fsi.c 25 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129
  1. /*
  2. * Fifo-attached Serial Interface (FSI) support for SH7724
  3. *
  4. * Copyright (C) 2009 Renesas Solutions Corp.
  5. * Kuninori Morimoto <morimoto.kuninori@renesas.com>
  6. *
  7. * Based on ssi.c
  8. * Copyright (c) 2007 Manuel Lauss <mano@roarinelk.homelinux.net>
  9. *
  10. * This program is free software; you can redistribute it and/or modify
  11. * it under the terms of the GNU General Public License version 2 as
  12. * published by the Free Software Foundation.
  13. */
  14. #include <linux/init.h>
  15. #include <linux/module.h>
  16. #include <linux/platform_device.h>
  17. #include <linux/delay.h>
  18. #include <linux/list.h>
  19. #include <linux/pm_runtime.h>
  20. #include <linux/io.h>
  21. #include <linux/slab.h>
  22. #include <sound/core.h>
  23. #include <sound/pcm.h>
  24. #include <sound/initval.h>
  25. #include <sound/soc.h>
  26. #include <sound/pcm_params.h>
  27. #include <sound/sh_fsi.h>
  28. #include <asm/atomic.h>
  29. #define DO_FMT 0x0000
  30. #define DOFF_CTL 0x0004
  31. #define DOFF_ST 0x0008
  32. #define DI_FMT 0x000C
  33. #define DIFF_CTL 0x0010
  34. #define DIFF_ST 0x0014
  35. #define CKG1 0x0018
  36. #define CKG2 0x001C
  37. #define DIDT 0x0020
  38. #define DODT 0x0024
  39. #define MUTE_ST 0x0028
  40. #define REG_END MUTE_ST
  41. #define CPU_INT_ST 0x01F4
  42. #define CPU_IEMSK 0x01F8
  43. #define CPU_IMSK 0x01FC
  44. #define INT_ST 0x0200
  45. #define IEMSK 0x0204
  46. #define IMSK 0x0208
  47. #define MUTE 0x020C
  48. #define CLK_RST 0x0210
  49. #define SOFT_RST 0x0214
  50. #define FIFO_SZ 0x0218
  51. #define MREG_START CPU_INT_ST
  52. #define MREG_END FIFO_SZ
  53. /* DO_FMT */
  54. /* DI_FMT */
  55. #define CR_FMT(param) ((param) << 4)
  56. # define CR_MONO 0x0
  57. # define CR_MONO_D 0x1
  58. # define CR_PCM 0x2
  59. # define CR_I2S 0x3
  60. # define CR_TDM 0x4
  61. # define CR_TDM_D 0x5
  62. /* DOFF_CTL */
  63. /* DIFF_CTL */
  64. #define IRQ_HALF 0x00100000
  65. #define FIFO_CLR 0x00000001
  66. /* DOFF_ST */
  67. #define ERR_OVER 0x00000010
  68. #define ERR_UNDER 0x00000001
  69. #define ST_ERR (ERR_OVER | ERR_UNDER)
  70. /* CLK_RST */
  71. #define B_CLK 0x00000010
  72. #define A_CLK 0x00000001
  73. /* INT_ST */
  74. #define INT_B_IN (1 << 12)
  75. #define INT_B_OUT (1 << 8)
  76. #define INT_A_IN (1 << 4)
  77. #define INT_A_OUT (1 << 0)
  78. /* SOFT_RST */
  79. #define PBSR (1 << 12) /* Port B Software Reset */
  80. #define PASR (1 << 8) /* Port A Software Reset */
  81. #define IR (1 << 4) /* Interrupt Reset */
  82. #define FSISR (1 << 0) /* Software Reset */
  83. /* FIFO_SZ */
  84. #define OUT_SZ_MASK 0x7
  85. #define BO_SZ_SHIFT 8
  86. #define AO_SZ_SHIFT 0
  87. #define FSI_RATES SNDRV_PCM_RATE_8000_96000
  88. #define FSI_FMTS (SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S16_LE)
  89. /************************************************************************
  90. struct
  91. ************************************************************************/
  92. struct fsi_priv {
  93. void __iomem *base;
  94. struct snd_pcm_substream *substream;
  95. struct fsi_master *master;
  96. int fifo_max;
  97. int chan;
  98. int byte_offset;
  99. int period_len;
  100. int buffer_len;
  101. int periods;
  102. };
  103. struct fsi_regs {
  104. u32 int_st;
  105. u32 iemsk;
  106. u32 imsk;
  107. };
  108. struct fsi_master {
  109. void __iomem *base;
  110. int irq;
  111. struct fsi_priv fsia;
  112. struct fsi_priv fsib;
  113. struct fsi_regs *regs;
  114. struct sh_fsi_platform_info *info;
  115. spinlock_t lock;
  116. };
  117. /************************************************************************
  118. basic read write function
