slub.c 95 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128
  1. /*
  2. * SLUB: A slab allocator that limits cache line use instead of queuing
  3. * objects in per cpu and per node lists.
  4. *
  5. * The allocator synchronizes using per slab locks and only
  6. * uses a centralized lock to manage a pool of partial slabs.
  7. *
  8. * (C) 2007 SGI, Christoph Lameter <clameter@sgi.com>
  9. */
  10. #include <linux/mm.h>
  11. #include <linux/module.h>
  12. #include <linux/bit_spinlock.h>
  13. #include <linux/interrupt.h>
  14. #include <linux/bitops.h>
  15. #include <linux/slab.h>
  16. #include <linux/seq_file.h>
  17. #include <linux/cpu.h>
  18. #include <linux/cpuset.h>
  19. #include <linux/mempolicy.h>
  20. #include <linux/ctype.h>
  21. #include <linux/kallsyms.h>
  22. #include <linux/memory.h>
  23. /*
  24. * Lock order:
  25. * 1. slab_lock(page)
  26. * 2. slab->list_lock
  27. *
  28. * The slab_lock protects operations on the object of a particular
  29. * slab and its metadata in the page struct. If the slab lock
  30. * has been taken then no allocations nor frees can be performed
  31. * on the objects in the slab nor can the slab be added or removed
  32. * from the partial or full lists since this would mean modifying
  33. * the page_struct of the slab.
  34. *
  35. * The list_lock protects the partial and full list on each node and
  36. * the partial slab counter. If taken then no new slabs may be added or
  37. * removed from the lists nor make the number of partial slabs be modified.
  38. * (Note that the total number of slabs is an atomic value that may be
  39. * modified without taking the list lock).
  40. *
  41. * The list_lock is a centralized lock and thus we avoid taking it as
  42. * much as possible. As long as SLUB does not have to handle partial
  43. * slabs, operations can continue without any centralized lock. F.e.
  44. * allocating a long series of objects that fill up slabs does not require
  45. * the list lock.
  46. *
  47. * The lock order is sometimes inverted when we are trying to get a slab
  48. * off a list. We take the list_lock and then look for a page on the list
  49. * to use. While we do that objects in the slabs may be freed. We can
  50. * only operate on the slab if we have also taken the slab_lock. So we use
  51. * a slab_trylock() on the slab. If trylock was successful then no frees
  52. * can occur anymore and we can use the slab for allocations etc. If the
  53. * slab_trylock() does not succeed then frees are in progress in the slab and
  54. * we must stay away from it for a while since we may cause a bouncing
  55. * cacheline if we try to acquire the lock. So go onto the next slab.
  56. * If all pages are busy then we may allocate a new slab instead of reusing
  57. * a partial slab. A new slab has noone operating on it and thus there is
  58. * no danger of cacheline contention.
  59. *
  60. * Interrupts are disabled during allocation and deallocation in order to
  61. * make the slab allocator safe to use in the context of an irq. In addition
  62. * interrupts are disabled to ensure that the processor does not change
  63. * while handling per_cpu slabs, due to kernel preemption.
  64. *
  65. * SLUB assigns one slab for allocation to each processor.
  66. * Allocations only occur from these slabs called cpu slabs.
  67. *
  68. * Slabs with free elements are kept on a partial list and during regular
  69. * operations no list for full slabs is used. If an object in a full slab is
  70. * freed then the slab will show up again on the partial lists.
  71. * We track full slabs for debugging purposes though because otherwise we
  72. * cannot scan all objects.
  73. *
  74. * Slabs are freed when they become empty. Teardown and setup is
  75. * minimal so we rely on the page allocators per cpu caches for
  76. * fast frees and allocs.
  77. *
  78. * Overloading of page flags that are otherwise used for LRU management.
  79. *
  80. * PageActive The slab is frozen and exempt from list processing.
  81. * This means that the slab is dedicated to a purpose
  82. * such as satisfying allocations for a specific
  83. * processor. Objects may be freed in the slab while
  84. * it is frozen but slab_free will then skip the usual
  85. * list operations. It is up to the processor holding
  86. * the slab to integrate the slab into the slab lists
  87. * when the slab is no longer needed.
  88. *
  89. * One use of this flag is to mark slabs that are
  90. * used for allocations. Then such a slab becomes a cpu
  91. * slab. The cpu slab may be equipped with an additional
  92. * freelist that allows lockless access to
  93. * free objects in addition to the regular freelist
  94. * that requires the slab lock.
  95. *
  96. * PageError Slab requires special handling due to debug
  97. * options set. This moves slab handling out of
  98. * the fast path and disables lockless freelists.
  99. */
  100. #define FROZEN (1 << PG_active)
  101. #ifdef CONFIG_SLUB_DEBUG
  102. #define SLABDEBUG (1 << PG_error)
  103. #else
  104. #define SLABDEBUG 0
  105. #endif
  106. static inline int SlabFrozen(struct page *page)
  107. {
  108. return page->flags & FROZEN;
  109. }
  110. static inline void SetSlabFrozen(struct page *page)
  111. {
  112. page->flags |= FROZEN;
  113. }
  114. static inline void ClearSlabFrozen(struct page *page)
  115. {
  116. page->flags &= ~FROZEN;
  117. }
  118. static inline int SlabDebug(struct page *page)
  119. {
  120. return page->flags & SLABDEBUG;
  121. }
  122. static inline void SetSlabDebug(struct page *page)
  123. {
  124. page->flags |= SLABDEBUG;
  125. }
  126. static inline void ClearSlabDebug(struct page *page)
  127. {
  128. page->flags &= ~SLABDEBUG;
  129. }
  130. /*
  131. * Issues still to be resolved:
  132. *
  133. * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
  134. *
  135. * - Variable sizing of the per node arrays
  136. */
  137. /* Enable to test recovery from slab corruption on boot */
  138. #undef SLUB_RESILIENCY_TEST
  139. #if PAGE_SHIFT <= 12
  140. /*
  141. * Small page size. Make sure that we do not fragment memory
  142. */
  143. #define DEFAULT_MAX_ORDER 1
  144. #define DEFAULT_MIN_OBJECTS 4
  145. #else
  146. /*
  147. * Large page machines are customarily able to handle larger
  148. * page orders.
  149. */
  150. #define DEFAULT_MAX_ORDER 2
  151. #define DEFAULT_MIN_OBJECTS 8
  152. #endif
  153. /*
  154. * Mininum number of partial slabs. These will be left on the partial
  155. * lists even if they are empty. kmem_cache_shrink may reclaim them.
  156. */
  157. #define MIN_PARTIAL 2
  158. /*
  159. * Maximum number of desirable partial slabs.
  160. * The existence of more partial slabs makes kmem_cache_shrink
  161. * sort the partial list by the number of objects in the.
  162. */
  163. #define MAX_PARTIAL 10
  164. #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
  165. SLAB_POISON | SLAB_STORE_USER)
  166. /*
  167. * Set of flags that will prevent slab merging
  168. */
  169. #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
  170. SLAB_TRACE | SLAB_DESTROY_BY_RCU)
  171. #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
  172. SLAB_CACHE_DMA)
  173. #ifndef ARCH_KMALLOC_MINALIGN
  174. #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
  175. #endif
  176. #ifndef ARCH_SLAB_MINALIGN
  177. #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
  178. #endif
  179. /* Internal SLUB flags */
  180. #define __OBJECT_POISON 0x80000000 /* Poison object */
  181. #define __SYSFS_ADD_DEFERRED 0x40000000 /* Not yet visible via sysfs */
  182. /* Not all arches define cache_line_size */
  183. #ifndef cache_line_size
  184. #define cache_line_size() L1_CACHE_BYTES
  185. #endif
  186. static int kmem_size = sizeof(struct kmem_cache);
  187. #ifdef CONFIG_SMP
  188. static struct notifier_block slab_notifier;
  189. #endif
  190. static enum {
  191. DOWN, /* No slab functionality available */
  192. PARTIAL, /* kmem_cache_open() works but kmalloc does not */
  193. UP, /* Everything works but does not show up in sysfs */
  194. SYSFS /* Sysfs up */
  195. } slab_state = DOWN;
  196. /* A list of all slab caches on the system */
  197. static DECLARE_RWSEM(slub_lock);
  198. static LIST_HEAD(slab_caches);
  199. /*
  200. * Tracking user of a slab.
  201. */
  202. struct track {
  203. void *addr; /* Called from address */
  204. int cpu; /* Was running on cpu */
  205. int pid; /* Pid context */
  206. unsigned long when; /* When did the operation occur */
  207. };
  208. enum track_item { TRACK_ALLOC, TRACK_FREE };
  209. #if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
  210. static int sysfs_slab_add(struct kmem_cache *);
  211. static int sysfs_slab_alias(struct kmem_cache *, const char *);
  212. static void sysfs_slab_remove(struct kmem_cache *);
  213. #else
  214. static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
  215. static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
  216. { return 0; }
  217. static inline void sysfs_slab_remove(struct kmem_cache *s) {}
  218. #endif
  219. /********************************************************************
  220. * Core slab cache functions
  221. *******************************************************************/
  222. int slab_is_available(void)
  223. {
  224. return slab_state >= UP;
  225. }
  226. static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
  227. {
  228. #ifdef CONFIG_NUMA
  229. return s->node[node];
  230. #else
  231. return &s->local_node;
  232. #endif
  233. }
  234. static inline struct kmem_cache_cpu *get_cpu_slab(struct kmem_cache *s, int cpu)
  235. {
  236. #ifdef CONFIG_SMP
  237. return s->cpu_slab[cpu];
  238. #else
  239. return &s->cpu_slab;
  240. #endif
  241. }
  242. static inline int check_valid_pointer(struct kmem_cache *s,
  243. struct page *page, const void *object)
  244. {
  245. void *base;
  246. if (!object)
  247. return 1;
  248. base = page_address(page);
  249. if (object < base || object >= base + s->objects * s->size ||
  250. (object - base) % s->size) {
  251. return 0;
  252. }
  253. return 1;
  254. }
  255. /*
  256. * Slow version of get and set free pointer.
  257. *
  258. * This version requires touching the cache lines of kmem_cache which
  259. * we avoid to do in the fast alloc free paths. There we obtain the offset
  260. * from the page struct.
  261. */
  262. static inline void *get_freepointer(struct kmem_cache *s, void *object)
  263. {
  264. return *(void **)(object + s->offset);
  265. }
  266. static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
  267. {
  268. *(void **)(object + s->offset) = fp;
  269. }
  270. /* Loop over all objects in a slab */
  271. #define for_each_object(__p, __s, __addr) \
  272. for (__p = (__addr); __p < (__addr) + (__s)->objects * (__s)->size;\
  273. __p += (__s)->size)
  274. /* Scan freelist */
  275. #define for_each_free_object(__p, __s, __free) \
  276. for (__p = (__free); __p; __p = get_freepointer((__s), __p))
  277. /* Determine object index from a given position */
  278. static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
  279. {
  280. return (p - addr) / s->size;
  281. }
  282. #ifdef CONFIG_SLUB_DEBUG
  283. /*
  284. * Debug settings:
  285. */
  286. #ifdef CONFIG_SLUB_DEBUG_ON
  287. static int slub_debug = DEBUG_DEFAULT_FLAGS;
  288. #else
  289. static int slub_debug;
  290. #endif
  291. static char *slub_debug_slabs;
  292. /*
  293. * Object debugging
  294. */
  295. static void print_section(char *text, u8 *addr, unsigned int length)
  296. {
  297. int i, offset;
  298. int newline = 1;
  299. char ascii[17];
  300. ascii[16] = 0;
  301. for (i = 0; i < length; i++) {
  302. if (newline) {
  303. printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
  304. newline = 0;
  305. }
  306. printk(" %02x", addr[i]);
  307. offset = i % 16;
  308. ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
  309. if (offset == 15) {
  310. printk(" %s\n",ascii);
  311. newline = 1;
  312. }
  313. }
  314. if (!newline) {
  315. i %= 16;
  316. while (i < 16) {
  317. printk(" ");
  318. ascii[i] = ' ';
  319. i++;
  320. }
  321. printk(" %s\n", ascii);
  322. }
  323. }
  324. static struct track *get_track(struct kmem_cache *s, void *object,
  325. enum track_item alloc)
  326. {
  327. struct track *p;
  328. if (s->offset)
  329. p = object + s->offset + sizeof(void *);
  330. else
  331. p = object + s->inuse;
  332. return p + alloc;
  333. }
  334. static void set_track(struct kmem_cache *s, void *object,
  335. enum track_item alloc, void *addr)
  336. {
  337. struct track *p;
  338. if (s->offset)
  339. p = object + s->offset + sizeof(void *);
  340. else
  341. p = object + s->inuse;
  342. p += alloc;
  343. if (addr) {
  344. p->addr = addr;
  345. p->cpu = smp_processor_id();
  346. p->pid = current ? current->pid : -1;
  347. p->when = jiffies;
  348. } else
  349. memset(p, 0, sizeof(struct track));
  350. }
  351. static void init_tracking(struct kmem_cache *s, void *object)
  352. {
  353. if (!(s->flags & SLAB_STORE_USER))
  354. return;
  355. set_track(s, object, TRACK_FREE, NULL);
  356. set_track(s, object, TRACK_ALLOC, NULL);
  357. }
  358. static void print_track(const char *s, struct track *t)
  359. {
  360. if (!t->addr)
  361. return;
  362. printk(KERN_ERR "INFO: %s in ", s);
  363. __print_symbol("%s", (unsigned long)t->addr);
  364. printk(" age=%lu cpu=%u pid=%d\n", jiffies - t->when, t->cpu, t->pid);
  365. }
  366. static void print_tracking(struct kmem_cache *s, void *object)
  367. {
  368. if (!(s->flags & SLAB_STORE_USER))
  369. return;
  370. print_track("Allocated", get_track(s, object, TRACK_ALLOC));
  371. print_track("Freed", get_track(s, object, TRACK_FREE));
  372. }
  373. static void print_page_info(struct page *page)
  374. {
  375. printk(KERN_ERR "INFO: Slab 0x%p used=%u fp=0x%p flags=0x%04lx\n",
  376. page, page->inuse, page->freelist, page->flags);
  377. }
  378. static void slab_bug(struct kmem_cache *s, char *fmt, ...)
  379. {
  380. va_list args;
  381. char buf[100];
  382. va_start(args, fmt);
  383. vsnprintf(buf, sizeof(buf), fmt, args);
  384. va_end(args);
  385. printk(KERN_ERR "========================================"
  386. "=====================================\n");
  387. printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
  388. printk(KERN_ERR "----------------------------------------"
  389. "-------------------------------------\n\n");
  390. }
  391. static void slab_fix(struct kmem_cache *s, char *fmt, ...)
  392. {
  393. va_list args;
  394. char buf[100];
  395. va_start(args, fmt);
  396. vsnprintf(buf, sizeof(buf), fmt, args);
  397. va_end(args);
  398. printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
  399. }
  400. static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
  401. {
  402. unsigned int off; /* Offset of last byte */
  403. u8 *addr = page_address(page);
  404. print_tracking(s, p);
  405. print_page_info(page);
  406. printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
  407. p, p - addr, get_freepointer(s, p));
  408. if (p > addr + 16)
  409. print_section("Bytes b4", p - 16, 16);
  410. print_section("Object", p, min(s->objsize, 128));
  411. if (s->flags & SLAB_RED_ZONE)
  412. print_section("Redzone", p + s->objsize,
  413. s->inuse - s->objsize);
  414. if (s->offset)
  415. off = s->offset + sizeof(void *);
  416. else
  417. off = s->inuse;
  418. if (s->flags & SLAB_STORE_USER)
  419. off += 2 * sizeof(struct track);
  420. if (off != s->size)
  421. /* Beginning of the filler is the free pointer */
  422. print_section("Padding", p + off, s->size - off);
  423. dump_stack();
  424. }
  425. static void object_err(struct kmem_cache *s, struct page *page,
  426. u8 *object, char *reason)
  427. {
  428. slab_bug(s, reason);
  429. print_trailer(s, page, object);
  430. }
  431. static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
  432. {
  433. va_list args;
  434. char buf[100];
  435. va_start(args, fmt);
  436. vsnprintf(buf, sizeof(buf), fmt, args);
  437. va_end(args);
  438. slab_bug(s, fmt);
  439. print_page_info(page);
  440. dump_stack();
  441. }
  442. static void init_object(struct kmem_cache *s, void *object, int active)
  443. {
  444. u8 *p = object;
  445. if (s->flags & __OBJECT_POISON) {
  446. memset(p, POISON_FREE, s->objsize - 1);
  447. p[s->objsize -1] = POISON_END;
  448. }
  449. if (s->flags & SLAB_RED_ZONE)
  450. memset(p + s->objsize,
  451. active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
  452. s->inuse - s->objsize);
  453. }
  454. static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
  455. {
  456. while (bytes) {
  457. if (*start != (u8)value)
  458. return start;
  459. start++;
  460. bytes--;
  461. }
  462. return NULL;
  463. }
  464. static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
  465. void *from, void *to)
  466. {
  467. slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
  468. memset(from, data, to - from);
  469. }
  470. static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
  471. u8 *object, char *what,
  472. u8* start, unsigned int value, unsigned int bytes)
  473. {
  474. u8 *fault;
  475. u8 *end;
  476. fault = check_bytes(start, value, bytes);
  477. if (!fault)
  478. return 1;
  479. end = start + bytes;
  480. while (end > fault && end[-1] == value)
  481. end--;
  482. slab_bug(s, "%s overwritten", what);
  483. printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
  484. fault, end - 1, fault[0], value);
  485. print_trailer(s, page, object);
  486. restore_bytes(s, what, value, fault, end);
  487. return 0;
  488. }
  489. /*
  490. * Object layout:
  491. *
  492. * object address
  493. * Bytes of the object to be managed.
