr, bitbang->mmd_msk);
  306. }
  307. /* Set bit data*/
  308. static void sh_set_mdio(struct mdiobb_ctrl *ctrl, int bit)
  309. {
  310. struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
  311. if (bit)
  312. bb_set(bitbang->addr, bitbang->mdo_msk);
  313. else
  314. bb_clr(bitbang->addr, bitbang->mdo_msk);
  315. }
  316. /* Get bit data*/
  317. static int sh_get_mdio(struct mdiobb_ctrl *ctrl)
  318. {
  319. struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
  320. return bb_read(bitbang->addr, bitbang->mdi_msk);
  321. }
  322. /* MDC pin control */
  323. static void sh_mdc_ctrl(struct mdiobb_ctrl *ctrl, int bit)
  324. {
  325. struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
  326. if (bit)
  327. bb_set(bitbang->addr, bitbang->mdc_msk);
  328. else
  329. bb_clr(bitbang->addr, bitbang->mdc_msk);
  330. }
  331. /* mdio bus control struct */
  332. static struct mdiobb_ops bb_ops = {
  333. .owner = THIS_MODULE,
  334. .set_mdc = sh_mdc_ctrl,
  335. .set_mdio_dir = sh_mmd_ctrl,
  336. .set_mdio_data = sh_set_mdio,
  337. .get_mdio_data = sh_get_mdio,
  338. };
  339. /* free skb and descriptor buffer */
  340. static void sh_eth_ring_free(struct net_device *ndev)
  341. {
  342. struct sh_eth_private *mdp = netdev_priv(ndev);
  343. int i;
  344. /* Free Rx skb ringbuffer */
  345. if (mdp->rx_skbuff) {
  346. for (i = 0; i < RX_RING_SIZE; i++) {
  347. if (mdp->rx_skbuff[i])
  348. dev_kfree_skb(mdp->rx_skbuff[i]);
  349. }
  350. }
  351. kfree(mdp->rx_skbuff);
  352. /* Free Tx skb ringbuffer */
  353. if (mdp->tx_skbuff) {
  354. for (i = 0; i < TX_RING_SIZE; i++) {
  355. if (mdp->tx_skbuff[i])
  356. dev_kfree_skb(mdp->tx_skbuff[i]);
  357. }
  358. }
  359. kfree(mdp->tx_skbuff);
  360. }
  361. /* format skb and descriptor buffer */
  362. static void sh_eth_ring_format(struct net_device *ndev)
  363. {
  364. u32 ioaddr = ndev->base_addr;
  365. struct sh_eth_private *mdp = netdev_priv(ndev);
  366. int i;
  367. struct sk_buff *skb;
  368. struct sh_eth_rxdesc *rxdesc = NULL;
  369. struct sh_eth_txdesc *txdesc = NULL;
  370. int rx_ringsize = sizeof(*rxdesc) * RX_RING_SIZE;
  371. int tx_ringsize = sizeof(*txdesc) * TX_RING_SIZE;
  372. mdp->cur_rx = mdp->cur_tx = 0;
  373. mdp->dirty_rx = mdp->dirty_tx = 0;
  374. memset(mdp->rx_ring, 0, rx_ringsize);
  375. /* build Rx ring buffer */
  376. for (i = 0; i < RX_RING_SIZE; i++) {
  377. /* skb */
  378. mdp->rx_skbuff[i] = NULL;
  379. skb = dev_alloc_skb(mdp->rx_buf_sz);
  380. mdp->rx_skbuff[i] = skb;
  381. if (skb == NULL)
  382. break;
  383. dma_map_single(&ndev->dev, skb->tail, mdp->rx_buf_sz,
  384. DMA_FROM_DEVICE);
  385. skb->dev = ndev; /* Mark as being used by this device. */
  386. sh_eth_set_receive_align(skb);
  387. /* RX descriptor */
  388. rxdesc = &mdp->rx_ring[i];
  389. rxdesc->addr = virt_to_phys(PTR_ALIGN(skb->data, 4));
  390. rxdesc->status = cpu_to_edmac(mdp, RD_RACT | RD_RFP);
  391. /* The size of the buffer is 16 byte boundary. */
  392. rxdesc->buffer_length = ALIGN(mdp->rx_buf_sz, 16);
  393. /* Rx descriptor address set */
  394. if (i == 0) {
  395. ctrl_outl(mdp->rx_desc_dma, ioaddr + RDLAR);
  396. #if defined(CONFIG_CPU_SUBTYPE_SH7763)
  397. ctrl_outl(mdp->rx_desc_dma, ioaddr + RDFAR);
  398. #endif
  399. }
  400. }
  401. mdp->dirty_rx = (u32) (i - RX_RING_SIZE);
  402. /* Mark the last entry as wrapping the ring. */
  403. rxdesc->status |= cpu_to_edmac(mdp, RD_RDEL);
  404. memset(mdp->tx_ring, 0, tx_ringsize);
  405. /* build Tx ring buffer */
  406. for (i = 0; i < TX_RING_SIZE; i++) {
  407. mdp->tx_skbuff[i] = NULL;
  408. txdesc = &mdp->tx_ring[i];
  409. txdesc->status = cpu_to_edmac(mdp, TD_TFP);
  410. txdesc->buffer_length = 0;
  411. if (i == 0) {
  412. /* Tx descriptor address set */
  413. ctrl_outl(mdp->tx_desc_dma, ioaddr + TDLAR);
  414. #if defined(CONFIG_CPU_SUBTYPE_SH7763)
  415. ctrl_outl(mdp->tx_desc_dma, ioaddr + TDFAR);
  416. #endif
  417. }
  418. }
  419. txdesc->status |= cpu_to_edmac(mdp, TD_TDLE);
  420. }
  421. /* Get skb and descriptor buffer */
  422. static int sh_eth_ring_init(struct net_device *ndev)
  423. {
  424. struct sh_eth_private *mdp = netdev_priv(ndev);
  425. int rx_ringsize, tx_ringsize, ret = 0;
  426. /*
  427. * +26 gets the maximum ethernet encapsulation, +7 & ~7 because the
  428. * card needs room to do 8 byte alignment, +2 so we can reserve
  429. * the first 2 bytes, and +16 gets room for the status word from the
  430. * card.