  119. ************************************************************************/
  120. static void __fsi_reg_write(u32 reg, u32 data)
  121. {
  122. /* valid data area is 24bit */
  123. data &= 0x00ffffff;
  124. __raw_writel(data, reg);
  125. }
  126. static u32 __fsi_reg_read(u32 reg)
  127. {
  128. return __raw_readl(reg);
  129. }
  130. static void __fsi_reg_mask_set(u32 reg, u32 mask, u32 data)
  131. {
  132. u32 val = __fsi_reg_read(reg);
  133. val &= ~mask;
  134. val |= data & mask;
  135. __fsi_reg_write(reg, val);
  136. }
  137. static void fsi_reg_write(struct fsi_priv *fsi, u32 reg, u32 data)
  138. {
  139. if (reg > REG_END)
  140. return;
  141. __fsi_reg_write((u32)(fsi->base + reg), data);
  142. }
  143. static u32 fsi_reg_read(struct fsi_priv *fsi, u32 reg)
  144. {
  145. if (reg > REG_END)
  146. return 0;
  147. return __fsi_reg_read((u32)(fsi->base + reg));
  148. }
  149. static void fsi_reg_mask_set(struct fsi_priv *fsi, u32 reg, u32 mask, u32 data)
  150. {
  151. if (reg > REG_END)
  152. return;
  153. __fsi_reg_mask_set((u32)(fsi->base + reg), mask, data);
  154. }
  155. static void fsi_master_write(struct fsi_master *master, u32 reg, u32 data)
  156. {
  157. unsigned long flags;
  158. if ((reg < MREG_START) ||
  159. (reg > MREG_END))
  160. return;
  161. spin_lock_irqsave(&master->lock, flags);
  162. __fsi_reg_write((u32)(master->base + reg), data);
  163. spin_unlock_irqrestore(&master->lock, flags);
  164. }
  165. static u32 fsi_master_read(struct fsi_master *master, u32 reg)
  166. {
  167. u32 ret;
  168. unsigned long flags;
  169. if ((reg < MREG_START) ||
  170. (reg > MREG_END))
  171. return 0;
  172. spin_lock_irqsave(&master->lock, flags);
  173. ret = __fsi_reg_read((u32)(master->base + reg));
  174. spin_unlock_irqrestore(&master->lock, flags);
  175. return ret;
  176. }
  177. static void fsi_master_mask_set(struct fsi_master *master,
  178. u32 reg, u32 mask, u32 data)
  179. {
  180. unsigned long flags;
  181. if ((reg < MREG_START) ||
  182. (reg > MREG_END))
  183. return;
  184. spin_lock_irqsave(&master->lock, flags);
  185. __fsi_reg_mask_set((u32)(master->base + reg), mask, data);
  186. spin_unlock_irqrestore(&master->lock, flags);
  187. }
  188. /************************************************************************
  189. basic function
  190. ************************************************************************/
  191. static struct fsi_master *fsi_get_master(struct fsi_priv *fsi)
  192. {
  193. return fsi->master;
  194. }
  195. static int fsi_is_port_a(struct fsi_priv *fsi)
  196. {
  197. return fsi->master->base == fsi->base;
  198. }
  199. static struct snd_soc_dai *fsi_get_dai(struct snd_pcm_substream *substream)
  200. {
  201. struct snd_soc_pcm_runtime *rtd = substream->private_data;
  202. struct snd_soc_dai_link *machine = rtd->dai;
  203. return machine->cpu_dai;
  204. }
  205. static struct fsi_priv *fsi_get_priv(struct snd_pcm_substream *substream)
  206. {
  207. struct snd_soc_dai *dai = fsi_get_dai(substream);
  208. return dai->private_data;
  209. }
  210. static u32 fsi_get_info_flags(struct fsi_priv *fsi)
  211. {
  212. int is_porta = fsi_is_port_a(fsi);
  213. struct fsi_master *master = fsi_get_master(fsi);
  214. return is_porta ? master->info->porta_flags :
  215. master->info->portb_flags;
  216. }
  217. static int fsi_is_master_mode(struct fsi_priv *fsi, int is_play)
  218. {
  219. u32 mode;
  220. u32 flags = fsi_get_info_flags(fsi);
  221. mode = is_play ? SH_FSI_OUT_SLAVE_MODE : SH_FSI_IN_SLAVE_MODE;
  222. /* return
  223. * 1 : master mode
  224. * 0 : slave mode
  225. */
  226. return (mode & flags) != mode;
  227. }
  228. static u32 fsi_port_ab_io_bit(struct fsi_priv *fsi, int is_play)
  229. {
  230. int is_porta = fsi_is_port_a(fsi);
  231. u32 data;
