reassembly.c 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814
  1. /*
  2. * IPv6 fragment reassembly
  3. * Linux INET6 implementation
  4. *
  5. * Authors:
  6. * Pedro Roque <roque@di.fc.ul.pt>
  7. *
  8. * Based on: net/ipv4/ip_fragment.c
  9. *
  10. * This program is free software; you can redistribute it and/or
  11. * modify it under the terms of the GNU General Public License
  12. * as published by the Free Software Foundation; either version
  13. * 2 of the License, or (at your option) any later version.
  14. */
  15. /*
  16. * Fixes:
  17. * Andi Kleen Make it work with multiple hosts.
  18. * More RFC compliance.
  19. *
  20. * Horst von Brand Add missing #include <linux/string.h>
  21. * Alexey Kuznetsov SMP races, threading, cleanup.
  22. * Patrick McHardy LRU queue of frag heads for evictor.
  23. * Mitsuru KANDA @USAGI Register inet6_protocol{}.
  24. * David Stevens and
  25. * YOSHIFUJI,H. @USAGI Always remove fragment header to
  26. * calculate ICV correctly.
  27. */
  28. #include <linux/errno.h>
  29. #include <linux/types.h>
  30. #include <linux/string.h>
  31. #include <linux/socket.h>
  32. #include <linux/sockios.h>
  33. #include <linux/jiffies.h>
  34. #include <linux/net.h>
  35. #include <linux/list.h>
  36. #include <linux/netdevice.h>
  37. #include <linux/in6.h>
  38. #include <linux/ipv6.h>
  39. #include <linux/icmpv6.h>
  40. #include <linux/random.h>
  41. #include <linux/jhash.h>
  42. #include <linux/skbuff.h>
  43. #include <linux/slab.h>
  44. #include <net/sock.h>
  45. #include <net/snmp.h>
  46. #include <net/ipv6.h>
  47. #include <net/ip6_route.h>
  48. #include <net/protocol.h>
  49. #include <net/transp_v6.h>
  50. #include <net/rawv6.h>
  51. #include <net/ndisc.h>
  52. #include <net/addrconf.h>
  53. #include <net/inet_frag.h>
  54. struct ip6frag_skb_cb
  55. {
  56. struct inet6_skb_parm h;
  57. int offset;
  58. };
  59. #define FRAG6_CB(skb) ((struct ip6frag_skb_cb*)((skb)->cb))
  60. /*
  61. * Equivalent of ipv4 struct ipq
  62. */
  63. struct frag_queue
  64. {
  65. struct inet_frag_queue q;
  66. __be32 id; /* fragment id */
  67. u32 user;
  68. struct in6_addr saddr;
  69. struct in6_addr daddr;
  70. int iif;
  71. unsigned int csum;
  72. __u16 nhoffset;
  73. };
  74. static struct inet_frags ip6_frags;
  75. int ip6_frag_nqueues(struct net *net)
  76. {
  77. return net->ipv6.frags.nqueues;
  78. }
  79. int ip6_frag_mem(struct net *net)
  80. {
  81. return atomic_read(&net->ipv6.frags.mem);
  82. }
  83. static int ip6_frag_reasm(struct frag_queue *fq, struct sk_buff *prev,
  84. struct net_device *dev);
  85. /*
  86. * callers should be careful not to use the hash value outside the ipfrag_lock
  87. * as doing so could race with ipfrag_hash_rnd being recalculated.