  494. * If the freepointer may overlay the object then the free
  495. * pointer is the first word of the object.
  496. *
  497. * Poisoning uses 0x6b (POISON_FREE) and the last byte is
  498. * 0xa5 (POISON_END)
  499. *
  500. * object + s->objsize
  501. * Padding to reach word boundary. This is also used for Redzoning.
  502. * Padding is extended by another word if Redzoning is enabled and
  503. * objsize == inuse.
  504. *
  505. * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
  506. * 0xcc (RED_ACTIVE) for objects in use.
  507. *
  508. * object + s->inuse
  509. * Meta data starts here.
  510. *
  511. * A. Free pointer (if we cannot overwrite object on free)
  512. * B. Tracking data for SLAB_STORE_USER
  513. * C. Padding to reach required alignment boundary or at mininum
  514. * one word if debuggin is on to be able to detect writes
  515. * before the word boundary.
  516. *
  517. * Padding is done using 0x5a (POISON_INUSE)
  518. *
  519. * object + s->size
  520. * Nothing is used beyond s->size.
  521. *
  522. * If slabcaches are merged then the objsize and inuse boundaries are mostly
  523. * ignored. And therefore no slab options that rely on these boundaries
  524. * may be used with merged slabcaches.
  525. */
  526. static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
  527. {
  528. unsigned long off = s->inuse; /* The end of info */
  529. if (s->offset)
  530. /* Freepointer is placed after the object. */
  531. off += sizeof(void *);
  532. if (s->flags & SLAB_STORE_USER)
  533. /* We also have user information there */
  534. off += 2 * sizeof(struct track);
  535. if (s->size == off)
  536. return 1;
  537. return check_bytes_and_report(s, page, p, "Object padding",
  538. p + off, POISON_INUSE, s->size - off);
  539. }
  540. static int slab_pad_check(struct kmem_cache *s, struct page *page)
  541. {
  542. u8 *start;
  543. u8 *fault;
  544. u8 *end;
  545. int length;
  546. int remainder;
  547. if (!(s->flags & SLAB_POISON))
  548. return 1;
  549. start = page_address(page);
  550. end = start + (PAGE_SIZE << s->order);
  551. length = s->objects * s->size;
  552. remainder = end - (start + length);
  553. if (!remainder)
  554. return 1;
  555. fault = check_bytes(start + length, POISON_INUSE, remainder);
  556. if (!fault)
  557. return 1;
  558. while (end > fault && end[-1] == POISON_INUSE)
  559. end--;
  560. slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
  561. print_section("Padding", start, length);
  562. restore_bytes(s, "slab padding", POISON_INUSE, start, end);
  563. return 0;
  564. }
  565. static int check_object(struct kmem_cache *s, struct page *page,
  566. void *object, int active)
  567. {
  568. u8 *p = object;
  569. u8 *endobject = object + s->objsize;
  570. if (s->flags & SLAB_RED_ZONE) {
  571. unsigned int red =
  572. active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
  573. if (!check_bytes_and_report(s, page, object, "Redzone",
  574. endobject, red, s->inuse - s->objsize))
  575. return 0;
  576. } else {
  577. if ((s->flags & SLAB_POISON) && s->objsize < s->inuse)
  578. check_bytes_and_report(s, page, p, "Alignment padding", endobject,
  579. POISON_INUSE, s->inuse - s->objsize);
  580. }
  581. if (s->flags & SLAB_POISON) {
  582. if (!active && (s->flags & __OBJECT_POISON) &&
  583. (!check_bytes_and_report(s, page, p, "Poison", p,
  584. POISON_FREE, s->objsize - 1) ||
  585. !check_bytes_and_report(s, page, p, "Poison",
  586. p + s->objsize -1, POISON_END, 1)))
  587. return 0;
  588. /*
  589. * check_pad_bytes cleans up on its own.
  590. */
  591. check_pad_bytes(s, page, p);
  592. }
  593. if (!s->offset && active)
  594. /*
  595. * Object and freepointer overlap. Cannot check
  596. * freepointer while object is allocated.
  597. */
  598. return 1;
  599. /* Check free pointer validity */
  600. if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
  601. object_err(s, page, p, "Freepointer corrupt");
  602. /*
  603. * No choice but to zap it and thus loose the remainder
  604. * of the free objects in this slab. May cause
  605. * another error because the object count is now wrong.
  606. */
  607. set_freepointer(s, p, NULL);
  608. return 0;
  609. }
  610. return 1;
  611. }
  612. static int check_slab(struct kmem_cache *s, struct page *page)
  613. {
  614. VM_BUG_ON(!irqs_disabled());
  615. if (!PageSlab(page)) {
  616. slab_err(s, page, "Not a valid slab page");
  617. return 0;
  618. }
  619. if (page->inuse > s->objects) {
  620. slab_err(s, page, "inuse %u > max %u",
  621. s->name, page->inuse, s->objects);
  622. return 0;
  623. }
  624. /* Slab_pad_check fixes things up after itself */
  625. slab_pad_check(s, page);
  626. return 1;
  627. }
  628. /*
  629. * Determine if a certain object on a page is on the freelist. Must hold the
  630. * slab lock to guarantee that the chains are in a consistent state.
  631. */
  632. static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
  633. {
  634. int nr = 0;
  635. void *fp = page->freelist;
  636. void *object = NULL;
  637. while (fp && nr <= s->objects) {
  638. if (fp == search)
  639. return 1;
  640. if (!check_valid_pointer(s, page, fp)) {
  641. if (object) {
  642. object_err(s, page, object,
  643. "Freechain corrupt");
  644. set_freepointer(s, object, NULL);
  645. break;
  646. } else {
  647. slab_err(s, page, "Freepointer corrupt");
  648. page->freelist = NULL;
  649. page->inuse = s->objects;
  650. slab_fix(s, "Freelist cleared");
  651. return 0;
  652. }
  653. break;
  654. }
  655. object = fp;
  656. fp = get_freepointer(s, object);
  657. nr++;
  658. }
  659. if (page->inuse != s->objects - nr) {
  660. slab_err(s, page, "Wrong object count. Counter is %d but "
  661. "counted were %d", page->inuse, s->objects - nr);
  662. page->inuse = s->objects - nr;
  663. slab_fix(s, "Object count adjusted.");
  664. }
  665. return search == NULL;
  666. }
  667. static void trace(struct kmem_cache *s, struct page *page, void *object, int alloc)
  668. {
  669. if (s->flags & SLAB_TRACE) {
  670. printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
  671. s->name,
  672. alloc ? "alloc" : "free",
  673. object, page->inuse,
  674. page->freelist);
  675. if (!alloc)
  676. print_section("Object", (void *)object, s->objsize);
  677. dump_stack();
  678. }
  679. }
  680. /*
  681. * Tracking of fully allocated slabs for debugging purposes.
  682. */
  683. static void add_full(struct kmem_cache_node *n, struct page *page)
  684. {
  685. spin_lock(&n->list_lock);
  686. list_add(&page->lru, &n->full);
  687. spin_unlock(&n->list_lock);
  688. }
  689. static void remove_full(struct kmem_cache *s, struct page *page)
  690. {
  691. struct kmem_cache_node *n;
  692. if (!(s->flags & SLAB_STORE_USER))
  693. return;
  694. n = get_node(s, page_to_nid(page));
  695. spin_lock(&n->list_lock);
  696. list_del(&page->lru);
  697. spin_unlock(&n->list_lock);
  698. }
  699. static void setup_object_debug(struct kmem_cache *s, struct page *page,
  700. void *object)
  701. {
  702. if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
  703. return;
  704. init_object(s, object, 0);
  705. init_tracking(s, object);
  706. }
  707. static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
  708. void *object, void *addr)
  709. {
  710. if (!check_slab(s, page))
  711. goto bad;
  712. if (object && !on_freelist(s, page, object)) {
  713. object_err(s, page, object, "Object already allocated");
  714. goto bad;
  715. }
  716. if (!check_valid_pointer(s, page, object)) {
  717. object_err(s, page, object, "Freelist Pointer check fails");
  718. goto bad;
  719. }
  720. if (object && !check_object(s, page, object, 0))
  721. goto bad;
  722. /* Success perform special debug activities for allocs */
  723. if (s->flags & SLAB_STORE_USER)
  724. set_track(s, object, TRACK_ALLOC, addr);
  725. trace(s, page, object, 1);
  726. init_object(s, object, 1);
  727. return 1;
  728. bad:
  729. if (PageSlab(page)) {
  730. /*
  731. * If this is a slab page then lets do the best we can
  732. * to avoid issues in the future. Marking all objects
  733. * as used avoids touching the remaining objects.
  734. */
  735. slab_fix(s, "Marking all objects used");
  736. page->inuse = s->objects;
  737. page->freelist = NULL;
  738. }
  739. return 0;
  740. }
  741. static int free_debug_processing(struct kmem_cache *s, struct page *page,
  742. void *object, void *addr)
  743. {
  744. if (!check_slab(s, page))
  745. goto fail;
  746. if (!check_valid_pointer(s, page, object)) {
  747. slab_err(s, page, "Invalid object pointer 0x%p", object);
  748. goto fail;
  749. }
  750. if (on_freelist(s, page, object)) {
  751. object_err(s, page, object, "Object already free");
  752. goto fail;
  753. }
  754. if (!check_object(s, page, object, 1))
  755. return 0;
  756. if (unlikely(s != page->slab)) {
  757. if (!PageSlab(page))
  758. slab_err(s, page, "Attempt to free object(0x%p) "
  759. "outside of slab", object);
  760. else
  761. if (!page->slab) {
  762. printk(KERN_ERR
  763. "SLUB <none>: no slab for object 0x%p.\n",
  764. object);
  765. dump_stack();
  766. }
  767. else
  768. object_err(s, page, object,
  769. "page slab pointer corrupt.");
  770. goto fail;
  771. }
  772. /* Special debug activities for freeing objects */
  773. if (!SlabFrozen(page) && !page->freelist)
  774. remove_full(s, page);
  775. if (s->flags & SLAB_STORE_USER)
  776. set_track(s, object, TRACK_FREE, addr);
  777. trace(s, page, object, 0);
  778. init_object(s, object, 0);
  779. return 1;
  780. fail:
  781. slab_fix(s, "Object at 0x%p not freed", object);
  782. return 0;
  783. }
  784. static int __init setup_slub_debug(char *str)
  785. {
  786. slub_debug = DEBUG_DEFAULT_FLAGS;
  787. if (*str++ != '=' || !*str)
  788. /*
  789. * No options specified. Switch on full debugging.
  790. */
  791. goto out;
  792. if (*str == ',')
  793. /*
  794. * No options but restriction on slabs. This means full
  795. * debugging for slabs matching a pattern.
  796. */
  797. goto check_slabs;
  798. slub_debug = 0;
  799. if (*str == '-')
  800. /*
  801. * Switch off all debugging measures.
  802. */
  803. goto out;
  804. /*
  805. * Determine which debug features should be switched on
  806. */
  807. for ( ;*str && *str != ','; str++) {
  808. switch (tolower(*str)) {
  809. case 'f':
  810. slub_debug |= SLAB_DEBUG_FREE;
  811. break;
  812. case 'z':
  813. slub_debug |= SLAB_RED_ZONE;
  814. break;
  815. case 'p':
  816. slub_debug |= SLAB_POISON;
  817. break;
  818. case 'u':
  819. slub_debug |= SLAB_STORE_USER;
  820. break;
  821. case 't':
  822. slub_debug |= SLAB_TRACE;
  823. break;
  824. default:
  825. printk(KERN_ERR "slub_debug option '%c' "
  826. "unknown. skipped\n",*str);
  827. }
  828. }
  829. check_slabs:
  830. if (*str == ',')
  831. slub_debug_slabs = str + 1;
  832. out:
  833. return 1;
  834. }
  835. __setup("slub_debug", setup_slub_debug);
  836. static unsigned long kmem_cache_flags(unsigned long objsize,
  837. unsigned long flags, const char *name,
  838. void (*ctor)(struct kmem_cache *, void *))
  839. {
  840. /*
  841. * The page->offset field is only 16 bit wide. This is an offset
  842. * in units of words from the beginning of an object. If the slab
  843. * size is bigger then we cannot move the free pointer behind the
  844. * object anymore.
  845. *
  846. * On 32 bit platforms the limit is 256k. On 64bit platforms
  847. * the limit is 512k.
  848. *
  849. * Debugging or ctor may create a need to move the free
  850. * pointer. Fail if this happens.
  851. */
  852. if (objsize >= 65535 * sizeof(void *)) {
  853. BUG_ON(flags & (SLAB_RED_ZONE | SLAB_POISON |
  854. SLAB_STORE_USER | SLAB_DESTROY_BY_RCU));
  855. BUG_ON(ctor);
  856. } else {
  857. /*
  858. * Enable debugging if selected on the kernel commandline.
  859. */
  860. if (slub_debug && (!slub_debug_slabs ||
  861. strncmp(slub_debug_slabs, name,
  862. strlen(slub_debug_slabs)) == 0))
  863. flags |= slub_debug;
  864. }
  865. return flags;
  866. }
  867. #else
  868. static inline void setup_object_debug(struct kmem_cache *s,
  869. struct page *page, void *object) {}
  870. static inline int alloc_debug_processing(struct kmem_cache *s,
  871. struct page *page, void *object, void *addr) { return 0; }
  872. static inline int free_debug_processing(struct kmem_cache *s,
  873. struct page *page, void *object, void *addr) { return 0; }
  874. static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
  875. { return 1; }
  876. static inline int check_object(struct kmem_cache *s, struct page *page,
  877. void *object, int active) { return 1; }
  878. static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
  879. static inline unsigned long kmem_cache_flags(unsigned long objsize,
  880. unsigned long flags, const char *name,
  881. void (*ctor)(struct kmem_cache *, void *))
  882. {
  883. return flags;
  884. }
  885. #define slub_debug 0
  886. #endif
  887. /*
  888. * Slab allocation and freeing
  889. */
  890. static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
  891. {
  892. struct page * page;
  893. int pages = 1 << s->order;
  894. if (s->order)
  895. flags |= __GFP_COMP;
  896. if (s->flags & SLAB_CACHE_DMA)
  897. flags |= SLUB_DMA;
  898. if (s->flags & SLAB_RECLAIM_ACCOUNT)
  899. flags |= __GFP_RECLAIMABLE;
  900. if (node == -1)
  901. page = alloc_pages(flags, s->order);
  902. else
  903. page = alloc_pages_node(node, flags, s->order);
  904. if (!page)
  905. return NULL;
  906. mod_zone_page_state(page_zone(page),
  907. (s->flags & SLAB_RECLAIM_ACCOUNT) ?