  232. if (is_porta)
  233. data = is_play ? (1 << 0) : (1 << 4);
  234. else
  235. data = is_play ? (1 << 8) : (1 << 12);
  236. return data;
  237. }
  238. static void fsi_stream_push(struct fsi_priv *fsi,
  239. struct snd_pcm_substream *substream,
  240. u32 buffer_len,
  241. u32 period_len)
  242. {
  243. fsi->substream = substream;
  244. fsi->buffer_len = buffer_len;
  245. fsi->period_len = period_len;
  246. fsi->byte_offset = 0;
  247. fsi->periods = 0;
  248. }
  249. static void fsi_stream_pop(struct fsi_priv *fsi)
  250. {
  251. fsi->substream = NULL;
  252. fsi->buffer_len = 0;
  253. fsi->period_len = 0;
  254. fsi->byte_offset = 0;
  255. fsi->periods = 0;
  256. }
  257. static int fsi_get_fifo_residue(struct fsi_priv *fsi, int is_play)
  258. {
  259. u32 status;
  260. u32 reg = is_play ? DOFF_ST : DIFF_ST;
  261. int residue;
  262. status = fsi_reg_read(fsi, reg);
  263. residue = 0x1ff & (status >> 8);
  264. residue *= fsi->chan;
  265. return residue;
  266. }
  267. /************************************************************************
  268. irq function
  269. ************************************************************************/
  270. static void fsi_irq_enable(struct fsi_priv *fsi, int is_play)
  271. {
  272. u32 data = fsi_port_ab_io_bit(fsi, is_play);
  273. struct fsi_master *master = fsi_get_master(fsi);
  274. fsi_master_mask_set(master, master->regs->imsk, data, data);
  275. fsi_master_mask_set(master, master->regs->iemsk, data, data);
  276. }
  277. static void fsi_irq_disable(struct fsi_priv *fsi, int is_play)
  278. {
  279. u32 data = fsi_port_ab_io_bit(fsi, is_play);
  280. struct fsi_master *master = fsi_get_master(fsi);
  281. fsi_master_mask_set(master, master->regs->imsk, data, 0);
  282. fsi_master_mask_set(master, master->regs->iemsk, data, 0);
  283. }
  284. static u32 fsi_irq_get_status(struct fsi_master *master)
  285. {
  286. return fsi_master_read(master, master->regs->int_st);
  287. }
  288. static void fsi_irq_clear_all_status(struct fsi_master *master)
  289. {
  290. fsi_master_write(master, master->regs->int_st, 0x0000000);
  291. }
  292. static void fsi_irq_clear_status(struct fsi_priv *fsi)
  293. {
  294. u32 data = 0;
  295. struct fsi_master *master = fsi_get_master(fsi);
  296. data |= fsi_port_ab_io_bit(fsi, 0);
  297. data |= fsi_port_ab_io_bit(fsi, 1);
  298. /* clear interrupt factor */
  299. fsi_master_mask_set(master, master->regs->int_st, data, 0);
  300. }
  301. /************************************************************************
  302. ctrl function
  303. ************************************************************************/
  304. static void fsi_clk_ctrl(struct fsi_priv *fsi, int enable)
  305. {
  306. u32 val = fsi_is_port_a(fsi) ? (1 << 0) : (1 << 4);
  307. struct fsi_master *master = fsi_get_master(fsi);
  308. if (enable)
  309. fsi_master_mask_set(master, CLK_RST, val, val);
  310. else
  311. fsi_master_mask_set(master, CLK_RST, val, 0);
  312. }
  313. static void fsi_fifo_init(struct fsi_priv *fsi,
  314. int is_play,
  315. struct snd_soc_dai *dai)
  316. {
  317. struct fsi_master *master = fsi_get_master(fsi);
  318. u32 ctrl, shift, i;
  319. /* get on-chip RAM capacity */
  320. shift = fsi_master_read(master, FIFO_SZ);
  321. shift >>= fsi_is_port_a(fsi) ? AO_SZ_SHIFT : BO_SZ_SHIFT;
  322. shift &= OUT_SZ_MASK;
  323. fsi->fifo_max = 256 << shift;
  324. dev_dbg(dai->dev, "fifo = %d words\n", fsi->fifo_max);
  325. /*
  326. * The maximum number of sample data varies depending
  327. * on the number of channels selected for the format.
  328. *
  329. * FIFOs are used in 4-channel units in 3-channel mode
  330. * and in 8-channel units in 5- to 7-channel mode
  331. * meaning that more FIFOs than the required size of DPRAM
  332. * are used.
