time.c 29 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143
  1. /*
  2. * Common time routines among all ppc machines.
  3. *
  4. * Written by Cort Dougan (cort@cs.nmt.edu) to merge
  5. * Paul Mackerras' version and mine for PReP and Pmac.
  6. * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
  7. * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
  8. *
  9. * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
  10. * to make clock more stable (2.4.0-test5). The only thing
  11. * that this code assumes is that the timebases have been synchronized
  12. * by firmware on SMP and are never stopped (never do sleep
  13. * on SMP then, nap and doze are OK).
  14. *
  15. * Speeded up do_gettimeofday by getting rid of references to
  16. * xtime (which required locks for consistency). (mikejc@us.ibm.com)
  17. *
  18. * TODO (not necessarily in this file):
  19. * - improve precision and reproducibility of timebase frequency
  20. * measurement at boot time. (for iSeries, we calibrate the timebase
  21. * against the Titan chip's clock.)
  22. * - for astronomical applications: add a new function to get
  23. * non ambiguous timestamps even around leap seconds. This needs
  24. * a new timestamp format and a good name.
  25. *
  26. * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
  27. * "A Kernel Model for Precision Timekeeping" by Dave Mills
  28. *
  29. * This program is free software; you can redistribute it and/or
  30. * modify it under the terms of the GNU General Public License
  31. * as published by the Free Software Foundation; either version
  32. * 2 of the License, or (at your option) any later version.
  33. */
  34. #include <linux/errno.h>
  35. #include <linux/module.h>
  36. #include <linux/sched.h>
  37. #include <linux/kernel.h>
  38. #include <linux/param.h>
  39. #include <linux/string.h>
  40. #include <linux/mm.h>
  41. #include <linux/interrupt.h>
  42. #include <linux/timex.h>
  43. #include <linux/kernel_stat.h>
  44. #include <linux/time.h>
  45. #include <linux/init.h>
  46. #include <linux/profile.h>
  47. #include <linux/cpu.h>
  48. #include <linux/security.h>
  49. #include <linux/percpu.h>
  50. #include <linux/rtc.h>
  51. #include <linux/jiffies.h>
  52. #include <linux/posix-timers.h>
  53. #include <linux/irq.h>
  54. #include <linux/delay.h>
  55. #include <linux/perf_event.h>
  56. #include <asm/trace.h>
  57. #include <asm/io.h>
  58. #include <asm/processor.h>
  59. #include <asm/nvram.h>
  60. #include <asm/cache.h>
  61. #include <asm/machdep.h>
  62. #include <asm/uaccess.h>
  63. #include <asm/time.h>
  64. #include <asm/prom.h>
  65. #include <asm/irq.h>
  66. #include <asm/div64.h>
  67. #include <asm/smp.h>
  68. #include <asm/vdso_datapage.h>
  69. #include <asm/firmware.h>
  70. #include <asm/cputime.h>
  71. #ifdef CONFIG_PPC_ISERIES
  72. #include <asm/iseries/it_lp_queue.h>
  73. #include <asm/iseries/hv_call_xm.h>
  74. #endif
  75. /* powerpc clocksource/clockevent code */
  76. #include <linux/clockchips.h>
  77. #include <linux/clocksource.h>
  78. static cycle_t rtc_read(struct clocksource *);
  79. static struct clocksource clocksource_rtc = {
  80. .name = "rtc",
  81. .rating = 400,
  82. .flags = CLOCK_SOURCE_IS_CONTINUOUS,
  83. .mask = CLOCKSOURCE_MASK(64),
  84. .shift = 22,
  85. .mult = 0, /* To be filled in */
  86. .read = rtc_read,
  87. };
  88. static cycle_t timebase_read(struct clocksource *);
  89. static struct clocksource clocksource_timebase = {
  90. .name = "timebase",
  91. .rating = 400,
  92. .flags = CLOCK_SOURCE_IS_CONTINUOUS,
  93. .mask = CLOCKSOURCE_MASK(64),
  94. .shift = 22,
  95. .mult = 0, /* To be filled in */
  96. .read = timebase_read,
  97. };
  98. #define DECREMENTER_MAX 0x7fffffff
  99. static int decrementer_set_next_event(unsigned long evt,
  100. struct clock_event_device *dev);
  101. static void decrementer_set_mode(enum clock_event_mode mode,
  102. struct clock_event_device *dev);
  103. static struct clock_event_device decrementer_clockevent = {
  104. .name = "decrementer",
  105. .rating = 200,
  106. .shift = 0, /* To be filled in */
  107. .mult = 0, /* To be filled in */
  108. .irq = 0,
  109. .set_next_event = decrementer_set_next_event,
  110. .set_mode = decrementer_set_mode,
  111. .features = CLOCK_EVT_FEAT_ONESHOT,
