rrunner.c 42 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715
  1. /*
  2. * rrunner.c: Linux driver for the Essential RoadRunner HIPPI board.
  3. *
  4. * Copyright (C) 1998-2002 by Jes Sorensen, <jes@wildopensource.com>.
  5. *
  6. * Thanks to Essential Communication for providing us with hardware
  7. * and very comprehensive documentation without which I would not have
  8. * been able to write this driver. A special thank you to John Gibbon
  9. * for sorting out the legal issues, with the NDA, allowing the code to
  10. * be released under the GPL.
  11. *
  12. * This program is free software; you can redistribute it and/or modify
  13. * it under the terms of the GNU General Public License as published by
  14. * the Free Software Foundation; either version 2 of the License, or
  15. * (at your option) any later version.
  16. *
  17. * Thanks to Jayaram Bhat from ODS/Essential for fixing some of the
  18. * stupid bugs in my code.
  19. *
  20. * Softnet support and various other patches from Val Henson of
  21. * ODS/Essential.
  22. *
  23. * PCI DMA mapping code partly based on work by Francois Romieu.
  24. */
  25. #define DEBUG 1
  26. #define RX_DMA_SKBUFF 1
  27. #define PKT_COPY_THRESHOLD 512
  28. #include <linux/module.h>
  29. #include <linux/types.h>
  30. #include <linux/errno.h>
  31. #include <linux/ioport.h>
  32. #include <linux/pci.h>
  33. #include <linux/kernel.h>
  34. #include <linux/netdevice.h>
  35. #include <linux/hippidevice.h>
  36. #include <linux/skbuff.h>
  37. #include <linux/init.h>
  38. #include <linux/delay.h>
  39. #include <linux/mm.h>
  40. #include <net/sock.h>
  41. #include <asm/system.h>
  42. #include <asm/cache.h>
  43. #include <asm/byteorder.h>
  44. #include <asm/io.h>
  45. #include <asm/irq.h>
  46. #include <asm/uaccess.h>
  47. #define rr_if_busy(dev) netif_queue_stopped(dev)
  48. #define rr_if_running(dev) netif_running(dev)
  49. #include "rrunner.h"
  50. #define RUN_AT(x) (jiffies + (x))
  51. MODULE_AUTHOR("Jes Sorensen <jes@wildopensource.com>");
  52. MODULE_DESCRIPTION("Essential RoadRunner HIPPI driver");
  53. MODULE_LICENSE("GPL");
  54. static char version[] __devinitdata = "rrunner.c: v0.50 11/11/2002 Jes Sorensen (jes@wildopensource.com)\n";
  55. /*
  56. * Implementation notes:
  57. *
  58. * The DMA engine only allows for DMA within physical 64KB chunks of
  59. * memory. The current approach of the driver (and stack) is to use
  60. * linear blocks of memory for the skbuffs. However, as the data block
  61. * is always the first part of the skb and skbs are 2^n aligned so we
  62. * are guarantted to get the whole block within one 64KB align 64KB
  63. * chunk.
  64. *
  65. * On the long term, relying on being able to allocate 64KB linear
  66. * chunks of memory is not feasible and the skb handling code and the
  67. * stack will need to know about I/O vectors or something similar.
  68. */
  69. static int __devinit rr_init_one(struct pci_dev *pdev,
  70. const struct pci_device_id *ent)
  71. {
  72. struct net_device *dev;
  73. static int version_disp;
  74. u8 pci_latency;
  75. struct rr_private *rrpriv;
  76. void *tmpptr;
  77. dma_addr_t ring_dma;
  78. int ret = -ENOMEM;
  79. dev = alloc_hippi_dev(sizeof(struct rr_private));
  80. if (!dev)
  81. goto out3;
  82. ret = pci_enable_device(pdev);
  83. if (ret) {
  84. ret = -ENODEV;
  85. goto out2;
  86. }
  87. rrpriv = netdev_priv(dev);
  88. SET_NETDEV_DEV(dev, &pdev->dev);
  89. if (pci_request_regions(pdev, "rrunner")) {
  90. ret = -EIO;
  91. goto out;
  92. }
  93. pci_set_drvdata(pdev, dev);
  94. rrpriv->pci_dev = pdev;
  95. spin_lock_init(&rrpriv->lock);
  96. dev->irq = pdev->irq;
  97. dev->open = &rr_open;
  98. dev->hard_start_xmit = &rr_start_xmit;
  99. dev->stop = &rr_close;
  100. dev->do_ioctl = &rr_ioctl;
  101. dev->base_addr = pci_resource_start(pdev, 0);
  102. /* display version info if adapter is found */
  103. if (!version_disp) {
  104. /* set display flag to TRUE so that */
  105. /* we only display this string ONCE */
  106. version_disp = 1;
  107. printk(version);
  108. }
  109. pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &pci_latency);
  110. if (pci_latency <= 0x58){
  111. pci_latency = 0x58;
  112. pci_write_config_byte(pdev, PCI_LATENCY_TIMER, pci_latency);
  113. }
  114. pci_set_master(pdev);
  115. printk(KERN_INFO "%s: Essential RoadRunner serial HIPPI "
  116. "at 0x%08lx, irq %i, PCI latency %i\n", dev->name,
  117. dev->base_addr, dev->irq, pci_latency);
  118. /*
  119. * Remap the regs into kernel space.
  120. */
  121. rrpriv->regs = ioremap(dev->base_addr, 0x1000);
  122. if (!rrpriv->regs){
  123. printk(KERN_ERR "%s: Unable to map I/O register, "
  124. "RoadRunner will be disabled.\n", dev->name);
  125. ret = -EIO;
  126. goto out;
  127. }
  128. tmpptr = pci_alloc_consistent(pdev, TX_TOTAL_SIZE, &ring_dma);
  129. rrpriv->tx_ring = tmpptr;
  130. rrpriv->tx_ring_dma = ring_dma;
  131. if (!tmpptr) {
  132. ret = -ENOMEM;
  133. goto out;
  134. }
  135. tmpptr = pci_alloc_consistent(pdev, RX_TOTAL_SIZE, &ring_dma);
  136. rrpriv->rx_ring = tmpptr;
  137. rrpriv->rx_ring_dma = ring_dma;
  138. if (!tmpptr) {
  139. ret = -ENOMEM;
  140. goto out;
  141. }
  142. tmpptr = pci_alloc_consistent(pdev, EVT_RING_SIZE, &ring_dma);
  143. rrpriv->evt_ring = tmpptr;
  144. rrpriv->evt_ring_dma = ring_dma;
  145. if (!tmpptr) {
  146. ret = -ENOMEM;
  147. goto out;
  148. }
  149. /*
  150. * Don't access any register before this point!
  151. */
  152. #ifdef __BIG_ENDIAN
  153. writel(readl(&rrpriv->regs->HostCtrl) | NO_SWAP,
  154. &rrpriv->regs->HostCtrl);
  155. #endif
  156. /*
  157. * Need to add a case for little-endian 64-bit hosts here.
  158. */
  159. rr_init(dev);
  160. dev->base_addr = 0;
  161. ret = register_netdev(dev);
  162. if (ret)
  163. goto out;
  164. return 0;
  165. out:
  166. if (rrpriv->rx_ring)
  167. pci_free_consistent(pdev, RX_TOTAL_SIZE, rrpriv->rx_ring,
  168. rrpriv->rx_ring_dma);
  169. if (rrpriv->tx_ring)
  170. pci_free_consistent(pdev, TX_TOTAL_SIZE, rrpriv->tx_ring,
  171. rrpriv->tx_ring_dma);
  172. if (rrpriv->regs)
  173. iounmap(rrpriv->regs);
  174. if (pdev) {
  175. pci_release_regions(pdev);
  176. pci_set_drvdata(pdev, NULL);
  177. }
  178. out2:
  179. free_netdev(dev);
  180. out3:
  181. return ret;
  182. }
  183. static void __devexit rr_remove_one (struct pci_dev *pdev)
  184. {
  185. struct net_device *dev = pci_get_drvdata(pdev);
  186. if (dev) {
  187. struct rr_private *rr = netdev_priv(dev);
  188. if (!(readl(&rr->regs->HostCtrl) & NIC_HALTED)){
  189. printk(KERN_ERR "%s: trying to unload running NIC\n",
  190. dev->name);
  191. writel(HALT_NIC, &rr->regs->HostCtrl);
  192. }
  193. pci_free_consistent(pdev, EVT_RING_SIZE, rr->evt_ring,
  194. rr->evt_ring_dma);
  195. pci_free_consistent(pdev, RX_TOTAL_SIZE, rr->rx_ring,
  196. rr->rx_ring_dma);
  197. pci_free_consistent(pdev, TX_TOTAL_SIZE, rr->tx_ring,
  198. rr->tx_ring_dma);
  199. unregister_netdev(dev);
  200. iounmap(rr->regs);
  201. free_netdev(dev);
  202. pci_release_regions(pdev);
  203. pci_disable_device(pdev);
  204. pci_set_drvdata(pdev, NULL);
  205. }
  206. }
  207. /*
  208. * Commands are considered to be slow, thus there is no reason to
  209. * inline this.