  333. *
  334. * ex) if 256 words of DP-RAM is connected
  335. * 1 channel: 256 (256 x 1 = 256)
  336. * 2 channels: 128 (128 x 2 = 256)
  337. * 3 channels: 64 ( 64 x 3 = 192)
  338. * 4 channels: 64 ( 64 x 4 = 256)
  339. * 5 channels: 32 ( 32 x 5 = 160)
  340. * 6 channels: 32 ( 32 x 6 = 192)
  341. * 7 channels: 32 ( 32 x 7 = 224)
  342. * 8 channels: 32 ( 32 x 8 = 256)
  343. */
  344. for (i = 1; i < fsi->chan; i <<= 1)
  345. fsi->fifo_max >>= 1;
  346. dev_dbg(dai->dev, "%d channel %d store\n", fsi->chan, fsi->fifo_max);
  347. ctrl = is_play ? DOFF_CTL : DIFF_CTL;
  348. /* set interrupt generation factor */
  349. fsi_reg_write(fsi, ctrl, IRQ_HALF);
  350. /* clear FIFO */
  351. fsi_reg_mask_set(fsi, ctrl, FIFO_CLR, FIFO_CLR);
  352. }
  353. static void fsi_soft_all_reset(struct fsi_master *master)
  354. {
  355. /* port AB reset */
  356. fsi_master_mask_set(master, SOFT_RST, PASR | PBSR, 0);
  357. mdelay(10);
  358. /* soft reset */
  359. fsi_master_mask_set(master, SOFT_RST, FSISR, 0);
  360. fsi_master_mask_set(master, SOFT_RST, FSISR, FSISR);
  361. mdelay(10);
  362. }
  363. /* playback interrupt */
  364. static int fsi_data_push(struct fsi_priv *fsi, int startup)
  365. {
  366. struct snd_pcm_runtime *runtime;
  367. struct snd_pcm_substream *substream = NULL;
  368. u32 status;
  369. int send;
  370. int fifo_free;
  371. int width;
  372. u8 *start;
  373. int i, over_period;
  374. if (!fsi ||
  375. !fsi->substream ||
  376. !fsi->substream->runtime)
  377. return -EINVAL;
  378. over_period = 0;
  379. substream = fsi->substream;
  380. runtime = substream->runtime;
  381. /* FSI FIFO has limit.
  382. * So, this driver can not send periods data at a time
  383. */
  384. if (fsi->byte_offset >=
  385. fsi->period_len * (fsi->periods + 1)) {
  386. over_period = 1;
  387. fsi->periods = (fsi->periods + 1) % runtime->periods;
  388. if (0 == fsi->periods)
  389. fsi->byte_offset = 0;
  390. }
  391. /* get 1 channel data width */
  392. width = frames_to_bytes(runtime, 1) / fsi->chan;
  393. /* get send size for alsa */
  394. send = (fsi->buffer_len - fsi->byte_offset) / width;
  395. /* get FIFO free size */
  396. fifo_free = (fsi->fifo_max * fsi->chan) - fsi_get_fifo_residue(fsi, 1);
  397. /* size check */
  398. if (fifo_free < send)
  399. send = fifo_free;
  400. start = runtime->dma_area;
  401. start += fsi->byte_offset;
  402. switch (width) {
  403. case 2:
  404. for (i = 0; i < send; i++)
  405. fsi_reg_write(fsi, DODT,
  406. ((u32)*((u16 *)start + i) << 8));
  407. break;
  408. case 4:
  409. for (i = 0; i < send; i++)
  410. fsi_reg_write(fsi, DODT, *((u32 *)start + i));
  411. break;
  412. default:
  413. return -EINVAL;
  414. }
  415. fsi->byte_offset += send * width;
  416. status = fsi_reg_read(fsi, DOFF_ST);
  417. if (!startup) {
  418. struct snd_soc_dai *dai = fsi_get_dai(substream);
  419. if (status & ERR_OVER)
  420. dev_err(dai->dev, "over run\n");
  421. if (status & ERR_UNDER)
  422. dev_err(dai->dev, "under run\n");
  423. }
  424. fsi_reg_write(fsi, DOFF_ST, 0);
  425. fsi_irq_enable(fsi, 1);
  426. if (over_period)
  427. snd_pcm_period_elapsed(substream);
  428. return 0;
  429. }
  430. static int fsi_data_pop(struct fsi_priv *fsi, int startup)
  431. {
  432. struct snd_pcm_runtime *runtime;
  433. struct snd_pcm_substream *substream = NULL;
  434. u32 status;
  435. int free;
  436. int fifo_fill;
  437. int width;
  438. u8 *start;
  439. int i, over_period;
  440. if (!fsi ||
  441. !fsi->substream ||
  442. !fsi->substream->runtime)
  443. return -EINVAL;
  444. over_period = 0;
  445. substream = fsi->substream;
  446. runtime = substream->runtime;
  447. /* FSI FIFO has limit.