  112. };
  113. struct decrementer_clock {
  114. struct clock_event_device event;
  115. u64 next_tb;
  116. };
  117. static DEFINE_PER_CPU(struct decrementer_clock, decrementers);
  118. #ifdef CONFIG_PPC_ISERIES
  119. static unsigned long __initdata iSeries_recal_titan;
  120. static signed long __initdata iSeries_recal_tb;
  121. /* Forward declaration is only needed for iSereis compiles */
  122. static void __init clocksource_init(void);
  123. #endif
  124. #define XSEC_PER_SEC (1024*1024)
  125. #ifdef CONFIG_PPC64
  126. #define SCALE_XSEC(xsec, max) (((xsec) * max) / XSEC_PER_SEC)
  127. #else
  128. /* compute ((xsec << 12) * max) >> 32 */
  129. #define SCALE_XSEC(xsec, max) mulhwu((xsec) << 12, max)
  130. #endif
  131. unsigned long tb_ticks_per_jiffy;
  132. unsigned long tb_ticks_per_usec = 100; /* sane default */
  133. EXPORT_SYMBOL(tb_ticks_per_usec);
  134. unsigned long tb_ticks_per_sec;
  135. EXPORT_SYMBOL(tb_ticks_per_sec); /* for cputime_t conversions */
  136. DEFINE_SPINLOCK(rtc_lock);
  137. EXPORT_SYMBOL_GPL(rtc_lock);
  138. static u64 tb_to_ns_scale __read_mostly;
  139. static unsigned tb_to_ns_shift __read_mostly;
  140. static unsigned long boot_tb __read_mostly;
  141. extern struct timezone sys_tz;
  142. static long timezone_offset;
  143. unsigned long ppc_proc_freq;
  144. EXPORT_SYMBOL(ppc_proc_freq);
  145. unsigned long ppc_tb_freq;
  146. #ifdef CONFIG_VIRT_CPU_ACCOUNTING
  147. /*
  148. * Factors for converting from cputime_t (timebase ticks) to
  149. * jiffies, milliseconds, seconds, and clock_t (1/USER_HZ seconds).
  150. * These are all stored as 0.64 fixed-point binary fractions.
  151. */
  152. u64 __cputime_jiffies_factor;
  153. EXPORT_SYMBOL(__cputime_jiffies_factor);
  154. u64 __cputime_msec_factor;
  155. EXPORT_SYMBOL(__cputime_msec_factor);
  156. u64 __cputime_sec_factor;
  157. EXPORT_SYMBOL(__cputime_sec_factor);
  158. u64 __cputime_clockt_factor;
  159. EXPORT_SYMBOL(__cputime_clockt_factor);
  160. DEFINE_PER_CPU(unsigned long, cputime_last_delta);
  161. DEFINE_PER_CPU(unsigned long, cputime_scaled_last_delta);
  162. cputime_t cputime_one_jiffy;
  163. static void calc_cputime_factors(void)
  164. {
  165. struct div_result res;
  166. div128_by_32(HZ, 0, tb_ticks_per_sec, &res);
  167. __cputime_jiffies_factor = res.result_low;
  168. div128_by_32(1000, 0, tb_ticks_per_sec, &res);
  169. __cputime_msec_factor = res.result_low;
  170. div128_by_32(1, 0, tb_ticks_per_sec, &res);
  171. __cputime_sec_factor = res.result_low;
  172. div128_by_32(USER_HZ, 0, tb_ticks_per_sec, &res);
  173. __cputime_clockt_factor = res.result_low;
  174. }
  175. /*
  176. * Read the SPURR on systems that have it, otherwise the PURR,
  177. * or if that doesn't exist return the timebase value passed in.
  178. */
  179. static u64 read_spurr(u64 tb)
  180. {
  181. if (cpu_has_feature(CPU_FTR_SPURR))
  182. return mfspr(SPRN_SPURR);
  183. if (cpu_has_feature(CPU_FTR_PURR))
  184. return mfspr(SPRN_PURR);
  185. return tb;
  186. }
  187. #ifdef CONFIG_PPC_SPLPAR
  188. /*
  189. * Scan the dispatch trace log and count up the stolen time.
  190. * Should be called with interrupts disabled.
  191. */
  192. static u64 scan_dispatch_log(u64 stop_tb)
  193. {
  194. unsigned long i = local_paca->dtl_ridx;
  195. struct dtl_entry *dtl = local_paca->dtl_curr;
  196. struct dtl_entry *dtl_end = local_paca->dispatch_log_end;
  197. struct lppaca *vpa = local_paca->lppaca_ptr;
  198. u64 tb_delta;
  199. u64 stolen = 0;
  200. u64 dtb;
  201. if (i == vpa->dtl_idx)
  202. return 0;
  203. while (i < vpa->dtl_idx) {
  204. dtb = dtl->timebase;
  205. tb_delta = dtl->enqueue_to_dispatch_time +
  206. dtl->ready_to_enqueue_time;
  207. barrier();
  208. if (i + N_DISPATCH_LOG < vpa->dtl_idx) {
  209. /* buffer has overflowed */
  210. i = vpa->dtl_idx - N_DISPATCH_LOG;
  211. dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG);
  212. continue;
  213. }
  214. if (dtb > stop_tb)
  215. break;
  216. stolen += tb_delta;
  217. ++i;
  218. ++dtl;
  219. if (dtl == dtl_end)
  220. dtl = local_paca->dispatch_log;
  221. }
  222. local_paca->dtl_ridx = i;
  223. local_paca->dtl_curr = dtl;
  224. return stolen;
  225. }
  226. /*
  227. * Accumulate stolen time by scanning the dispatch trace log.