  210. */
  211. static void rr_issue_cmd(struct rr_private *rrpriv, struct cmd *cmd)
  212. {
  213. struct rr_regs __iomem *regs;
  214. u32 idx;
  215. regs = rrpriv->regs;
  216. /*
  217. * This is temporary - it will go away in the final version.
  218. * We probably also want to make this function inline.
  219. */
  220. if (readl(&regs->HostCtrl) & NIC_HALTED){
  221. printk("issuing command for halted NIC, code 0x%x, "
  222. "HostCtrl %08x\n", cmd->code, readl(&regs->HostCtrl));
  223. if (readl(&regs->Mode) & FATAL_ERR)
  224. printk("error codes Fail1 %02x, Fail2 %02x\n",
  225. readl(&regs->Fail1), readl(&regs->Fail2));
  226. }
  227. idx = rrpriv->info->cmd_ctrl.pi;
  228. writel(*(u32*)(cmd), &regs->CmdRing[idx]);
  229. wmb();
  230. idx = (idx - 1) % CMD_RING_ENTRIES;
  231. rrpriv->info->cmd_ctrl.pi = idx;
  232. wmb();
  233. if (readl(&regs->Mode) & FATAL_ERR)
  234. printk("error code %02x\n", readl(&regs->Fail1));
  235. }
  236. /*
  237. * Reset the board in a sensible manner. The NIC is already halted
  238. * when we get here and a spin-lock is held.
  239. */
  240. static int rr_reset(struct net_device *dev)
  241. {
  242. struct rr_private *rrpriv;
  243. struct rr_regs __iomem *regs;
  244. u32 start_pc;
  245. int i;
  246. rrpriv = netdev_priv(dev);
  247. regs = rrpriv->regs;
  248. rr_load_firmware(dev);
  249. writel(0x01000000, &regs->TX_state);
  250. writel(0xff800000, &regs->RX_state);
  251. writel(0, &regs->AssistState);
  252. writel(CLEAR_INTA, &regs->LocalCtrl);
  253. writel(0x01, &regs->BrkPt);
  254. writel(0, &regs->Timer);
  255. writel(0, &regs->TimerRef);
  256. writel(RESET_DMA, &regs->DmaReadState);
  257. writel(RESET_DMA, &regs->DmaWriteState);
  258. writel(0, &regs->DmaWriteHostHi);
  259. writel(0, &regs->DmaWriteHostLo);
  260. writel(0, &regs->DmaReadHostHi);
  261. writel(0, &regs->DmaReadHostLo);
  262. writel(0, &regs->DmaReadLen);
  263. writel(0, &regs->DmaWriteLen);
  264. writel(0, &regs->DmaWriteLcl);
  265. writel(0, &regs->DmaWriteIPchecksum);
  266. writel(0, &regs->DmaReadLcl);
  267. writel(0, &regs->DmaReadIPchecksum);
  268. writel(0, &regs->PciState);
  269. #if (BITS_PER_LONG == 64) && defined __LITTLE_ENDIAN
  270. writel(SWAP_DATA | PTR64BIT | PTR_WD_SWAP, &regs->Mode);
  271. #elif (BITS_PER_LONG == 64)
  272. writel(SWAP_DATA | PTR64BIT | PTR_WD_NOSWAP, &regs->Mode);
  273. #else
  274. writel(SWAP_DATA | PTR32BIT | PTR_WD_NOSWAP, &regs->Mode);
  275. #endif
  276. #if 0
  277. /*
  278. * Don't worry, this is just black magic.
  279. */
  280. writel(0xdf000, &regs->RxBase);
  281. writel(0xdf000, &regs->RxPrd);
  282. writel(0xdf000, &regs->RxCon);
  283. writel(0xce000, &regs->TxBase);
  284. writel(0xce000, &regs->TxPrd);
  285. writel(0xce000, &regs->TxCon);
  286. writel(0, &regs->RxIndPro);
  287. writel(0, &regs->RxIndCon);
  288. writel(0, &regs->RxIndRef);
  289. writel(0, &regs->TxIndPro);
  290. writel(0, &regs->TxIndCon);
  291. writel(0, &regs->TxIndRef);
  292. writel(0xcc000, &regs->pad10[0]);
  293. writel(0, &regs->DrCmndPro);
  294. writel(0, &regs->DrCmndCon);
  295. writel(0, &regs->DwCmndPro);
  296. writel(0, &regs->DwCmndCon);
  297. writel(0, &regs->DwCmndRef);
  298. writel(0, &regs->DrDataPro);
  299. writel(0, &regs->DrDataCon);
  300. writel(0, &regs->DrDataRef);
  301. writel(0, &regs->DwDataPro);
  302. writel(0, &regs->DwDataCon);
  303. writel(0, &regs->DwDataRef);
  304. #endif
  305. writel(0xffffffff, &regs->MbEvent);
  306. writel(0, &regs->Event);
  307. writel(0, &regs->TxPi);
  308. writel(0, &regs->IpRxPi);
  309. writel(0, &regs->EvtCon);
  310. writel(0, &regs->EvtPrd);
  311. rrpriv->info->evt_ctrl.pi = 0;
  312. for (i = 0; i < CMD_RING_ENTRIES; i++)
  313. writel(0, &regs->CmdRing[i]);
  314. /*
  315. * Why 32 ? is this not cache line size dependent?
  316. */
  317. writel(RBURST_64|WBURST_64, &regs->PciState);
  318. wmb();
  319. start_pc = rr_read_eeprom_word(rrpriv,
  320. offsetof(struct eeprom, rncd_info.FwStart));
  321. #if (DEBUG > 1)
  322. printk("%s: Executing firmware at address 0x%06x\n",
  323. dev->name, start_pc);
  324. #endif
  325. writel(start_pc + 0x800, &regs->Pc);
  326. wmb();
  327. udelay(5);
  328. writel(start_pc, &regs->Pc);
  329. wmb();
  330. return 0;
  331. }
  332. /*
  333. * Read a string from the EEPROM.
  334. */
  335. static unsigned int rr_read_eeprom(struct rr_private *rrpriv,
  336. unsigned long offset,
  337. unsigned char *buf,
  338. unsigned long length)
  339. {
  340. struct rr_regs __iomem *regs = rrpriv->regs;
  341. u32 misc, io, host, i;
  342. io = readl(&regs->ExtIo);
  343. writel(0, &regs->ExtIo);
  344. misc = readl(&regs->LocalCtrl);
  345. writel(0, &regs->LocalCtrl);
  346. host = readl(&regs->HostCtrl);
  347. writel(host | HALT_NIC, &regs->HostCtrl);
  348. mb();
  349. for (i = 0; i < length; i++){
  350. writel((EEPROM_BASE + ((offset+i) << 3)), &regs->WinBase);
  351. mb();
  352. buf[i] = (readl(&regs->WinData) >> 24) & 0xff;
  353. mb();
  354. }
  355. writel(host, &regs->HostCtrl);
  356. writel(misc, &regs->LocalCtrl);
  357. writel(io, &regs->ExtIo);
  358. mb();
  359. return i;
  360. }
  361. /*
  362. * Shortcut to read one word (4 bytes) out of the EEPROM and convert
  363. * it to our CPU byte-order.
  364. */
  365. static u32 rr_read_eeprom_word(struct rr_private *rrpriv,
  366. size_t offset)
  367. {
  368. __be32 word;
  369. if ((rr_read_eeprom(rrpriv, offset,
  370. (unsigned char *)&word, 4) == 4))
  371. return be32_to_cpu(word);
  372. return 0;
  373. }
  374. /*
  375. * Write a string to the EEPROM.