  908. NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
  909. pages);
  910. return page;
  911. }
  912. static void setup_object(struct kmem_cache *s, struct page *page,
  913. void *object)
  914. {
  915. setup_object_debug(s, page, object);
  916. if (unlikely(s->ctor))
  917. s->ctor(s, object);
  918. }
  919. static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
  920. {
  921. struct page *page;
  922. struct kmem_cache_node *n;
  923. void *start;
  924. void *last;
  925. void *p;
  926. BUG_ON(flags & GFP_SLAB_BUG_MASK);
  927. page = allocate_slab(s,
  928. flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
  929. if (!page)
  930. goto out;
  931. n = get_node(s, page_to_nid(page));
  932. if (n)
  933. atomic_long_inc(&n->nr_slabs);
  934. page->slab = s;
  935. page->flags |= 1 << PG_slab;
  936. if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
  937. SLAB_STORE_USER | SLAB_TRACE))
  938. SetSlabDebug(page);
  939. start = page_address(page);
  940. if (unlikely(s->flags & SLAB_POISON))
  941. memset(start, POISON_INUSE, PAGE_SIZE << s->order);
  942. last = start;
  943. for_each_object(p, s, start) {
  944. setup_object(s, page, last);
  945. set_freepointer(s, last, p);
  946. last = p;
  947. }
  948. setup_object(s, page, last);
  949. set_freepointer(s, last, NULL);
  950. page->freelist = start;
  951. page->inuse = 0;
  952. out:
  953. return page;
  954. }
  955. static void __free_slab(struct kmem_cache *s, struct page *page)
  956. {
  957. int pages = 1 << s->order;
  958. if (unlikely(SlabDebug(page))) {
  959. void *p;
  960. slab_pad_check(s, page);
  961. for_each_object(p, s, page_address(page))
  962. check_object(s, page, p, 0);
  963. ClearSlabDebug(page);
  964. }
  965. mod_zone_page_state(page_zone(page),
  966. (s->flags & SLAB_RECLAIM_ACCOUNT) ?
  967. NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
  968. - pages);
  969. __free_pages(page, s->order);
  970. }
  971. static void rcu_free_slab(struct rcu_head *h)
  972. {
  973. struct page *page;
  974. page = container_of((struct list_head *)h, struct page, lru);
  975. __free_slab(page->slab, page);
  976. }
  977. static void free_slab(struct kmem_cache *s, struct page *page)
  978. {
  979. if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
  980. /*
  981. * RCU free overloads the RCU head over the LRU
  982. */
  983. struct rcu_head *head = (void *)&page->lru;
  984. call_rcu(head, rcu_free_slab);
  985. } else
  986. __free_slab(s, page);
  987. }
  988. static void discard_slab(struct kmem_cache *s, struct page *page)
  989. {
  990. struct kmem_cache_node *n = get_node(s, page_to_nid(page));
  991. atomic_long_dec(&n->nr_slabs);
  992. reset_page_mapcount(page);
  993. __ClearPageSlab(page);
  994. free_slab(s, page);
  995. }
  996. /*
  997. * Per slab locking using the pagelock
  998. */
  999. static __always_inline void slab_lock(struct page *page)
  1000. {
  1001. bit_spin_lock(PG_locked, &page->flags);
  1002. }
  1003. static __always_inline void slab_unlock(struct page *page)
  1004. {
  1005. bit_spin_unlock(PG_locked, &page->flags);
  1006. }
  1007. static __always_inline int slab_trylock(struct page *page)
  1008. {
  1009. int rc = 1;
  1010. rc = bit_spin_trylock(PG_locked, &page->flags);
  1011. return rc;
  1012. }
  1013. /*
  1014. * Management of partially allocated slabs
  1015. */
  1016. static void add_partial_tail(struct kmem_cache_node *n, struct page *page)
  1017. {
  1018. spin_lock(&n->list_lock);
  1019. n->nr_partial++;
  1020. list_add_tail(&page->lru, &n->partial);
  1021. spin_unlock(&n->list_lock);
  1022. }
  1023. static void add_partial(struct kmem_cache_node *n, struct page *page)
  1024. {
  1025. spin_lock(&n->list_lock);
  1026. n->nr_partial++;
  1027. list_add(&page->lru, &n->partial);
  1028. spin_unlock(&n->list_lock);
  1029. }
  1030. static void remove_partial(struct kmem_cache *s,
  1031. struct page *page)
  1032. {
  1033. struct kmem_cache_node *n = get_node(s, page_to_nid(page));
  1034. spin_lock(&n->list_lock);
  1035. list_del(&page->lru);
  1036. n->nr_partial--;
  1037. spin_unlock(&n->list_lock);
  1038. }
  1039. /*
  1040. * Lock slab and remove from the partial list.
  1041. *
  1042. * Must hold list_lock.
  1043. */
  1044. static inline int lock_and_freeze_slab(struct kmem_cache_node *n, struct page *page)
  1045. {
  1046. if (slab_trylock(page)) {
  1047. list_del(&page->lru);
  1048. n->nr_partial--;
  1049. SetSlabFrozen(page);
  1050. return 1;
  1051. }
  1052. return 0;
  1053. }
  1054. /*
  1055. * Try to allocate a partial slab from a specific node.
  1056. */
  1057. static struct page *get_partial_node(struct kmem_cache_node *n)
  1058. {
  1059. struct page *page;
  1060. /*
  1061. * Racy check. If we mistakenly see no partial slabs then we
  1062. * just allocate an empty slab. If we mistakenly try to get a
  1063. * partial slab and there is none available then get_partials()
  1064. * will return NULL.
  1065. */
  1066. if (!n || !n->nr_partial)
  1067. return NULL;
  1068. spin_lock(&n->list_lock);
  1069. list_for_each_entry(page, &n->partial, lru)
  1070. if (lock_and_freeze_slab(n, page))
  1071. goto out;
  1072. page = NULL;
  1073. out:
  1074. spin_unlock(&n->list_lock);
  1075. return page;
  1076. }
  1077. /*
  1078. * Get a page from somewhere. Search in increasing NUMA distances.
  1079. */
  1080. static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
  1081. {
  1082. #ifdef CONFIG_NUMA
  1083. struct zonelist *zonelist;
  1084. struct zone **z;
  1085. struct page *page;
  1086. /*
  1087. * The defrag ratio allows a configuration of the tradeoffs between
  1088. * inter node defragmentation and node local allocations. A lower
  1089. * defrag_ratio increases the tendency to do local allocations
  1090. * instead of attempting to obtain partial slabs from other nodes.
  1091. *
  1092. * If the defrag_ratio is set to 0 then kmalloc() always
  1093. * returns node local objects. If the ratio is higher then kmalloc()
  1094. * may return off node objects because partial slabs are obtained
  1095. * from other nodes and filled up.
  1096. *
  1097. * If /sys/slab/xx/defrag_ratio is set to 100 (which makes
  1098. * defrag_ratio = 1000) then every (well almost) allocation will
  1099. * first attempt to defrag slab caches on other nodes. This means
  1100. * scanning over all nodes to look for partial slabs which may be
  1101. * expensive if we do it every time we are trying to find a slab
  1102. * with available objects.
  1103. */
  1104. if (!s->defrag_ratio || get_cycles() % 1024 > s->defrag_ratio)
  1105. return NULL;
  1106. zonelist = &NODE_DATA(slab_node(current->mempolicy))
  1107. ->node_zonelists[gfp_zone(flags)];
  1108. for (z = zonelist->zones; *z; z++) {
  1109. struct kmem_cache_node *n;
  1110. n = get_node(s, zone_to_nid(*z));
  1111. if (n && cpuset_zone_allowed_hardwall(*z, flags) &&
  1112. n->nr_partial > MIN_PARTIAL) {
  1113. page = get_partial_node(n);
  1114. if (page)
  1115. return page;
  1116. }
  1117. }
  1118. #endif
  1119. return NULL;
  1120. }
  1121. /*
  1122. * Get a partial page, lock it and return it.
  1123. */
  1124. static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
  1125. {
  1126. struct page *page;
  1127. int searchnode = (node == -1) ? numa_node_id() : node;
  1128. page = get_partial_node(get_node(s, searchnode));
  1129. if (page || (flags & __GFP_THISNODE))
  1130. return page;
  1131. return get_any_partial(s, flags);
  1132. }
  1133. /*
  1134. * Move a page back to the lists.
  1135. *
  1136. * Must be called with the slab lock held.
  1137. *
  1138. * On exit the slab lock will have been dropped.
  1139. */
  1140. static void unfreeze_slab(struct kmem_cache *s, struct page *page)
  1141. {
  1142. struct kmem_cache_node *n = get_node(s, page_to_nid(page));
  1143. ClearSlabFrozen(page);
  1144. if (page->inuse) {
  1145. if (page->freelist)
  1146. add_partial(n, page);
  1147. else if (SlabDebug(page) && (s->flags & SLAB_STORE_USER))
  1148. add_full(n, page);
  1149. slab_unlock(page);
  1150. } else {
  1151. if (n->nr_partial < MIN_PARTIAL) {
  1152. /*
  1153. * Adding an empty slab to the partial slabs in order
  1154. * to avoid page allocator overhead. This slab needs
  1155. * to come after the other slabs with objects in
  1156. * order to fill them up. That way the size of the
  1157. * partial list stays small. kmem_cache_shrink can
  1158. * reclaim empty slabs from the partial list.
  1159. */
  1160. add_partial_tail(n, page);
  1161. slab_unlock(page);
  1162. } else {
  1163. slab_unlock(page);
  1164. discard_slab(s, page);
  1165. }
  1166. }
  1167. }
  1168. /*
  1169. * Remove the cpu slab
  1170. */
  1171. static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
  1172. {
  1173. struct page *page = c->page;
  1174. /*
  1175. * Merge cpu freelist into freelist. Typically we get here
  1176. * because both freelists are empty. So this is unlikely
  1177. * to occur.
  1178. */
  1179. while (unlikely(c->freelist)) {
  1180. void **object;
  1181. /* Retrieve object from cpu_freelist */
  1182. object = c->freelist;
  1183. c->freelist = c->freelist[c->offset];
  1184. /* And put onto the regular freelist */
  1185. object[c->offset] = page->freelist;
  1186. page->freelist = object;
  1187. page->inuse--;
  1188. }
  1189. c->page = NULL;
  1190. unfreeze_slab(s, page);
  1191. }
  1192. static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
  1193. {
  1194. slab_lock(c->page);
  1195. deactivate_slab(s, c);
  1196. }
  1197. /*
  1198. * Flush cpu slab.
  1199. * Called from IPI handler with interrupts disabled.
  1200. */
  1201. static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
  1202. {
  1203. struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
  1204. if (likely(c && c->page))
  1205. flush_slab(s, c);
  1206. }
  1207. static void flush_cpu_slab(void *d)
  1208. {
  1209. struct kmem_cache *s = d;
  1210. __flush_cpu_slab(s, smp_processor_id());
  1211. }
  1212. static void flush_all(struct kmem_cache *s)
  1213. {
  1214. #ifdef CONFIG_SMP
  1215. on_each_cpu(flush_cpu_slab, s, 1, 1);
  1216. #else
  1217. unsigned long flags;
  1218. local_irq_save(flags);
  1219. flush_cpu_slab(s);
  1220. local_irq_restore(flags);
  1221. #endif
  1222. }
  1223. /*
  1224. * Check if the objects in a per cpu structure fit numa
  1225. * locality expectations.
  1226. */
  1227. static inline int node_match(struct kmem_cache_cpu *c, int node)
  1228. {
  1229. #ifdef CONFIG_NUMA
  1230. if (node != -1 && c->node != node)
  1231. return 0;
  1232. #endif
  1233. return 1;
  1234. }
  1235. /*
  1236. * Slow path. The lockless freelist is empty or we need to perform
  1237. * debugging duties.
  1238. *
  1239. * Interrupts are disabled.
  1240. *
  1241. * Processing is still very fast if new objects have been freed to the
  1242. * regular freelist. In that case we simply take over the regular freelist
  1243. * as the lockless freelist and zap the regular freelist.
  1244. *
  1245. * If that is not working then we fall back to the partial lists. We take the
  1246. * first element of the freelist as the object to allocate now and move the
  1247. * rest of the freelist to the lockless freelist.
  1248. *
  1249. * And if we were unable to get a new slab from the partial slab lists then
  1250. * we need to allocate a new slab. This is slowest path since we may sleep.
  1251. */
  1252. static void *__slab_alloc(struct kmem_cache *s,
  1253. gfp_t gfpflags, int node, void *addr, struct kmem_cache_cpu *c)
  1254. {
  1255. void **object;
  1256. struct page *new;
  1257. /* We handle __GFP_ZERO in the caller */
  1258. gfpflags &= ~__GFP_ZERO;
  1259. if (!c->page)
  1260. goto new_slab;
  1261. slab_lock(c->page);
  1262. if (unlikely(!node_match(c, node)))
  1263. goto another_slab;
  1264. load_freelist:
  1265. object = c->page->freelist;
  1266. if (unlikely(!object))
  1267. goto another_slab;
  1268. if (unlikely(SlabDebug(c->page)))
  1269. goto debug;
  1270. object = c->page->freelist;
  1271. c->freelist = object[c->offset];
  1272. c->page->inuse = s->objects;
  1273. c->page->freelist = NULL;
  1274. c->node = page_to_nid(c->page);
  1275. slab_unlock(c->page);
  1276. return object;
  1277. another_slab:
  1278. deactivate_slab(s, c);
  1279. new_slab:
  1280. new = get_partial(s, gfpflags, node);
  1281. if (new) {
  1282. c->page = new;
  1283. goto load_freelist;
  1284. }
  1285. if (gfpflags & __GFP_WAIT)
  1286. local_irq_enable();
  1287. new = new_slab(s, gfpflags, node);
  1288. if (gfpflags & __GFP_WAIT)
  1289. local_irq_disable();
  1290. if (new) {
  1291. c = get_cpu_slab(s, smp_processor_id());
  1292. if (c->page)
  1293. flush_slab(s, c);
  1294. slab_lock(new);
  1295. SetSlabFrozen(new);
  1296. c->page = new;
  1297. goto load_freelist;
  1298. }
  1299. return NULL;
  1300. debug:
  1301. object = c->page->freelist;
  1302. if (!alloc_debug_processing(s, c->page, object, addr))
  1303. goto another_slab;
  1304. c->page->inuse++;
  1305. c->page->freelist = object[c->offset];
  1306. c->node = -1;
  1307. slab_unlock(c->page);
  1308. return object;
  1309. }
  1310. /*
  1311. * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
  1312. * have the fastpath folded into their functions. So no function call
  1313. * overhead for requests that can be satisfied on the fastpath.
  1314. *
  1315. * The fastpath works by first checking if the lockless freelist can be used.
  1316. * If not then __slab_alloc is called for slow processing.
  1317. *
  1318. * Otherwise we can simply pick the next object from the lockless free list.
  1319. */
  1320. static void __always_inline *slab_alloc(struct kmem_cache *s,
  1321. gfp_t gfpflags, int node, void *addr)
  1322. {
  1323. void **object;
  1324. unsigned long flags;
  1325. struct kmem_cache_cpu *c;
  1326. local_irq_save(flags);
  1327. c = get_cpu_slab(s, smp_processor_id());
  1328. if (unlikely(!c->freelist || !node_match(c, node)))
  1329. object = __slab_alloc(s, gfpflags, node, addr, c);
  1330. else {
  1331. object = c->freelist;
  1332. c->freelist = object[c->offset];
  1333. }
  1334. local_irq_restore(flags);
  1335. if (unlikely((gfpflags & __GFP_ZERO) && object))
  1336. memset(object, 0, c->objsize);
  1337. return object;
  1338. }
  1339. void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
  1340. {
  1341. return slab_alloc(s, gfpflags, -1, __builtin_return_address(0));
  1342. }
  1343. EXPORT_SYMBOL(kmem_cache_alloc);
  1344. #ifdef CONFIG_NUMA
  1345. void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
  1346. {
  1347. return slab_alloc(s, gfpflags, node, __builtin_return_address(0));
  1348. }
  1349. EXPORT_SYMBOL(kmem_cache_alloc_node);
  1350. #endif
  1351. /*
  1352. * Slow patch handling. This may still be called frequently since objects
  1353. * have a longer lifetime than the cpu slabs in most processing loads.
  1354. *
  1355. * So we still attempt to reduce cache line usage. Just take the slab
  1356. * lock and free the item. If there is no additional partial page
  1357. * handling required then we can return immediately.