  228. * Called on entry from user mode.
  229. */
  230. void accumulate_stolen_time(void)
  231. {
  232. u64 sst, ust;
  233. sst = scan_dispatch_log(get_paca()->starttime_user);
  234. ust = scan_dispatch_log(get_paca()->starttime);
  235. get_paca()->system_time -= sst;
  236. get_paca()->user_time -= ust;
  237. get_paca()->stolen_time += ust + sst;
  238. }
  239. static inline u64 calculate_stolen_time(u64 stop_tb)
  240. {
  241. u64 stolen = 0;
  242. if (get_paca()->dtl_ridx != get_paca()->lppaca_ptr->dtl_idx) {
  243. stolen = scan_dispatch_log(stop_tb);
  244. get_paca()->system_time -= stolen;
  245. }
  246. stolen += get_paca()->stolen_time;
  247. get_paca()->stolen_time = 0;
  248. return stolen;
  249. }
  250. #else /* CONFIG_PPC_SPLPAR */
  251. static inline u64 calculate_stolen_time(u64 stop_tb)
  252. {
  253. return 0;
  254. }
  255. #endif /* CONFIG_PPC_SPLPAR */
  256. /*
  257. * Account time for a transition between system, hard irq
  258. * or soft irq state.
  259. */
  260. void account_system_vtime(struct task_struct *tsk)
  261. {
  262. u64 now, nowscaled, delta, deltascaled;
  263. unsigned long flags;
  264. u64 stolen, udelta, sys_scaled, user_scaled;
  265. local_irq_save(flags);
  266. now = mftb();
  267. nowscaled = read_spurr(now);
  268. get_paca()->system_time += now - get_paca()->starttime;
  269. get_paca()->starttime = now;
  270. deltascaled = nowscaled - get_paca()->startspurr;
  271. get_paca()->startspurr = nowscaled;
  272. stolen = calculate_stolen_time(now);
  273. delta = get_paca()->system_time;
  274. get_paca()->system_time = 0;
  275. udelta = get_paca()->user_time - get_paca()->utime_sspurr;
  276. get_paca()->utime_sspurr = get_paca()->user_time;
  277. /*
  278. * Because we don't read the SPURR on every kernel entry/exit,
  279. * deltascaled includes both user and system SPURR ticks.
  280. * Apportion these ticks to system SPURR ticks and user
  281. * SPURR ticks in the same ratio as the system time (delta)
  282. * and user time (udelta) values obtained from the timebase
  283. * over the same interval. The system ticks get accounted here;
  284. * the user ticks get saved up in paca->user_time_scaled to be
  285. * used by account_process_tick.
  286. */
  287. sys_scaled = delta;
  288. user_scaled = udelta;
  289. if (deltascaled != delta + udelta) {
  290. if (udelta) {
  291. sys_scaled = deltascaled * delta / (delta + udelta);
  292. user_scaled = deltascaled - sys_scaled;
  293. } else {
  294. sys_scaled = deltascaled;
  295. }
  296. }
  297. get_paca()->user_time_scaled += user_scaled;
  298. if (in_irq() || idle_task(smp_processor_id()) != tsk) {
  299. account_system_time(tsk, 0, delta, sys_scaled);
  300. if (stolen)
  301. account_steal_time(stolen);
  302. } else {
  303. account_idle_time(delta + stolen);
  304. }
  305. local_irq_restore(flags);
  306. }
  307. EXPORT_SYMBOL_GPL(account_system_vtime);
  308. /*
  309. * Transfer the user and system times accumulated in the paca
  310. * by the exception entry and exit code to the generic process
  311. * user and system time records.
  312. * Must be called with interrupts disabled.
  313. * Assumes that account_system_vtime() has been called recently
  314. * (i.e. since the last entry from usermode) so that
  315. * get_paca()->user_time_scaled is up to date.
  316. */
  317. void account_process_tick(struct task_struct *tsk, int user_tick)
  318. {
  319. cputime_t utime, utimescaled;
  320. utime = get_paca()->user_time;
  321. utimescaled = get_paca()->user_time_scaled;
  322. get_paca()->user_time = 0;
  323. get_paca()->user_time_scaled = 0;
  324. get_paca()->utime_sspurr = 0;
  325. account_user_time(tsk, utime, utimescaled);
  326. }
  327. #else /* ! CONFIG_VIRT_CPU_ACCOUNTING */
  328. #define calc_cputime_factors()
  329. #endif
  330. void __delay(unsigned long loops)
  331. {
  332. unsigned long start;
  333. int diff;
  334. if (__USE_RTC()) {
  335. start = get_rtcl();
  336. do {
  337. /* the RTCL register wraps at 1000000000 */
  338. diff = get_rtcl() - start;
  339. if (diff < 0)
  340. diff += 1000000000;
  341. } while (diff < loops);
  342. } else {
  343. start = get_tbl();
  344. while (get_tbl() - start < loops)
  345. HMT_low();
  346. HMT_medium();
  347. }
  348. }
  349. EXPORT_SYMBOL(__delay);
  350. void udelay(unsigned long usecs)
  351. {
  352. __delay(tb_ticks_per_usec * usecs);
  353. }
  354. EXPORT_SYMBOL(udelay);
  355. #ifdef CONFIG_SMP
  356. unsigned long profile_pc(struct pt_regs *regs)
  357. {
  358. unsigned long pc = instruction_pointer(regs);
  359. if (in_lock_functions(pc))
  360. return regs->link;
  361. return pc;
  362. }
  363. EXPORT_SYMBOL(profile_pc);
  364. #endif
  365. #ifdef CONFIG_PPC_ISERIES
  366. /*
  367. * This function recalibrates the timebase based on the 49-bit time-of-day
  368. * value in the Titan chip. The Titan is much more accurate than the value
  369. * returned by the service processor for the timebase frequency.