  376. *
  377. * This is only called when the firmware is not running.
  378. */
  379. static unsigned int write_eeprom(struct rr_private *rrpriv,
  380. unsigned long offset,
  381. unsigned char *buf,
  382. unsigned long length)
  383. {
  384. struct rr_regs __iomem *regs = rrpriv->regs;
  385. u32 misc, io, data, i, j, ready, error = 0;
  386. io = readl(&regs->ExtIo);
  387. writel(0, &regs->ExtIo);
  388. misc = readl(&regs->LocalCtrl);
  389. writel(ENABLE_EEPROM_WRITE, &regs->LocalCtrl);
  390. mb();
  391. for (i = 0; i < length; i++){
  392. writel((EEPROM_BASE + ((offset+i) << 3)), &regs->WinBase);
  393. mb();
  394. data = buf[i] << 24;
  395. /*
  396. * Only try to write the data if it is not the same
  397. * value already.
  398. */
  399. if ((readl(&regs->WinData) & 0xff000000) != data){
  400. writel(data, &regs->WinData);
  401. ready = 0;
  402. j = 0;
  403. mb();
  404. while(!ready){
  405. udelay(20);
  406. if ((readl(&regs->WinData) & 0xff000000) ==
  407. data)
  408. ready = 1;
  409. mb();
  410. if (j++ > 5000){
  411. printk("data mismatch: %08x, "
  412. "WinData %08x\n", data,
  413. readl(&regs->WinData));
  414. ready = 1;
  415. error = 1;
  416. }
  417. }
  418. }
  419. }
  420. writel(misc, &regs->LocalCtrl);
  421. writel(io, &regs->ExtIo);
  422. mb();
  423. return error;
  424. }
  425. static int __devinit rr_init(struct net_device *dev)
  426. {
  427. struct rr_private *rrpriv;
  428. struct rr_regs __iomem *regs;
  429. u32 sram_size, rev;
  430. rrpriv = netdev_priv(dev);
  431. regs = rrpriv->regs;
  432. rev = readl(&regs->FwRev);
  433. rrpriv->fw_rev = rev;
  434. if (rev > 0x00020024)
  435. printk(" Firmware revision: %i.%i.%i\n", (rev >> 16),
  436. ((rev >> 8) & 0xff), (rev & 0xff));
  437. else if (rev >= 0x00020000) {
  438. printk(" Firmware revision: %i.%i.%i (2.0.37 or "
  439. "later is recommended)\n", (rev >> 16),
  440. ((rev >> 8) & 0xff), (rev & 0xff));
  441. }else{
  442. printk(" Firmware revision too old: %i.%i.%i, please "
  443. "upgrade to 2.0.37 or later.\n",
  444. (rev >> 16), ((rev >> 8) & 0xff), (rev & 0xff));
  445. }
  446. #if (DEBUG > 2)
  447. printk(" Maximum receive rings %i\n", readl(&regs->MaxRxRng));
  448. #endif
  449. /*
  450. * Read the hardware address from the eeprom. The HW address
  451. * is not really necessary for HIPPI but awfully convenient.
  452. * The pointer arithmetic to put it in dev_addr is ugly, but
  453. * Donald Becker does it this way for the GigE version of this
  454. * card and it's shorter and more portable than any
  455. * other method I've seen. -VAL
  456. */
  457. *(__be16 *)(dev->dev_addr) =
  458. htons(rr_read_eeprom_word(rrpriv, offsetof(struct eeprom, manf.BoardULA)));
  459. *(__be32 *)(dev->dev_addr+2) =
  460. htonl(rr_read_eeprom_word(rrpriv, offsetof(struct eeprom, manf.BoardULA[4])));
  461. printk(" MAC: %pM\n", dev->dev_addr);
  462. sram_size = rr_read_eeprom_word(rrpriv, 8);
  463. printk(" SRAM size 0x%06x\n", sram_size);
  464. return 0;
  465. }
  466. static int rr_init1(struct net_device *dev)
  467. {
  468. struct rr_private *rrpriv;
  469. struct rr_regs __iomem *regs;
  470. unsigned long myjif, flags;
  471. struct cmd cmd;
  472. u32 hostctrl;
  473. int ecode = 0;
  474. short i;
  475. rrpriv = netdev_priv(dev);
  476. regs = rrpriv->regs;
  477. spin_lock_irqsave(&rrpriv->lock, flags);
  478. hostctrl = readl(&regs->HostCtrl);
  479. writel(hostctrl | HALT_NIC | RR_CLEAR_INT, &regs->HostCtrl);
  480. wmb();
  481. if (hostctrl & PARITY_ERR){
  482. printk("%s: Parity error halting NIC - this is serious!\n",
  483. dev->name);
  484. spin_unlock_irqrestore(&rrpriv->lock, flags);
  485. ecode = -EFAULT;
  486. goto error;
  487. }
  488. set_rxaddr(regs, rrpriv->rx_ctrl_dma);
  489. set_infoaddr(regs, rrpriv->info_dma);
  490. rrpriv->info->evt_ctrl.entry_size = sizeof(struct event);
  491. rrpriv->info->evt_ctrl.entries = EVT_RING_ENTRIES;
  492. rrpriv->info->evt_ctrl.mode = 0;
  493. rrpriv->info->evt_ctrl.pi = 0;
  494. set_rraddr(&rrpriv->info->evt_ctrl.rngptr, rrpriv->evt_ring_dma);
  495. rrpriv->info->cmd_ctrl.entry_size = sizeof(struct cmd);
  496. rrpriv->info->cmd_ctrl.entries = CMD_RING_ENTRIES;
  497. rrpriv->info->cmd_ctrl.mode = 0;
  498. rrpriv->info->cmd_ctrl.pi = 15;
  499. for (i = 0; i < CMD_RING_ENTRIES; i++) {
  500. writel(0, &regs->CmdRing[i]);
  501. }
  502. for (i = 0; i < TX_RING_ENTRIES; i++) {
  503. rrpriv->tx_ring[i].size = 0;
  504. set_rraddr(&rrpriv->tx_ring[i].addr, 0);
  505. rrpriv->tx_skbuff[i] = NULL;
  506. }
  507. rrpriv->info->tx_ctrl.entry_size = sizeof(struct tx_desc);
  508. rrpriv->info->tx_ctrl.entries = TX_RING_ENTRIES;
  509. rrpriv->info->tx_ctrl.mode = 0;
  510. rrpriv->info->tx_ctrl.pi = 0;
  511. set_rraddr(&rrpriv->info->tx_ctrl.rngptr, rrpriv->tx_ring_dma);
  512. /*
  513. * Set dirty_tx before we start receiving interrupts, otherwise
  514. * the interrupt handler might think it is supposed to process
  515. * tx ints before we are up and running, which may cause a null
  516. * pointer access in the int handler.
  517. */
  518. rrpriv->tx_full = 0;
  519. rrpriv->cur_rx = 0;
  520. rrpriv->dirty_rx = rrpriv->dirty_tx = 0;
  521. rr_reset(dev);
  522. /* Tuning values */
  523. writel(0x5000, &regs->ConRetry);
  524. writel(0x100, &regs->ConRetryTmr);
  525. writel(0x500000, &regs->ConTmout);
  526. writel(0x60, &regs->IntrTmr);
  527. writel(0x500000, &regs->TxDataMvTimeout);
  528. writel(0x200000, &regs->RxDataMvTimeout);
  529. writel(0x80, &regs->WriteDmaThresh);
  530. writel(0x80, &regs->ReadDmaThresh);
  531. rrpriv->fw_running = 0;
  532. wmb();
  533. hostctrl &= ~(HALT_NIC | INVALID_INST_B | PARITY_ERR);
  534. writel(hostctrl, &regs->HostCtrl);
  535. wmb();
  536. spin_unlock_irqrestore(&rrpriv->lock, flags);
  537. for (i = 0; i < RX_RING_ENTRIES; i++) {
  538. struct sk_buff *skb;
  539. dma_addr_t addr;
  540. rrpriv->rx_ring[i].mode = 0;
  541. skb = alloc_skb(dev->mtu + HIPPI_HLEN, GFP_ATOMIC);
  542. if (!skb) {
  543. printk(KERN_WARNING "%s: Unable to allocate memory "
  544. "for receive ring - halting NIC\n", dev->name);
  545. ecode = -ENOMEM;
  546. goto error;
  547. }
  548. rrpriv->rx_skbuff[i] = skb;
  549. addr = pci_map_single(rrpriv->pci_dev, skb->data,
  550. dev->mtu + HIPPI_HLEN, PCI_DMA_FROMDEVICE);
  551. /*
  552. * Sanity test to see if we conflict with the DMA
  553. * limitations of the Roadrunner.