  448. * So, this driver can not send periods data at a time
  449. */
  450. if (fsi->byte_offset >=
  451. fsi->period_len * (fsi->periods + 1)) {
  452. over_period = 1;
  453. fsi->periods = (fsi->periods + 1) % runtime->periods;
  454. if (0 == fsi->periods)
  455. fsi->byte_offset = 0;
  456. }
  457. /* get 1 channel data width */
  458. width = frames_to_bytes(runtime, 1) / fsi->chan;
  459. /* get free space for alsa */
  460. free = (fsi->buffer_len - fsi->byte_offset) / width;
  461. /* get recv size */
  462. fifo_fill = fsi_get_fifo_residue(fsi, 0);
  463. if (free < fifo_fill)
  464. fifo_fill = free;
  465. start = runtime->dma_area;
  466. start += fsi->byte_offset;
  467. switch (width) {
  468. case 2:
  469. for (i = 0; i < fifo_fill; i++)
  470. *((u16 *)start + i) =
  471. (u16)(fsi_reg_read(fsi, DIDT) >> 8);
  472. break;
  473. case 4:
  474. for (i = 0; i < fifo_fill; i++)
  475. *((u32 *)start + i) = fsi_reg_read(fsi, DIDT);
  476. break;
  477. default:
  478. return -EINVAL;
  479. }
  480. fsi->byte_offset += fifo_fill * width;
  481. status = fsi_reg_read(fsi, DIFF_ST);
  482. if (!startup) {
  483. struct snd_soc_dai *dai = fsi_get_dai(substream);
  484. if (status & ERR_OVER)
  485. dev_err(dai->dev, "over run\n");
  486. if (status & ERR_UNDER)
  487. dev_err(dai->dev, "under run\n");
  488. }
  489. fsi_reg_write(fsi, DIFF_ST, 0);
  490. fsi_irq_enable(fsi, 0);
  491. if (over_period)
  492. snd_pcm_period_elapsed(substream);
  493. return 0;
  494. }
  495. static irqreturn_t fsi_interrupt(int irq, void *data)
  496. {
  497. struct fsi_master *master = data;
  498. u32 int_st = fsi_irq_get_status(master);
  499. /* clear irq status */
  500. fsi_master_mask_set(master, SOFT_RST, IR, 0);
  501. fsi_master_mask_set(master, SOFT_RST, IR, IR);
  502. if (int_st & INT_A_OUT)
  503. fsi_data_push(&master->fsia, 0);
  504. if (int_st & INT_B_OUT)
  505. fsi_data_push(&master->fsib, 0);
  506. if (int_st & INT_A_IN)
  507. fsi_data_pop(&master->fsia, 0);
  508. if (int_st & INT_B_IN)
  509. fsi_data_pop(&master->fsib, 0);
  510. fsi_irq_clear_all_status(master);
  511. return IRQ_HANDLED;
  512. }
  513. /************************************************************************
  514. dai ops
  515. ************************************************************************/
  516. static int fsi_dai_startup(struct snd_pcm_substream *substream,
  517. struct snd_soc_dai *dai)
  518. {
  519. struct fsi_priv *fsi = fsi_get_priv(substream);
  520. const char *msg;
  521. u32 flags = fsi_get_info_flags(fsi);
  522. u32 fmt;
  523. u32 reg;
  524. u32 data;
  525. int is_play = (substream->stream == SNDRV_PCM_STREAM_PLAYBACK);
  526. int is_master;
  527. int ret = 0;
  528. pm_runtime_get_sync(dai->dev);
  529. /* CKG1 */
  530. data = is_play ? (1 << 0) : (1 << 4);
  531. is_master = fsi_is_master_mode(fsi, is_play);
  532. if (is_master)
  533. fsi_reg_mask_set(fsi, CKG1, data, data);
  534. else
  535. fsi_reg_mask_set(fsi, CKG1, data, 0);
  536. /* clock inversion (CKG2) */
  537. data = 0;
  538. if (SH_FSI_LRM_INV & flags)
  539. data |= 1 << 12;
  540. if (SH_FSI_BRM_INV & flags)
  541. data |= 1 << 8;
  542. if (SH_FSI_LRS_INV & flags)
  543. data |= 1 << 4;
  544. if (SH_FSI_BRS_INV & flags)
  545. data |= 1 << 0;
  546. fsi_reg_write(fsi, CKG2, data);
  547. /* do fmt, di fmt */
  548. data = 0;
  549. reg = is_play ? DO_FMT : DI_FMT;
  550. fmt = is_play ? SH_FSI_GET_OFMT(flags) : SH_FSI_GET_IFMT(flags);
  551. switch (fmt) {
  552. case SH_FSI_FMT_MONO:
  553. msg = "MONO";
  554. data = CR_FMT(CR_MONO);
  555. fsi->chan = 1;
  556. break;
  557. case SH_FSI_FMT_MONO_DELAY:
  558. msg = "MONO Delay";
  559. data = CR_FMT(CR_MONO_D);
  560. fsi->chan = 1;
  561. break;
  562. case SH_FSI_FMT_PCM:
  563. msg = "PCM";
  564. data = CR_FMT(CR_PCM);
  565. fsi->chan = 2;
  566. break;
  567. case SH_FSI_FMT_I2S:
  568. msg = "I2S";
  569. data = CR_FMT(CR_I2S);
  570. fsi->chan = 2;
  571. break;
  572. case SH_FSI_FMT_TDM:
  573. msg = "TDM";
  574. fsi->chan = is_play ?