  88. */
  89. unsigned int inet6_hash_frag(__be32 id, const struct in6_addr *saddr,
  90. const struct in6_addr *daddr, u32 rnd)
  91. {
  92. u32 a, b, c;
  93. a = (__force u32)saddr->s6_addr32[0];
  94. b = (__force u32)saddr->s6_addr32[1];
  95. c = (__force u32)saddr->s6_addr32[2];
  96. a += JHASH_GOLDEN_RATIO;
  97. b += JHASH_GOLDEN_RATIO;
  98. c += rnd;
  99. __jhash_mix(a, b, c);
  100. a += (__force u32)saddr->s6_addr32[3];
  101. b += (__force u32)daddr->s6_addr32[0];
  102. c += (__force u32)daddr->s6_addr32[1];
  103. __jhash_mix(a, b, c);
  104. a += (__force u32)daddr->s6_addr32[2];
  105. b += (__force u32)daddr->s6_addr32[3];
  106. c += (__force u32)id;
  107. __jhash_mix(a, b, c);
  108. return c & (INETFRAGS_HASHSZ - 1);
  109. }
  110. EXPORT_SYMBOL_GPL(inet6_hash_frag);
  111. static unsigned int ip6_hashfn(struct inet_frag_queue *q)
  112. {
  113. struct frag_queue *fq;
  114. fq = container_of(q, struct frag_queue, q);
  115. return inet6_hash_frag(fq->id, &fq->saddr, &fq->daddr, ip6_frags.rnd);
  116. }
  117. int ip6_frag_match(struct inet_frag_queue *q, void *a)
  118. {
  119. struct frag_queue *fq;
  120. struct ip6_create_arg *arg = a;
  121. fq = container_of(q, struct frag_queue, q);
  122. return (fq->id == arg->id && fq->user == arg->user &&
  123. ipv6_addr_equal(&fq->saddr, arg->src) &&
  124. ipv6_addr_equal(&fq->daddr, arg->dst));
  125. }
  126. EXPORT_SYMBOL(ip6_frag_match);
  127. /* Memory Tracking Functions. */
  128. static void frag_kfree_skb(struct netns_frags *nf, struct sk_buff *skb)
  129. {
  130. atomic_sub(skb->truesize, &nf->mem);
  131. kfree_skb(skb);
  132. }
  133. void ip6_frag_init(struct inet_frag_queue *q, void *a)
  134. {
  135. struct frag_queue *fq = container_of(q, struct frag_queue, q);
  136. struct ip6_create_arg *arg = a;
  137. fq->id = arg->id;
  138. fq->user = arg->user;
  139. ipv6_addr_copy(&fq->saddr, arg->src);
  140. ipv6_addr_copy(&fq->daddr, arg->dst);
  141. }
  142. EXPORT_SYMBOL(ip6_frag_init);
  143. /* Destruction primitives. */
  144. static __inline__ void fq_put(struct frag_queue *fq)
  145. {
  146. inet_frag_put(&fq->q, &ip6_frags);
  147. }
  148. /* Kill fq entry. It is not destroyed immediately,
  149. * because caller (and someone more) holds reference count.
  150. */
  151. static __inline__ void fq_kill(struct frag_queue *fq)
  152. {
  153. inet_frag_kill(&fq->q, &ip6_frags);
  154. }
  155. static void ip6_evictor(struct net *net, struct inet6_dev *idev)
  156. {
  157. int evicted;
  158. evicted = inet_frag_evictor(&net->ipv6.frags, &ip6_frags);
  159. if (evicted)
  160. IP6_ADD_STATS_BH(net, idev, IPSTATS_MIB_REASMFAILS, evicted);
  161. }
  162. static void ip6_frag_expire(unsigned long data)
  163. {
  164. struct frag_queue *fq;
  165. struct net_device *dev = NULL;
  166. struct net *net;
  167. fq = container_of((struct inet_frag_queue *)data, struct frag_queue, q);
  168. spin_lock(&fq->q.lock);
  169. if (fq->q.last_in & INET_FRAG_COMPLETE)
  170. goto out;
  171. fq_kill(fq);
  172. net = container_of(fq->q.net, struct net, ipv6.frags);
  173. rcu_read_lock();
  174. dev = dev_get_by_index_rcu(net, fq->iif);
  175. if (!dev)
  176. goto out_rcu_unlock;
  177. IP6_INC_STATS_BH(net, __in6_dev_get(dev), IPSTATS_MIB_REASMTIMEOUT);
  178. IP6_INC_STATS_BH(net, __in6_dev_get(dev), IPSTATS_MIB_REASMFAILS);
  179. /* Don't send error if the first segment did not arrive. */
  180. if (!(fq->q.last_in & INET_FRAG_FIRST_IN) || !fq->q.fragments)
  181. goto out_rcu_unlock;
  182. /*
  183. But use as source device on which LAST ARRIVED
  184. segment was received. And do not use fq->dev
  185. pointer directly, device might already disappeared.