  370. */
  371. static int __init iSeries_tb_recal(void)
  372. {
  373. unsigned long titan, tb;
  374. /* Make sure we only run on iSeries */
  375. if (!firmware_has_feature(FW_FEATURE_ISERIES))
  376. return -ENODEV;
  377. tb = get_tb();
  378. titan = HvCallXm_loadTod();
  379. if ( iSeries_recal_titan ) {
  380. unsigned long tb_ticks = tb - iSeries_recal_tb;
  381. unsigned long titan_usec = (titan - iSeries_recal_titan) >> 12;
  382. unsigned long new_tb_ticks_per_sec = (tb_ticks * USEC_PER_SEC)/titan_usec;
  383. unsigned long new_tb_ticks_per_jiffy =
  384. DIV_ROUND_CLOSEST(new_tb_ticks_per_sec, HZ);
  385. long tick_diff = new_tb_ticks_per_jiffy - tb_ticks_per_jiffy;
  386. char sign = '+';
  387. /* make sure tb_ticks_per_sec and tb_ticks_per_jiffy are consistent */
  388. new_tb_ticks_per_sec = new_tb_ticks_per_jiffy * HZ;
  389. if ( tick_diff < 0 ) {
  390. tick_diff = -tick_diff;
  391. sign = '-';
  392. }
  393. if ( tick_diff ) {
  394. if ( tick_diff < tb_ticks_per_jiffy/25 ) {
  395. printk( "Titan recalibrate: new tb_ticks_per_jiffy = %lu (%c%ld)\n",
  396. new_tb_ticks_per_jiffy, sign, tick_diff );
  397. tb_ticks_per_jiffy = new_tb_ticks_per_jiffy;
  398. tb_ticks_per_sec = new_tb_ticks_per_sec;
  399. calc_cputime_factors();
  400. vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
  401. setup_cputime_one_jiffy();
  402. }
  403. else {
  404. printk( "Titan recalibrate: FAILED (difference > 4 percent)\n"
  405. " new tb_ticks_per_jiffy = %lu\n"
  406. " old tb_ticks_per_jiffy = %lu\n",
  407. new_tb_ticks_per_jiffy, tb_ticks_per_jiffy );
  408. }
  409. }
  410. }
  411. iSeries_recal_titan = titan;
  412. iSeries_recal_tb = tb;
  413. /* Called here as now we know accurate values for the timebase */
  414. clocksource_init();
  415. return 0;
  416. }
  417. late_initcall(iSeries_tb_recal);
  418. /* Called from platform early init */
  419. void __init iSeries_time_init_early(void)
  420. {
  421. iSeries_recal_tb = get_tb();
  422. iSeries_recal_titan = HvCallXm_loadTod();
  423. }
  424. #endif /* CONFIG_PPC_ISERIES */
  425. #ifdef CONFIG_PERF_EVENTS
  426. /*
  427. * 64-bit uses a byte in the PACA, 32-bit uses a per-cpu variable...
  428. */
  429. #ifdef CONFIG_PPC64
  430. static inline unsigned long test_perf_event_pending(void)
  431. {
  432. unsigned long x;
  433. asm volatile("lbz %0,%1(13)"
  434. : "=r" (x)
  435. : "i" (offsetof(struct paca_struct, perf_event_pending)));
  436. return x;
  437. }
  438. static inline void set_perf_event_pending_flag(void)
  439. {
  440. asm volatile("stb %0,%1(13)" : :
  441. "r" (1),
  442. "i" (offsetof(struct paca_struct, perf_event_pending)));
  443. }
  444. static inline void clear_perf_event_pending(void)
  445. {
  446. asm volatile("stb %0,%1(13)" : :
  447. "r" (0),
  448. "i" (offsetof(struct paca_struct, perf_event_pending)));
  449. }
  450. #else /* 32-bit */
  451. DEFINE_PER_CPU(u8, perf_event_pending);
  452. #define set_perf_event_pending_flag() __get_cpu_var(perf_event_pending) = 1
  453. #define test_perf_event_pending() __get_cpu_var(perf_event_pending)
  454. #define clear_perf_event_pending() __get_cpu_var(perf_event_pending) = 0
  455. #endif /* 32 vs 64 bit */
  456. void set_perf_event_pending(void)
  457. {
  458. preempt_disable();
  459. set_perf_event_pending_flag();
  460. set_dec(1);
  461. preempt_enable();
  462. }
  463. #else /* CONFIG_PERF_EVENTS */
  464. #define test_perf_event_pending() 0
  465. #define clear_perf_event_pending()
  466. #endif /* CONFIG_PERF_EVENTS */
  467. /*
  468. * For iSeries shared processors, we have to let the hypervisor
  469. * set the hardware decrementer. We set a virtual decrementer
  470. * in the lppaca and call the hypervisor if the virtual
  471. * decrementer is less than the current value in the hardware
  472. * decrementer. (almost always the new decrementer value will
  473. * be greater than the current hardware decementer so the hypervisor
  474. * call will not be needed)
  475. */
  476. /*
  477. * timer_interrupt - gets called when the decrementer overflows,
  478. * with interrupts disabled.