  1358. */
  1359. static void __slab_free(struct kmem_cache *s, struct page *page,
  1360. void *x, void *addr, unsigned int offset)
  1361. {
  1362. void *prior;
  1363. void **object = (void *)x;
  1364. slab_lock(page);
  1365. if (unlikely(SlabDebug(page)))
  1366. goto debug;
  1367. checks_ok:
  1368. prior = object[offset] = page->freelist;
  1369. page->freelist = object;
  1370. page->inuse--;
  1371. if (unlikely(SlabFrozen(page)))
  1372. goto out_unlock;
  1373. if (unlikely(!page->inuse))
  1374. goto slab_empty;
  1375. /*
  1376. * Objects left in the slab. If it
  1377. * was not on the partial list before
  1378. * then add it.
  1379. */
  1380. if (unlikely(!prior))
  1381. add_partial(get_node(s, page_to_nid(page)), page);
  1382. out_unlock:
  1383. slab_unlock(page);
  1384. return;
  1385. slab_empty:
  1386. if (prior)
  1387. /*
  1388. * Slab still on the partial list.
  1389. */
  1390. remove_partial(s, page);
  1391. slab_unlock(page);
  1392. discard_slab(s, page);
  1393. return;
  1394. debug:
  1395. if (!free_debug_processing(s, page, x, addr))
  1396. goto out_unlock;
  1397. goto checks_ok;
  1398. }
  1399. /*
  1400. * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
  1401. * can perform fastpath freeing without additional function calls.
  1402. *
  1403. * The fastpath is only possible if we are freeing to the current cpu slab
  1404. * of this processor. This typically the case if we have just allocated
  1405. * the item before.
  1406. *
  1407. * If fastpath is not possible then fall back to __slab_free where we deal
  1408. * with all sorts of special processing.
  1409. */
  1410. static void __always_inline slab_free(struct kmem_cache *s,
  1411. struct page *page, void *x, void *addr)
  1412. {
  1413. void **object = (void *)x;
  1414. unsigned long flags;
  1415. struct kmem_cache_cpu *c;
  1416. local_irq_save(flags);
  1417. debug_check_no_locks_freed(object, s->objsize);
  1418. c = get_cpu_slab(s, smp_processor_id());
  1419. if (likely(page == c->page && c->node >= 0)) {
  1420. object[c->offset] = c->freelist;
  1421. c->freelist = object;
  1422. } else
  1423. __slab_free(s, page, x, addr, c->offset);
  1424. local_irq_restore(flags);
  1425. }
  1426. void kmem_cache_free(struct kmem_cache *s, void *x)
  1427. {
  1428. struct page *page;
  1429. page = virt_to_head_page(x);
  1430. slab_free(s, page, x, __builtin_return_address(0));
  1431. }
  1432. EXPORT_SYMBOL(kmem_cache_free);
  1433. /* Figure out on which slab object the object resides */
  1434. static struct page *get_object_page(const void *x)
  1435. {
  1436. struct page *page = virt_to_head_page(x);
  1437. if (!PageSlab(page))
  1438. return NULL;
  1439. return page;
  1440. }
  1441. /*
  1442. * Object placement in a slab is made very easy because we always start at
  1443. * offset 0. If we tune the size of the object to the alignment then we can
  1444. * get the required alignment by putting one properly sized object after
  1445. * another.
  1446. *
  1447. * Notice that the allocation order determines the sizes of the per cpu
  1448. * caches. Each processor has always one slab available for allocations.
  1449. * Increasing the allocation order reduces the number of times that slabs
  1450. * must be moved on and off the partial lists and is therefore a factor in
  1451. * locking overhead.
  1452. */
  1453. /*
  1454. * Mininum / Maximum order of slab pages. This influences locking overhead
  1455. * and slab fragmentation. A higher order reduces the number of partial slabs
  1456. * and increases the number of allocations possible without having to
  1457. * take the list_lock.
  1458. */
  1459. static int slub_min_order;
  1460. static int slub_max_order = DEFAULT_MAX_ORDER;
  1461. static int slub_min_objects = DEFAULT_MIN_OBJECTS;
  1462. /*
  1463. * Merge control. If this is set then no merging of slab caches will occur.
  1464. * (Could be removed. This was introduced to pacify the merge skeptics.)
  1465. */
  1466. static int slub_nomerge;
  1467. /*
  1468. * Calculate the order of allocation given an slab object size.
  1469. *
  1470. * The order of allocation has significant impact on performance and other
  1471. * system components. Generally order 0 allocations should be preferred since
  1472. * order 0 does not cause fragmentation in the page allocator. Larger objects
  1473. * be problematic to put into order 0 slabs because there may be too much
  1474. * unused space left. We go to a higher order if more than 1/8th of the slab
  1475. * would be wasted.
  1476. *
  1477. * In order to reach satisfactory performance we must ensure that a minimum
  1478. * number of objects is in one slab. Otherwise we may generate too much
  1479. * activity on the partial lists which requires taking the list_lock. This is
  1480. * less a concern for large slabs though which are rarely used.
  1481. *
  1482. * slub_max_order specifies the order where we begin to stop considering the
  1483. * number of objects in a slab as critical. If we reach slub_max_order then
  1484. * we try to keep the page order as low as possible. So we accept more waste
  1485. * of space in favor of a small page order.
  1486. *
  1487. * Higher order allocations also allow the placement of more objects in a
  1488. * slab and thereby reduce object handling overhead. If the user has
  1489. * requested a higher mininum order then we start with that one instead of
  1490. * the smallest order which will fit the object.
  1491. */
  1492. static inline int slab_order(int size, int min_objects,
  1493. int max_order, int fract_leftover)
  1494. {
  1495. int order;
  1496. int rem;
  1497. int min_order = slub_min_order;
  1498. for (order = max(min_order,
  1499. fls(min_objects * size - 1) - PAGE_SHIFT);
  1500. order <= max_order; order++) {
  1501. unsigned long slab_size = PAGE_SIZE << order;
  1502. if (slab_size < min_objects * size)
  1503. continue;
  1504. rem = slab_size % size;
  1505. if (rem <= slab_size / fract_leftover)
  1506. break;
  1507. }
  1508. return order;
  1509. }
  1510. static inline int calculate_order(int size)
  1511. {
  1512. int order;
  1513. int min_objects;
  1514. int fraction;
  1515. /*
  1516. * Attempt to find best configuration for a slab. This
  1517. * works by first attempting to generate a layout with
  1518. * the best configuration and backing off gradually.
  1519. *
  1520. * First we reduce the acceptable waste in a slab. Then
  1521. * we reduce the minimum objects required in a slab.
  1522. */
  1523. min_objects = slub_min_objects;
  1524. while (min_objects > 1) {
  1525. fraction = 8;
  1526. while (fraction >= 4) {
  1527. order = slab_order(size, min_objects,
  1528. slub_max_order, fraction);
  1529. if (order <= slub_max_order)
  1530. return order;
  1531. fraction /= 2;
  1532. }
  1533. min_objects /= 2;
  1534. }
  1535. /*
  1536. * We were unable to place multiple objects in a slab. Now
  1537. * lets see if we can place a single object there.
  1538. */
  1539. order = slab_order(size, 1, slub_max_order, 1);
  1540. if (order <= slub_max_order)
  1541. return order;
  1542. /*
  1543. * Doh this slab cannot be placed using slub_max_order.
  1544. */
  1545. order = slab_order(size, 1, MAX_ORDER, 1);
  1546. if (order <= MAX_ORDER)
  1547. return order;
  1548. return -ENOSYS;
  1549. }
  1550. /*
  1551. * Figure out what the alignment of the objects will be.
  1552. */
  1553. static unsigned long calculate_alignment(unsigned long flags,
  1554. unsigned long align, unsigned long size)
  1555. {
  1556. /*
  1557. * If the user wants hardware cache aligned objects then
  1558. * follow that suggestion if the object is sufficiently
  1559. * large.
  1560. *
  1561. * The hardware cache alignment cannot override the
  1562. * specified alignment though. If that is greater
  1563. * then use it.
  1564. */
  1565. if ((flags & SLAB_HWCACHE_ALIGN) &&
  1566. size > cache_line_size() / 2)
  1567. return max_t(unsigned long, align, cache_line_size());
  1568. if (align < ARCH_SLAB_MINALIGN)
  1569. return ARCH_SLAB_MINALIGN;
  1570. return ALIGN(align, sizeof(void *));
  1571. }
  1572. static void init_kmem_cache_cpu(struct kmem_cache *s,
  1573. struct kmem_cache_cpu *c)
  1574. {
  1575. c->page = NULL;
  1576. c->freelist = NULL;
  1577. c->node = 0;
  1578. c->offset = s->offset / sizeof(void *);
  1579. c->objsize = s->objsize;
  1580. }
  1581. static void init_kmem_cache_node(struct kmem_cache_node *n)
  1582. {
  1583. n->nr_partial = 0;
  1584. atomic_long_set(&n->nr_slabs, 0);
  1585. spin_lock_init(&n->list_lock);
  1586. INIT_LIST_HEAD(&n->partial);
  1587. #ifdef CONFIG_SLUB_DEBUG
  1588. INIT_LIST_HEAD(&n->full);
  1589. #endif
  1590. }
  1591. #ifdef CONFIG_SMP
  1592. /*
  1593. * Per cpu array for per cpu structures.
  1594. *
  1595. * The per cpu array places all kmem_cache_cpu structures from one processor
  1596. * close together meaning that it becomes possible that multiple per cpu
  1597. * structures are contained in one cacheline. This may be particularly
  1598. * beneficial for the kmalloc caches.
  1599. *
  1600. * A desktop system typically has around 60-80 slabs. With 100 here we are
  1601. * likely able to get per cpu structures for all caches from the array defined
  1602. * here. We must be able to cover all kmalloc caches during bootstrap.
  1603. *
  1604. * If the per cpu array is exhausted then fall back to kmalloc
  1605. * of individual cachelines. No sharing is possible then.
  1606. */
  1607. #define NR_KMEM_CACHE_CPU 100
  1608. static DEFINE_PER_CPU(struct kmem_cache_cpu,
  1609. kmem_cache_cpu)[NR_KMEM_CACHE_CPU];
  1610. static DEFINE_PER_CPU(struct kmem_cache_cpu *, kmem_cache_cpu_free);
  1611. static cpumask_t kmem_cach_cpu_free_init_once = CPU_MASK_NONE;
  1612. static struct kmem_cache_cpu *alloc_kmem_cache_cpu(struct kmem_cache *s,
  1613. int cpu, gfp_t flags)
  1614. {
  1615. struct kmem_cache_cpu *c = per_cpu(kmem_cache_cpu_free, cpu);
  1616. if (c)
  1617. per_cpu(kmem_cache_cpu_free, cpu) =
  1618. (void *)c->freelist;
  1619. else {
  1620. /* Table overflow: So allocate ourselves */
  1621. c = kmalloc_node(
  1622. ALIGN(sizeof(struct kmem_cache_cpu), cache_line_size()),
  1623. flags, cpu_to_node(cpu));
  1624. if (!c)
  1625. return NULL;
  1626. }
  1627. init_kmem_cache_cpu(s, c);
  1628. return c;
  1629. }
  1630. static void free_kmem_cache_cpu(struct kmem_cache_cpu *c, int cpu)
  1631. {
  1632. if (c < per_cpu(kmem_cache_cpu, cpu) ||
  1633. c > per_cpu(kmem_cache_cpu, cpu) + NR_KMEM_CACHE_CPU) {
  1634. kfree(c);
  1635. return;
  1636. }
  1637. c->freelist = (void *)per_cpu(kmem_cache_cpu_free, cpu);
  1638. per_cpu(kmem_cache_cpu_free, cpu) = c;
  1639. }
  1640. static void free_kmem_cache_cpus(struct kmem_cache *s)
  1641. {
  1642. int cpu;
  1643. for_each_online_cpu(cpu) {
  1644. struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
  1645. if (c) {
  1646. s->cpu_slab[cpu] = NULL;
  1647. free_kmem_cache_cpu(c, cpu);
  1648. }
  1649. }
  1650. }
  1651. static int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
  1652. {
  1653. int cpu;
  1654. for_each_online_cpu(cpu) {
  1655. struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
  1656. if (c)
  1657. continue;
  1658. c = alloc_kmem_cache_cpu(s, cpu, flags);
  1659. if (!c) {
  1660. free_kmem_cache_cpus(s);
  1661. return 0;
  1662. }
  1663. s->cpu_slab[cpu] = c;
  1664. }
  1665. return 1;
  1666. }
  1667. /*
  1668. * Initialize the per cpu array.
  1669. */
  1670. static void init_alloc_cpu_cpu(int cpu)
  1671. {
  1672. int i;
  1673. if (cpu_isset(cpu, kmem_cach_cpu_free_init_once))
  1674. return;
  1675. for (i = NR_KMEM_CACHE_CPU - 1; i >= 0; i--)
  1676. free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu, cpu)[i], cpu);
  1677. cpu_set(cpu, kmem_cach_cpu_free_init_once);
  1678. }
  1679. static void __init init_alloc_cpu(void)
  1680. {
  1681. int cpu;
  1682. for_each_online_cpu(cpu)
  1683. init_alloc_cpu_cpu(cpu);
  1684. }
  1685. #else
  1686. static inline void free_kmem_cache_cpus(struct kmem_cache *s) {}
  1687. static inline void init_alloc_cpu(void) {}
  1688. static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
  1689. {
  1690. init_kmem_cache_cpu(s, &s->cpu_slab);
  1691. return 1;
  1692. }
  1693. #endif
  1694. #ifdef CONFIG_NUMA
  1695. /*
  1696. * No kmalloc_node yet so do it by hand. We know that this is the first
  1697. * slab on the node for this slabcache. There are no concurrent accesses
  1698. * possible.
  1699. *
  1700. * Note that this function only works on the kmalloc_node_cache
  1701. * when allocating for the kmalloc_node_cache. This is used for bootstrapping
  1702. * memory on a fresh node that has no slab structures yet.
  1703. */
  1704. static struct kmem_cache_node *early_kmem_cache_node_alloc(gfp_t gfpflags,
  1705. int node)
  1706. {
  1707. struct page *page;
  1708. struct kmem_cache_node *n;
  1709. BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
  1710. page = new_slab(kmalloc_caches, gfpflags, node);
  1711. BUG_ON(!page);
  1712. if (page_to_nid(page) != node) {
  1713. printk(KERN_ERR "SLUB: Unable to allocate memory from "
  1714. "node %d\n", node);
  1715. printk(KERN_ERR "SLUB: Allocating a useless per node structure "
  1716. "in order to be able to continue\n");
  1717. }
  1718. n = page->freelist;
  1719. BUG_ON(!n);
  1720. page->freelist = get_freepointer(kmalloc_caches, n);
  1721. page->inuse++;
  1722. kmalloc_caches->node[node] = n;
  1723. #ifdef CONFIG_SLUB_DEBUG
  1724. init_object(kmalloc_caches, n, 1);
  1725. init_tracking(kmalloc_caches, n);
  1726. #endif
  1727. init_kmem_cache_node(n);
  1728. atomic_long_inc(&n->nr_slabs);
  1729. add_partial(n, page);
  1730. return n;
  1731. }
  1732. static void free_kmem_cache_nodes(struct kmem_cache *s)
  1733. {
  1734. int node;
  1735. for_each_node_state(node, N_NORMAL_MEMORY) {
  1736. struct kmem_cache_node *n = s->node[node];
  1737. if (n && n != &s->local_node)
  1738. kmem_cache_free(kmalloc_caches, n);
  1739. s->node[node] = NULL;
  1740. }
  1741. }
  1742. static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
  1743. {
  1744. int node;
  1745. int local_node;
  1746. if (slab_state >= UP)
  1747. local_node = page_to_nid(virt_to_page(s));
  1748. else
  1749. local_node = 0;
  1750. for_each_node_state(node, N_NORMAL_MEMORY) {
  1751. struct kmem_cache_node *n;
  1752. if (local_node == node)
  1753. n = &s->local_node;
  1754. else {
  1755. if (slab_state == DOWN) {
  1756. n = early_kmem_cache_node_alloc(gfpflags,
  1757. node);
  1758. continue;
  1759. }
  1760. n = kmem_cache_alloc_node(kmalloc_caches,
  1761. gfpflags, node);
  1762. if (!n) {
  1763. free_kmem_cache_nodes(s);
  1764. return 0;
  1765. }
  1766. }
  1767. s->node[node] = n;
  1768. init_kmem_cache_node(n);
  1769. }
  1770. return 1;
  1771. }
  1772. #else
  1773. static void free_kmem_cache_nodes(struct kmem_cache *s)
  1774. {
  1775. }
  1776. static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
  1777. {
  1778. init_kmem_cache_node(&s->local_node);
  1779. return 1;
  1780. }
  1781. #endif
  1782. /*
  1783. * calculate_sizes() determines the order and the distribution of data within
  1784. * a slab object.