  431. */
  432. mdp->rx_buf_sz = (ndev->mtu <= 1492 ? PKT_BUF_SZ :
  433. (((ndev->mtu + 26 + 7) & ~7) + 2 + 16));
  434. /* Allocate RX and TX skb rings */
  435. mdp->rx_skbuff = kmalloc(sizeof(*mdp->rx_skbuff) * RX_RING_SIZE,
  436. GFP_KERNEL);
  437. if (!mdp->rx_skbuff) {
  438. dev_err(&ndev->dev, "Cannot allocate Rx skb\n");
  439. ret = -ENOMEM;
  440. return ret;
  441. }
  442. mdp->tx_skbuff = kmalloc(sizeof(*mdp->tx_skbuff) * TX_RING_SIZE,
  443. GFP_KERNEL);
  444. if (!mdp->tx_skbuff) {
  445. dev_err(&ndev->dev, "Cannot allocate Tx skb\n");
  446. ret = -ENOMEM;
  447. goto skb_ring_free;
  448. }
  449. /* Allocate all Rx descriptors. */
  450. rx_ringsize = sizeof(struct sh_eth_rxdesc) * RX_RING_SIZE;
  451. mdp->rx_ring = dma_alloc_coherent(NULL, rx_ringsize, &mdp->rx_desc_dma,
  452. GFP_KERNEL);
  453. if (!mdp->rx_ring) {
  454. dev_err(&ndev->dev, "Cannot allocate Rx Ring (size %d bytes)\n",
  455. rx_ringsize);
  456. ret = -ENOMEM;
  457. goto desc_ring_free;
  458. }
  459. mdp->dirty_rx = 0;
  460. /* Allocate all Tx descriptors. */
  461. tx_ringsize = sizeof(struct sh_eth_txdesc) * TX_RING_SIZE;
  462. mdp->tx_ring = dma_alloc_coherent(NULL, tx_ringsize, &mdp->tx_desc_dma,
  463. GFP_KERNEL);
  464. if (!mdp->tx_ring) {
  465. dev_err(&ndev->dev, "Cannot allocate Tx Ring (size %d bytes)\n",
  466. tx_ringsize);
  467. ret = -ENOMEM;
  468. goto desc_ring_free;
  469. }
  470. return ret;
  471. desc_ring_free:
  472. /* free DMA buffer */
  473. dma_free_coherent(NULL, rx_ringsize, mdp->rx_ring, mdp->rx_desc_dma);
  474. skb_ring_free:
  475. /* Free Rx and Tx skb ring buffer */
  476. sh_eth_ring_free(ndev);
  477. return ret;
  478. }
  479. static int sh_eth_dev_init(struct net_device *ndev)
  480. {
  481. int ret = 0;
  482. struct sh_eth_private *mdp = netdev_priv(ndev);
  483. u32 ioaddr = ndev->base_addr;
  484. u_int32_t rx_int_var, tx_int_var;
  485. u32 val;
  486. /* Soft Reset */
  487. sh_eth_reset(ndev);
  488. /* Descriptor format */
  489. sh_eth_ring_format(ndev);
  490. if (mdp->cd->rpadir)
  491. ctrl_outl(mdp->cd->rpadir_value, ioaddr + RPADIR);
  492. /* all sh_eth int mask */
  493. ctrl_outl(0, ioaddr + EESIPR);
  494. #if defined(__LITTLE_ENDIAN__)
  495. if (mdp->cd->hw_swap)
  496. ctrl_outl(EDMR_EL, ioaddr + EDMR);
  497. else
  498. #endif
  499. ctrl_outl(0, ioaddr + EDMR);
  500. /* FIFO size set */
  501. ctrl_outl(mdp->cd->fdr_value, ioaddr + FDR);
  502. ctrl_outl(0, ioaddr + TFTR);
  503. /* Frame recv control */
  504. ctrl_outl(mdp->cd->rmcr_value, ioaddr + RMCR);
  505. rx_int_var = mdp->rx_int_var = DESC_I_RINT8 | DESC_I_RINT5;
  506. tx_int_var = mdp->tx_int_var = DESC_I_TINT2;
  507. ctrl_outl(rx_int_var | tx_int_var, ioaddr + TRSCER);
  508. if (mdp->cd->bculr)
  509. ctrl_outl(0x800, ioaddr + BCULR); /* Burst sycle set */
  510. ctrl_outl(mdp->cd->fcftr_value, ioaddr + FCFTR);
  511. if (!mdp->cd->no_trimd)
  512. ctrl_outl(0, ioaddr + TRIMD);
  513. /* Recv frame limit set register */
  514. ctrl_outl(RFLR_VALUE, ioaddr + RFLR);
  515. ctrl_outl(ctrl_inl(ioaddr + EESR), ioaddr + EESR);
  516. ctrl_outl(mdp->cd->eesipr_value, ioaddr + EESIPR);
  517. /* PAUSE Prohibition */
  518. val = (ctrl_inl(ioaddr + ECMR) & ECMR_DM) |
  519. ECMR_ZPF | (mdp->duplex ? ECMR_DM : 0) | ECMR_TE | ECMR_RE;
  520. ctrl_outl(val, ioaddr + ECMR);
  521. if (mdp->cd->set_rate)
  522. mdp->cd->set_rate(ndev);
  523. /* E-MAC Status Register clear */
  524. ctrl_outl(mdp->cd->ecsr_value, ioaddr + ECSR);
  525. /* E-MAC Interrupt Enable register */
  526. ctrl_outl(mdp->cd->ecsipr_value, ioaddr + ECSIPR);
  527. /* Set MAC address */
  528. update_mac_address(ndev);
  529. /* mask reset */
  530. if (mdp->cd->apr)
  531. ctrl_outl(APR_AP, ioaddr + APR);
  532. if (mdp->cd->mpr)
  533. ctrl_outl(MPR_MP, ioaddr + MPR);
  534. if (mdp->cd->tpauser)
  535. ctrl_outl(TPAUSER_UNLIMITED, ioaddr + TPAUSER);
  536. /* Setting the Rx mode will start the Rx process. */
  537. ctrl_outl(EDRRR_R, ioaddr + EDRRR);
  538. netif_start_queue(ndev);
  539. return ret;
  540. }
  541. /* free Tx skb function */
  542. static int sh_eth_txfree(struct net_device *ndev)
  543. {
  544. struct sh_eth_private *mdp = netdev_priv(ndev);
  545. struct sh_eth_txdesc *txdesc;
  546. int freeNum = 0;
  547. int entry = 0;
  548. for (; mdp->cur_tx - mdp->dirty_tx > 0; mdp->dirty_tx++) {
  549. entry = mdp->dirty_tx % TX_RING_SIZE;
  550. txdesc = &mdp->tx_ring[entry];