  186. */
  187. fq->q.fragments->dev = dev;
  188. icmpv6_send(fq->q.fragments, ICMPV6_TIME_EXCEED, ICMPV6_EXC_FRAGTIME, 0);
  189. out_rcu_unlock:
  190. rcu_read_unlock();
  191. out:
  192. spin_unlock(&fq->q.lock);
  193. fq_put(fq);
  194. }
  195. static __inline__ struct frag_queue *
  196. fq_find(struct net *net, __be32 id, struct in6_addr *src, struct in6_addr *dst)
  197. {
  198. struct inet_frag_queue *q;
  199. struct ip6_create_arg arg;
  200. unsigned int hash;
  201. arg.id = id;
  202. arg.user = IP6_DEFRAG_LOCAL_DELIVER;
  203. arg.src = src;
  204. arg.dst = dst;
  205. read_lock(&ip6_frags.lock);
  206. hash = inet6_hash_frag(id, src, dst, ip6_frags.rnd);
  207. q = inet_frag_find(&net->ipv6.frags, &ip6_frags, &arg, hash);
  208. if (q == NULL)
  209. return NULL;
  210. return container_of(q, struct frag_queue, q);
  211. }
  212. static int ip6_frag_queue(struct frag_queue *fq, struct sk_buff *skb,
  213. struct frag_hdr *fhdr, int nhoff)
  214. {
  215. struct sk_buff *prev, *next;
  216. struct net_device *dev;
  217. int offset, end;
  218. struct net *net = dev_net(skb_dst(skb)->dev);
  219. if (fq->q.last_in & INET_FRAG_COMPLETE)
  220. goto err;
  221. offset = ntohs(fhdr->frag_off) & ~0x7;
  222. end = offset + (ntohs(ipv6_hdr(skb)->payload_len) -
  223. ((u8 *)(fhdr + 1) - (u8 *)(ipv6_hdr(skb) + 1)));
  224. if ((unsigned int)end > IPV6_MAXPLEN) {
  225. IP6_INC_STATS_BH(net, ip6_dst_idev(skb_dst(skb)),
  226. IPSTATS_MIB_INHDRERRORS);
  227. icmpv6_param_prob(skb, ICMPV6_HDR_FIELD,
  228. ((u8 *)&fhdr->frag_off -
  229. skb_network_header(skb)));
  230. return -1;
  231. }
  232. if (skb->ip_summed == CHECKSUM_COMPLETE) {
  233. const unsigned char *nh = skb_network_header(skb);
  234. skb->csum = csum_sub(skb->csum,
  235. csum_partial(nh, (u8 *)(fhdr + 1) - nh,
  236. 0));
  237. }
  238. /* Is this the final fragment? */
  239. if (!(fhdr->frag_off & htons(IP6_MF))) {
  240. /* If we already have some bits beyond end
  241. * or have different end, the segment is corrupted.
  242. */
  243. if (end < fq->q.len ||
  244. ((fq->q.last_in & INET_FRAG_LAST_IN) && end != fq->q.len))
  245. goto err;
  246. fq->q.last_in |= INET_FRAG_LAST_IN;
  247. fq->q.len = end;
  248. } else {
  249. /* Check if the fragment is rounded to 8 bytes.
  250. * Required by the RFC.