  1785. */
  1786. static int calculate_sizes(struct kmem_cache *s)
  1787. {
  1788. unsigned long flags = s->flags;
  1789. unsigned long size = s->objsize;
  1790. unsigned long align = s->align;
  1791. /*
  1792. * Determine if we can poison the object itself. If the user of
  1793. * the slab may touch the object after free or before allocation
  1794. * then we should never poison the object itself.
  1795. */
  1796. if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
  1797. !s->ctor)
  1798. s->flags |= __OBJECT_POISON;
  1799. else
  1800. s->flags &= ~__OBJECT_POISON;
  1801. /*
  1802. * Round up object size to the next word boundary. We can only
  1803. * place the free pointer at word boundaries and this determines
  1804. * the possible location of the free pointer.
  1805. */
  1806. size = ALIGN(size, sizeof(void *));
  1807. #ifdef CONFIG_SLUB_DEBUG
  1808. /*
  1809. * If we are Redzoning then check if there is some space between the
  1810. * end of the object and the free pointer. If not then add an
  1811. * additional word to have some bytes to store Redzone information.
  1812. */
  1813. if ((flags & SLAB_RED_ZONE) && size == s->objsize)
  1814. size += sizeof(void *);
  1815. #endif
  1816. /*
  1817. * With that we have determined the number of bytes in actual use
  1818. * by the object. This is the potential offset to the free pointer.
  1819. */
  1820. s->inuse = size;
  1821. if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
  1822. s->ctor)) {
  1823. /*
  1824. * Relocate free pointer after the object if it is not
  1825. * permitted to overwrite the first word of the object on
  1826. * kmem_cache_free.
  1827. *
  1828. * This is the case if we do RCU, have a constructor or
  1829. * destructor or are poisoning the objects.
  1830. */
  1831. s->offset = size;
  1832. size += sizeof(void *);
  1833. }
  1834. #ifdef CONFIG_SLUB_DEBUG
  1835. if (flags & SLAB_STORE_USER)
  1836. /*
  1837. * Need to store information about allocs and frees after
  1838. * the object.
  1839. */
  1840. size += 2 * sizeof(struct track);
  1841. if (flags & SLAB_RED_ZONE)
  1842. /*
  1843. * Add some empty padding so that we can catch
  1844. * overwrites from earlier objects rather than let
  1845. * tracking information or the free pointer be
  1846. * corrupted if an user writes before the start
  1847. * of the object.
  1848. */
  1849. size += sizeof(void *);
  1850. #endif
  1851. /*
  1852. * Determine the alignment based on various parameters that the
  1853. * user specified and the dynamic determination of cache line size
  1854. * on bootup.
  1855. */
  1856. align = calculate_alignment(flags, align, s->objsize);
  1857. /*
  1858. * SLUB stores one object immediately after another beginning from
  1859. * offset 0. In order to align the objects we have to simply size
  1860. * each object to conform to the alignment.
  1861. */
  1862. size = ALIGN(size, align);
  1863. s->size = size;
  1864. s->order = calculate_order(size);
  1865. if (s->order < 0)
  1866. return 0;
  1867. /*
  1868. * Determine the number of objects per slab
  1869. */
  1870. s->objects = (PAGE_SIZE << s->order) / size;
  1871. return !!s->objects;
  1872. }
  1873. static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
  1874. const char *name, size_t size,
  1875. size_t align, unsigned long flags,
  1876. void (*ctor)(struct kmem_cache *, void *))
  1877. {
  1878. memset(s, 0, kmem_size);
  1879. s->name = name;
  1880. s->ctor = ctor;
  1881. s->objsize = size;
  1882. s->align = align;
  1883. s->flags = kmem_cache_flags(size, flags, name, ctor);
  1884. if (!calculate_sizes(s))
  1885. goto error;
  1886. s->refcount = 1;
  1887. #ifdef CONFIG_NUMA
  1888. s->defrag_ratio = 100;
  1889. #endif
  1890. if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
  1891. goto error;
  1892. if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA))
  1893. return 1;
  1894. free_kmem_cache_nodes(s);
  1895. error:
  1896. if (flags & SLAB_PANIC)
  1897. panic("Cannot create slab %s size=%lu realsize=%u "
  1898. "order=%u offset=%u flags=%lx\n",
  1899. s->name, (unsigned long)size, s->size, s->order,
  1900. s->offset, flags);
  1901. return 0;
  1902. }
  1903. /*
  1904. * Check if a given pointer is valid
  1905. */
  1906. int kmem_ptr_validate(struct kmem_cache *s, const void *object)
  1907. {
  1908. struct page * page;
  1909. page = get_object_page(object);
  1910. if (!page || s != page->slab)
  1911. /* No slab or wrong slab */
  1912. return 0;
  1913. if (!check_valid_pointer(s, page, object))
  1914. return 0;
  1915. /*
  1916. * We could also check if the object is on the slabs freelist.
  1917. * But this would be too expensive and it seems that the main
  1918. * purpose of kmem_ptr_valid is to check if the object belongs
  1919. * to a certain slab.
  1920. */
  1921. return 1;
  1922. }
  1923. EXPORT_SYMBOL(kmem_ptr_validate);
  1924. /*
  1925. * Determine the size of a slab object
  1926. */
  1927. unsigned int kmem_cache_size(struct kmem_cache *s)
  1928. {
  1929. return s->objsize;
  1930. }
  1931. EXPORT_SYMBOL(kmem_cache_size);
  1932. const char *kmem_cache_name(struct kmem_cache *s)
  1933. {
  1934. return s->name;
  1935. }
  1936. EXPORT_SYMBOL(kmem_cache_name);
  1937. /*
  1938. * Attempt to free all slabs on a node. Return the number of slabs we
  1939. * were unable to free.
  1940. */
  1941. static int free_list(struct kmem_cache *s, struct kmem_cache_node *n,
  1942. struct list_head *list)
  1943. {
  1944. int slabs_inuse = 0;
  1945. unsigned long flags;
  1946. struct page *page, *h;
  1947. spin_lock_irqsave(&n->list_lock, flags);
  1948. list_for_each_entry_safe(page, h, list, lru)
  1949. if (!page->inuse) {
  1950. list_del(&page->lru);
  1951. discard_slab(s, page);
  1952. } else
  1953. slabs_inuse++;
  1954. spin_unlock_irqrestore(&n->list_lock, flags);
  1955. return slabs_inuse;
  1956. }
  1957. /*
  1958. * Release all resources used by a slab cache.
  1959. */
  1960. static inline int kmem_cache_close(struct kmem_cache *s)
  1961. {
  1962. int node;
  1963. flush_all(s);
  1964. /* Attempt to free all objects */
  1965. free_kmem_cache_cpus(s);
  1966. for_each_node_state(node, N_NORMAL_MEMORY) {
  1967. struct kmem_cache_node *n = get_node(s, node);
  1968. n->nr_partial -= free_list(s, n, &n->partial);
  1969. if (atomic_long_read(&n->nr_slabs))
  1970. return 1;
  1971. }
  1972. free_kmem_cache_nodes(s);
  1973. return 0;
  1974. }
  1975. /*
  1976. * Close a cache and release the kmem_cache structure
  1977. * (must be used for caches created using kmem_cache_create)
  1978. */
  1979. void kmem_cache_destroy(struct kmem_cache *s)
  1980. {
  1981. down_write(&slub_lock);
  1982. s->refcount--;
  1983. if (!s->refcount) {
  1984. list_del(&s->list);
  1985. up_write(&slub_lock);
  1986. if (kmem_cache_close(s))
  1987. WARN_ON(1);
  1988. sysfs_slab_remove(s);
  1989. kfree(s);
  1990. } else
  1991. up_write(&slub_lock);
  1992. }
  1993. EXPORT_SYMBOL(kmem_cache_destroy);
  1994. /********************************************************************
  1995. * Kmalloc subsystem
  1996. *******************************************************************/
  1997. struct kmem_cache kmalloc_caches[PAGE_SHIFT] __cacheline_aligned;
  1998. EXPORT_SYMBOL(kmalloc_caches);
  1999. #ifdef CONFIG_ZONE_DMA
  2000. static struct kmem_cache *kmalloc_caches_dma[PAGE_SHIFT];
  2001. #endif
  2002. static int __init setup_slub_min_order(char *str)
  2003. {
  2004. get_option (&str, &slub_min_order);
  2005. return 1;
  2006. }
  2007. __setup("slub_min_order=", setup_slub_min_order);
  2008. static int __init setup_slub_max_order(char *str)
  2009. {
  2010. get_option (&str, &slub_max_order);
  2011. return 1;
  2012. }
  2013. __setup("slub_max_order=", setup_slub_max_order);
  2014. static int __init setup_slub_min_objects(char *str)
  2015. {
  2016. get_option (&str, &slub_min_objects);
  2017. return 1;
  2018. }
  2019. __setup("slub_min_objects=", setup_slub_min_objects);
  2020. static int __init setup_slub_nomerge(char *str)
  2021. {
  2022. slub_nomerge = 1;
  2023. return 1;
  2024. }
  2025. __setup("slub_nomerge", setup_slub_nomerge);
  2026. static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
  2027. const char *name, int size, gfp_t gfp_flags)
  2028. {
  2029. unsigned int flags = 0;
  2030. if (gfp_flags & SLUB_DMA)
  2031. flags = SLAB_CACHE_DMA;
  2032. down_write(&slub_lock);
  2033. if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
  2034. flags, NULL))
  2035. goto panic;
  2036. list_add(&s->list, &slab_caches);
  2037. up_write(&slub_lock);
  2038. if (sysfs_slab_add(s))
  2039. goto panic;
  2040. return s;
  2041. panic:
  2042. panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
  2043. }
  2044. #ifdef CONFIG_ZONE_DMA
  2045. static void sysfs_add_func(struct work_struct *w)
  2046. {
  2047. struct kmem_cache *s;
  2048. down_write(&slub_lock);
  2049. list_for_each_entry(s, &slab_caches, list) {
  2050. if (s->flags & __SYSFS_ADD_DEFERRED) {
  2051. s->flags &= ~__SYSFS_ADD_DEFERRED;
  2052. sysfs_slab_add(s);
  2053. }
  2054. }
  2055. up_write(&slub_lock);
  2056. }
  2057. static DECLARE_WORK(sysfs_add_work, sysfs_add_func);
  2058. static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
  2059. {
  2060. struct kmem_cache *s;
  2061. char *text;
  2062. size_t realsize;
  2063. s = kmalloc_caches_dma[index];
  2064. if (s)
  2065. return s;
  2066. /* Dynamically create dma cache */
  2067. if (flags & __GFP_WAIT)
  2068. down_write(&slub_lock);
  2069. else {
  2070. if (!down_write_trylock(&slub_lock))
  2071. goto out;
  2072. }
  2073. if (kmalloc_caches_dma[index])
  2074. goto unlock_out;
  2075. realsize = kmalloc_caches[index].objsize;
  2076. text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d", (unsigned int)realsize),
  2077. s = kmalloc(kmem_size, flags & ~SLUB_DMA);
  2078. if (!s || !text || !kmem_cache_open(s, flags, text,
  2079. realsize, ARCH_KMALLOC_MINALIGN,
  2080. SLAB_CACHE_DMA|__SYSFS_ADD_DEFERRED, NULL)) {
  2081. kfree(s);
  2082. kfree(text);
  2083. goto unlock_out;
  2084. }
  2085. list_add(&s->list, &slab_caches);
  2086. kmalloc_caches_dma[index] = s;
  2087. schedule_work(&sysfs_add_work);
  2088. unlock_out:
  2089. up_write(&slub_lock);
  2090. out:
  2091. return kmalloc_caches_dma[index];
  2092. }
  2093. #endif
  2094. /*
  2095. * Conversion table for small slabs sizes / 8 to the index in the
  2096. * kmalloc array. This is necessary for slabs < 192 since we have non power
  2097. * of two cache sizes there. The size of larger slabs can be determined using
  2098. * fls.
  2099. */
  2100. static s8 size_index[24] = {
  2101. 3, /* 8 */
  2102. 4, /* 16 */
  2103. 5, /* 24 */
  2104. 5, /* 32 */
  2105. 6, /* 40 */
  2106. 6, /* 48 */
  2107. 6, /* 56 */
  2108. 6, /* 64 */
  2109. 1, /* 72 */
  2110. 1, /* 80 */
  2111. 1, /* 88 */
  2112. 1, /* 96 */
  2113. 7, /* 104 */
  2114. 7, /* 112 */
  2115. 7, /* 120 */
  2116. 7, /* 128 */
  2117. 2, /* 136 */
  2118. 2, /* 144 */
  2119. 2, /* 152 */
  2120. 2, /* 160 */
  2121. 2, /* 168 */
  2122. 2, /* 176 */
  2123. 2, /* 184 */
  2124. 2 /* 192 */
  2125. };
  2126. static struct kmem_cache *get_slab(size_t size, gfp_t flags)
  2127. {
  2128. int index;
  2129. if (size <= 192) {
  2130. if (!size)
  2131. return ZERO_SIZE_PTR;
  2132. index = size_index[(size - 1) / 8];
  2133. } else
  2134. index = fls(size - 1);
  2135. #ifdef CONFIG_ZONE_DMA
  2136. if (unlikely((flags & SLUB_DMA)))
  2137. return dma_kmalloc_cache(index, flags);
  2138. #endif
  2139. return &kmalloc_caches[index];
  2140. }
  2141. void *__kmalloc(size_t size, gfp_t flags)
  2142. {
  2143. struct kmem_cache *s;
  2144. if (unlikely(size > PAGE_SIZE / 2))
  2145. return (void *)__get_free_pages(flags | __GFP_COMP,
  2146. get_order(size));
  2147. s = get_slab(size, flags);
  2148. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2149. return s;
  2150. return slab_alloc(s, flags, -1, __builtin_return_address(0));
  2151. }
  2152. EXPORT_SYMBOL(__kmalloc);
  2153. #ifdef CONFIG_NUMA
  2154. void *__kmalloc_node(size_t size, gfp_t flags, int node)
  2155. {
  2156. struct kmem_cache *s;
  2157. if (unlikely(size > PAGE_SIZE / 2))
  2158. return (void *)__get_free_pages(flags | __GFP_COMP,
  2159. get_order(size));
  2160. s = get_slab(size, flags);
  2161. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2162. return s;
  2163. return slab_alloc(s, flags, node, __builtin_return_address(0));
  2164. }
  2165. EXPORT_SYMBOL(__kmalloc_node);
  2166. #endif
  2167. size_t ksize(const void *object)
  2168. {
  2169. struct page *page;
  2170. struct kmem_cache *s;
  2171. BUG_ON(!object);
  2172. if (unlikely(object == ZERO_SIZE_PTR))
  2173. return 0;
  2174. page = virt_to_head_page(object);
  2175. BUG_ON(!page);
  2176. if (unlikely(!PageSlab(page)))
  2177. return PAGE_SIZE << compound_order(page);
  2178. s = page->slab;
  2179. BUG_ON(!s);
  2180. /*
  2181. * Debugging requires use of the padding between object
  2182. * and whatever may come after it.
  2183. */
  2184. if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
  2185. return s->objsize;
  2186. /*
  2187. * If we have the need to store the freelist pointer
  2188. * back there or track user information then we can
  2189. * only use the space before that information.