  551. if (txdesc->status & cpu_to_edmac(mdp, TD_TACT))
  552. break;
  553. /* Free the original skb. */
  554. if (mdp->tx_skbuff[entry]) {
  555. dev_kfree_skb_irq(mdp->tx_skbuff[entry]);
  556. mdp->tx_skbuff[entry] = NULL;
  557. freeNum++;
  558. }
  559. txdesc->status = cpu_to_edmac(mdp, TD_TFP);
  560. if (entry >= TX_RING_SIZE - 1)
  561. txdesc->status |= cpu_to_edmac(mdp, TD_TDLE);
  562. mdp->stats.tx_packets++;
  563. mdp->stats.tx_bytes += txdesc->buffer_length;
  564. }
  565. return freeNum;
  566. }
  567. /* Packet receive function */
  568. static int sh_eth_rx(struct net_device *ndev)
  569. {
  570. struct sh_eth_private *mdp = netdev_priv(ndev);
  571. struct sh_eth_rxdesc *rxdesc;
  572. int entry = mdp->cur_rx % RX_RING_SIZE;
  573. int boguscnt = (mdp->dirty_rx + RX_RING_SIZE) - mdp->cur_rx;
  574. struct sk_buff *skb;
  575. u16 pkt_len = 0;
  576. u32 desc_status;
  577. rxdesc = &mdp->rx_ring[entry];
  578. while (!(rxdesc->status & cpu_to_edmac(mdp, RD_RACT))) {
  579. desc_status = edmac_to_cpu(mdp, rxdesc->status);
  580. pkt_len = rxdesc->frame_length;
  581. if (--boguscnt < 0)
  582. break;
  583. if (!(desc_status & RDFEND))
  584. mdp->stats.rx_length_errors++;
  585. if (desc_status & (RD_RFS1 | RD_RFS2 | RD_RFS3 | RD_RFS4 |
  586. RD_RFS5 | RD_RFS6 | RD_RFS10)) {
  587. mdp->stats.rx_errors++;
  588. if (desc_status & RD_RFS1)
  589. mdp->stats.rx_crc_errors++;
  590. if (desc_status & RD_RFS2)
  591. mdp->stats.rx_frame_errors++;
  592. if (desc_status & RD_RFS3)
  593. mdp->stats.rx_length_errors++;
  594. if (desc_status & RD_RFS4)
  595. mdp->stats.rx_length_errors++;
  596. if (desc_status & RD_RFS6)
  597. mdp->stats.rx_missed_errors++;
  598. if (desc_status & RD_RFS10)
  599. mdp->stats.rx_over_errors++;
  600. } else {
  601. if (!mdp->cd->hw_swap)
  602. sh_eth_soft_swap(
  603. phys_to_virt(ALIGN(rxdesc->addr, 4)),
  604. pkt_len + 2);
  605. skb = mdp->rx_skbuff[entry];
  606. mdp->rx_skbuff[entry] = NULL;
  607. skb_put(skb, pkt_len);
  608. skb->protocol = eth_type_trans(skb, ndev);
  609. netif_rx(skb);
  610. mdp->stats.rx_packets++;
  611. mdp->stats.rx_bytes += pkt_len;
  612. }
  613. rxdesc->status |= cpu_to_edmac(mdp, RD_RACT);
  614. entry = (++mdp->cur_rx) % RX_RING_SIZE;
  615. rxdesc = &mdp->rx_ring[entry];
  616. }
  617. /* Refill the Rx ring buffers. */
  618. for (; mdp->cur_rx - mdp->dirty_rx > 0; mdp->dirty_rx++) {
  619. entry = mdp->dirty_rx % RX_RING_SIZE;
  620. rxdesc = &mdp->rx_ring[entry];
  621. /* The size of the buffer is 16 byte boundary. */
  622. rxdesc->buffer_length = ALIGN(mdp->rx_buf_sz, 16);
  623. if (mdp->rx_skbuff[entry] == NULL) {
  624. skb = dev_alloc_skb(mdp->rx_buf_sz);
  625. mdp->rx_skbuff[entry] = skb;
  626. if (skb == NULL)
  627. break; /* Better luck next round. */
  628. dma_map_single(&ndev->dev, skb->tail, mdp->rx_buf_sz,
  629. DMA_FROM_DEVICE);
  630. skb->dev = ndev;
  631. sh_eth_set_receive_align(skb);
  632. skb->ip_summed = CHECKSUM_NONE;
  633. rxdesc->addr = virt_to_phys(PTR_ALIGN(skb->data, 4));
  634. }
  635. if (entry >= RX_RING_SIZE - 1)
  636. rxdesc->status |=
  637. cpu_to_edmac(mdp, RD_RACT | RD_RFP | RD_RDEL);
  638. else
  639. rxdesc->status |=
  640. cpu_to_edmac(mdp, RD_RACT | RD_RFP);
  641. }
  642. /* Restart Rx engine if stopped. */
  643. /* If we don't need to check status, don't. -KDU */
  644. if (!(ctrl_inl(ndev->base_addr + EDRRR) & EDRRR_R))
  645. ctrl_outl(EDRRR_R, ndev->base_addr + EDRRR);
  646. return 0;
  647. }
  648. /* error control function */
  649. static void sh_eth_error(struct net_device *ndev, int intr_status)
  650. {
  651. struct sh_eth_private *mdp = netdev_priv(ndev);
  652. u32 ioaddr = ndev->base_addr;
  653. u32 felic_stat;
  654. u32 link_stat;
  655. u32 mask;
  656. if (intr_status & EESR_ECI) {
  657. felic_stat = ctrl_inl(ioaddr + ECSR);
  658. ctrl_outl(felic_stat, ioaddr + ECSR); /* clear int */
  659. if (felic_stat & ECSR_ICD)
  660. mdp->stats.tx_carrier_errors++;
  661. if (felic_stat & ECSR_LCHNG) {
  662. /* Link Changed */
  663. if (mdp->cd->no_psr || mdp->no_ether_link) {
  664. if (mdp->link == PHY_DOWN)
  665. link_stat = 0;
  666. else
  667. link_stat = PHY_ST_LINK;
  668. } else {
  669. link_stat = (ctrl_inl(ioaddr + PSR));
  670. if (mdp->ether_link_active_low)
  671. link_stat = ~link_stat;
  672. }
  673. if (!(link_stat & PHY_ST_LINK)) {
  674. /* Link Down : disable tx and rx */
  675. ctrl_outl(ctrl_inl(ioaddr + ECMR) &