  251. */
  252. if (end & 0x7) {
  253. /* RFC2460 says always send parameter problem in
  254. * this case. -DaveM
  255. */
  256. IP6_INC_STATS_BH(net, ip6_dst_idev(skb_dst(skb)),
  257. IPSTATS_MIB_INHDRERRORS);
  258. icmpv6_param_prob(skb, ICMPV6_HDR_FIELD,
  259. offsetof(struct ipv6hdr, payload_len));
  260. return -1;
  261. }
  262. if (end > fq->q.len) {
  263. /* Some bits beyond end -> corruption. */
  264. if (fq->q.last_in & INET_FRAG_LAST_IN)
  265. goto err;
  266. fq->q.len = end;
  267. }
  268. }
  269. if (end == offset)
  270. goto err;
  271. /* Point into the IP datagram 'data' part. */
  272. if (!pskb_pull(skb, (u8 *) (fhdr + 1) - skb->data))
  273. goto err;
  274. if (pskb_trim_rcsum(skb, end - offset))
  275. goto err;
  276. /* Find out which fragments are in front and at the back of us
  277. * in the chain of fragments so far. We must know where to put
  278. * this fragment, right?
  279. */
  280. prev = fq->q.fragments_tail;
  281. if (!prev || FRAG6_CB(prev)->offset < offset) {
  282. next = NULL;
  283. goto found;
  284. }
  285. prev = NULL;
  286. for(next = fq->q.fragments; next != NULL; next = next->next) {
  287. if (FRAG6_CB(next)->offset >= offset)
  288. break; /* bingo! */
  289. prev = next;
  290. }
  291. found:
  292. /* We found where to put this one. Check for overlap with
  293. * preceding fragment, and, if needed, align things so that
  294. * any overlaps are eliminated.
  295. */
  296. if (prev) {
  297. int i = (FRAG6_CB(prev)->offset + prev->len) - offset;
  298. if (i > 0) {
  299. offset += i;
  300. if (end <= offset)
  301. goto err;
  302. if (!pskb_pull(skb, i))
  303. goto err;
  304. if (skb->ip_summed != CHECKSUM_UNNECESSARY)
  305. skb->ip_summed = CHECKSUM_NONE;
  306. }
  307. }
  308. /* Look for overlap with succeeding segments.
  309. * If we can merge fragments, do it.
  310. */
  311. while (next && FRAG6_CB(next)->offset < end) {
  312. int i = end - FRAG6_CB(next)->offset; /* overlap is 'i' bytes */
  313. if (i < next->len) {
  314. /* Eat head of the next overlapped fragment
  315. * and leave the loop. The next ones cannot overlap.
  316. */
  317. if (!pskb_pull(next, i))
  318. goto err;
  319. FRAG6_CB(next)->offset += i; /* next fragment */
  320. fq->q.meat -= i;
  321. if (next->ip_summed != CHECKSUM_UNNECESSARY)
  322. next->ip_summed = CHECKSUM_NONE;
  323. break;
  324. } else {
  325. struct sk_buff *free_it = next;
  326. /* Old fragment is completely overridden with
  327. * new one drop it.
  328. */
  329. next = next->next;
  330. if (prev)
  331. prev->next = next;
  332. else
  333. fq->q.fragments = next;
  334. fq->q.meat -= free_it->len;
  335. frag_kfree_skb(fq->q.net, free_it);
  336. }
  337. }
  338. FRAG6_CB(skb)->offset = offset;
  339. /* Insert this fragment in the chain of fragments. */
  340. skb->next = next;
  341. if (!next)
  342. fq->q.fragments_tail = skb;
  343. if (prev)
  344. prev->next = skb;
  345. else
  346. fq->q.fragments = skb;
  347. dev = skb->dev;
  348. if (dev) {
  349. fq->iif = dev->ifindex;
  350. skb->dev = NULL;
  351. }
  352. fq->q.stamp = skb->tstamp;
  353. fq->q.meat += skb->len;
  354. atomic_add(skb->truesize, &fq->q.net->mem);
  355. /* The first fragment.