  2190. */
  2191. if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
  2192. return s->inuse;
  2193. /*
  2194. * Else we can use all the padding etc for the allocation
  2195. */
  2196. return s->size;
  2197. }
  2198. EXPORT_SYMBOL(ksize);
  2199. void kfree(const void *x)
  2200. {
  2201. struct page *page;
  2202. if (unlikely(ZERO_OR_NULL_PTR(x)))
  2203. return;
  2204. page = virt_to_head_page(x);
  2205. if (unlikely(!PageSlab(page))) {
  2206. put_page(page);
  2207. return;
  2208. }
  2209. slab_free(page->slab, page, (void *)x, __builtin_return_address(0));
  2210. }
  2211. EXPORT_SYMBOL(kfree);
  2212. /*
  2213. * kmem_cache_shrink removes empty slabs from the partial lists and sorts
  2214. * the remaining slabs by the number of items in use. The slabs with the
  2215. * most items in use come first. New allocations will then fill those up
  2216. * and thus they can be removed from the partial lists.
  2217. *
  2218. * The slabs with the least items are placed last. This results in them
  2219. * being allocated from last increasing the chance that the last objects
  2220. * are freed in them.
  2221. */
  2222. int kmem_cache_shrink(struct kmem_cache *s)
  2223. {
  2224. int node;
  2225. int i;
  2226. struct kmem_cache_node *n;
  2227. struct page *page;
  2228. struct page *t;
  2229. struct list_head *slabs_by_inuse =
  2230. kmalloc(sizeof(struct list_head) * s->objects, GFP_KERNEL);
  2231. unsigned long flags;
  2232. if (!slabs_by_inuse)
  2233. return -ENOMEM;
  2234. flush_all(s);
  2235. for_each_node_state(node, N_NORMAL_MEMORY) {
  2236. n = get_node(s, node);
  2237. if (!n->nr_partial)
  2238. continue;
  2239. for (i = 0; i < s->objects; i++)
  2240. INIT_LIST_HEAD(slabs_by_inuse + i);
  2241. spin_lock_irqsave(&n->list_lock, flags);
  2242. /*
  2243. * Build lists indexed by the items in use in each slab.
  2244. *
  2245. * Note that concurrent frees may occur while we hold the
  2246. * list_lock. page->inuse here is the upper limit.
  2247. */
  2248. list_for_each_entry_safe(page, t, &n->partial, lru) {
  2249. if (!page->inuse && slab_trylock(page)) {
  2250. /*
  2251. * Must hold slab lock here because slab_free
  2252. * may have freed the last object and be
  2253. * waiting to release the slab.
  2254. */
  2255. list_del(&page->lru);
  2256. n->nr_partial--;
  2257. slab_unlock(page);
  2258. discard_slab(s, page);
  2259. } else {
  2260. list_move(&page->lru,
  2261. slabs_by_inuse + page->inuse);
  2262. }
  2263. }
  2264. /*
  2265. * Rebuild the partial list with the slabs filled up most
  2266. * first and the least used slabs at the end.
  2267. */
  2268. for (i = s->objects - 1; i >= 0; i--)
  2269. list_splice(slabs_by_inuse + i, n->partial.prev);
  2270. spin_unlock_irqrestore(&n->list_lock, flags);
  2271. }
  2272. kfree(slabs_by_inuse);
  2273. return 0;
  2274. }
  2275. EXPORT_SYMBOL(kmem_cache_shrink);
  2276. #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
  2277. static int slab_mem_going_offline_callback(void *arg)
  2278. {
  2279. struct kmem_cache *s;
  2280. down_read(&slub_lock);
  2281. list_for_each_entry(s, &slab_caches, list)
  2282. kmem_cache_shrink(s);
  2283. up_read(&slub_lock);
  2284. return 0;
  2285. }
  2286. static void slab_mem_offline_callback(void *arg)
  2287. {
  2288. struct kmem_cache_node *n;
  2289. struct kmem_cache *s;
  2290. struct memory_notify *marg = arg;
  2291. int offline_node;
  2292. offline_node = marg->status_change_nid;
  2293. /*
  2294. * If the node still has available memory. we need kmem_cache_node
  2295. * for it yet.
  2296. */
  2297. if (offline_node < 0)
  2298. return;
  2299. down_read(&slub_lock);
  2300. list_for_each_entry(s, &slab_caches, list) {
  2301. n = get_node(s, offline_node);
  2302. if (n) {
  2303. /*
  2304. * if n->nr_slabs > 0, slabs still exist on the node
  2305. * that is going down. We were unable to free them,
  2306. * and offline_pages() function shoudn't call this
  2307. * callback. So, we must fail.
  2308. */
  2309. BUG_ON(atomic_long_read(&n->nr_slabs));
  2310. s->node[offline_node] = NULL;
  2311. kmem_cache_free(kmalloc_caches, n);
  2312. }
  2313. }
  2314. up_read(&slub_lock);
  2315. }
  2316. static int slab_mem_going_online_callback(void *arg)
  2317. {
  2318. struct kmem_cache_node *n;
  2319. struct kmem_cache *s;
  2320. struct memory_notify *marg = arg;
  2321. int nid = marg->status_change_nid;
  2322. int ret = 0;
  2323. /*
  2324. * If the node's memory is already available, then kmem_cache_node is
  2325. * already created. Nothing to do.
  2326. */
  2327. if (nid < 0)
  2328. return 0;
  2329. /*
  2330. * We are bringing a node online. No memory is availabe yet. We must
  2331. * allocate a kmem_cache_node structure in order to bring the node
  2332. * online.
  2333. */
  2334. down_read(&slub_lock);
  2335. list_for_each_entry(s, &slab_caches, list) {
  2336. /*
  2337. * XXX: kmem_cache_alloc_node will fallback to other nodes
  2338. * since memory is not yet available from the node that
  2339. * is brought up.
  2340. */
  2341. n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL);
  2342. if (!n) {
  2343. ret = -ENOMEM;
  2344. goto out;
  2345. }
  2346. init_kmem_cache_node(n);
  2347. s->node[nid] = n;
  2348. }
  2349. out:
  2350. up_read(&slub_lock);
  2351. return ret;
  2352. }
  2353. static int slab_memory_callback(struct notifier_block *self,
  2354. unsigned long action, void *arg)
  2355. {
  2356. int ret = 0;
  2357. switch (action) {
  2358. case MEM_GOING_ONLINE:
  2359. ret = slab_mem_going_online_callback(arg);
  2360. break;
  2361. case MEM_GOING_OFFLINE:
  2362. ret = slab_mem_going_offline_callback(arg);
  2363. break;
  2364. case MEM_OFFLINE:
  2365. case MEM_CANCEL_ONLINE:
  2366. slab_mem_offline_callback(arg);
  2367. break;
  2368. case MEM_ONLINE:
  2369. case MEM_CANCEL_OFFLINE:
  2370. break;
  2371. }
  2372. ret = notifier_from_errno(ret);
  2373. return ret;
  2374. }
  2375. #endif /* CONFIG_MEMORY_HOTPLUG */
  2376. /********************************************************************
  2377. * Basic setup of slabs
  2378. *******************************************************************/
  2379. void __init kmem_cache_init(void)
  2380. {
  2381. int i;
  2382. int caches = 0;
  2383. init_alloc_cpu();
  2384. #ifdef CONFIG_NUMA
  2385. /*
  2386. * Must first have the slab cache available for the allocations of the
  2387. * struct kmem_cache_node's. There is special bootstrap code in
  2388. * kmem_cache_open for slab_state == DOWN.
  2389. */
  2390. create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
  2391. sizeof(struct kmem_cache_node), GFP_KERNEL);
  2392. kmalloc_caches[0].refcount = -1;
  2393. caches++;
  2394. hotplug_memory_notifier(slab_memory_callback, 1);
  2395. #endif
  2396. /* Able to allocate the per node structures */
  2397. slab_state = PARTIAL;
  2398. /* Caches that are not of the two-to-the-power-of size */
  2399. if (KMALLOC_MIN_SIZE <= 64) {
  2400. create_kmalloc_cache(&kmalloc_caches[1],
  2401. "kmalloc-96", 96, GFP_KERNEL);
  2402. caches++;
  2403. }
  2404. if (KMALLOC_MIN_SIZE <= 128) {
  2405. create_kmalloc_cache(&kmalloc_caches[2],
  2406. "kmalloc-192", 192, GFP_KERNEL);
  2407. caches++;
  2408. }
  2409. for (i = KMALLOC_SHIFT_LOW; i < PAGE_SHIFT; i++) {
  2410. create_kmalloc_cache(&kmalloc_caches[i],
  2411. "kmalloc", 1 << i, GFP_KERNEL);
  2412. caches++;
  2413. }
  2414. /*
  2415. * Patch up the size_index table if we have strange large alignment
  2416. * requirements for the kmalloc array. This is only the case for
  2417. * mips it seems. The standard arches will not generate any code here.
  2418. *
  2419. * Largest permitted alignment is 256 bytes due to the way we
  2420. * handle the index determination for the smaller caches.
  2421. *
  2422. * Make sure that nothing crazy happens if someone starts tinkering
  2423. * around with ARCH_KMALLOC_MINALIGN
  2424. */
  2425. BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
  2426. (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
  2427. for (i = 8; i < KMALLOC_MIN_SIZE; i += 8)
  2428. size_index[(i - 1) / 8] = KMALLOC_SHIFT_LOW;
  2429. slab_state = UP;
  2430. /* Provide the correct kmalloc names now that the caches are up */
  2431. for (i = KMALLOC_SHIFT_LOW; i < PAGE_SHIFT; i++)
  2432. kmalloc_caches[i]. name =
  2433. kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i);
  2434. #ifdef CONFIG_SMP
  2435. register_cpu_notifier(&slab_notifier);
  2436. kmem_size = offsetof(struct kmem_cache, cpu_slab) +
  2437. nr_cpu_ids * sizeof(struct kmem_cache_cpu *);
  2438. #else
  2439. kmem_size = sizeof(struct kmem_cache);
  2440. #endif
  2441. printk(KERN_INFO "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
  2442. " CPUs=%d, Nodes=%d\n",
  2443. caches, cache_line_size(),
  2444. slub_min_order, slub_max_order, slub_min_objects,
  2445. nr_cpu_ids, nr_node_ids);
  2446. }
  2447. /*
  2448. * Find a mergeable slab cache
  2449. */
  2450. static int slab_unmergeable(struct kmem_cache *s)
  2451. {
  2452. if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
  2453. return 1;
  2454. if (s->ctor)
  2455. return 1;
  2456. /*
  2457. * We may have set a slab to be unmergeable during bootstrap.
  2458. */
  2459. if (s->refcount < 0)
  2460. return 1;
  2461. return 0;
  2462. }
  2463. static struct kmem_cache *find_mergeable(size_t size,
  2464. size_t align, unsigned long flags, const char *name,
  2465. void (*ctor)(struct kmem_cache *, void *))
  2466. {
  2467. struct kmem_cache *s;
  2468. if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
  2469. return NULL;
  2470. if (ctor)
  2471. return NULL;
  2472. size = ALIGN(size, sizeof(void *));
  2473. align = calculate_alignment(flags, align, size);
  2474. size = ALIGN(size, align);
  2475. flags = kmem_cache_flags(size, flags, name, NULL);
  2476. list_for_each_entry(s, &slab_caches, list) {
  2477. if (slab_unmergeable(s))
  2478. continue;
  2479. if (size > s->size)
  2480. continue;
  2481. if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
  2482. continue;
  2483. /*
  2484. * Check if alignment is compatible.
  2485. * Courtesy of Adrian Drzewiecki
  2486. */
  2487. if ((s->size & ~(align -1)) != s->size)
  2488. continue;
  2489. if (s->size - size >= sizeof(void *))
  2490. continue;
  2491. return s;
  2492. }
  2493. return NULL;
  2494. }
  2495. struct kmem_cache *kmem_cache_create(const char *name, size_t size,
  2496. size_t align, unsigned long flags,
  2497. void (*ctor)(struct kmem_cache *, void *))
  2498. {
  2499. struct kmem_cache *s;
  2500. down_write(&slub_lock);
  2501. s = find_mergeable(size, align, flags, name, ctor);
  2502. if (s) {
  2503. int cpu;
  2504. s->refcount++;
  2505. /*
  2506. * Adjust the object sizes so that we clear
  2507. * the complete object on kzalloc.
  2508. */
  2509. s->objsize = max(s->objsize, (int)size);
  2510. /*
  2511. * And then we need to update the object size in the
  2512. * per cpu structures
  2513. */
  2514. for_each_online_cpu(cpu)
  2515. get_cpu_slab(s, cpu)->objsize = s->objsize;
  2516. s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
  2517. up_write(&slub_lock);
  2518. if (sysfs_slab_alias(s, name))
  2519. goto err;
  2520. return s;
  2521. }
  2522. s = kmalloc(kmem_size, GFP_KERNEL);
  2523. if (s) {
  2524. if (kmem_cache_open(s, GFP_KERNEL, name,
  2525. size, align, flags, ctor)) {
  2526. list_add(&s->list, &slab_caches);
  2527. up_write(&slub_lock);
  2528. if (sysfs_slab_add(s))
  2529. goto err;
  2530. return s;
  2531. }
  2532. kfree(s);
  2533. }
  2534. up_write(&slub_lock);
  2535. err:
  2536. if (flags & SLAB_PANIC)
  2537. panic("Cannot create slabcache %s\n", name);
  2538. else
  2539. s = NULL;
  2540. return s;
  2541. }
  2542. EXPORT_SYMBOL(kmem_cache_create);
  2543. #ifdef CONFIG_SMP
  2544. /*
  2545. * Use the cpu notifier to insure that the cpu slabs are flushed when
  2546. * necessary.