  676. ~(ECMR_RE | ECMR_TE), ioaddr + ECMR);
  677. } else {
  678. /* Link Up */
  679. ctrl_outl(ctrl_inl(ioaddr + EESIPR) &
  680. ~DMAC_M_ECI, ioaddr + EESIPR);
  681. /*clear int */
  682. ctrl_outl(ctrl_inl(ioaddr + ECSR),
  683. ioaddr + ECSR);
  684. ctrl_outl(ctrl_inl(ioaddr + EESIPR) |
  685. DMAC_M_ECI, ioaddr + EESIPR);
  686. /* enable tx and rx */
  687. ctrl_outl(ctrl_inl(ioaddr + ECMR) |
  688. (ECMR_RE | ECMR_TE), ioaddr + ECMR);
  689. }
  690. }
  691. }
  692. if (intr_status & EESR_TWB) {
  693. /* Write buck end. unused write back interrupt */
  694. if (intr_status & EESR_TABT) /* Transmit Abort int */
  695. mdp->stats.tx_aborted_errors++;
  696. }
  697. if (intr_status & EESR_RABT) {
  698. /* Receive Abort int */
  699. if (intr_status & EESR_RFRMER) {
  700. /* Receive Frame Overflow int */
  701. mdp->stats.rx_frame_errors++;
  702. dev_err(&ndev->dev, "Receive Frame Overflow\n");
  703. }
  704. }
  705. if (!mdp->cd->no_ade) {
  706. if (intr_status & EESR_ADE && intr_status & EESR_TDE &&
  707. intr_status & EESR_TFE)
  708. mdp->stats.tx_fifo_errors++;
  709. }
  710. if (intr_status & EESR_RDE) {
  711. /* Receive Descriptor Empty int */
  712. mdp->stats.rx_over_errors++;
  713. if (ctrl_inl(ioaddr + EDRRR) ^ EDRRR_R)
  714. ctrl_outl(EDRRR_R, ioaddr + EDRRR);
  715. dev_err(&ndev->dev, "Receive Descriptor Empty\n");
  716. }
  717. if (intr_status & EESR_RFE) {
  718. /* Receive FIFO Overflow int */
  719. mdp->stats.rx_fifo_errors++;
  720. dev_err(&ndev->dev, "Receive FIFO Overflow\n");
  721. }
  722. mask = EESR_TWB | EESR_TABT | EESR_ADE | EESR_TDE | EESR_TFE;
  723. if (mdp->cd->no_ade)
  724. mask &= ~EESR_ADE;
  725. if (intr_status & mask) {
  726. /* Tx error */
  727. u32 edtrr = ctrl_inl(ndev->base_addr + EDTRR);
  728. /* dmesg */
  729. dev_err(&ndev->dev, "TX error. status=%8.8x cur_tx=%8.8x ",
  730. intr_status, mdp->cur_tx);
  731. dev_err(&ndev->dev, "dirty_tx=%8.8x state=%8.8x EDTRR=%8.8x.\n",
  732. mdp->dirty_tx, (u32) ndev->state, edtrr);
  733. /* dirty buffer free */
  734. sh_eth_txfree(ndev);
  735. /* SH7712 BUG */
  736. if (edtrr ^ EDTRR_TRNS) {
  737. /* tx dma start */
  738. ctrl_outl(EDTRR_TRNS, ndev->base_addr + EDTRR);
  739. }
  740. /* wakeup */
  741. netif_wake_queue(ndev);
  742. }
  743. }
  744. static irqreturn_t sh_eth_interrupt(int irq, void *netdev)
  745. {
  746. struct net_device *ndev = netdev;
  747. struct sh_eth_private *mdp = netdev_priv(ndev);
  748. struct sh_eth_cpu_data *cd = mdp->cd;
  749. irqreturn_t ret = IRQ_NONE;
  750. u32 ioaddr, intr_status = 0;
  751. ioaddr = ndev->base_addr;
  752. spin_lock(&mdp->lock);
  753. /* Get interrpt stat */
  754. intr_status = ctrl_inl(ioaddr + EESR);
  755. /* Clear interrupt */
  756. if (intr_status & (EESR_FRC | EESR_RMAF | EESR_RRF |
  757. EESR_RTLF | EESR_RTSF | EESR_PRE | EESR_CERF |
  758. cd->tx_check | cd->eesr_err_check)) {
  759. ctrl_outl(intr_status, ioaddr + EESR);
  760. ret = IRQ_HANDLED;
  761. } else
  762. goto other_irq;
  763. if (intr_status & (EESR_FRC | /* Frame recv*/
  764. EESR_RMAF | /* Multi cast address recv*/
  765. EESR_RRF | /* Bit frame recv */
  766. EESR_RTLF | /* Long frame recv*/
  767. EESR_RTSF | /* short frame recv */
  768. EESR_PRE | /* PHY-LSI recv error */
  769. EESR_CERF)){ /* recv frame CRC error */
  770. sh_eth_rx(ndev);
  771. }
  772. /* Tx Check */
  773. if (intr_status & cd->tx_check) {
  774. sh_eth_txfree(ndev);
  775. netif_wake_queue(ndev);
  776. }
  777. if (intr_status & cd->eesr_err_check)
  778. sh_eth_error(ndev, intr_status);
  779. other_irq:
  780. spin_unlock(&mdp->lock);
  781. return ret;
  782. }
  783. static void sh_eth_timer(unsigned long data)
  784. {
  785. struct net_device *ndev = (struct net_device *)data;
  786. struct sh_eth_private *mdp = netdev_priv(ndev);
  787. mod_timer(&mdp->timer, jiffies + (10 * HZ));
  788. }
  789. /* PHY state control function */
  790. static void sh_eth_adjust_link(struct net_device *ndev)
  791. {
  792. struct sh_eth_private *mdp = netdev_priv(ndev);
  793. struct phy_device *phydev = mdp->phydev;
  794. u32 ioaddr = ndev->base_addr;
  795. int new_state = 0;
  796. if (phydev->link != PHY_DOWN) {
  797. if (phydev->duplex != mdp->duplex) {
  798. new_state = 1;
  799. mdp->duplex = phydev->duplex;
  800. if (mdp->cd->set_duplex)
  801. mdp->cd->set_duplex(ndev);
  802. }
  803. if (phydev->speed != mdp->speed) {
  804. new_state = 1;