  356. * nhoffset is obtained from the first fragment, of course.
  357. */
  358. if (offset == 0) {
  359. fq->nhoffset = nhoff;
  360. fq->q.last_in |= INET_FRAG_FIRST_IN;
  361. }
  362. if (fq->q.last_in == (INET_FRAG_FIRST_IN | INET_FRAG_LAST_IN) &&
  363. fq->q.meat == fq->q.len)
  364. return ip6_frag_reasm(fq, prev, dev);
  365. write_lock(&ip6_frags.lock);
  366. list_move_tail(&fq->q.lru_list, &fq->q.net->lru_list);
  367. write_unlock(&ip6_frags.lock);
  368. return -1;
  369. err:
  370. IP6_INC_STATS(net, ip6_dst_idev(skb_dst(skb)),
  371. IPSTATS_MIB_REASMFAILS);
  372. kfree_skb(skb);
  373. return -1;
  374. }
  375. /*
  376. * Check if this packet is complete.
  377. * Returns NULL on failure by any reason, and pointer
  378. * to current nexthdr field in reassembled frame.
  379. *
  380. * It is called with locked fq, and caller must check that
  381. * queue is eligible for reassembly i.e. it is not COMPLETE,
  382. * the last and the first frames arrived and all the bits are here.
  383. */
  384. static int ip6_frag_reasm(struct frag_queue *fq, struct sk_buff *prev,
  385. struct net_device *dev)
  386. {
  387. struct net *net = container_of(fq->q.net, struct net, ipv6.frags);
  388. struct sk_buff *fp, *head = fq->q.fragments;
  389. int payload_len;
  390. unsigned int nhoff;
  391. fq_kill(fq);
  392. /* Make the one we just received the head. */
  393. if (prev) {
  394. head = prev->next;
  395. fp = skb_clone(head, GFP_ATOMIC);
  396. if (!fp)
  397. goto out_oom;
  398. fp->next = head->next;
  399. if (!fp->next)
  400. fq->q.fragments_tail = fp;
  401. prev->next = fp;
  402. skb_morph(head, fq->q.fragments);
  403. head->next = fq->q.fragments->next;
  404. kfree_skb(fq->q.fragments);
  405. fq->q.fragments = head;
  406. }
  407. WARN_ON(head == NULL);
  408. WARN_ON(FRAG6_CB(head)->offset != 0);
  409. /* Unfragmented part is taken from the first segment. */
  410. payload_len = ((head->data - skb_network_header(head)) -
  411. sizeof(struct ipv6hdr) + fq->q.len -
  412. sizeof(struct frag_hdr));
  413. if (payload_len > IPV6_MAXPLEN)
  414. goto out_oversize;
  415. /* Head of list must not be cloned. */
  416. if (skb_cloned(head) && pskb_expand_head(head, 0, 0, GFP_ATOMIC))
  417. goto out_oom;
  418. /* If the first fragment is fragmented itself, we split
  419. * it to two chunks: the first with data and paged part
  420. * and the second, holding only fragments. */
  421. if (skb_has_frags(head)) {
  422. struct sk_buff *clone;
  423. int i, plen = 0;
  424. if ((clone = alloc_skb(0, GFP_ATOMIC)) == NULL)
  425. goto out_oom;
  426. clone->next = head->next;
  427. head->next = clone;
  428. skb_shinfo(clone)->frag_list = skb_shinfo(head)->frag_list;
  429. skb_frag_list_init(head);
  430. for (i=0; i<skb_shinfo(head)->nr_frags; i++)
  431. plen += skb_shinfo(head)->frags[i].size;
  432. clone->len = clone->data_len = head->data_len - plen;