  2547. */
  2548. static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
  2549. unsigned long action, void *hcpu)
  2550. {
  2551. long cpu = (long)hcpu;
  2552. struct kmem_cache *s;
  2553. unsigned long flags;
  2554. switch (action) {
  2555. case CPU_UP_PREPARE:
  2556. case CPU_UP_PREPARE_FROZEN:
  2557. init_alloc_cpu_cpu(cpu);
  2558. down_read(&slub_lock);
  2559. list_for_each_entry(s, &slab_caches, list)
  2560. s->cpu_slab[cpu] = alloc_kmem_cache_cpu(s, cpu,
  2561. GFP_KERNEL);
  2562. up_read(&slub_lock);
  2563. break;
  2564. case CPU_UP_CANCELED:
  2565. case CPU_UP_CANCELED_FROZEN:
  2566. case CPU_DEAD:
  2567. case CPU_DEAD_FROZEN:
  2568. down_read(&slub_lock);
  2569. list_for_each_entry(s, &slab_caches, list) {
  2570. struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
  2571. local_irq_save(flags);
  2572. __flush_cpu_slab(s, cpu);
  2573. local_irq_restore(flags);
  2574. free_kmem_cache_cpu(c, cpu);
  2575. s->cpu_slab[cpu] = NULL;
  2576. }
  2577. up_read(&slub_lock);
  2578. break;
  2579. default:
  2580. break;
  2581. }
  2582. return NOTIFY_OK;
  2583. }
  2584. static struct notifier_block __cpuinitdata slab_notifier =
  2585. { &slab_cpuup_callback, NULL, 0 };
  2586. #endif
  2587. void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, void *caller)
  2588. {
  2589. struct kmem_cache *s;
  2590. if (unlikely(size > PAGE_SIZE / 2))
  2591. return (void *)__get_free_pages(gfpflags | __GFP_COMP,
  2592. get_order(size));
  2593. s = get_slab(size, gfpflags);
  2594. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2595. return s;
  2596. return slab_alloc(s, gfpflags, -1, caller);
  2597. }
  2598. void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
  2599. int node, void *caller)
  2600. {
  2601. struct kmem_cache *s;
  2602. if (unlikely(size > PAGE_SIZE / 2))
  2603. return (void *)__get_free_pages(gfpflags | __GFP_COMP,
  2604. get_order(size));
  2605. s = get_slab(size, gfpflags);
  2606. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2607. return s;
  2608. return slab_alloc(s, gfpflags, node, caller);
  2609. }
  2610. #if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
  2611. static int validate_slab(struct kmem_cache *s, struct page *page,
  2612. unsigned long *map)
  2613. {
  2614. void *p;
  2615. void *addr = page_address(page);
  2616. if (!check_slab(s, page) ||
  2617. !on_freelist(s, page, NULL))
  2618. return 0;
  2619. /* Now we know that a valid freelist exists */
  2620. bitmap_zero(map, s->objects);
  2621. for_each_free_object(p, s, page->freelist) {
  2622. set_bit(slab_index(p, s, addr), map);
  2623. if (!check_object(s, page, p, 0))
  2624. return 0;
  2625. }
  2626. for_each_object(p, s, addr)
  2627. if (!test_bit(slab_index(p, s, addr), map))
  2628. if (!check_object(s, page, p, 1))
  2629. return 0;
  2630. return 1;
  2631. }
  2632. static void validate_slab_slab(struct kmem_cache *s, struct page *page,
  2633. unsigned long *map)
  2634. {
  2635. if (slab_trylock(page)) {
  2636. validate_slab(s, page, map);
  2637. slab_unlock(page);
  2638. } else
  2639. printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
  2640. s->name, page);
  2641. if (s->flags & DEBUG_DEFAULT_FLAGS) {
  2642. if (!SlabDebug(page))
  2643. printk(KERN_ERR "SLUB %s: SlabDebug not set "
  2644. "on slab 0x%p\n", s->name, page);
  2645. } else {
  2646. if (SlabDebug(page))
  2647. printk(KERN_ERR "SLUB %s: SlabDebug set on "
  2648. "slab 0x%p\n", s->name, page);
  2649. }
  2650. }
  2651. static int validate_slab_node(struct kmem_cache *s,
  2652. struct kmem_cache_node *n, unsigned long *map)
  2653. {
  2654. unsigned long count = 0;
  2655. struct page *page;
  2656. unsigned long flags;
  2657. spin_lock_irqsave(&n->list_lock, flags);
  2658. list_for_each_entry(page, &n->partial, lru) {
  2659. validate_slab_slab(s, page, map);
  2660. count++;
  2661. }
  2662. if (count != n->nr_partial)
  2663. printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
  2664. "counter=%ld\n", s->name, count, n->nr_partial);
  2665. if (!(s->flags & SLAB_STORE_USER))
  2666. goto out;
  2667. list_for_each_entry(page, &n->full, lru) {
  2668. validate_slab_slab(s, page, map);
  2669. count++;
  2670. }
  2671. if (count != atomic_long_read(&n->nr_slabs))
  2672. printk(KERN_ERR "SLUB: %s %ld slabs counted but "
  2673. "counter=%ld\n", s->name, count,
  2674. atomic_long_read(&n->nr_slabs));
  2675. out:
  2676. spin_unlock_irqrestore(&n->list_lock, flags);
  2677. return count;
  2678. }
  2679. static long validate_slab_cache(struct kmem_cache *s)
  2680. {
  2681. int node;
  2682. unsigned long count = 0;
  2683. unsigned long *map = kmalloc(BITS_TO_LONGS(s->objects) *
  2684. sizeof(unsigned long), GFP_KERNEL);
  2685. if (!map)
  2686. return -ENOMEM;
  2687. flush_all(s);
  2688. for_each_node_state(node, N_NORMAL_MEMORY) {
  2689. struct kmem_cache_node *n = get_node(s, node);
  2690. count += validate_slab_node(s, n, map);
  2691. }
  2692. kfree(map);
  2693. return count;
  2694. }
  2695. #ifdef SLUB_RESILIENCY_TEST
  2696. static void resiliency_test(void)
  2697. {
  2698. u8 *p;
  2699. printk(KERN_ERR "SLUB resiliency testing\n");
  2700. printk(KERN_ERR "-----------------------\n");
  2701. printk(KERN_ERR "A. Corruption after allocation\n");
  2702. p = kzalloc(16, GFP_KERNEL);
  2703. p[16] = 0x12;
  2704. printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
  2705. " 0x12->0x%p\n\n", p + 16);
  2706. validate_slab_cache(kmalloc_caches + 4);
  2707. /* Hmmm... The next two are dangerous */
  2708. p = kzalloc(32, GFP_KERNEL);
  2709. p[32 + sizeof(void *)] = 0x34;
  2710. printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
  2711. " 0x34 -> -0x%p\n", p);
  2712. printk(KERN_ERR "If allocated object is overwritten then not detectable\n\n");
  2713. validate_slab_cache(kmalloc_caches + 5);
  2714. p = kzalloc(64, GFP_KERNEL);
  2715. p += 64 + (get_cycles() & 0xff) * sizeof(void *);
  2716. *p = 0x56;
  2717. printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
  2718. p);
  2719. printk(KERN_ERR "If allocated object is overwritten then not detectable\n\n");
  2720. validate_slab_cache(kmalloc_caches + 6);
  2721. printk(KERN_ERR "\nB. Corruption after free\n");
  2722. p = kzalloc(128, GFP_KERNEL);
  2723. kfree(p);
  2724. *p = 0x78;
  2725. printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
  2726. validate_slab_cache(kmalloc_caches + 7);
  2727. p = kzalloc(256, GFP_KERNEL);
  2728. kfree(p);
  2729. p[50] = 0x9a;
  2730. printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
  2731. validate_slab_cache(kmalloc_caches + 8);
  2732. p = kzalloc(512, GFP_KERNEL);
  2733. kfree(p);
  2734. p[512] = 0xab;
  2735. printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
  2736. validate_slab_cache(kmalloc_caches + 9);
  2737. }
  2738. #else
  2739. static void resiliency_test(void) {};
  2740. #endif
  2741. /*
  2742. * Generate lists of code addresses where slabcache objects are allocated
  2743. * and freed.
  2744. */
  2745. struct location {
  2746. unsigned long count;
  2747. void *addr;
  2748. long long sum_time;
  2749. long min_time;
  2750. long max_time;
  2751. long min_pid;
  2752. long max_pid;
  2753. cpumask_t cpus;
  2754. nodemask_t nodes;
  2755. };
  2756. struct loc_track {
  2757. unsigned long max;
  2758. unsigned long count;
  2759. struct location *loc;
  2760. };
  2761. static void free_loc_track(struct loc_track *t)
  2762. {
  2763. if (t->max)
  2764. free_pages((unsigned long)t->loc,
  2765. get_order(sizeof(struct location) * t->max));
  2766. }
  2767. static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
  2768. {
  2769. struct location *l;
  2770. int order;
  2771. order = get_order(sizeof(struct location) * max);
  2772. l = (void *)__get_free_pages(flags, order);
  2773. if (!l)
  2774. return 0;
  2775. if (t->count) {
  2776. memcpy(l, t->loc, sizeof(struct location) * t->count);
  2777. free_loc_track(t);
  2778. }
  2779. t->max = max;
  2780. t->loc = l;
  2781. return 1;
  2782. }
  2783. static int add_location(struct loc_track *t, struct kmem_cache *s,
  2784. const struct track *track)
  2785. {
  2786. long start, end, pos;
  2787. struct location *l;
  2788. void *caddr;
  2789. unsigned long age = jiffies - track->when;
  2790. start = -1;
  2791. end = t->count;
  2792. for ( ; ; ) {
  2793. pos = start + (end - start + 1) / 2;
  2794. /*
  2795. * There is nothing at "end". If we end up there
  2796. * we need to add something to before end.
  2797. */
  2798. if (pos == end)
  2799. break;
  2800. caddr = t->loc[pos].addr;
  2801. if (track->addr == caddr) {
  2802. l = &t->loc[pos];
  2803. l->count++;
  2804. if (track->when) {
  2805. l->sum_time += age;
  2806. if (age < l->min_time)
  2807. l->min_time = age;
  2808. if (age > l->max_time)
  2809. l->max_time = age;
  2810. if (track->pid < l->min_pid)
  2811. l->min_pid = track->pid;
  2812. if (track->pid > l->max_pid)
  2813. l->max_pid = track->pid;
  2814. cpu_set(track->cpu, l->cpus);
  2815. }
  2816. node_set(page_to_nid(virt_to_page(track)), l->nodes);
  2817. return 1;
  2818. }
  2819. if (track->addr < caddr)
  2820. end = pos;
  2821. else
  2822. start = pos;
  2823. }
  2824. /*
  2825. * Not found. Insert new tracking element.
  2826. */
  2827. if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
  2828. return 0;
  2829. l = t->loc + pos;
  2830. if (pos < t->count)
  2831. memmove(l + 1, l,
  2832. (t->count - pos) * sizeof(struct location));
  2833. t->count++;
  2834. l->count = 1;
  2835. l->addr = track->addr;
  2836. l->sum_time = age;
  2837. l->min_time = age;
  2838. l->max_time = age;
  2839. l->min_pid = track->pid;
  2840. l->max_pid = track->pid;
  2841. cpus_clear(l->cpus);
  2842. cpu_set(track->cpu, l->cpus);
  2843. nodes_clear(l->nodes);
  2844. node_set(page_to_nid(virt_to_page(track)), l->nodes);
  2845. return 1;
  2846. }
  2847. static void process_slab(struct loc_track *t, struct kmem_cache *s,
  2848. struct page *page, enum track_item alloc)
  2849. {
  2850. void *addr = page_address(page);
  2851. DECLARE_BITMAP(map, s->objects);
  2852. void *p;
  2853. bitmap_zero(map, s->objects);
  2854. for_each_free_object(p, s, page->freelist)
  2855. set_bit(slab_index(p, s, addr), map);
  2856. for_each_object(p, s, addr)
  2857. if (!test_bit(slab_index(p, s, addr), map))
  2858. add_location(t, s, get_track(s, p, alloc));
  2859. }
  2860. static int list_locations(struct kmem_cache *s, char *buf,
  2861. enum track_item alloc)
  2862. {
  2863. int n = 0;
  2864. unsigned long i;
  2865. struct loc_track t = { 0, 0, NULL };
  2866. int node;
  2867. if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
  2868. GFP_TEMPORARY))
  2869. return sprintf(buf, "Out of memory\n");
  2870. /* Push back cpu slabs */
  2871. flush_all(s);
  2872. for_each_node_state(node, N_NORMAL_MEMORY) {
  2873. struct kmem_cache_node *n = get_node(s, node);
  2874. unsigned long flags;
  2875. struct page *page;
  2876. if (!atomic_long_read(&n->nr_slabs))
  2877. continue;
  2878. spin_lock_irqsave(&n->list_lock, flags);
  2879. list_for_each_entry(page, &n->partial, lru)
  2880. process_slab(&t, s, page, alloc);
  2881. list_for_each_entry(page, &n->full, lru)
  2882. process_slab(&t, s, page, alloc);
  2883. spin_unlock_irqrestore(&n->list_lock, flags);
  2884. }
  2885. for (i = 0; i < t.count; i++) {
  2886. struct location *l = &t.loc[i];
  2887. if (n > PAGE_SIZE - 100)
  2888. break;
  2889. n += sprintf(buf + n, "%7ld ", l->count);
  2890. if (l->addr)
  2891. n += sprint_symbol(buf + n, (unsigned long)l->addr);
  2892. else
  2893. n += sprintf(buf + n, "<not-available>");
  2894. if (l->sum_time != l->min_time) {
  2895. unsigned long remainder;
  2896. n += sprintf(buf + n, " age=%ld/%ld/%ld",
  2897. l->min_time,
  2898. div_long_long_rem(l->sum_time, l->count, &remainder),
  2899. l->max_time);
  2900. } else
  2901. n += sprintf(buf + n, " age=%ld",
  2902. l->min_time);
  2903. if (l->min_pid != l->max_pid)
  2904. n += sprintf(buf + n, " pid=%ld-%ld",
  2905. l->min_pid, l->max_pid);
  2906. else
  2907. n += sprintf(buf + n, " pid=%ld",
  2908. l->min_pid);
  2909. if (num_online_cpus() > 1 && !cpus_empty(l->cpus) &&
  2910. n < PAGE_SIZE - 60) {
  2911. n += sprintf(buf + n, " cpus=");
  2912. n += cpulist_scnprintf(buf + n, PAGE_SIZE - n - 50,
  2913. l->cpus);
  2914. }
  2915. if (num_online_nodes() > 1 && !nodes_empty(l->nodes) &&
  2916. n < PAGE_SIZE - 60) {
  2917. n += sprintf(buf + n, " nodes=");
  2918. n += nodelist_scnprintf(buf + n, PAGE_SIZE - n - 50,
  2919. l->nodes);
  2920. }
  2921. n += sprintf(buf + n, "\n");
  2922. }
  2923. free_loc_track(&t);
  2924. if (!t.count)
  2925. n += sprintf(buf, "No data\n");
  2926. return n;
  2927. }
  2928. static unsigned long count_partial(struct kmem_cache_node *n)
  2929. {
  2930. unsigned long flags;
  2931. unsigned long x = 0;
  2932. struct page *page;
  2933. spin_lock_irqsave(&n->list_lock, flags);
  2934. list_for_each_entry(page, &n->partial, lru)
  2935. x += page->inuse;
  2936. spin_unlock_irqrestore(&n->list_lock, flags);
  2937. return x;
  2938. }
  2939. enum slab_stat_type {
  2940. SL_FULL,
  2941. SL_PARTIAL,
  2942. SL_CPU,
  2943. SL_OBJECTS
  2944. };
  2945. #define SO_FULL (1 << SL_FULL)
  2946. #define SO_PARTIAL (1 << SL_PARTIAL)
  2947. #define SO_CPU (1 << SL_CPU)
  2948. #define SO_OBJECTS (1 << SL_OBJECTS)
  2949. static unsigned long slab_objects(struct kmem_cache *s,
  2950. char *buf, unsigned long flags)
  2951. {
  2952. unsigned long total = 0;
  2953. int cpu;
  2954. int node;
  2955. int x;
  2956. unsigned long *nodes;
  2957. unsigned long *per_cpu;
  2958. nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
  2959. per_cpu = nodes + nr_node_ids;
  2960. for_each_possible_cpu(cpu) {
  2961. struct page *page;
  2962. int node;
  2963. struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
  2964. if (!c)
  2965. continue;
  2966. page = c->page;
  2967. node = c->node;
  2968. if (node < 0)
  2969. continue;
  2970. if (page) {
  2971. if (flags & SO_CPU) {
  2972. int x = 0;
  2973. if (flags & SO_OBJECTS)
  2974. x = page->inuse;
  2975. else
  2976. x = 1;
  2977. total += x;
  2978. nodes[node] += x;
  2979. }
  2980. per_cpu[node]++;
  2981. }
  2982. }
  2983. for_each_node_state(node, N_NORMAL_MEMORY) {
  2984. struct kmem_cache_node *n = get_node(s, node);
  2985. if (flags & SO_PARTIAL) {
  2986. if (flags & SO_OBJECTS)
  2987. x = count_partial(n);
  2988. else
  2989. x = n->nr_partial;
  2990. total += x;
  2991. nodes[node] += x;
  2992. }
  2993. if (flags & SO_FULL) {
  2994. int full_slabs = atomic_long_read(&n->nr_slabs)
  2995. - per_cpu[node]
  2996. - n->nr_partial;
  2997. if (flags & SO_OBJECTS)
  2998. x = full_slabs * s->objects;
  2999. else
  3000. x = full_slabs;
  3001. total += x;
  3002. nodes[node] += x;
  3003. }
  3004. }
  3005. x = sprintf(buf, "%lu", total);
  3006. #ifdef CONFIG_NUMA
  3007. for_each_node_state(node, N_NORMAL_MEMORY)
  3008. if (nodes[node])