  575. SH_FSI_GET_CH_O(flags) : SH_FSI_GET_CH_I(flags);
  576. data = CR_FMT(CR_TDM) | (fsi->chan - 1);
  577. break;
  578. case SH_FSI_FMT_TDM_DELAY:
  579. msg = "TDM Delay";
  580. fsi->chan = is_play ?
  581. SH_FSI_GET_CH_O(flags) : SH_FSI_GET_CH_I(flags);
  582. data = CR_FMT(CR_TDM_D) | (fsi->chan - 1);
  583. break;
  584. default:
  585. dev_err(dai->dev, "unknown format.\n");
  586. return -EINVAL;
  587. }
  588. fsi_reg_write(fsi, reg, data);
  589. /*
  590. * clear clk reset if master mode
  591. */
  592. if (is_master)
  593. fsi_clk_ctrl(fsi, 1);
  594. /* irq clear */
  595. fsi_irq_disable(fsi, is_play);
  596. fsi_irq_clear_status(fsi);
  597. /* fifo init */
  598. fsi_fifo_init(fsi, is_play, dai);
  599. return ret;
  600. }
  601. static void fsi_dai_shutdown(struct snd_pcm_substream *substream,
  602. struct snd_soc_dai *dai)
  603. {
  604. struct fsi_priv *fsi = fsi_get_priv(substream);
  605. int is_play = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
  606. fsi_irq_disable(fsi, is_play);
  607. fsi_clk_ctrl(fsi, 0);
  608. pm_runtime_put_sync(dai->dev);
  609. }
  610. static int fsi_dai_trigger(struct snd_pcm_substream *substream, int cmd,
  611. struct snd_soc_dai *dai)
  612. {
  613. struct fsi_priv *fsi = fsi_get_priv(substream);
  614. struct snd_pcm_runtime *runtime = substream->runtime;
  615. int is_play = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
  616. int ret = 0;
  617. switch (cmd) {
  618. case SNDRV_PCM_TRIGGER_START:
  619. fsi_stream_push(fsi, substream,
  620. frames_to_bytes(runtime, runtime->buffer_size),
  621. frames_to_bytes(runtime, runtime->period_size));
  622. ret = is_play ? fsi_data_push(fsi, 1) : fsi_data_pop(fsi, 1);
  623. break;
  624. case SNDRV_PCM_TRIGGER_STOP:
  625. fsi_irq_disable(fsi, is_play);
  626. fsi_stream_pop(fsi);
  627. break;
  628. }
  629. return ret;
  630. }
  631. static struct snd_soc_dai_ops fsi_dai_ops = {
  632. .startup = fsi_dai_startup,
  633. .shutdown = fsi_dai_shutdown,
  634. .trigger = fsi_dai_trigger,
  635. };
  636. /************************************************************************
  637. pcm ops
  638. ************************************************************************/
  639. static struct snd_pcm_hardware fsi_pcm_hardware = {
  640. .info = SNDRV_PCM_INFO_INTERLEAVED |
  641. SNDRV_PCM_INFO_MMAP |
  642. SNDRV_PCM_INFO_MMAP_VALID |
  643. SNDRV_PCM_INFO_PAUSE,
  644. .formats = FSI_FMTS,
  645. .rates = FSI_RATES,
  646. .rate_min = 8000,
  647. .rate_max = 192000,
  648. .channels_min = 1,
  649. .channels_max = 2,
  650. .buffer_bytes_max = 64 * 1024,
  651. .period_bytes_min = 32,
  652. .period_bytes_max = 8192,
  653. .periods_min = 1,
  654. .periods_max = 32,
  655. .fifo_size = 256,
  656. };
  657. static int fsi_pcm_open(struct snd_pcm_substream *substream)
  658. {
  659. struct snd_pcm_runtime *runtime = substream->runtime;
  660. int ret = 0;
  661. snd_soc_set_runtime_hwparams(substream, &fsi_pcm_hardware);
  662. ret = snd_pcm_hw_constraint_integer(runtime,
  663. SNDRV_PCM_HW_PARAM_PERIODS);
  664. return ret;
  665. }
  666. static int fsi_hw_params(struct snd_pcm_substream *substream,
  667. struct snd_pcm_hw_params *hw_params)
  668. {
  669. return snd_pcm_lib_malloc_pages(substream,
  670. params_buffer_bytes(hw_params));
  671. }
  672. static int fsi_hw_free(struct snd_pcm_substream *substream)
  673. {
  674. return snd_pcm_lib_free_pages(substream);
  675. }
  676. static snd_pcm_uframes_t fsi_pointer(struct snd_pcm_substream *substream)
  677. {
  678. struct snd_pcm_runtime *runtime = substream->runtime;
  679. struct fsi_priv *fsi = fsi_get_priv(substream);