  554. */
  555. if ((((unsigned long)skb->data) & 0xfff) > ~65320)
  556. printk("skb alloc error\n");
  557. set_rraddr(&rrpriv->rx_ring[i].addr, addr);
  558. rrpriv->rx_ring[i].size = dev->mtu + HIPPI_HLEN;
  559. }
  560. rrpriv->rx_ctrl[4].entry_size = sizeof(struct rx_desc);
  561. rrpriv->rx_ctrl[4].entries = RX_RING_ENTRIES;
  562. rrpriv->rx_ctrl[4].mode = 8;
  563. rrpriv->rx_ctrl[4].pi = 0;
  564. wmb();
  565. set_rraddr(&rrpriv->rx_ctrl[4].rngptr, rrpriv->rx_ring_dma);
  566. udelay(1000);
  567. /*
  568. * Now start the FirmWare.
  569. */
  570. cmd.code = C_START_FW;
  571. cmd.ring = 0;
  572. cmd.index = 0;
  573. rr_issue_cmd(rrpriv, &cmd);
  574. /*
  575. * Give the FirmWare time to chew on the `get running' command.
  576. */
  577. myjif = jiffies + 5 * HZ;
  578. while (time_before(jiffies, myjif) && !rrpriv->fw_running)
  579. cpu_relax();
  580. netif_start_queue(dev);
  581. return ecode;
  582. error:
  583. /*
  584. * We might have gotten here because we are out of memory,
  585. * make sure we release everything we allocated before failing
  586. */
  587. for (i = 0; i < RX_RING_ENTRIES; i++) {
  588. struct sk_buff *skb = rrpriv->rx_skbuff[i];
  589. if (skb) {
  590. pci_unmap_single(rrpriv->pci_dev,
  591. rrpriv->rx_ring[i].addr.addrlo,
  592. dev->mtu + HIPPI_HLEN,
  593. PCI_DMA_FROMDEVICE);
  594. rrpriv->rx_ring[i].size = 0;
  595. set_rraddr(&rrpriv->rx_ring[i].addr, 0);
  596. dev_kfree_skb(skb);
  597. rrpriv->rx_skbuff[i] = NULL;
  598. }
  599. }
  600. return ecode;
  601. }
  602. /*
  603. * All events are considered to be slow (RX/TX ints do not generate
  604. * events) and are handled here, outside the main interrupt handler,
  605. * to reduce the size of the handler.
  606. */
  607. static u32 rr_handle_event(struct net_device *dev, u32 prodidx, u32 eidx)
  608. {
  609. struct rr_private *rrpriv;
  610. struct rr_regs __iomem *regs;
  611. u32 tmp;
  612. rrpriv = netdev_priv(dev);
  613. regs = rrpriv->regs;
  614. while (prodidx != eidx){
  615. switch (rrpriv->evt_ring[eidx].code){
  616. case E_NIC_UP:
  617. tmp = readl(&regs->FwRev);
  618. printk(KERN_INFO "%s: Firmware revision %i.%i.%i "
  619. "up and running\n", dev->name,
  620. (tmp >> 16), ((tmp >> 8) & 0xff), (tmp & 0xff));
  621. rrpriv->fw_running = 1;
  622. writel(RX_RING_ENTRIES - 1, &regs->IpRxPi);
  623. wmb();
  624. break;
  625. case E_LINK_ON:
  626. printk(KERN_INFO "%s: Optical link ON\n", dev->name);
  627. break;
  628. case E_LINK_OFF:
  629. printk(KERN_INFO "%s: Optical link OFF\n", dev->name);
  630. break;
  631. case E_RX_IDLE:
  632. printk(KERN_WARNING "%s: RX data not moving\n",
  633. dev->name);
  634. goto drop;
  635. case E_WATCHDOG:
  636. printk(KERN_INFO "%s: The watchdog is here to see "
  637. "us\n", dev->name);
  638. break;
  639. case E_INTERN_ERR:
  640. printk(KERN_ERR "%s: HIPPI Internal NIC error\n",
  641. dev->name);
  642. writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
  643. &regs->HostCtrl);
  644. wmb();
  645. break;
  646. case E_HOST_ERR:
  647. printk(KERN_ERR "%s: Host software error\n",
  648. dev->name);
  649. writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
  650. &regs->HostCtrl);
  651. wmb();
  652. break;
  653. /*
  654. * TX events.
  655. */
  656. case E_CON_REJ:
  657. printk(KERN_WARNING "%s: Connection rejected\n",
  658. dev->name);
  659. dev->stats.tx_aborted_errors++;
  660. break;
  661. case E_CON_TMOUT:
  662. printk(KERN_WARNING "%s: Connection timeout\n",
  663. dev->name);
  664. break;
  665. case E_DISC_ERR:
  666. printk(KERN_WARNING "%s: HIPPI disconnect error\n",
  667. dev->name);
  668. dev->stats.tx_aborted_errors++;
  669. break;
  670. case E_INT_PRTY:
  671. printk(KERN_ERR "%s: HIPPI Internal Parity error\n",
  672. dev->name);
  673. writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
  674. &regs->HostCtrl);
  675. wmb();
  676. break;
  677. case E_TX_IDLE:
  678. printk(KERN_WARNING "%s: Transmitter idle\n",
  679. dev->name);
  680. break;
  681. case E_TX_LINK_DROP:
  682. printk(KERN_WARNING "%s: Link lost during transmit\n",
  683. dev->name);
  684. dev->stats.tx_aborted_errors++;
  685. writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
  686. &regs->HostCtrl);
  687. wmb();
  688. break;
  689. case E_TX_INV_RNG:
  690. printk(KERN_ERR "%s: Invalid send ring block\n",
  691. dev->name);
  692. writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
  693. &regs->HostCtrl);
  694. wmb();
  695. break;
  696. case E_TX_INV_BUF:
  697. printk(KERN_ERR "%s: Invalid send buffer address\n",
  698. dev->name);
  699. writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
  700. &regs->HostCtrl);
  701. wmb();
  702. break;
  703. case E_TX_INV_DSC:
  704. printk(KERN_ERR "%s: Invalid descriptor address\n",
  705. dev->name);
  706. writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
  707. &regs->HostCtrl);
  708. wmb();
  709. break;
  710. /*
  711. * RX events.
  712. */
  713. case E_RX_RNG_OUT:
  714. printk(KERN_INFO "%s: Receive ring full\n", dev->name);
  715. break;
  716. case E_RX_PAR_ERR:
  717. printk(KERN_WARNING "%s: Receive parity error\n",
  718. dev->name);
  719. goto drop;
  720. case E_RX_LLRC_ERR:
  721. printk(KERN_WARNING "%s: Receive LLRC error\n",
  722. dev->name);
  723. goto drop;
  724. case E_PKT_LN_ERR:
  725. printk(KERN_WARNING "%s: Receive packet length "
  726. "error\n", dev->name);
  727. goto drop;
  728. case E_DTA_CKSM_ERR:
  729. printk(KERN_WARNING "%s: Data checksum error\n",
  730. dev->name);
  731. goto drop;
  732. case E_SHT_BST:
  733. printk(KERN_WARNING "%s: Unexpected short burst "
  734. "error\n", dev->name);
  735. goto drop;
  736. case E_STATE_ERR:
  737. printk(KERN_WARNING "%s: Recv. state transition"
  738. " error\n", dev->name);
  739. goto drop;
  740. case E_UNEXP_DATA:
  741. printk(KERN_WARNING "%s: Unexpected data error\n",
  742. dev->name);
  743. goto drop;
  744. case E_LST_LNK_ERR:
  745. printk(KERN_WARNING "%s: Link lost error\n",
  746. dev->name);
  747. goto drop;
  748. case E_FRM_ERR:
  749. printk(KERN_WARNING "%s: Framming Error\n",
  750. dev->name);
  751. goto drop;
  752. case E_FLG_SYN_ERR:
  753. printk(KERN_WARNING "%s: Flag sync. lost during "
  754. "packet\n", dev->name);
  755. goto drop;
  756. case E_RX_INV_BUF:
  757. printk(KERN_ERR "%s: Invalid receive buffer "
  758. "address\n", dev->name);
  759. writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
  760. &regs->HostCtrl);
  761. wmb();
  762. break;
  763. case E_RX_INV_DSC:
  764. printk(KERN_ERR "%s: Invalid receive descriptor "
  765. "address\n", dev->name);
  766. writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
  767. &regs->HostCtrl);
  768. wmb();
  769. break;
  770. case E_RNG_BLK:
  771. printk(KERN_ERR "%s: Invalid ring block\n",
  772. dev->name);
  773. writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
  774. &regs->HostCtrl);
  775. wmb();
  776. break;
  777. drop:
  778. /* Label packet to be dropped.