  805. mdp->speed = phydev->speed;
  806. if (mdp->cd->set_rate)
  807. mdp->cd->set_rate(ndev);
  808. }
  809. if (mdp->link == PHY_DOWN) {
  810. ctrl_outl((ctrl_inl(ioaddr + ECMR) & ~ECMR_TXF)
  811. | ECMR_DM, ioaddr + ECMR);
  812. new_state = 1;
  813. mdp->link = phydev->link;
  814. }
  815. } else if (mdp->link) {
  816. new_state = 1;
  817. mdp->link = PHY_DOWN;
  818. mdp->speed = 0;
  819. mdp->duplex = -1;
  820. }
  821. if (new_state)
  822. phy_print_status(phydev);
  823. }
  824. /* PHY init function */
  825. static int sh_eth_phy_init(struct net_device *ndev)
  826. {
  827. struct sh_eth_private *mdp = netdev_priv(ndev);
  828. char phy_id[MII_BUS_ID_SIZE + 3];
  829. struct phy_device *phydev = NULL;
  830. snprintf(phy_id, sizeof(phy_id), PHY_ID_FMT,
  831. mdp->mii_bus->id , mdp->phy_id);
  832. mdp->link = PHY_DOWN;
  833. mdp->speed = 0;
  834. mdp->duplex = -1;
  835. /* Try connect to PHY */
  836. phydev = phy_connect(ndev, phy_id, &sh_eth_adjust_link,
  837. 0, PHY_INTERFACE_MODE_MII);
  838. if (IS_ERR(phydev)) {
  839. dev_err(&ndev->dev, "phy_connect failed\n");
  840. return PTR_ERR(phydev);
  841. }
  842. dev_info(&ndev->dev, "attached phy %i to driver %s\n",
  843. phydev->addr, phydev->drv->name);
  844. mdp->phydev = phydev;
  845. return 0;
  846. }
  847. /* PHY control start function */
  848. static int sh_eth_phy_start(struct net_device *ndev)
  849. {
  850. struct sh_eth_private *mdp = netdev_priv(ndev);
  851. int ret;
  852. ret = sh_eth_phy_init(ndev);
  853. if (ret)
  854. return ret;
  855. /* reset phy - this also wakes it from PDOWN */
  856. phy_write(mdp->phydev, MII_BMCR, BMCR_RESET);
  857. phy_start(mdp->phydev);
  858. return 0;
  859. }
  860. /* network device open function */
  861. static int sh_eth_open(struct net_device *ndev)
  862. {
  863. int ret = 0;
  864. struct sh_eth_private *mdp = netdev_priv(ndev);
  865. pm_runtime_get_sync(&mdp->pdev->dev);
  866. ret = request_irq(ndev->irq, &sh_eth_interrupt,
  867. #if defined(CONFIG_CPU_SUBTYPE_SH7763) || defined(CONFIG_CPU_SUBTYPE_SH7764)
  868. IRQF_SHARED,
  869. #else
  870. 0,
  871. #endif
  872. ndev->name, ndev);
  873. if (ret) {
  874. dev_err(&ndev->dev, "Can not assign IRQ number\n");
  875. return ret;
  876. }
  877. /* Descriptor set */
  878. ret = sh_eth_ring_init(ndev);
  879. if (ret)
  880. goto out_free_irq;
  881. /* device init */
  882. ret = sh_eth_dev_init(ndev);
  883. if (ret)
  884. goto out_free_irq;
  885. /* PHY control start*/
  886. ret = sh_eth_phy_start(ndev);
  887. if (ret)
  888. goto out_free_irq;
  889. /* Set the timer to check for link beat. */
  890. init_timer(&mdp->timer);
  891. mdp->timer.expires = (jiffies + (24 * HZ)) / 10;/* 2.4 sec. */
  892. setup_timer(&mdp->timer, sh_eth_timer, (unsigned long)ndev);
  893. return ret;
  894. out_free_irq:
  895. free_irq(ndev->irq, ndev);
  896. pm_runtime_put_sync(&mdp->pdev->dev);
  897. return ret;
  898. }
  899. /* Timeout function */
  900. static void sh_eth_tx_timeout(struct net_device *ndev)
  901. {
  902. struct sh_eth_private *mdp = netdev_priv(ndev);
  903. u32 ioaddr = ndev->base_addr;
  904. struct sh_eth_rxdesc *rxdesc;
  905. int i;
  906. netif_stop_queue(ndev);
  907. /* worning message out. */
  908. printk(KERN_WARNING "%s: transmit timed out, status %8.8x,"
  909. " resetting...\n", ndev->name, (int)ctrl_inl(ioaddr + EESR));
  910. /* tx_errors count up */
  911. mdp->stats.tx_errors++;
  912. /* timer off */
  913. del_timer_sync(&mdp->timer);
  914. /* Free all the skbuffs in the Rx queue. */
  915. for (i = 0; i < RX_RING_SIZE; i++) {
  916. rxdesc = &mdp->rx_ring[i];
  917. rxdesc->status = 0;
  918. rxdesc->addr = 0xBADF00D0;
  919. if (mdp->rx_skbuff[i])
  920. dev_kfree_skb(mdp->rx_skbuff[i]);
  921. mdp->rx_skbuff[i] = NULL;
  922. }
  923. for (i = 0; i < TX_RING_SIZE; i++) {
  924. if (mdp->tx_skbuff[i])
  925. dev_kfree_skb(mdp->tx_skbuff[i]);
  926. mdp->tx_skbuff[i] = NULL;
  927. }
  928. /* device init */
  929. sh_eth_dev_init(ndev);
  930. /* timer on */
  931. mdp->timer.expires = (jiffies + (24 * HZ)) / 10;/* 2.4 sec. */
  932. add_timer(&mdp->timer);
  933. }
  934. /* Packet transmit function */
  935. static int sh_eth_start_xmit(struct sk_buff *skb, struct net_device *ndev)
  936. {
  937. struct sh_eth_private *mdp = netdev_priv(ndev);
  938. struct sh_eth_txdesc *txdesc;
  939. u32 entry;
  940. unsigned long flags;