  479. */
  480. void timer_interrupt(struct pt_regs * regs)
  481. {
  482. struct pt_regs *old_regs;
  483. struct decrementer_clock *decrementer = &__get_cpu_var(decrementers);
  484. struct clock_event_device *evt = &decrementer->event;
  485. u64 now;
  486. trace_timer_interrupt_entry(regs);
  487. __get_cpu_var(irq_stat).timer_irqs++;
  488. /* Ensure a positive value is written to the decrementer, or else
  489. * some CPUs will continuue to take decrementer exceptions */
  490. set_dec(DECREMENTER_MAX);
  491. #if defined(CONFIG_PPC32) && defined(CONFIG_PMAC)
  492. if (atomic_read(&ppc_n_lost_interrupts) != 0)
  493. do_IRQ(regs);
  494. #endif
  495. old_regs = set_irq_regs(regs);
  496. irq_enter();
  497. if (test_perf_event_pending()) {
  498. clear_perf_event_pending();
  499. perf_event_do_pending();
  500. }
  501. #ifdef CONFIG_PPC_ISERIES
  502. if (firmware_has_feature(FW_FEATURE_ISERIES))
  503. get_lppaca()->int_dword.fields.decr_int = 0;
  504. #endif
  505. now = get_tb_or_rtc();
  506. if (now >= decrementer->next_tb) {
  507. decrementer->next_tb = ~(u64)0;
  508. if (evt->event_handler)
  509. evt->event_handler(evt);
  510. } else {
  511. now = decrementer->next_tb - now;
  512. if (now <= DECREMENTER_MAX)
  513. set_dec((int)now);
  514. }
  515. #ifdef CONFIG_PPC_ISERIES
  516. if (firmware_has_feature(FW_FEATURE_ISERIES) && hvlpevent_is_pending())
  517. process_hvlpevents();
  518. #endif
  519. #ifdef CONFIG_PPC64
  520. /* collect purr register values often, for accurate calculations */
  521. if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
  522. struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
  523. cu->current_tb = mfspr(SPRN_PURR);
  524. }
  525. #endif
  526. irq_exit();
  527. set_irq_regs(old_regs);
  528. trace_timer_interrupt_exit(regs);
  529. }
  530. #ifdef CONFIG_SUSPEND
  531. static void generic_suspend_disable_irqs(void)
  532. {
  533. /* Disable the decrementer, so that it doesn't interfere
  534. * with suspending.
  535. */
  536. set_dec(0x7fffffff);
  537. local_irq_disable();
  538. set_dec(0x7fffffff);
  539. }
  540. static void generic_suspend_enable_irqs(void)
  541. {
  542. local_irq_enable();
  543. }
  544. /* Overrides the weak version in kernel/power/main.c */
  545. void arch_suspend_disable_irqs(void)
  546. {
  547. if (ppc_md.suspend_disable_irqs)
  548. ppc_md.suspend_disable_irqs();
  549. generic_suspend_disable_irqs();
  550. }
  551. /* Overrides the weak version in kernel/power/main.c */
  552. void arch_suspend_enable_irqs(void)
  553. {
  554. generic_suspend_enable_irqs();
  555. if (ppc_md.suspend_enable_irqs)
  556. ppc_md.suspend_enable_irqs();
  557. }
  558. #endif
  559. /*
  560. * Scheduler clock - returns current time in nanosec units.
  561. *
  562. * Note: mulhdu(a, b) (multiply high double unsigned) returns
  563. * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
  564. * are 64-bit unsigned numbers.