  779. * Actual dropping occurs in rx
  780. * handling.
  781. *
  782. * The index of packet we get to drop is
  783. * the index of the packet following
  784. * the bad packet. -kbf
  785. */
  786. {
  787. u16 index = rrpriv->evt_ring[eidx].index;
  788. index = (index + (RX_RING_ENTRIES - 1)) %
  789. RX_RING_ENTRIES;
  790. rrpriv->rx_ring[index].mode |=
  791. (PACKET_BAD | PACKET_END);
  792. }
  793. break;
  794. default:
  795. printk(KERN_WARNING "%s: Unhandled event 0x%02x\n",
  796. dev->name, rrpriv->evt_ring[eidx].code);
  797. }
  798. eidx = (eidx + 1) % EVT_RING_ENTRIES;
  799. }
  800. rrpriv->info->evt_ctrl.pi = eidx;
  801. wmb();
  802. return eidx;
  803. }
  804. static void rx_int(struct net_device *dev, u32 rxlimit, u32 index)
  805. {
  806. struct rr_private *rrpriv = netdev_priv(dev);
  807. struct rr_regs __iomem *regs = rrpriv->regs;
  808. do {
  809. struct rx_desc *desc;
  810. u32 pkt_len;
  811. desc = &(rrpriv->rx_ring[index]);
  812. pkt_len = desc->size;
  813. #if (DEBUG > 2)
  814. printk("index %i, rxlimit %i\n", index, rxlimit);
  815. printk("len %x, mode %x\n", pkt_len, desc->mode);
  816. #endif
  817. if ( (rrpriv->rx_ring[index].mode & PACKET_BAD) == PACKET_BAD){
  818. dev->stats.rx_dropped++;
  819. goto defer;
  820. }
  821. if (pkt_len > 0){
  822. struct sk_buff *skb, *rx_skb;
  823. rx_skb = rrpriv->rx_skbuff[index];
  824. if (pkt_len < PKT_COPY_THRESHOLD) {
  825. skb = alloc_skb(pkt_len, GFP_ATOMIC);
  826. if (skb == NULL){
  827. printk(KERN_WARNING "%s: Unable to allocate skb (%i bytes), deferring packet\n", dev->name, pkt_len);
  828. dev->stats.rx_dropped++;
  829. goto defer;
  830. } else {
  831. pci_dma_sync_single_for_cpu(rrpriv->pci_dev,
  832. desc->addr.addrlo,
  833. pkt_len,
  834. PCI_DMA_FROMDEVICE);
  835. memcpy(skb_put(skb, pkt_len),
  836. rx_skb->data, pkt_len);
  837. pci_dma_sync_single_for_device(rrpriv->pci_dev,
  838. desc->addr.addrlo,
  839. pkt_len,
  840. PCI_DMA_FROMDEVICE);
  841. }
  842. }else{
  843. struct sk_buff *newskb;
  844. newskb = alloc_skb(dev->mtu + HIPPI_HLEN,
  845. GFP_ATOMIC);
  846. if (newskb){
  847. dma_addr_t addr;
  848. pci_unmap_single(rrpriv->pci_dev,
  849. desc->addr.addrlo, dev->mtu +
  850. HIPPI_HLEN, PCI_DMA_FROMDEVICE);
  851. skb = rx_skb;
  852. skb_put(skb, pkt_len);
  853. rrpriv->rx_skbuff[index] = newskb;
  854. addr = pci_map_single(rrpriv->pci_dev,
  855. newskb->data,
  856. dev->mtu + HIPPI_HLEN,
  857. PCI_DMA_FROMDEVICE);
  858. set_rraddr(&desc->addr, addr);
  859. } else {
  860. printk("%s: Out of memory, deferring "
  861. "packet\n", dev->name);
  862. dev->stats.rx_dropped++;
  863. goto defer;
  864. }
  865. }
  866. skb->protocol = hippi_type_trans(skb, dev);
  867. netif_rx(skb); /* send it up */
  868. dev->last_rx = jiffies;
  869. dev->stats.rx_packets++;
  870. dev->stats.rx_bytes += pkt_len;
  871. }
  872. defer:
  873. desc->mode = 0;
  874. desc->size = dev->mtu + HIPPI_HLEN;
  875. if ((index & 7) == 7)
  876. writel(index, &regs->IpRxPi);
  877. index = (index + 1) % RX_RING_ENTRIES;
  878. } while(index != rxlimit);
  879. rrpriv->cur_rx = index;
  880. wmb();
  881. }
  882. static irqreturn_t rr_interrupt(int irq, void *dev_id)
  883. {
  884. struct rr_private *rrpriv;
  885. struct rr_regs __iomem *regs;
  886. struct net_device *dev = (struct net_device *)dev_id;
  887. u32 prodidx, rxindex, eidx, txcsmr, rxlimit, txcon;
  888. rrpriv = netdev_priv(dev);
  889. regs = rrpriv->regs;
  890. if (!(readl(&regs->HostCtrl) & RR_INT))
  891. return IRQ_NONE;
  892. spin_lock(&rrpriv->lock);
  893. prodidx = readl(&regs->EvtPrd);
  894. txcsmr = (prodidx >> 8) & 0xff;
  895. rxlimit = (prodidx >> 16) & 0xff;
  896. prodidx &= 0xff;
  897. #if (DEBUG > 2)
  898. printk("%s: interrupt, prodidx = %i, eidx = %i\n", dev->name,
  899. prodidx, rrpriv->info->evt_ctrl.pi);
  900. #endif
  901. /*
  902. * Order here is important. We must handle events
  903. * before doing anything else in order to catch
  904. * such things as LLRC errors, etc -kbf
  905. */
  906. eidx = rrpriv->info->evt_ctrl.pi;
  907. if (prodidx != eidx)
  908. eidx = rr_handle_event(dev, prodidx, eidx);
  909. rxindex = rrpriv->cur_rx;
  910. if (rxindex != rxlimit)
  911. rx_int(dev, rxlimit, rxindex);
  912. txcon = rrpriv->dirty_tx;
  913. if (txcsmr != txcon) {
  914. do {
  915. /* Due to occational firmware TX producer/consumer out
  916. * of sync. error need to check entry in ring -kbf
  917. */
  918. if(rrpriv->tx_skbuff[txcon]){
  919. struct tx_desc *desc;
  920. struct sk_buff *skb;
  921. desc = &(rrpriv->tx_ring[txcon]);
  922. skb = rrpriv->tx_skbuff[txcon];
  923. dev->stats.tx_packets++;
  924. dev->stats.tx_bytes += skb->len;
  925. pci_unmap_single(rrpriv->pci_dev,
  926. desc->addr.addrlo, skb->len,
  927. PCI_DMA_TODEVICE);
  928. dev_kfree_skb_irq(skb);
  929. rrpriv->tx_skbuff[txcon] = NULL;
  930. desc->size = 0;
  931. set_rraddr(&rrpriv->tx_ring[txcon].addr, 0);
  932. desc->mode = 0;
  933. }
  934. txcon = (txcon + 1) % TX_RING_ENTRIES;
  935. } while (txcsmr != txcon);
  936. wmb();
  937. rrpriv->dirty_tx = txcon;
  938. if (rrpriv->tx_full && rr_if_busy(dev) &&
  939. (((rrpriv->info->tx_ctrl.pi + 1) % TX_RING_ENTRIES)
  940. != rrpriv->dirty_tx)){
  941. rrpriv->tx_full = 0;
  942. netif_wake_queue(dev);
  943. }
  944. }
  945. eidx |= ((txcsmr << 8) | (rxlimit << 16));
  946. writel(eidx, &regs->EvtCon);
  947. wmb();
  948. spin_unlock(&rrpriv->lock);
  949. return IRQ_HANDLED;
  950. }
  951. static inline void rr_raz_tx(struct rr_private *rrpriv,
  952. struct net_device *dev)
  953. {
  954. int i;
  955. for (i = 0; i < TX_RING_ENTRIES; i++) {
  956. struct sk_buff *skb = rrpriv->tx_skbuff[i];
  957. if (skb) {
  958. struct tx_desc *desc = &(rrpriv->tx_ring[i]);
  959. pci_unmap_single(rrpriv->pci_dev, desc->addr.addrlo,
  960. skb->len, PCI_DMA_TODEVICE);
  961. desc->size = 0;
  962. set_rraddr(&desc->addr, 0);
  963. dev_kfree_skb(skb);
  964. rrpriv->tx_skbuff[i] = NULL;
  965. }
  966. }
  967. }
  968. static inline void rr_raz_rx(struct rr_private *rrpriv,
  969. struct net_device *dev)
  970. {
  971. int i;
  972. for (i = 0; i < RX_RING_ENTRIES; i++) {
  973. struct sk_buff *skb = rrpriv->rx_skbuff[i];
  974. if (skb) {
  975. struct rx_desc *desc = &(rrpriv->rx_ring[i]);
  976. pci_unmap_single(rrpriv->pci_dev, desc->addr.addrlo,