  680. long location;
  681. location = (fsi->byte_offset - 1);
  682. if (location < 0)
  683. location = 0;
  684. return bytes_to_frames(runtime, location);
  685. }
  686. static struct snd_pcm_ops fsi_pcm_ops = {
  687. .open = fsi_pcm_open,
  688. .ioctl = snd_pcm_lib_ioctl,
  689. .hw_params = fsi_hw_params,
  690. .hw_free = fsi_hw_free,
  691. .pointer = fsi_pointer,
  692. };
  693. /************************************************************************
  694. snd_soc_platform
  695. ************************************************************************/
  696. #define PREALLOC_BUFFER (32 * 1024)
  697. #define PREALLOC_BUFFER_MAX (32 * 1024)
  698. static void fsi_pcm_free(struct snd_pcm *pcm)
  699. {
  700. snd_pcm_lib_preallocate_free_for_all(pcm);
  701. }
  702. static int fsi_pcm_new(struct snd_card *card,
  703. struct snd_soc_dai *dai,
  704. struct snd_pcm *pcm)
  705. {
  706. /*
  707. * dont use SNDRV_DMA_TYPE_DEV, since it will oops the SH kernel
  708. * in MMAP mode (i.e. aplay -M)
  709. */
  710. return snd_pcm_lib_preallocate_pages_for_all(
  711. pcm,
  712. SNDRV_DMA_TYPE_CONTINUOUS,
  713. snd_dma_continuous_data(GFP_KERNEL),
  714. PREALLOC_BUFFER, PREALLOC_BUFFER_MAX);
  715. }
  716. /************************************************************************
  717. alsa struct
  718. ************************************************************************/
  719. struct snd_soc_dai fsi_soc_dai[] = {
  720. {
  721. .name = "FSIA",
  722. .id = 0,
  723. .playback = {
  724. .rates = FSI_RATES,
  725. .formats = FSI_FMTS,
  726. .channels_min = 1,
  727. .channels_max = 8,
  728. },
  729. .capture = {
  730. .rates = FSI_RATES,
  731. .formats = FSI_FMTS,
  732. .channels_min = 1,
  733. .channels_max = 8,
  734. },
  735. .ops = &fsi_dai_ops,
  736. },
  737. {
  738. .name = "FSIB",
  739. .id = 1,
  740. .playback = {
  741. .rates = FSI_RATES,
  742. .formats = FSI_FMTS,
  743. .channels_min = 1,
  744. .channels_max = 8,
  745. },
  746. .capture = {
  747. .rates = FSI_RATES,
  748. .formats = FSI_FMTS,
  749. .channels_min = 1,
  750. .channels_max = 8,
  751. },
  752. .ops = &fsi_dai_ops,
  753. },
  754. };
  755. EXPORT_SYMBOL_GPL(fsi_soc_dai);
  756. struct snd_soc_platform fsi_soc_platform = {
  757. .name = "fsi-pcm",
  758. .pcm_ops = &fsi_pcm_ops,
  759. .pcm_new = fsi_pcm_new,
  760. .pcm_free = fsi_pcm_free,
  761. };
  762. EXPORT_SYMBOL_GPL(fsi_soc_platform);
  763. /************************************************************************
  764. platform function
  765. ************************************************************************/
  766. static int fsi_probe(struct platform_device *pdev)
  767. {
  768. struct fsi_master *master;
  769. const struct platform_device_id *id_entry;
  770. struct resource *res;
  771. unsigned int irq;
  772. int ret;
  773. if (0 != pdev->id) {
  774. dev_err(&pdev->dev, "current fsi support id 0 only now\n");
  775. return -ENODEV;
  776. }
  777. id_entry = pdev->id_entry;
  778. if (!id_entry) {
  779. dev_err(&pdev->dev, "unknown fsi device\n");
  780. return -ENODEV;
  781. }
  782. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  783. irq = platform_get_irq(pdev, 0);
  784. if (!res || (int)irq <= 0) {
  785. dev_err(&pdev->dev, "Not enough FSI platform resources.\n");
  786. ret = -ENODEV;
  787. goto exit;
  788. }
  789. master = kzalloc(sizeof(*master), GFP_KERNEL);
  790. if (!master) {
  791. dev_err(&pdev->dev, "Could not allocate master\n");
  792. ret = -ENOMEM;
  793. goto exit;
  794. }
  795. master->base = ioremap_nocache(res->start, resource_size(res));
  796. if (!master->base) {
  797. ret = -ENXIO;