  565. */
  566. unsigned long long sched_clock(void)
  567. {
  568. if (__USE_RTC())
  569. return get_rtc();
  570. return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
  571. }
  572. static int __init get_freq(char *name, int cells, unsigned long *val)
  573. {
  574. struct device_node *cpu;
  575. const unsigned int *fp;
  576. int found = 0;
  577. /* The cpu node should have timebase and clock frequency properties */
  578. cpu = of_find_node_by_type(NULL, "cpu");
  579. if (cpu) {
  580. fp = of_get_property(cpu, name, NULL);
  581. if (fp) {
  582. found = 1;
  583. *val = of_read_ulong(fp, cells);
  584. }
  585. of_node_put(cpu);
  586. }
  587. return found;
  588. }
  589. /* should become __cpuinit when secondary_cpu_time_init also is */
  590. void start_cpu_decrementer(void)
  591. {
  592. #if defined(CONFIG_BOOKE) || defined(CONFIG_40x)
  593. /* Clear any pending timer interrupts */
  594. mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);
  595. /* Enable decrementer interrupt */
  596. mtspr(SPRN_TCR, TCR_DIE);
  597. #endif /* defined(CONFIG_BOOKE) || defined(CONFIG_40x) */
  598. }
  599. void __init generic_calibrate_decr(void)
  600. {
  601. ppc_tb_freq = DEFAULT_TB_FREQ; /* hardcoded default */
  602. if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
  603. !get_freq("timebase-frequency", 1, &ppc_tb_freq)) {
  604. printk(KERN_ERR "WARNING: Estimating decrementer frequency "
  605. "(not found)\n");
  606. }
  607. ppc_proc_freq = DEFAULT_PROC_FREQ; /* hardcoded default */
  608. if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
  609. !get_freq("clock-frequency", 1, &ppc_proc_freq)) {
  610. printk(KERN_ERR "WARNING: Estimating processor frequency "
  611. "(not found)\n");
  612. }
  613. }
  614. int update_persistent_clock(struct timespec now)
  615. {
  616. struct rtc_time tm;
  617. if (!ppc_md.set_rtc_time)
  618. return 0;
  619. to_tm(now.tv_sec + 1 + timezone_offset, &tm);
  620. tm.tm_year -= 1900;
  621. tm.tm_mon -= 1;
  622. return ppc_md.set_rtc_time(&tm);
  623. }
  624. static void __read_persistent_clock(struct timespec *ts)
  625. {
  626. struct rtc_time tm;
  627. static int first = 1;
  628. ts->tv_nsec = 0;
  629. /* XXX this is a litle fragile but will work okay in the short term */
  630. if (first) {
  631. first = 0;
  632. if (ppc_md.time_init)
  633. timezone_offset = ppc_md.time_init();
  634. /* get_boot_time() isn't guaranteed to be safe to call late */
  635. if (ppc_md.get_boot_time) {
  636. ts->tv_sec = ppc_md.get_boot_time() - timezone_offset;
  637. return;
  638. }
  639. }
  640. if (!ppc_md.get_rtc_time) {
  641. ts->tv_sec = 0;
  642. return;
  643. }
  644. ppc_md.get_rtc_time(&tm);
  645. ts->tv_sec = mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
  646. tm.tm_hour, tm.tm_min, tm.tm_sec);
  647. }
  648. void read_persistent_clock(struct timespec *ts)
  649. {
  650. __read_persistent_clock(ts);
  651. /* Sanitize it in case real time clock is set below EPOCH */
  652. if (ts->tv_sec < 0) {
  653. ts->tv_sec = 0;
  654. ts->tv_nsec = 0;
  655. }
  656. }
  657. /* clocksource code */
  658. static cycle_t rtc_read(struct clocksource *cs)
  659. {
  660. return (cycle_t)get_rtc();
  661. }
  662. static cycle_t timebase_read(struct clocksource *cs)
  663. {
  664. return (cycle_t)get_tb();
  665. }
  666. void update_vsyscall(struct timespec *wall_time, struct timespec *wtm,
  667. struct clocksource *clock, u32 mult)
  668. {
  669. u64 new_tb_to_xs, new_stamp_xsec;
  670. u32 frac_sec;
  671. if (clock != &clocksource_timebase)
  672. return;
  673. /* Make userspace gettimeofday spin until we're done. */
  674. ++vdso_data->tb_update_count;
  675. smp_mb();
  676. /* XXX this assumes clock->shift == 22 */
  677. /* 4611686018 ~= 2^(20+64-22) / 1e9 */
  678. new_tb_to_xs = (u64) mult * 4611686018ULL;
  679. new_stamp_xsec = (u64) wall_time->tv_nsec * XSEC_PER_SEC;
  680. do_div(new_stamp_xsec, 1000000000);
  681. new_stamp_xsec += (u64) wall_time->tv_sec * XSEC_PER_SEC;
  682. BUG_ON(wall_time->tv_nsec >= NSEC_PER_SEC);
  683. /* this is tv_nsec / 1e9 as a 0.32 fraction */
  684. frac_sec = ((u64) wall_time->tv_nsec * 18446744073ULL) >> 32;
  685. /*
  686. * tb_update_count is used to allow the userspace gettimeofday code
  687. * to assure itself that it sees a consistent view of the tb_to_xs and
  688. * stamp_xsec variables. It reads the tb_update_count, then reads
  689. * tb_to_xs and stamp_xsec and then reads tb_update_count again. If
  690. * the two values of tb_update_count match and are even then the
  691. * tb_to_xs and stamp_xsec values are consistent. If not, then it
  692. * loops back and reads them again until this criteria is met.
  693. * We expect the caller to have done the first increment of
  694. * vdso_data->tb_update_count already.