  433. head->data_len -= clone->len;
  434. head->len -= clone->len;
  435. clone->csum = 0;
  436. clone->ip_summed = head->ip_summed;
  437. atomic_add(clone->truesize, &fq->q.net->mem);
  438. }
  439. /* We have to remove fragment header from datagram and to relocate
  440. * header in order to calculate ICV correctly. */
  441. nhoff = fq->nhoffset;
  442. skb_network_header(head)[nhoff] = skb_transport_header(head)[0];
  443. memmove(head->head + sizeof(struct frag_hdr), head->head,
  444. (head->data - head->head) - sizeof(struct frag_hdr));
  445. head->mac_header += sizeof(struct frag_hdr);
  446. head->network_header += sizeof(struct frag_hdr);
  447. skb_shinfo(head)->frag_list = head->next;
  448. skb_reset_transport_header(head);
  449. skb_push(head, head->data - skb_network_header(head));
  450. for (fp=head->next; fp; fp = fp->next) {
  451. head->data_len += fp->len;
  452. head->len += fp->len;
  453. if (head->ip_summed != fp->ip_summed)
  454. head->ip_summed = CHECKSUM_NONE;
  455. else if (head->ip_summed == CHECKSUM_COMPLETE)
  456. head->csum = csum_add(head->csum, fp->csum);
  457. head->truesize += fp->truesize;
  458. }
  459. atomic_sub(head->truesize, &fq->q.net->mem);
  460. head->next = NULL;
  461. head->dev = dev;
  462. head->tstamp = fq->q.stamp;
  463. ipv6_hdr(head)->payload_len = htons(payload_len);
  464. IP6CB(head)->nhoff = nhoff;
  465. /* Yes, and fold redundant checksum back. 8) */
  466. if (head->ip_summed == CHECKSUM_COMPLETE)
  467. head->csum = csum_partial(skb_network_header(head),
  468. skb_network_header_len(head),
  469. head->csum);
  470. rcu_read_lock();
  471. IP6_INC_STATS_BH(net, __in6_dev_get(dev), IPSTATS_MIB_REASMOKS);
  472. rcu_read_unlock();
  473. fq->q.fragments = NULL;
  474. fq->q.fragments_tail = NULL;
  475. return 1;
  476. out_oversize:
  477. if (net_ratelimit())
  478. printk(KERN_DEBUG "ip6_frag_reasm: payload len = %d\n", payload_len);
  479. goto out_fail;
  480. out_oom:
  481. if (net_ratelimit())
  482. printk(KERN_DEBUG "ip6_frag_reasm: no memory for reassembly\n");
  483. out_fail:
  484. rcu_read_lock();
  485. IP6_INC_STATS_BH(net, __in6_dev_get(dev), IPSTATS_MIB_REASMFAILS);
  486. rcu_read_unlock();
  487. return -1;
  488. }
  489. static int ipv6_frag_rcv(struct sk_buff *skb)
  490. {
  491. struct frag_hdr *fhdr;
  492. struct frag_queue *fq;
  493. struct ipv6hdr *hdr = ipv6_hdr(skb);
  494. struct net *net = dev_net(skb_dst(skb)->dev);
  495. IP6_INC_STATS_BH(net, ip6_dst_idev(skb_dst(skb)), IPSTATS_MIB_REASMREQDS);
  496. /* Jumbo payload inhibits frag. header */
  497. if (hdr->payload_len==0)
  498. goto fail_hdr;
  499. if (!pskb_may_pull(skb, (skb_transport_offset(skb) +
  500. sizeof(struct frag_hdr))))
  501. goto fail_hdr;
  502. hdr = ipv6_hdr(skb);
  503. fhdr = (struct frag_hdr *)skb_transport_header(skb);
  504. if (!(fhdr->frag_off & htons(0xFFF9))) {