  977. dev->mtu + HIPPI_HLEN, PCI_DMA_FROMDEVICE);
  978. desc->size = 0;
  979. set_rraddr(&desc->addr, 0);
  980. dev_kfree_skb(skb);
  981. rrpriv->rx_skbuff[i] = NULL;
  982. }
  983. }
  984. }
  985. static void rr_timer(unsigned long data)
  986. {
  987. struct net_device *dev = (struct net_device *)data;
  988. struct rr_private *rrpriv = netdev_priv(dev);
  989. struct rr_regs __iomem *regs = rrpriv->regs;
  990. unsigned long flags;
  991. if (readl(&regs->HostCtrl) & NIC_HALTED){
  992. printk("%s: Restarting nic\n", dev->name);
  993. memset(rrpriv->rx_ctrl, 0, 256 * sizeof(struct ring_ctrl));
  994. memset(rrpriv->info, 0, sizeof(struct rr_info));
  995. wmb();
  996. rr_raz_tx(rrpriv, dev);
  997. rr_raz_rx(rrpriv, dev);
  998. if (rr_init1(dev)) {
  999. spin_lock_irqsave(&rrpriv->lock, flags);
  1000. writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
  1001. &regs->HostCtrl);
  1002. spin_unlock_irqrestore(&rrpriv->lock, flags);
  1003. }
  1004. }
  1005. rrpriv->timer.expires = RUN_AT(5*HZ);
  1006. add_timer(&rrpriv->timer);
  1007. }
  1008. static int rr_open(struct net_device *dev)
  1009. {
  1010. struct rr_private *rrpriv = netdev_priv(dev);
  1011. struct pci_dev *pdev = rrpriv->pci_dev;
  1012. struct rr_regs __iomem *regs;
  1013. int ecode = 0;
  1014. unsigned long flags;
  1015. dma_addr_t dma_addr;
  1016. regs = rrpriv->regs;
  1017. if (rrpriv->fw_rev < 0x00020000) {
  1018. printk(KERN_WARNING "%s: trying to configure device with "
  1019. "obsolete firmware\n", dev->name);
  1020. ecode = -EBUSY;
  1021. goto error;
  1022. }
  1023. rrpriv->rx_ctrl = pci_alloc_consistent(pdev,
  1024. 256 * sizeof(struct ring_ctrl),
  1025. &dma_addr);
  1026. if (!rrpriv->rx_ctrl) {
  1027. ecode = -ENOMEM;
  1028. goto error;
  1029. }
  1030. rrpriv->rx_ctrl_dma = dma_addr;
  1031. memset(rrpriv->rx_ctrl, 0, 256*sizeof(struct ring_ctrl));
  1032. rrpriv->info = pci_alloc_consistent(pdev, sizeof(struct rr_info),
  1033. &dma_addr);
  1034. if (!rrpriv->info) {
  1035. ecode = -ENOMEM;
  1036. goto error;
  1037. }
  1038. rrpriv->info_dma = dma_addr;
  1039. memset(rrpriv->info, 0, sizeof(struct rr_info));
  1040. wmb();
  1041. spin_lock_irqsave(&rrpriv->lock, flags);
  1042. writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT, &regs->HostCtrl);
  1043. readl(&regs->HostCtrl);
  1044. spin_unlock_irqrestore(&rrpriv->lock, flags);
  1045. if (request_irq(dev->irq, rr_interrupt, IRQF_SHARED, dev->name, dev)) {
  1046. printk(KERN_WARNING "%s: Requested IRQ %d is busy\n",
  1047. dev->name, dev->irq);
  1048. ecode = -EAGAIN;
  1049. goto error;
  1050. }
  1051. if ((ecode = rr_init1(dev)))
  1052. goto error;
  1053. /* Set the timer to switch to check for link beat and perhaps switch
  1054. to an alternate media type. */
  1055. init_timer(&rrpriv->timer);
  1056. rrpriv->timer.expires = RUN_AT(5*HZ); /* 5 sec. watchdog */
  1057. rrpriv->timer.data = (unsigned long)dev;
  1058. rrpriv->timer.function = &rr_timer; /* timer handler */
  1059. add_timer(&rrpriv->timer);
  1060. netif_start_queue(dev);
  1061. return ecode;
  1062. error:
  1063. spin_lock_irqsave(&rrpriv->lock, flags);
  1064. writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT, &regs->HostCtrl);
  1065. spin_unlock_irqrestore(&rrpriv->lock, flags);
  1066. if (rrpriv->info) {
  1067. pci_free_consistent(pdev, sizeof(struct rr_info), rrpriv->info,
  1068. rrpriv->info_dma);
  1069. rrpriv->info = NULL;
  1070. }
  1071. if (rrpriv->rx_ctrl) {
  1072. pci_free_consistent(pdev, sizeof(struct ring_ctrl),
  1073. rrpriv->rx_ctrl, rrpriv->rx_ctrl_dma);
  1074. rrpriv->rx_ctrl = NULL;
  1075. }
  1076. netif_stop_queue(dev);
  1077. return ecode;
  1078. }
  1079. static void rr_dump(struct net_device *dev)
  1080. {
  1081. struct rr_private *rrpriv;
  1082. struct rr_regs __iomem *regs;
  1083. u32 index, cons;
  1084. short i;
  1085. int len;
  1086. rrpriv = netdev_priv(dev);
  1087. regs = rrpriv->regs;
  1088. printk("%s: dumping NIC TX rings\n", dev->name);
  1089. printk("RxPrd %08x, TxPrd %02x, EvtPrd %08x, TxPi %02x, TxCtrlPi %02x\n",
  1090. readl(&regs->RxPrd), readl(&regs->TxPrd),
  1091. readl(&regs->EvtPrd), readl(&regs->TxPi),
  1092. rrpriv->info->tx_ctrl.pi);
  1093. printk("Error code 0x%x\n", readl(&regs->Fail1));
  1094. index = (((readl(&regs->EvtPrd) >> 8) & 0xff ) - 1) % EVT_RING_ENTRIES;
  1095. cons = rrpriv->dirty_tx;
  1096. printk("TX ring index %i, TX consumer %i\n",
  1097. index, cons);
  1098. if (rrpriv->tx_skbuff[index]){
  1099. len = min_t(int, 0x80, rrpriv->tx_skbuff[index]->len);
  1100. printk("skbuff for index %i is valid - dumping data (0x%x bytes - DMA len 0x%x)\n", index, len, rrpriv->tx_ring[index].size);
  1101. for (i = 0; i < len; i++){
  1102. if (!(i & 7))
  1103. printk("\n");
  1104. printk("%02x ", (unsigned char) rrpriv->tx_skbuff[index]->data[i]);
  1105. }
  1106. printk("\n");
  1107. }
  1108. if (rrpriv->tx_skbuff[cons]){
  1109. len = min_t(int, 0x80, rrpriv->tx_skbuff[cons]->len);
  1110. printk("skbuff for cons %i is valid - dumping data (0x%x bytes - skbuff len 0x%x)\n", cons, len, rrpriv->tx_skbuff[cons]->len);
  1111. printk("mode 0x%x, size 0x%x,\n phys %08Lx, skbuff-addr %08lx, truesize 0x%x\n",
  1112. rrpriv->tx_ring[cons].mode,
  1113. rrpriv->tx_ring[cons].size,
  1114. (unsigned long long) rrpriv->tx_ring[cons].addr.addrlo,
  1115. (unsigned long)rrpriv->tx_skbuff[cons]->data,
  1116. (unsigned int)rrpriv->tx_skbuff[cons]->truesize);
  1117. for (i = 0; i < len; i++){
  1118. if (!(i & 7))
  1119. printk("\n");
  1120. printk("%02x ", (unsigned char)rrpriv->tx_ring[cons].size);
  1121. }
  1122. printk("\n");
  1123. }
  1124. printk("dumping TX ring info:\n");
  1125. for (i = 0; i < TX_RING_ENTRIES; i++)
  1126. printk("mode 0x%x, size 0x%x, phys-addr %08Lx\n",
  1127. rrpriv->tx_ring[i].mode,
  1128. rrpriv->tx_ring[i].size,
  1129. (unsigned long long) rrpriv->tx_ring[i].addr.addrlo);
  1130. }
  1131. static int rr_close(struct net_device *dev)
  1132. {
  1133. struct rr_private *rrpriv;
  1134. struct rr_regs __iomem *regs;
  1135. unsigned long flags;
  1136. u32 tmp;
  1137. short i;
  1138. netif_stop_queue(dev);
  1139. rrpriv = netdev_priv(dev);
  1140. regs = rrpriv->regs;
  1141. /*
  1142. * Lock to make sure we are not cleaning up while another CPU
  1143. * is handling interrupts.