  695. */
  696. vdso_data->tb_orig_stamp = clock->cycle_last;
  697. vdso_data->stamp_xsec = new_stamp_xsec;
  698. vdso_data->tb_to_xs = new_tb_to_xs;
  699. vdso_data->wtom_clock_sec = wtm->tv_sec;
  700. vdso_data->wtom_clock_nsec = wtm->tv_nsec;
  701. vdso_data->stamp_xtime = *wall_time;
  702. vdso_data->stamp_sec_fraction = frac_sec;
  703. smp_wmb();
  704. ++(vdso_data->tb_update_count);
  705. }
  706. void update_vsyscall_tz(void)
  707. {
  708. /* Make userspace gettimeofday spin until we're done. */
  709. ++vdso_data->tb_update_count;
  710. smp_mb();
  711. vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
  712. vdso_data->tz_dsttime = sys_tz.tz_dsttime;
  713. smp_mb();
  714. ++vdso_data->tb_update_count;
  715. }
  716. static void __init clocksource_init(void)
  717. {
  718. struct clocksource *clock;
  719. if (__USE_RTC())
  720. clock = &clocksource_rtc;
  721. else
  722. clock = &clocksource_timebase;
  723. clock->mult = clocksource_hz2mult(tb_ticks_per_sec, clock->shift);
  724. if (clocksource_register(clock)) {
  725. printk(KERN_ERR "clocksource: %s is already registered\n",
  726. clock->name);
  727. return;
  728. }
  729. printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n",
  730. clock->name, clock->mult, clock->shift);
  731. }
  732. static int decrementer_set_next_event(unsigned long evt,
  733. struct clock_event_device *dev)
  734. {
  735. __get_cpu_var(decrementers).next_tb = get_tb_or_rtc() + evt;
  736. set_dec(evt);
  737. return 0;
  738. }
  739. static void decrementer_set_mode(enum clock_event_mode mode,
  740. struct clock_event_device *dev)
  741. {
  742. if (mode != CLOCK_EVT_MODE_ONESHOT)
  743. decrementer_set_next_event(DECREMENTER_MAX, dev);
  744. }
  745. static inline uint64_t div_sc64(unsigned long ticks, unsigned long nsec,
  746. int shift)
  747. {
  748. uint64_t tmp = ((uint64_t)ticks) << shift;
  749. do_div(tmp, nsec);
  750. return tmp;
  751. }
  752. static void __init setup_clockevent_multiplier(unsigned long hz)
  753. {
  754. u64 mult, shift = 32;
  755. while (1) {
  756. mult = div_sc64(hz, NSEC_PER_SEC, shift);
  757. if (mult && (mult >> 32UL) == 0UL)
  758. break;
  759. shift--;
  760. }
  761. decrementer_clockevent.shift = shift;
  762. decrementer_clockevent.mult = mult;
  763. }
  764. static void register_decrementer_clockevent(int cpu)
  765. {
  766. struct clock_event_device *dec = &per_cpu(decrementers, cpu).event;
  767. *dec = decrementer_clockevent;
  768. dec->cpumask = cpumask_of(cpu);
  769. printk_once(KERN_DEBUG "clockevent: %s mult[%x] shift[%d] cpu[%d]\n",
  770. dec->name, dec->mult, dec->shift, cpu);
  771. clockevents_register_device(dec);
  772. }
  773. static void __init init_decrementer_clockevent(void)
  774. {
  775. int cpu = smp_processor_id();
  776. setup_clockevent_multiplier(ppc_tb_freq);
  777. decrementer_clockevent.max_delta_ns =
  778. clockevent_delta2ns(DECREMENTER_MAX, &decrementer_clockevent);
  779. decrementer_clockevent.min_delta_ns =
  780. clockevent_delta2ns(2, &decrementer_clockevent);
  781. register_decrementer_clockevent(cpu);
  782. }
  783. void secondary_cpu_time_init(void)
  784. {
  785. /* Start the decrementer on CPUs that have manual control
  786. * such as BookE
  787. */
  788. start_cpu_decrementer();
  789. /* FIME: Should make unrelatred change to move snapshot_timebase
  790. * call here ! */
  791. register_decrementer_clockevent(smp_processor_id());
  792. }
  793. /* This function is only called on the boot processor */
  794. void __init time_init(void)
  795. {
  796. struct div_result res;
  797. u64 scale;
  798. unsigned shift;
  799. if (__USE_RTC()) {
  800. /* 601 processor: dec counts down by 128 every 128ns */
  801. ppc_tb_freq = 1000000000;
  802. } else {
  803. /* Normal PowerPC with timebase register */
  804. ppc_md.calibrate_decr();
  805. printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
  806. ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
  807. printk(KERN_DEBUG "time_init: processor frequency = %lu.%.6lu MHz\n",
  808. ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
  809. }
  810. tb_ticks_per_jiffy = ppc_tb_freq / HZ;
  811. tb_ticks_per_sec = ppc_tb_freq;
  812. tb_ticks_per_usec = ppc_tb_freq / 1000000;
  813. calc_cputime_factors();
  814. setup_cputime_one_jiffy();
  815. /*
  816. * Compute scale factor for sched_clock.
  817. * The calibrate_decr() function has set tb_ticks_per_sec,
  818. * which is the timebase frequency.
  819. * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
  820. * the 128-bit result as a 64.64 fixed-point number.
  821. * We then shift that number right until it is less than 1.0,
  822. * giving us the scale factor and shift count to use in
  823. * sched_clock().