  505. /* It is not a fragmented frame */
  506. skb->transport_header += sizeof(struct frag_hdr);
  507. IP6_INC_STATS_BH(net,
  508. ip6_dst_idev(skb_dst(skb)), IPSTATS_MIB_REASMOKS);
  509. IP6CB(skb)->nhoff = (u8 *)fhdr - skb_network_header(skb);
  510. return 1;
  511. }
  512. if (atomic_read(&net->ipv6.frags.mem) > net->ipv6.frags.high_thresh)
  513. ip6_evictor(net, ip6_dst_idev(skb_dst(skb)));
  514. fq = fq_find(net, fhdr->identification, &hdr->saddr, &hdr->daddr);
  515. if (fq != NULL) {
  516. int ret;
  517. spin_lock(&fq->q.lock);
  518. ret = ip6_frag_queue(fq, skb, fhdr, IP6CB(skb)->nhoff);
  519. spin_unlock(&fq->q.lock);
  520. fq_put(fq);
  521. return ret;
  522. }
  523. IP6_INC_STATS_BH(net, ip6_dst_idev(skb_dst(skb)), IPSTATS_MIB_REASMFAILS);
  524. kfree_skb(skb);
  525. return -1;
  526. fail_hdr:
  527. IP6_INC_STATS(net, ip6_dst_idev(skb_dst(skb)), IPSTATS_MIB_INHDRERRORS);
  528. icmpv6_param_prob(skb, ICMPV6_HDR_FIELD, skb_network_header_len(skb));
  529. return -1;
  530. }
  531. static const struct inet6_protocol frag_protocol =
  532. {
  533. .handler = ipv6_frag_rcv,
  534. .flags = INET6_PROTO_NOPOLICY,
  535. };
  536. #ifdef CONFIG_SYSCTL
  537. static struct ctl_table ip6_frags_ns_ctl_table[] = {
  538. {
  539. .procname = "ip6frag_high_thresh",
  540. .data = &init_net.ipv6.frags.high_thresh,
  541. .maxlen = sizeof(int),
  542. .mode = 0644,
  543. .proc_handler = proc_dointvec
  544. },
  545. {
  546. .procname = "ip6frag_low_thresh",
  547. .data = &init_net.ipv6.frags.low_thresh,
  548. .maxlen = sizeof(int),
  549. .mode = 0644,
  550. .proc_handler = proc_dointvec
  551. },
  552. {
  553. .procname = "ip6frag_time",
  554. .data = &init_net.ipv6.frags.timeout,
  555. .maxlen = sizeof(int),
  556. .mode = 0644,
  557. .proc_handler = proc_dointvec_jiffies,
  558. },
  559. { }
  560. };
  561. static struct ctl_table ip6_frags_ctl_table[] = {
  562. {
  563. .procname = "ip6frag_secret_interval",
  564. .data = &ip6_frags.secret_interval,
  565. .maxlen = sizeof(int),
  566. .mode = 0644,
  567. .proc_handler = proc_dointvec_jiffies,
  568. },
  569. { }
  570. };
  571. static int __net_init ip6_frags_ns_sysctl_register(struct net *net)
  572. {
  573. struct ctl_table *table;
  574. struct ctl_table_header *hdr;
  575. table = ip6_frags_ns_ctl_table;
  576. if (!net_eq(net, &init_net)) {
  577. table = kmemdup(table, sizeof(ip6_frags_ns_ctl_table), GFP_KERNEL);
  578. if (table == NULL)
  579. goto err_alloc;
  580. table[0].data = &net->ipv6.frags.high_thresh;
  581. table[1].data = &net->ipv6.frags.low_thresh;
  582. table[2].data = &net->ipv6.frags.timeout;
  583. }
  584. hdr = register_net_sysctl_table(net, net_ipv6_ctl_path, table);
  585. if (hdr == NULL)
  586. goto err_reg;
  587. net->ipv6.sysctl.frags_hdr = hdr;
  588. return 0;
  589. err_reg:
  590. if (!net_eq(net, &init_net))
  591. kfree(table);
  592. err_alloc:
  593. return -ENOMEM;