  1144. */
  1145. spin_lock_irqsave(&rrpriv->lock, flags);
  1146. tmp = readl(&regs->HostCtrl);
  1147. if (tmp & NIC_HALTED){
  1148. printk("%s: NIC already halted\n", dev->name);
  1149. rr_dump(dev);
  1150. }else{
  1151. tmp |= HALT_NIC | RR_CLEAR_INT;
  1152. writel(tmp, &regs->HostCtrl);
  1153. readl(&regs->HostCtrl);
  1154. }
  1155. rrpriv->fw_running = 0;
  1156. del_timer_sync(&rrpriv->timer);
  1157. writel(0, &regs->TxPi);
  1158. writel(0, &regs->IpRxPi);
  1159. writel(0, &regs->EvtCon);
  1160. writel(0, &regs->EvtPrd);
  1161. for (i = 0; i < CMD_RING_ENTRIES; i++)
  1162. writel(0, &regs->CmdRing[i]);
  1163. rrpriv->info->tx_ctrl.entries = 0;
  1164. rrpriv->info->cmd_ctrl.pi = 0;
  1165. rrpriv->info->evt_ctrl.pi = 0;
  1166. rrpriv->rx_ctrl[4].entries = 0;
  1167. rr_raz_tx(rrpriv, dev);
  1168. rr_raz_rx(rrpriv, dev);
  1169. pci_free_consistent(rrpriv->pci_dev, 256 * sizeof(struct ring_ctrl),
  1170. rrpriv->rx_ctrl, rrpriv->rx_ctrl_dma);
  1171. rrpriv->rx_ctrl = NULL;
  1172. pci_free_consistent(rrpriv->pci_dev, sizeof(struct rr_info),
  1173. rrpriv->info, rrpriv->info_dma);
  1174. rrpriv->info = NULL;
  1175. free_irq(dev->irq, dev);
  1176. spin_unlock_irqrestore(&rrpriv->lock, flags);
  1177. return 0;
  1178. }
  1179. static int rr_start_xmit(struct sk_buff *skb, struct net_device *dev)
  1180. {
  1181. struct rr_private *rrpriv = netdev_priv(dev);
  1182. struct rr_regs __iomem *regs = rrpriv->regs;
  1183. struct hippi_cb *hcb = (struct hippi_cb *) skb->cb;
  1184. struct ring_ctrl *txctrl;
  1185. unsigned long flags;
  1186. u32 index, len = skb->len;
  1187. u32 *ifield;
  1188. struct sk_buff *new_skb;
  1189. if (readl(&regs->Mode) & FATAL_ERR)
  1190. printk("error codes Fail1 %02x, Fail2 %02x\n",
  1191. readl(&regs->Fail1), readl(&regs->Fail2));
  1192. /*
  1193. * We probably need to deal with tbusy here to prevent overruns.
  1194. */
  1195. if (skb_headroom(skb) < 8){
  1196. printk("incoming skb too small - reallocating\n");
  1197. if (!(new_skb = dev_alloc_skb(len + 8))) {
  1198. dev_kfree_skb(skb);
  1199. netif_wake_queue(dev);
  1200. return -EBUSY;
  1201. }
  1202. skb_reserve(new_skb, 8);
  1203. skb_put(new_skb, len);
  1204. skb_copy_from_linear_data(skb, new_skb->data, len);
  1205. dev_kfree_skb(skb);
  1206. skb = new_skb;
  1207. }
  1208. ifield = (u32 *)skb_push(skb, 8);
  1209. ifield[0] = 0;
  1210. ifield[1] = hcb->ifield;
  1211. /*
  1212. * We don't need the lock before we are actually going to start
  1213. * fiddling with the control blocks.
  1214. */
  1215. spin_lock_irqsave(&rrpriv->lock, flags);
  1216. txctrl = &rrpriv->info->tx_ctrl;
  1217. index = txctrl->pi;
  1218. rrpriv->tx_skbuff[index] = skb;
  1219. set_rraddr(&rrpriv->tx_ring[index].addr, pci_map_single(
  1220. rrpriv->pci_dev, skb->data, len + 8, PCI_DMA_TODEVICE));
  1221. rrpriv->tx_ring[index].size = len + 8; /* include IFIELD */
  1222. rrpriv->tx_ring[index].mode = PACKET_START | PACKET_END;
  1223. txctrl->pi = (index + 1) % TX_RING_ENTRIES;
  1224. wmb();
  1225. writel(txctrl->pi, &regs->TxPi);
  1226. if (txctrl->pi == rrpriv->dirty_tx){
  1227. rrpriv->tx_full = 1;
  1228. netif_stop_queue(dev);
  1229. }
  1230. spin_unlock_irqrestore(&rrpriv->lock, flags);
  1231. dev->trans_start = jiffies;
  1232. return 0;
  1233. }
  1234. /*
  1235. * Read the firmware out of the EEPROM and put it into the SRAM
  1236. * (or from user space - later)
  1237. *
  1238. * This operation requires the NIC to be halted and is performed with
  1239. * interrupts disabled and with the spinlock hold.