  941. spin_lock_irqsave(&mdp->lock, flags);
  942. if ((mdp->cur_tx - mdp->dirty_tx) >= (TX_RING_SIZE - 4)) {
  943. if (!sh_eth_txfree(ndev)) {
  944. netif_stop_queue(ndev);
  945. spin_unlock_irqrestore(&mdp->lock, flags);
  946. return NETDEV_TX_BUSY;
  947. }
  948. }
  949. spin_unlock_irqrestore(&mdp->lock, flags);
  950. entry = mdp->cur_tx % TX_RING_SIZE;
  951. mdp->tx_skbuff[entry] = skb;
  952. txdesc = &mdp->tx_ring[entry];
  953. txdesc->addr = virt_to_phys(skb->data);
  954. /* soft swap. */
  955. if (!mdp->cd->hw_swap)
  956. sh_eth_soft_swap(phys_to_virt(ALIGN(txdesc->addr, 4)),
  957. skb->len + 2);
  958. /* write back */
  959. __flush_purge_region(skb->data, skb->len);
  960. if (skb->len < ETHERSMALL)
  961. txdesc->buffer_length = ETHERSMALL;
  962. else
  963. txdesc->buffer_length = skb->len;
  964. if (entry >= TX_RING_SIZE - 1)
  965. txdesc->status |= cpu_to_edmac(mdp, TD_TACT | TD_TDLE);
  966. else
  967. txdesc->status |= cpu_to_edmac(mdp, TD_TACT);
  968. mdp->cur_tx++;
  969. if (!(ctrl_inl(ndev->base_addr + EDTRR) & EDTRR_TRNS))
  970. ctrl_outl(EDTRR_TRNS, ndev->base_addr + EDTRR);
  971. ndev->trans_start = jiffies;
  972. return NETDEV_TX_OK;
  973. }
  974. /* device close function */
  975. static int sh_eth_close(struct net_device *ndev)
  976. {
  977. struct sh_eth_private *mdp = netdev_priv(ndev);
  978. u32 ioaddr = ndev->base_addr;
  979. int ringsize;
  980. netif_stop_queue(ndev);
  981. /* Disable interrupts by clearing the interrupt mask. */
  982. ctrl_outl(0x0000, ioaddr + EESIPR);
  983. /* Stop the chip's Tx and Rx processes. */
  984. ctrl_outl(0, ioaddr + EDTRR);
  985. ctrl_outl(0, ioaddr + EDRRR);
  986. /* PHY Disconnect */
  987. if (mdp->phydev) {
  988. phy_stop(mdp->phydev);
  989. phy_disconnect(mdp->phydev);
  990. }
  991. free_irq(ndev->irq, ndev);
  992. del_timer_sync(&mdp->timer);
  993. /* Free all the skbuffs in the Rx queue. */
  994. sh_eth_ring_free(ndev);
  995. /* free DMA buffer */
  996. ringsize = sizeof(struct sh_eth_rxdesc) * RX_RING_SIZE;
  997. dma_free_coherent(NULL, ringsize, mdp->rx_ring, mdp->rx_desc_dma);
  998. /* free DMA buffer */
  999. ringsize = sizeof(struct sh_eth_txdesc) * TX_RING_SIZE;
  1000. dma_free_coherent(NULL, ringsize, mdp->tx_ring, mdp->tx_desc_dma);
  1001. pm_runtime_put_sync(&mdp->pdev->dev);
  1002. return 0;
  1003. }
  1004. static struct net_device_stats *sh_eth_get_stats(struct net_device *ndev)
  1005. {
  1006. struct sh_eth_private *mdp = netdev_priv(ndev);
  1007. u32 ioaddr = ndev->base_addr;
  1008. pm_runtime_get_sync(&mdp->pdev->dev);
  1009. mdp->stats.tx_dropped += ctrl_inl(ioaddr + TROCR);
  1010. ctrl_outl(0, ioaddr + TROCR); /* (write clear) */
  1011. mdp->stats.collisions += ctrl_inl(ioaddr + CDCR);
  1012. ctrl_outl(0, ioaddr + CDCR); /* (write clear) */
  1013. mdp->stats.tx_carrier_errors += ctrl_inl(ioaddr + LCCR);
  1014. ctrl_outl(0, ioaddr + LCCR); /* (write clear) */
  1015. #if defined(CONFIG_CPU_SUBTYPE_SH7763)
  1016. mdp->stats.tx_carrier_errors += ctrl_inl(ioaddr + CERCR);/* CERCR */
  1017. ctrl_outl(0, ioaddr + CERCR); /* (write clear) */
  1018. mdp->stats.tx_carrier_errors += ctrl_inl(ioaddr + CEECR);/* CEECR */
  1019. ctrl_outl(0, ioaddr + CEECR); /* (write clear) */
  1020. #else
  1021. mdp->stats.tx_carrier_errors += ctrl_inl(ioaddr + CNDCR);
  1022. ctrl_outl(0, ioaddr + CNDCR); /* (write clear) */
  1023. #endif
  1024. pm_runtime_put_sync(&mdp->pdev->dev);
  1025. return &mdp->stats;
  1026. }
  1027. /* ioctl to device funciotn*/
  1028. static int sh_eth_do_ioctl(struct net_device *ndev, struct ifreq *rq,
  1029. int cmd)
  1030. {
  1031. struct sh_eth_private *mdp = netdev_priv(ndev);
  1032. struct phy_device *phydev = mdp->phydev;
  1033. if (!netif_running(ndev))
  1034. return -EINVAL;
  1035. if (!phydev)
  1036. return -ENODEV;
  1037. return phy_mii_ioctl(phydev, if_mii(rq), cmd);
  1038. }
  1039. #if defined(SH_ETH_HAS_TSU)
  1040. /* Multicast reception directions set */
  1041. static void sh_eth_set_multicast_list(struct net_device *ndev)
  1042. {
  1043. u32 ioaddr = ndev->base_addr;
  1044. if (ndev->flags & IFF_PROMISC) {
  1045. /* Set promiscuous. */
  1046. ctrl_outl((ctrl_inl(ioaddr + ECMR) & ~ECMR_MCT) | ECMR_PRM,
  1047. ioaddr + ECMR);
  1048. } else {
  1049. /* Normal, unicast/broadcast-only mode. */
  1050. ctrl_outl((ctrl_inl(ioaddr + ECMR) & ~ECMR_PRM) | ECMR_MCT,
  1051. ioaddr + ECMR);
  1052. }
  1053. }