  798. dev_err(&pdev->dev, "Unable to ioremap FSI registers.\n");
  799. goto exit_kfree;
  800. }
  801. master->irq = irq;
  802. master->info = pdev->dev.platform_data;
  803. master->fsia.base = master->base;
  804. master->fsia.master = master;
  805. master->fsib.base = master->base + 0x40;
  806. master->fsib.master = master;
  807. master->regs = (struct fsi_regs *)id_entry->driver_data;
  808. spin_lock_init(&master->lock);
  809. pm_runtime_enable(&pdev->dev);
  810. pm_runtime_resume(&pdev->dev);
  811. fsi_soc_dai[0].dev = &pdev->dev;
  812. fsi_soc_dai[0].private_data = &master->fsia;
  813. fsi_soc_dai[1].dev = &pdev->dev;
  814. fsi_soc_dai[1].private_data = &master->fsib;
  815. fsi_soft_all_reset(master);
  816. ret = request_irq(irq, &fsi_interrupt, IRQF_DISABLED,
  817. id_entry->name, master);
  818. if (ret) {
  819. dev_err(&pdev->dev, "irq request err\n");
  820. goto exit_iounmap;
  821. }
  822. ret = snd_soc_register_platform(&fsi_soc_platform);
  823. if (ret < 0) {
  824. dev_err(&pdev->dev, "cannot snd soc register\n");
  825. goto exit_free_irq;
  826. }
  827. return snd_soc_register_dais(fsi_soc_dai, ARRAY_SIZE(fsi_soc_dai));
  828. exit_free_irq:
  829. free_irq(irq, master);
  830. exit_iounmap:
  831. iounmap(master->base);
  832. pm_runtime_disable(&pdev->dev);
  833. exit_kfree:
  834. kfree(master);
  835. master = NULL;
  836. exit:
  837. return ret;
  838. }
  839. static int fsi_remove(struct platform_device *pdev)
  840. {
  841. struct fsi_master *master;
  842. master = fsi_get_master(fsi_soc_dai[0].private_data);
  843. snd_soc_unregister_dais(fsi_soc_dai, ARRAY_SIZE(fsi_soc_dai));
  844. snd_soc_unregister_platform(&fsi_soc_platform);
  845. pm_runtime_disable(&pdev->dev);
  846. free_irq(master->irq, master);
  847. iounmap(master->base);
  848. kfree(master);
  849. fsi_soc_dai[0].dev = NULL;
  850. fsi_soc_dai[0].private_data = NULL;
  851. fsi_soc_dai[1].dev = NULL;
  852. fsi_soc_dai[1].private_data = NULL;
  853. return 0;
  854. }
  855. static int fsi_runtime_nop(struct device *dev)
  856. {
  857. /* Runtime PM callback shared between ->runtime_suspend()
  858. * and ->runtime_resume(). Simply returns success.
  859. *
  860. * This driver re-initializes all registers after
  861. * pm_runtime_get_sync() anyway so there is no need
  862. * to save and restore registers here.
  863. */
  864. return 0;
  865. }
  866. static struct dev_pm_ops fsi_pm_ops = {
  867. .runtime_suspend = fsi_runtime_nop,
  868. .runtime_resume = fsi_runtime_nop,
  869. };
  870. static struct fsi_regs fsi_regs = {
  871. .int_st = INT_ST,
  872. .iemsk = IEMSK,
  873. .imsk = IMSK,
  874. };
  875. static struct fsi_regs fsi2_regs = {
  876. .int_st = CPU_INT_ST,
  877. .iemsk = CPU_IEMSK,
  878. .imsk = CPU_IMSK,
  879. };
  880. static struct platform_device_id fsi_id_table[] = {
  881. { "sh_fsi", (kernel_ulong_t)&fsi_regs },
  882. { "sh_fsi2", (kernel_ulong_t)&fsi2_regs },
  883. };
  884. static struct platform_driver fsi_driver = {
  885. .driver = {
  886. .name = "sh_fsi",
  887. .pm = &fsi_pm_ops,
  888. },
  889. .probe = fsi_probe,
  890. .remove = fsi_remove,
  891. .id_table = fsi_id_table,
  892. };
  893. static int __init fsi_mobile_init(void)
  894. {
  895. return platform_driver_register(&fsi_driver);
  896. }
  897. static void __exit fsi_mobile_exit(void)
  898. {
  899. platform_driver_unregister(&fsi_driver);
  900. }
  901. module_init(fsi_mobile_init);
  902. module_exit(fsi_mobile_exit);
  903. MODULE_LICENSE("GPL");
  904. MODULE_DESCRIPTION("SuperH onchip FSI audio driver");
  905. MODULE_AUTHOR("Kuninori Morimoto <morimoto.kuninori@renesas.com>");