  1240. */
  1241. static int rr_load_firmware(struct net_device *dev)
  1242. {
  1243. struct rr_private *rrpriv;
  1244. struct rr_regs __iomem *regs;
  1245. size_t eptr, segptr;
  1246. int i, j;
  1247. u32 localctrl, sptr, len, tmp;
  1248. u32 p2len, p2size, nr_seg, revision, io, sram_size;
  1249. rrpriv = netdev_priv(dev);
  1250. regs = rrpriv->regs;
  1251. if (dev->flags & IFF_UP)
  1252. return -EBUSY;
  1253. if (!(readl(&regs->HostCtrl) & NIC_HALTED)){
  1254. printk("%s: Trying to load firmware to a running NIC.\n",
  1255. dev->name);
  1256. return -EBUSY;
  1257. }
  1258. localctrl = readl(&regs->LocalCtrl);
  1259. writel(0, &regs->LocalCtrl);
  1260. writel(0, &regs->EvtPrd);
  1261. writel(0, &regs->RxPrd);
  1262. writel(0, &regs->TxPrd);
  1263. /*
  1264. * First wipe the entire SRAM, otherwise we might run into all
  1265. * kinds of trouble ... sigh, this took almost all afternoon
  1266. * to track down ;-(
  1267. */
  1268. io = readl(&regs->ExtIo);
  1269. writel(0, &regs->ExtIo);
  1270. sram_size = rr_read_eeprom_word(rrpriv, 8);
  1271. for (i = 200; i < sram_size / 4; i++){
  1272. writel(i * 4, &regs->WinBase);
  1273. mb();
  1274. writel(0, &regs->WinData);
  1275. mb();
  1276. }
  1277. writel(io, &regs->ExtIo);
  1278. mb();
  1279. eptr = rr_read_eeprom_word(rrpriv,
  1280. offsetof(struct eeprom, rncd_info.AddrRunCodeSegs));
  1281. eptr = ((eptr & 0x1fffff) >> 3);
  1282. p2len = rr_read_eeprom_word(rrpriv, 0x83*4);
  1283. p2len = (p2len << 2);
  1284. p2size = rr_read_eeprom_word(rrpriv, 0x84*4);
  1285. p2size = ((p2size & 0x1fffff) >> 3);
  1286. if ((eptr < p2size) || (eptr > (p2size + p2len))){
  1287. printk("%s: eptr is invalid\n", dev->name);
  1288. goto out;
  1289. }
  1290. revision = rr_read_eeprom_word(rrpriv,
  1291. offsetof(struct eeprom, manf.HeaderFmt));
  1292. if (revision != 1){
  1293. printk("%s: invalid firmware format (%i)\n",
  1294. dev->name, revision);
  1295. goto out;
  1296. }
  1297. nr_seg = rr_read_eeprom_word(rrpriv, eptr);
  1298. eptr +=4;
  1299. #if (DEBUG > 1)
  1300. printk("%s: nr_seg %i\n", dev->name, nr_seg);
  1301. #endif
  1302. for (i = 0; i < nr_seg; i++){
  1303. sptr = rr_read_eeprom_word(rrpriv, eptr);
  1304. eptr += 4;
  1305. len = rr_read_eeprom_word(rrpriv, eptr);
  1306. eptr += 4;
  1307. segptr = rr_read_eeprom_word(rrpriv, eptr);
  1308. segptr = ((segptr & 0x1fffff) >> 3);
  1309. eptr += 4;
  1310. #if (DEBUG > 1)
  1311. printk("%s: segment %i, sram address %06x, length %04x, segptr %06x\n",
  1312. dev->name, i, sptr, len, segptr);
  1313. #endif
  1314. for (j = 0; j < len; j++){
  1315. tmp = rr_read_eeprom_word(rrpriv, segptr);
  1316. writel(sptr, &regs->WinBase);
  1317. mb();
  1318. writel(tmp, &regs->WinData);
  1319. mb();
  1320. segptr += 4;
  1321. sptr += 4;
  1322. }
  1323. }
  1324. out:
  1325. writel(localctrl, &regs->LocalCtrl);
  1326. mb();
  1327. return 0;
  1328. }
  1329. static int rr_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
  1330. {
  1331. struct rr_private *rrpriv;
  1332. unsigned char *image, *oldimage;
  1333. unsigned long flags;
  1334. unsigned int i;
  1335. int error = -EOPNOTSUPP;
  1336. rrpriv = netdev_priv(dev);
  1337. switch(cmd){
  1338. case SIOCRRGFW:
  1339. if (!capable(CAP_SYS_RAWIO)){
  1340. return -EPERM;
  1341. }
  1342. image = kmalloc(EEPROM_WORDS * sizeof(u32), GFP_KERNEL);
  1343. if (!image){
  1344. printk(KERN_ERR "%s: Unable to allocate memory "
  1345. "for EEPROM image\n", dev->name);
  1346. return -ENOMEM;
  1347. }
  1348. if (rrpriv->fw_running){
  1349. printk("%s: Firmware already running\n", dev->name);
  1350. error = -EPERM;
  1351. goto gf_out;
  1352. }
  1353. spin_lock_irqsave(&rrpriv->lock, flags);
  1354. i = rr_read_eeprom(rrpriv, 0, image, EEPROM_BYTES);
  1355. spin_unlock_irqrestore(&rrpriv->lock, flags);
  1356. if (i != EEPROM_BYTES){
  1357. printk(KERN_ERR "%s: Error reading EEPROM\n",
  1358. dev->name);
  1359. error = -EFAULT;
  1360. goto gf_out;
  1361. }
  1362. error = copy_to_user(rq->ifr_data, image, EEPROM_BYTES);
  1363. if (error)
  1364. error = -EFAULT;
  1365. gf_out:
  1366. kfree(image);
  1367. return error;
  1368. case SIOCRRPFW:
  1369. if (!capable(CAP_SYS_RAWIO)){
  1370. return -EPERM;
  1371. }
  1372. image = kmalloc(EEPROM_WORDS * sizeof(u32), GFP_KERNEL);
  1373. oldimage = kmalloc(EEPROM_WORDS * sizeof(u32), GFP_KERNEL);
  1374. if (!image || !oldimage) {
  1375. printk(KERN_ERR "%s: Unable to allocate memory "
  1376. "for EEPROM image\n", dev->name);
  1377. error = -ENOMEM;
  1378. goto wf_out;
  1379. }
  1380. error = copy_from_user(image, rq->ifr_data, EEPROM_BYTES);
  1381. if (error) {
  1382. error = -EFAULT;
  1383. goto wf_out;
  1384. }
  1385. if (rrpriv->fw_running){
  1386. printk("%s: Firmware already running\n", dev->name);
  1387. error = -EPERM;
  1388. goto wf_out;
  1389. }
  1390. printk("%s: Updating EEPROM firmware\n", dev->name);
  1391. spin_lock_irqsave(&rrpriv->lock, flags);
  1392. error = write_eeprom(rrpriv, 0, image, EEPROM_BYTES);
  1393. if (error)
  1394. printk(KERN_ERR "%s: Error writing EEPROM\n",
  1395. dev->name);
  1396. i = rr_read_eeprom(rrpriv, 0, oldimage, EEPROM_BYTES);
  1397. spin_unlock_irqrestore(&rrpriv->lock, flags);
  1398. if (i != EEPROM_BYTES)
  1399. printk(KERN_ERR "%s: Error reading back EEPROM "
  1400. "image\n", dev->name);
  1401. error = memcmp(image, oldimage, EEPROM_BYTES);
  1402. if (error){
  1403. printk(KERN_ERR "%s: Error verifying EEPROM image\n",
  1404. dev->name);
  1405. error = -EFAULT;
  1406. }
  1407. wf_out:
  1408. kfree(oldimage);
  1409. kfree(image);
  1410. return error;
  1411. case SIOCRRID:
  1412. return put_user(0x52523032, (int __user *)rq->ifr_data);
  1413. default:
  1414. return error;
  1415. }
  1416. }
  1417. static struct pci_device_id rr_pci_tbl[] = {
  1418. { PCI_VENDOR_ID_ESSENTIAL, PCI_DEVICE_ID_ESSENTIAL_ROADRUNNER,
  1419. PCI_ANY_ID, PCI_ANY_ID, },
  1420. { 0,}
  1421. };
  1422. MODULE_DEVICE_TABLE(pci, rr_pci_tbl);
  1423. static struct pci_driver rr_driver = {
  1424. .name = "rrunner",
  1425. .id_table = rr_pci_tbl,
  1426. .probe = rr_init_one,
  1427. .remove = __devexit_p(rr_remove_one),
  1428. };
  1429. static int __init rr_init_module(void)
  1430. {
  1431. return pci_register_driver(&rr_driver);
  1432. }
  1433. static void __exit rr_cleanup_module(void)
  1434. {
  1435. pci_unregister_driver(&rr_driver);
  1436. }
  1437. module_init(rr_init_module);
  1438. module_exit(rr_cleanup_module);
  1439. /*
  1440. * Local variables:
  1441. * compile-command: "gcc -D__KERNEL__ -I../../include -Wall -Wstrict-prototypes -O2 -pipe -fomit-frame-pointer -fno-strength-reduce -m486 -malign-loops=2 -malign-jumps=2 -malign-functions=2 -DMODULE -DMODVERSIONS -include ../../include/linux/modversions.h -c rrunner.c"
  1442. * End:
  1443. */