  824. */
  825. div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
  826. scale = res.result_low;
  827. for (shift = 0; res.result_high != 0; ++shift) {
  828. scale = (scale >> 1) | (res.result_high << 63);
  829. res.result_high >>= 1;
  830. }
  831. tb_to_ns_scale = scale;
  832. tb_to_ns_shift = shift;
  833. /* Save the current timebase to pretty up CONFIG_PRINTK_TIME */
  834. boot_tb = get_tb_or_rtc();
  835. /* If platform provided a timezone (pmac), we correct the time */
  836. if (timezone_offset) {
  837. sys_tz.tz_minuteswest = -timezone_offset / 60;
  838. sys_tz.tz_dsttime = 0;
  839. }
  840. vdso_data->tb_update_count = 0;
  841. vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
  842. /* Start the decrementer on CPUs that have manual control
  843. * such as BookE
  844. */
  845. start_cpu_decrementer();
  846. /* Register the clocksource, if we're not running on iSeries */
  847. if (!firmware_has_feature(FW_FEATURE_ISERIES))
  848. clocksource_init();
  849. init_decrementer_clockevent();
  850. }
  851. #define FEBRUARY 2
  852. #define STARTOFTIME 1970
  853. #define SECDAY 86400L
  854. #define SECYR (SECDAY * 365)
  855. #define leapyear(year) ((year) % 4 == 0 && \
  856. ((year) % 100 != 0 || (year) % 400 == 0))
  857. #define days_in_year(a) (leapyear(a) ? 366 : 365)
  858. #define days_in_month(a) (month_days[(a) - 1])
  859. static int month_days[12] = {
  860. 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
  861. };
  862. /*
  863. * This only works for the Gregorian calendar - i.e. after 1752 (in the UK)
  864. */
  865. void GregorianDay(struct rtc_time * tm)
  866. {
  867. int leapsToDate;
  868. int lastYear;
  869. int day;
  870. int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };
  871. lastYear = tm->tm_year - 1;
  872. /*
  873. * Number of leap corrections to apply up to end of last year
  874. */
  875. leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400;
  876. /*
  877. * This year is a leap year if it is divisible by 4 except when it is
  878. * divisible by 100 unless it is divisible by 400
  879. *
  880. * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was
  881. */
  882. day = tm->tm_mon > 2 && leapyear(tm->tm_year);
  883. day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] +
  884. tm->tm_mday;
  885. tm->tm_wday = day % 7;
  886. }
  887. void to_tm(int tim, struct rtc_time * tm)
  888. {
  889. register int i;
  890. register long hms, day;
  891. day = tim / SECDAY;
  892. hms = tim % SECDAY;
  893. /* Hours, minutes, seconds are easy */
  894. tm->tm_hour = hms / 3600;
  895. tm->tm_min = (hms % 3600) / 60;
  896. tm->tm_sec = (hms % 3600) % 60;
  897. /* Number of years in days */
  898. for (i = STARTOFTIME; day >= days_in_year(i); i++)
  899. day -= days_in_year(i);
  900. tm->tm_year = i;
  901. /* Number of months in days left */
  902. if (leapyear(tm->tm_year))
  903. days_in_month(FEBRUARY) = 29;
  904. for (i = 1; day >= days_in_month(i); i++)
  905. day -= days_in_month(i);
  906. days_in_month(FEBRUARY) = 28;
  907. tm->tm_mon = i;
  908. /* Days are what is left over (+1) from all that. */
  909. tm->tm_mday = day + 1;
  910. /*
  911. * Determine the day of week
  912. */
  913. GregorianDay(tm);
  914. }
  915. /*
  916. * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
  917. * result.
  918. */
  919. void div128_by_32(u64 dividend_high, u64 dividend_low,
  920. unsigned divisor, struct div_result *dr)
  921. {
  922. unsigned long a, b, c, d;
  923. unsigned long w, x, y, z;
  924. u64 ra, rb, rc;
  925. a = dividend_high >> 32;
  926. b = dividend_high & 0xffffffff;
  927. c = dividend_low >> 32;
  928. d = dividend_low & 0xffffffff;
  929. w = a / divisor;
  930. ra = ((u64)(a - (w * divisor)) << 32) + b;
  931. rb = ((u64) do_div(ra, divisor) << 32) + c;
  932. x = ra;
  933. rc = ((u64) do_div(rb, divisor) << 32) + d;
  934. y = rb;
  935. do_div(rc, divisor);
  936. z = rc;
  937. dr->result_high = ((u64)w << 32) + x;
  938. dr->result_low = ((u64)y << 32) + z;
  939. }
  940. /* We don't need to calibrate delay, we use the CPU timebase for that */
  941. void calibrate_delay(void)
  942. {
  943. /* Some generic code (such as spinlock debug) use loops_per_jiffy
  944. * as the number of __delay(1) in a jiffy, so make it so
  945. */
  946. loops_per_jiffy = tb_ticks_per_jiffy;
  947. }
  948. static int __init rtc_init(void)
  949. {
  950. struct platform_device *pdev;
  951. if (!ppc_md.get_rtc_time)
  952. return -ENODEV;
  953. pdev = platform_device_register_simple("rtc-generic", -1, NULL, 0);
  954. if (IS_ERR(pdev))
  955. return PTR_ERR(pdev);
  956. return 0;
  957. }
  958. module_init(rtc_init);