  1054. /* SuperH's TSU register init function */
  1055. static void sh_eth_tsu_init(u32 ioaddr)
  1056. {
  1057. ctrl_outl(0, ioaddr + TSU_FWEN0); /* Disable forward(0->1) */
  1058. ctrl_outl(0, ioaddr + TSU_FWEN1); /* Disable forward(1->0) */
  1059. ctrl_outl(0, ioaddr + TSU_FCM); /* forward fifo 3k-3k */
  1060. ctrl_outl(0xc, ioaddr + TSU_BSYSL0);
  1061. ctrl_outl(0xc, ioaddr + TSU_BSYSL1);
  1062. ctrl_outl(0, ioaddr + TSU_PRISL0);
  1063. ctrl_outl(0, ioaddr + TSU_PRISL1);
  1064. ctrl_outl(0, ioaddr + TSU_FWSL0);
  1065. ctrl_outl(0, ioaddr + TSU_FWSL1);
  1066. ctrl_outl(TSU_FWSLC_POSTENU | TSU_FWSLC_POSTENL, ioaddr + TSU_FWSLC);
  1067. #if defined(CONFIG_CPU_SUBTYPE_SH7763)
  1068. ctrl_outl(0, ioaddr + TSU_QTAG0); /* Disable QTAG(0->1) */
  1069. ctrl_outl(0, ioaddr + TSU_QTAG1); /* Disable QTAG(1->0) */
  1070. #else
  1071. ctrl_outl(0, ioaddr + TSU_QTAGM0); /* Disable QTAG(0->1) */
  1072. ctrl_outl(0, ioaddr + TSU_QTAGM1); /* Disable QTAG(1->0) */
  1073. #endif
  1074. ctrl_outl(0, ioaddr + TSU_FWSR); /* all interrupt status clear */
  1075. ctrl_outl(0, ioaddr + TSU_FWINMK); /* Disable all interrupt */
  1076. ctrl_outl(0, ioaddr + TSU_TEN); /* Disable all CAM entry */
  1077. ctrl_outl(0, ioaddr + TSU_POST1); /* Disable CAM entry [ 0- 7] */
  1078. ctrl_outl(0, ioaddr + TSU_POST2); /* Disable CAM entry [ 8-15] */
  1079. ctrl_outl(0, ioaddr + TSU_POST3); /* Disable CAM entry [16-23] */
  1080. ctrl_outl(0, ioaddr + TSU_POST4); /* Disable CAM entry [24-31] */
  1081. }
  1082. #endif /* SH_ETH_HAS_TSU */
  1083. /* MDIO bus release function */
  1084. static int sh_mdio_release(struct net_device *ndev)
  1085. {
  1086. struct mii_bus *bus = dev_get_drvdata(&ndev->dev);
  1087. /* unregister mdio bus */
  1088. mdiobus_unregister(bus);
  1089. /* remove mdio bus info from net_device */
  1090. dev_set_drvdata(&ndev->dev, NULL);
  1091. /* free bitbang info */
  1092. free_mdio_bitbang(bus);
  1093. return 0;
  1094. }
  1095. /* MDIO bus init function */
  1096. static int sh_mdio_init(struct net_device *ndev, int id)
  1097. {
  1098. int ret, i;
  1099. struct bb_info *bitbang;
  1100. struct sh_eth_private *mdp = netdev_priv(ndev);
  1101. /* create bit control struct for PHY */
  1102. bitbang = kzalloc(sizeof(struct bb_info), GFP_KERNEL);
  1103. if (!bitbang) {
  1104. ret = -ENOMEM;
  1105. goto out;
  1106. }
  1107. /* bitbang init */
  1108. bitbang->addr = ndev->base_addr + PIR;
  1109. bitbang->mdi_msk = 0x08;
  1110. bitbang->mdo_msk = 0x04;
  1111. bitbang->mmd_msk = 0x02;/* MMD */
  1112. bitbang->mdc_msk = 0x01;
  1113. bitbang->ctrl.ops = &bb_ops;
  1114. /* MII contorller setting */
  1115. mdp->mii_bus = alloc_mdio_bitbang(&bitbang->ctrl);
  1116. if (!mdp->mii_bus) {
  1117. ret = -ENOMEM;
  1118. goto out_free_bitbang;
  1119. }
  1120. /* Hook up MII support for ethtool */
  1121. mdp->mii_bus->name = "sh_mii";
  1122. mdp->mii_bus->parent = &ndev->dev;
  1123. snprintf(mdp->mii_bus->id, MII_BUS_ID_SIZE, "%x", id);
  1124. /* PHY IRQ */
  1125. mdp->mii_bus->irq = kmalloc(sizeof(int)*PHY_MAX_ADDR, GFP_KERNEL);
  1126. if (!mdp->mii_bus->irq) {
  1127. ret = -ENOMEM;
  1128. goto out_free_bus;
  1129. }
  1130. for (i = 0; i < PHY_MAX_ADDR; i++)
  1131. mdp->mii_bus->irq[i] = PHY_POLL;
  1132. /* regist mdio bus */
  1133. ret = mdiobus_register(mdp->mii_bus);
  1134. if (ret)
  1135. goto out_free_irq;
  1136. dev_set_drvdata(&ndev->dev, mdp->mii_bus);
  1137. return 0;
  1138. out_free_irq:
  1139. kfree(mdp->mii_bus->irq);
  1140. out_free_bus:
  1141. free_mdio_bitbang(mdp->mii_bus);
  1142. out_free_bitbang:
  1143. kfree(bitbang);
  1144. out:
  1145. return ret;
  1146. }
  1147. static const struct net_device_ops sh_eth_netdev_ops = {
  1148. .ndo_open = sh_eth_open,
  1149. .ndo_stop = sh_eth_close,
  1150. .ndo_start_xmit = sh_eth_start_xmit,
  1151. .ndo_get_stats = sh_eth_get_stats,
  1152. #if defined(SH_ETH_HAS_TSU)
  1153. .ndo_set_multicast_list = sh_eth_set_multicast_list,
  1154. #endif
  1155. .ndo_tx_timeout = sh_eth_tx_timeout,
  1156. .ndo_do_ioctl = sh_eth_do_ioctl,
  1157. .ndo_validate_addr = eth_validate_addr,
  1158. .ndo_set_mac_address = eth_mac_addr,
  1159. .ndo_change_mtu = eth_change_mtu,
  1160. };
  1161. static int sh_eth_drv_probe(struct platform_device *pdev)
  1162. {
  1163. int ret, i, devno = 0;
  1164. struct resource *res;
  1165. struct net_device *ndev = NULL;
  1166. struct sh_eth_private *mdp;