  594. }
  595. static void __net_exit ip6_frags_ns_sysctl_unregister(struct net *net)
  596. {
  597. struct ctl_table *table;
  598. table = net->ipv6.sysctl.frags_hdr->ctl_table_arg;
  599. unregister_net_sysctl_table(net->ipv6.sysctl.frags_hdr);
  600. if (!net_eq(net, &init_net))
  601. kfree(table);
  602. }
  603. static struct ctl_table_header *ip6_ctl_header;
  604. static int ip6_frags_sysctl_register(void)
  605. {
  606. ip6_ctl_header = register_net_sysctl_rotable(net_ipv6_ctl_path,
  607. ip6_frags_ctl_table);
  608. return ip6_ctl_header == NULL ? -ENOMEM : 0;
  609. }
  610. static void ip6_frags_sysctl_unregister(void)
  611. {
  612. unregister_net_sysctl_table(ip6_ctl_header);
  613. }
  614. #else
  615. static inline int ip6_frags_ns_sysctl_register(struct net *net)
  616. {
  617. return 0;
  618. }
  619. static inline void ip6_frags_ns_sysctl_unregister(struct net *net)
  620. {
  621. }
  622. static inline int ip6_frags_sysctl_register(void)
  623. {
  624. return 0;
  625. }
  626. static inline void ip6_frags_sysctl_unregister(void)
  627. {
  628. }
  629. #endif
  630. static int __net_init ipv6_frags_init_net(struct net *net)
  631. {
  632. net->ipv6.frags.high_thresh = IPV6_FRAG_HIGH_THRESH;
  633. net->ipv6.frags.low_thresh = IPV6_FRAG_LOW_THRESH;
  634. net->ipv6.frags.timeout = IPV6_FRAG_TIMEOUT;
  635. inet_frags_init_net(&net->ipv6.frags);
  636. return ip6_frags_ns_sysctl_register(net);
  637. }
  638. static void __net_exit ipv6_frags_exit_net(struct net *net)
  639. {
  640. ip6_frags_ns_sysctl_unregister(net);
  641. inet_frags_exit_net(&net->ipv6.frags, &ip6_frags);
  642. }
  643. static struct pernet_operations ip6_frags_ops = {
  644. .init = ipv6_frags_init_net,
  645. .exit = ipv6_frags_exit_net,
  646. };
  647. int __init ipv6_frag_init(void)
  648. {
  649. int ret;
  650. ret = inet6_add_protocol(&frag_protocol, IPPROTO_FRAGMENT);
  651. if (ret)
  652. goto out;
  653. ret = ip6_frags_sysctl_register();
  654. if (ret)
  655. goto err_sysctl;
  656. ret = register_pernet_subsys(&ip6_frags_ops);
  657. if (ret)
  658. goto err_pernet;
  659. ip6_frags.hashfn = ip6_hashfn;
  660. ip6_frags.constructor = ip6_frag_init;
  661. ip6_frags.destructor = NULL;
  662. ip6_frags.skb_free = NULL;
  663. ip6_frags.qsize = sizeof(struct frag_queue);
  664. ip6_frags.match = ip6_frag_match;
  665. ip6_frags.frag_expire = ip6_frag_expire;
  666. ip6_frags.secret_interval = 10 * 60 * HZ;
  667. inet_frags_init(&ip6_frags);
  668. out:
  669. return ret;
  670. err_pernet:
  671. ip6_frags_sysctl_unregister();
  672. err_sysctl:
  673. inet6_del_protocol(&frag_protocol, IPPROTO_FRAGMENT);
  674. goto out;
  675. }
  676. void ipv6_frag_exit(void)
  677. {
  678. inet_frags_fini(&ip6_frags);
  679. ip6_frags_sysctl_unregister();
  680. unregister_pernet_subsys(&ip6_frags_ops);
  681. inet6_del_protocol(&frag_protocol, IPPROTO_FRAGMENT);
  682. }