  3009. x += sprintf(buf + x, " N%d=%lu",
  3010. node, nodes[node]);
  3011. #endif
  3012. kfree(nodes);
  3013. return x + sprintf(buf + x, "\n");
  3014. }
  3015. static int any_slab_objects(struct kmem_cache *s)
  3016. {
  3017. int node;
  3018. int cpu;
  3019. for_each_possible_cpu(cpu) {
  3020. struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
  3021. if (c && c->page)
  3022. return 1;
  3023. }
  3024. for_each_online_node(node) {
  3025. struct kmem_cache_node *n = get_node(s, node);
  3026. if (!n)
  3027. continue;
  3028. if (n->nr_partial || atomic_long_read(&n->nr_slabs))
  3029. return 1;
  3030. }
  3031. return 0;
  3032. }
  3033. #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
  3034. #define to_slab(n) container_of(n, struct kmem_cache, kobj);
  3035. struct slab_attribute {
  3036. struct attribute attr;
  3037. ssize_t (*show)(struct kmem_cache *s, char *buf);
  3038. ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
  3039. };
  3040. #define SLAB_ATTR_RO(_name) \
  3041. static struct slab_attribute _name##_attr = __ATTR_RO(_name)
  3042. #define SLAB_ATTR(_name) \
  3043. static struct slab_attribute _name##_attr = \
  3044. __ATTR(_name, 0644, _name##_show, _name##_store)
  3045. static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
  3046. {
  3047. return sprintf(buf, "%d\n", s->size);
  3048. }
  3049. SLAB_ATTR_RO(slab_size);
  3050. static ssize_t align_show(struct kmem_cache *s, char *buf)
  3051. {
  3052. return sprintf(buf, "%d\n", s->align);
  3053. }
  3054. SLAB_ATTR_RO(align);
  3055. static ssize_t object_size_show(struct kmem_cache *s, char *buf)
  3056. {
  3057. return sprintf(buf, "%d\n", s->objsize);
  3058. }
  3059. SLAB_ATTR_RO(object_size);
  3060. static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
  3061. {
  3062. return sprintf(buf, "%d\n", s->objects);
  3063. }
  3064. SLAB_ATTR_RO(objs_per_slab);
  3065. static ssize_t order_show(struct kmem_cache *s, char *buf)
  3066. {
  3067. return sprintf(buf, "%d\n", s->order);
  3068. }
  3069. SLAB_ATTR_RO(order);
  3070. static ssize_t ctor_show(struct kmem_cache *s, char *buf)
  3071. {
  3072. if (s->ctor) {
  3073. int n = sprint_symbol(buf, (unsigned long)s->ctor);
  3074. return n + sprintf(buf + n, "\n");
  3075. }
  3076. return 0;
  3077. }
  3078. SLAB_ATTR_RO(ctor);
  3079. static ssize_t aliases_show(struct kmem_cache *s, char *buf)
  3080. {
  3081. return sprintf(buf, "%d\n", s->refcount - 1);
  3082. }
  3083. SLAB_ATTR_RO(aliases);
  3084. static ssize_t slabs_show(struct kmem_cache *s, char *buf)
  3085. {
  3086. return slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU);
  3087. }
  3088. SLAB_ATTR_RO(slabs);
  3089. static ssize_t partial_show(struct kmem_cache *s, char *buf)
  3090. {
  3091. return slab_objects(s, buf, SO_PARTIAL);
  3092. }
  3093. SLAB_ATTR_RO(partial);
  3094. static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
  3095. {
  3096. return slab_objects(s, buf, SO_CPU);
  3097. }
  3098. SLAB_ATTR_RO(cpu_slabs);
  3099. static ssize_t objects_show(struct kmem_cache *s, char *buf)
  3100. {
  3101. return slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU|SO_OBJECTS);
  3102. }
  3103. SLAB_ATTR_RO(objects);
  3104. static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
  3105. {
  3106. return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
  3107. }
  3108. static ssize_t sanity_checks_store(struct kmem_cache *s,
  3109. const char *buf, size_t length)
  3110. {
  3111. s->flags &= ~SLAB_DEBUG_FREE;
  3112. if (buf[0] == '1')
  3113. s->flags |= SLAB_DEBUG_FREE;
  3114. return length;
  3115. }
  3116. SLAB_ATTR(sanity_checks);
  3117. static ssize_t trace_show(struct kmem_cache *s, char *buf)
  3118. {
  3119. return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
  3120. }
  3121. static ssize_t trace_store(struct kmem_cache *s, const char *buf,
  3122. size_t length)
  3123. {
  3124. s->flags &= ~SLAB_TRACE;
  3125. if (buf[0] == '1')
  3126. s->flags |= SLAB_TRACE;
  3127. return length;
  3128. }
  3129. SLAB_ATTR(trace);
  3130. static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
  3131. {
  3132. return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
  3133. }
  3134. static ssize_t reclaim_account_store(struct kmem_cache *s,
  3135. const char *buf, size_t length)
  3136. {
  3137. s->flags &= ~SLAB_RECLAIM_ACCOUNT;
  3138. if (buf[0] == '1')
  3139. s->flags |= SLAB_RECLAIM_ACCOUNT;
  3140. return length;
  3141. }
  3142. SLAB_ATTR(reclaim_account);
  3143. static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
  3144. {
  3145. return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
  3146. }
  3147. SLAB_ATTR_RO(hwcache_align);
  3148. #ifdef CONFIG_ZONE_DMA
  3149. static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
  3150. {
  3151. return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
  3152. }
  3153. SLAB_ATTR_RO(cache_dma);
  3154. #endif
  3155. static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
  3156. {
  3157. return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
  3158. }
  3159. SLAB_ATTR_RO(destroy_by_rcu);
  3160. static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
  3161. {
  3162. return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
  3163. }
  3164. static ssize_t red_zone_store(struct kmem_cache *s,
  3165. const char *buf, size_t length)
  3166. {
  3167. if (any_slab_objects(s))
  3168. return -EBUSY;
  3169. s->flags &= ~SLAB_RED_ZONE;
  3170. if (buf[0] == '1')
  3171. s->flags |= SLAB_RED_ZONE;
  3172. calculate_sizes(s);
  3173. return length;
  3174. }
  3175. SLAB_ATTR(red_zone);
  3176. static ssize_t poison_show(struct kmem_cache *s, char *buf)
  3177. {
  3178. return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
  3179. }
  3180. static ssize_t poison_store(struct kmem_cache *s,
  3181. const char *buf, size_t length)
  3182. {
  3183. if (any_slab_objects(s))
  3184. return -EBUSY;
  3185. s->flags &= ~SLAB_POISON;
  3186. if (buf[0] == '1')
  3187. s->flags |= SLAB_POISON;
  3188. calculate_sizes(s);
  3189. return length;
  3190. }
  3191. SLAB_ATTR(poison);
  3192. static ssize_t store_user_show(struct kmem_cache *s, char *buf)
  3193. {
  3194. return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
  3195. }
  3196. static ssize_t store_user_store(struct kmem_cache *s,
  3197. const char *buf, size_t length)
  3198. {
  3199. if (any_slab_objects(s))
  3200. return -EBUSY;
  3201. s->flags &= ~SLAB_STORE_USER;
  3202. if (buf[0] == '1')
  3203. s->flags |= SLAB_STORE_USER;
  3204. calculate_sizes(s);
  3205. return length;
  3206. }
  3207. SLAB_ATTR(store_user);
  3208. static ssize_t validate_show(struct kmem_cache *s, char *buf)
  3209. {
  3210. return 0;
  3211. }
  3212. static ssize_t validate_store(struct kmem_cache *s,
  3213. const char *buf, size_t length)
  3214. {
  3215. int ret = -EINVAL;
  3216. if (buf[0] == '1') {
  3217. ret = validate_slab_cache(s);
  3218. if (ret >= 0)
  3219. ret = length;
  3220. }
  3221. return ret;
  3222. }
  3223. SLAB_ATTR(validate);
  3224. static ssize_t shrink_show(struct kmem_cache *s, char *buf)
  3225. {
  3226. return 0;
  3227. }
  3228. static ssize_t shrink_store(struct kmem_cache *s,
  3229. const char *buf, size_t length)
  3230. {
  3231. if (buf[0] == '1') {
  3232. int rc = kmem_cache_shrink(s);
  3233. if (rc)
  3234. return rc;
  3235. } else
  3236. return -EINVAL;
  3237. return length;
  3238. }
  3239. SLAB_ATTR(shrink);
  3240. static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
  3241. {
  3242. if (!(s->flags & SLAB_STORE_USER))
  3243. return -ENOSYS;
  3244. return list_locations(s, buf, TRACK_ALLOC);
  3245. }
  3246. SLAB_ATTR_RO(alloc_calls);
  3247. static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
  3248. {
  3249. if (!(s->flags & SLAB_STORE_USER))
  3250. return -ENOSYS;
  3251. return list_locations(s, buf, TRACK_FREE);
  3252. }
  3253. SLAB_ATTR_RO(free_calls);
  3254. #ifdef CONFIG_NUMA
  3255. static ssize_t defrag_ratio_show(struct kmem_cache *s, char *buf)
  3256. {
  3257. return sprintf(buf, "%d\n", s->defrag_ratio / 10);
  3258. }
  3259. static ssize_t defrag_ratio_store(struct kmem_cache *s,
  3260. const char *buf, size_t length)
  3261. {
  3262. int n = simple_strtoul(buf, NULL, 10);
  3263. if (n < 100)
  3264. s->defrag_ratio = n * 10;
  3265. return length;
  3266. }
  3267. SLAB_ATTR(defrag_ratio);
  3268. #endif
  3269. static struct attribute * slab_attrs[] = {
  3270. &slab_size_attr.attr,
  3271. &object_size_attr.attr,
  3272. &objs_per_slab_attr.attr,
  3273. &order_attr.attr,
  3274. &objects_attr.attr,
  3275. &slabs_attr.attr,
  3276. &partial_attr.attr,
  3277. &cpu_slabs_attr.attr,
  3278. &ctor_attr.attr,
  3279. &aliases_attr.attr,
  3280. &align_attr.attr,
  3281. &sanity_checks_attr.attr,
  3282. &trace_attr.attr,
  3283. &hwcache_align_attr.attr,
  3284. &reclaim_account_attr.attr,
  3285. &destroy_by_rcu_attr.attr,
  3286. &red_zone_attr.attr,
  3287. &poison_attr.attr,
  3288. &store_user_attr.attr,
  3289. &validate_attr.attr,
  3290. &shrink_attr.attr,
  3291. &alloc_calls_attr.attr,
  3292. &free_calls_attr.attr,
  3293. #ifdef CONFIG_ZONE_DMA
  3294. &cache_dma_attr.attr,
  3295. #endif
  3296. #ifdef CONFIG_NUMA
  3297. &defrag_ratio_attr.attr,
  3298. #endif
  3299. NULL
  3300. };
  3301. static struct attribute_group slab_attr_group = {
  3302. .attrs = slab_attrs,
  3303. };
  3304. static ssize_t slab_attr_show(struct kobject *kobj,
  3305. struct attribute *attr,
  3306. char *buf)
  3307. {
  3308. struct slab_attribute *attribute;
  3309. struct kmem_cache *s;
  3310. int err;
  3311. attribute = to_slab_attr(attr);
  3312. s = to_slab(kobj);
  3313. if (!attribute->show)
  3314. return -EIO;
  3315. err = attribute->show(s, buf);
  3316. return err;
  3317. }
  3318. static ssize_t slab_attr_store(struct kobject *kobj,
  3319. struct attribute *attr,
  3320. const char *buf, size_t len)
  3321. {
  3322. struct slab_attribute *attribute;
  3323. struct kmem_cache *s;
  3324. int err;
  3325. attribute = to_slab_attr(attr);
  3326. s = to_slab(kobj);
  3327. if (!attribute->store)
  3328. return -EIO;
  3329. err = attribute->store(s, buf, len);
  3330. return err;
  3331. }
  3332. static struct sysfs_ops slab_sysfs_ops = {
  3333. .show = slab_attr_show,
  3334. .store = slab_attr_store,
  3335. };
  3336. static struct kobj_type slab_ktype = {
  3337. .sysfs_ops = &slab_sysfs_ops,
  3338. };
  3339. static int uevent_filter(struct kset *kset, struct kobject *kobj)
  3340. {
  3341. struct kobj_type *ktype = get_ktype(kobj);
  3342. if (ktype == &slab_ktype)
  3343. return 1;
  3344. return 0;
  3345. }
  3346. static struct kset_uevent_ops slab_uevent_ops = {
  3347. .filter = uevent_filter,
  3348. };
  3349. static decl_subsys(slab, &slab_ktype, &slab_uevent_ops);
  3350. #define ID_STR_LENGTH 64
  3351. /* Create a unique string id for a slab cache:
  3352. * format
  3353. * :[flags-]size:[memory address of kmemcache]
  3354. */
  3355. static char *create_unique_id(struct kmem_cache *s)
  3356. {
  3357. char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
  3358. char *p = name;
  3359. BUG_ON(!name);
  3360. *p++ = ':';
  3361. /*
  3362. * First flags affecting slabcache operations. We will only
  3363. * get here for aliasable slabs so we do not need to support
  3364. * too many flags. The flags here must cover all flags that
  3365. * are matched during merging to guarantee that the id is
  3366. * unique.
  3367. */
  3368. if (s->flags & SLAB_CACHE_DMA)
  3369. *p++ = 'd';
  3370. if (s->flags & SLAB_RECLAIM_ACCOUNT)
  3371. *p++ = 'a';
  3372. if (s->flags & SLAB_DEBUG_FREE)
  3373. *p++ = 'F';
  3374. if (p != name + 1)
  3375. *p++ = '-';
  3376. p += sprintf(p, "%07d", s->size);
  3377. BUG_ON(p > name + ID_STR_LENGTH - 1);
  3378. return name;
  3379. }
  3380. static int sysfs_slab_add(struct kmem_cache *s)
  3381. {
  3382. int err;
  3383. const char *name;
  3384. int unmergeable;
  3385. if (slab_state < SYSFS)
  3386. /* Defer until later */
  3387. return 0;
  3388. unmergeable = slab_unmergeable(s);
  3389. if (unmergeable) {
  3390. /*
  3391. * Slabcache can never be merged so we can use the name proper.
  3392. * This is typically the case for debug situations. In that
  3393. * case we can catch duplicate names easily.
  3394. */
  3395. sysfs_remove_link(&slab_subsys.kobj, s->name);
  3396. name = s->name;
  3397. } else {
  3398. /*
  3399. * Create a unique name for the slab as a target
  3400. * for the symlinks.
  3401. */
  3402. name = create_unique_id(s);
  3403. }
  3404. kobj_set_kset_s(s, slab_subsys);
  3405. kobject_set_name(&s->kobj, name);
  3406. kobject_init(&s->kobj);
  3407. err = kobject_add(&s->kobj);
  3408. if (err)
  3409. return err;
  3410. err = sysfs_create_group(&s->kobj, &slab_attr_group);
  3411. if (err)
  3412. return err;
  3413. kobject_uevent(&s->kobj, KOBJ_ADD);
  3414. if (!unmergeable) {
  3415. /* Setup first alias */
  3416. sysfs_slab_alias(s, s->name);
  3417. kfree(name);
  3418. }
  3419. return 0;
  3420. }
  3421. static void sysfs_slab_remove(struct kmem_cache *s)
  3422. {
  3423. kobject_uevent(&s->kobj, KOBJ_REMOVE);
  3424. kobject_del(&s->kobj);
  3425. }
  3426. /*
  3427. * Need to buffer aliases during bootup until sysfs becomes
  3428. * available lest we loose that information.
  3429. */
  3430. struct saved_alias {
  3431. struct kmem_cache *s;
  3432. const char *name;
  3433. struct saved_alias *next;
  3434. };
  3435. static struct saved_alias *alias_list;
  3436. static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
  3437. {
  3438. struct saved_alias *al;
  3439. if (slab_state == SYSFS) {
  3440. /*
  3441. * If we have a leftover link then remove it.
  3442. */
  3443. sysfs_remove_link(&slab_subsys.kobj, name);
  3444. return sysfs_create_link(&slab_subsys.kobj,
  3445. &s->kobj, name);
  3446. }
  3447. al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
  3448. if (!al)
  3449. return -ENOMEM;
  3450. al->s = s;
  3451. al->name = name;
  3452. al->next = alias_list;
  3453. alias_list = al;
  3454. return 0;
  3455. }
  3456. static int __init slab_sysfs_init(void)
  3457. {
  3458. struct kmem_cache *s;
  3459. int err;
  3460. err = subsystem_register(&slab_subsys);
  3461. if (err) {
  3462. printk(KERN_ERR "Cannot register slab subsystem.\n");
  3463. return -ENOSYS;
  3464. }
  3465. slab_state = SYSFS;
  3466. list_for_each_entry(s, &slab_caches, list) {
  3467. err = sysfs_slab_add(s);
  3468. if (err)
  3469. printk(KERN_ERR "SLUB: Unable to add boot slab %s"
  3470. " to sysfs\n", s->name);
  3471. }
  3472. while (alias_list) {
  3473. struct saved_alias *al = alias_list;
  3474. alias_list = alias_list->next;
  3475. err = sysfs_slab_alias(al->s, al->name);
  3476. if (err)
  3477. printk(KERN_ERR "SLUB: Unable to add boot slab alias"
  3478. " %s to sysfs\n", s->name);
  3479. kfree(al);
  3480. }
  3481. resiliency_test();
  3482. return 0;
  3483. }
  3484. __initcall(slab_sysfs_init);
  3485. #endif