  1167. struct sh_eth_plat_data *pd;
  1168. /* get base addr */
  1169. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1170. if (unlikely(res == NULL)) {
  1171. dev_err(&pdev->dev, "invalid resource\n");
  1172. ret = -EINVAL;
  1173. goto out;
  1174. }
  1175. ndev = alloc_etherdev(sizeof(struct sh_eth_private));
  1176. if (!ndev) {
  1177. dev_err(&pdev->dev, "Could not allocate device.\n");
  1178. ret = -ENOMEM;
  1179. goto out;
  1180. }
  1181. /* The sh Ether-specific entries in the device structure. */
  1182. ndev->base_addr = res->start;
  1183. devno = pdev->id;
  1184. if (devno < 0)
  1185. devno = 0;
  1186. ndev->dma = -1;
  1187. ret = platform_get_irq(pdev, 0);
  1188. if (ret < 0) {
  1189. ret = -ENODEV;
  1190. goto out_release;
  1191. }
  1192. ndev->irq = ret;
  1193. SET_NETDEV_DEV(ndev, &pdev->dev);
  1194. /* Fill in the fields of the device structure with ethernet values. */
  1195. ether_setup(ndev);
  1196. mdp = netdev_priv(ndev);
  1197. spin_lock_init(&mdp->lock);
  1198. mdp->pdev = pdev;
  1199. pm_runtime_enable(&pdev->dev);
  1200. pm_runtime_resume(&pdev->dev);
  1201. pd = (struct sh_eth_plat_data *)(pdev->dev.platform_data);
  1202. /* get PHY ID */
  1203. mdp->phy_id = pd->phy;
  1204. /* EDMAC endian */
  1205. mdp->edmac_endian = pd->edmac_endian;
  1206. mdp->no_ether_link = pd->no_ether_link;
  1207. mdp->ether_link_active_low = pd->ether_link_active_low;
  1208. /* set cpu data */
  1209. mdp->cd = &sh_eth_my_cpu_data;
  1210. sh_eth_set_default_cpu_data(mdp->cd);
  1211. /* set function */
  1212. ndev->netdev_ops = &sh_eth_netdev_ops;
  1213. ndev->watchdog_timeo = TX_TIMEOUT;
  1214. mdp->post_rx = POST_RX >> (devno << 1);
  1215. mdp->post_fw = POST_FW >> (devno << 1);
  1216. /* read and set MAC address */
  1217. read_mac_address(ndev, pd->mac_addr);
  1218. /* First device only init */
  1219. if (!devno) {
  1220. if (mdp->cd->chip_reset)
  1221. mdp->cd->chip_reset(ndev);
  1222. #if defined(SH_ETH_HAS_TSU)
  1223. /* TSU init (Init only)*/
  1224. sh_eth_tsu_init(SH_TSU_ADDR);
  1225. #endif
  1226. }
  1227. /* network device register */
  1228. ret = register_netdev(ndev);
  1229. if (ret)
  1230. goto out_release;
  1231. /* mdio bus init */
  1232. ret = sh_mdio_init(ndev, pdev->id);
  1233. if (ret)
  1234. goto out_unregister;
  1235. /* pritnt device infomation */
  1236. pr_info("Base address at 0x%x, ",
  1237. (u32)ndev->base_addr);
  1238. for (i = 0; i < 5; i++)
  1239. printk("%02X:", ndev->dev_addr[i]);
  1240. printk("%02X, IRQ %d.\n", ndev->dev_addr[i], ndev->irq);
  1241. platform_set_drvdata(pdev, ndev);
  1242. return ret;
  1243. out_unregister:
  1244. unregister_netdev(ndev);
  1245. out_release:
  1246. /* net_dev free */
  1247. if (ndev)
  1248. free_netdev(ndev);
  1249. out:
  1250. return ret;
  1251. }
  1252. static int sh_eth_drv_remove(struct platform_device *pdev)
  1253. {
  1254. struct net_device *ndev = platform_get_drvdata(pdev);
  1255. sh_mdio_release(ndev);
  1256. unregister_netdev(ndev);
  1257. flush_scheduled_work();
  1258. pm_runtime_disable(&pdev->dev);
  1259. free_netdev(ndev);
  1260. platform_set_drvdata(pdev, NULL);
  1261. return 0;
  1262. }
  1263. static int sh_eth_runtime_nop(struct device *dev)
  1264. {
  1265. /*
  1266. * Runtime PM callback shared between ->runtime_suspend()
  1267. * and ->runtime_resume(). Simply returns success.
  1268. *
  1269. * This driver re-initializes all registers after
  1270. * pm_runtime_get_sync() anyway so there is no need
  1271. * to save and restore registers here.
  1272. */
  1273. return 0;
  1274. }
  1275. static struct dev_pm_ops sh_eth_dev_pm_ops = {
  1276. .runtime_suspend = sh_eth_runtime_nop,
  1277. .runtime_resume = sh_eth_runtime_nop,
  1278. };
  1279. static struct platform_driver sh_eth_driver = {
  1280. .probe = sh_eth_drv_probe,
  1281. .remove = sh_eth_drv_remove,
  1282. .driver = {
  1283. .name = CARDNAME,
  1284. .pm = &sh_eth_dev_pm_ops,
  1285. },
  1286. };
  1287. static int __init sh_eth_init(void)
  1288. {
  1289. return platform_driver_register(&sh_eth_driver);
  1290. }
  1291. static void __exit sh_eth_cleanup(void)
  1292. {
  1293. platform_driver_unregister(&sh_eth_driver);
  1294. }
  1295. module_init(sh_eth_init);
  1296. module_exit(sh_eth_cleanup);
  1297. MODULE_AUTHOR("Nobuhiro Iwamatsu, Yoshihiro Shimoda");
  1298. MODULE_DESCRIPTION("Renesas SuperH Ethernet driver");
  1299. MODULE_LICENSE("GPL v2");