slab.c 118 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590
  1. /*
  2. * linux/mm/slab.c
  3. * Written by Mark Hemment, 1996/97.
  4. * (markhe@nextd.demon.co.uk)
  5. *
  6. * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
  7. *
  8. * Major cleanup, different bufctl logic, per-cpu arrays
  9. * (c) 2000 Manfred Spraul
  10. *
  11. * Cleanup, make the head arrays unconditional, preparation for NUMA
  12. * (c) 2002 Manfred Spraul
  13. *
  14. * An implementation of the Slab Allocator as described in outline in;
  15. * UNIX Internals: The New Frontiers by Uresh Vahalia
  16. * Pub: Prentice Hall ISBN 0-13-101908-2
  17. * or with a little more detail in;
  18. * The Slab Allocator: An Object-Caching Kernel Memory Allocator
  19. * Jeff Bonwick (Sun Microsystems).
  20. * Presented at: USENIX Summer 1994 Technical Conference
  21. *
  22. * The memory is organized in caches, one cache for each object type.
  23. * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
  24. * Each cache consists out of many slabs (they are small (usually one
  25. * page long) and always contiguous), and each slab contains multiple
  26. * initialized objects.
  27. *
  28. * This means, that your constructor is used only for newly allocated
  29. * slabs and you must pass objects with the same initializations to
  30. * kmem_cache_free.
  31. *
  32. * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
  33. * normal). If you need a special memory type, then must create a new
  34. * cache for that memory type.
  35. *
  36. * In order to reduce fragmentation, the slabs are sorted in 3 groups:
  37. * full slabs with 0 free objects
  38. * partial slabs
  39. * empty slabs with no allocated objects
  40. *
  41. * If partial slabs exist, then new allocations come from these slabs,
  42. * otherwise from empty slabs or new slabs are allocated.
  43. *
  44. * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
  45. * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
  46. *
  47. * Each cache has a short per-cpu head array, most allocs
  48. * and frees go into that array, and if that array overflows, then 1/2
  49. * of the entries in the array are given back into the global cache.
  50. * The head array is strictly LIFO and should improve the cache hit rates.
  51. * On SMP, it additionally reduces the spinlock operations.
  52. *
  53. * The c_cpuarray may not be read with enabled local interrupts -
  54. * it's changed with a smp_call_function().
  55. *
  56. * SMP synchronization:
  57. * constructors and destructors are called without any locking.
  58. * Several members in struct kmem_cache and struct slab never change, they
  59. * are accessed without any locking.
  60. * The per-cpu arrays are never accessed from the wrong cpu, no locking,
  61. * and local interrupts are disabled so slab code is preempt-safe.
  62. * The non-constant members are protected with a per-cache irq spinlock.
  63. *
  64. * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
  65. * in 2000 - many ideas in the current implementation are derived from
  66. * his patch.
  67. *
  68. * Further notes from the original documentation:
  69. *
  70. * 11 April '97. Started multi-threading - markhe
  71. * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
  72. * The sem is only needed when accessing/extending the cache-chain, which
  73. * can never happen inside an interrupt (kmem_cache_create(),
  74. * kmem_cache_shrink() and kmem_cache_reap()).
  75. *
  76. * At present, each engine can be growing a cache. This should be blocked.
  77. *
  78. * 15 March 2005. NUMA slab allocator.
  79. * Shai Fultheim <shai@scalex86.org>.
  80. * Shobhit Dayal <shobhit@calsoftinc.com>
  81. * Alok N Kataria <alokk@calsoftinc.com>
  82. * Christoph Lameter <christoph@lameter.com>
  83. *
  84. * Modified the slab allocator to be node aware on NUMA systems.
  85. * Each node has its own list of partial, free and full slabs.
  86. * All object allocations for a node occur from node specific slab lists.
  87. */
  88. #include <linux/slab.h>
  89. #include <linux/mm.h>
  90. #include <linux/poison.h>
  91. #include <linux/swap.h>
  92. #include <linux/cache.h>
  93. #include <linux/interrupt.h>
  94. #include <linux/init.h>
  95. #include <linux/compiler.h>
  96. #include <linux/cpuset.h>
  97. #include <linux/proc_fs.h>
  98. #include <linux/seq_file.h>
  99. #include <linux/notifier.h>
  100. #include <linux/kallsyms.h>
  101. #include <linux/cpu.h>
  102. #include <linux/sysctl.h>
  103. #include <linux/module.h>
  104. #include <linux/kmemtrace.h>
  105. #include <linux/rcupdate.h>
  106. #include <linux/string.h>
  107. #include <linux/uaccess.h>
  108. #include <linux/nodemask.h>
  109. #include <linux/kmemleak.h>
  110. #include <linux/mempolicy.h>
  111. #include <linux/mutex.h>
  112. #include <linux/fault-inject.h>
  113. #include <linux/rtmutex.h>
  114. #include <linux/reciprocal_div.h>
  115. #include <linux/debugobjects.h>
  116. #include <linux/kmemcheck.h>
  117. #include <linux/memory.h>
  118. #include <asm/cacheflush.h>
  119. #include <asm/tlbflush.h>
  120. #include <asm/page.h>
  121. /*
  122. * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
  123. * 0 for faster, smaller code (especially in the critical paths).
  124. *
  125. * STATS - 1 to collect stats for /proc/slabinfo.
  126. * 0 for faster, smaller code (especially in the critical paths).
  127. *
  128. * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
  129. */
  130. #ifdef CONFIG_DEBUG_SLAB
  131. #define DEBUG 1
  132. #define STATS 1
  133. #define FORCED_DEBUG 1
  134. #else
  135. #define DEBUG 0
  136. #define STATS 0
  137. #define FORCED_DEBUG 0
  138. #endif
  139. /* Shouldn't this be in a header file somewhere? */
  140. #define BYTES_PER_WORD sizeof(void *)
  141. #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
  142. #ifndef ARCH_KMALLOC_FLAGS
  143. #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
  144. #endif
  145. /* Legal flag mask for kmem_cache_create(). */
  146. #if DEBUG
  147. # define CREATE_MASK (SLAB_RED_ZONE | \
  148. SLAB_POISON | SLAB_HWCACHE_ALIGN | \
  149. SLAB_CACHE_DMA | \
  150. SLAB_STORE_USER | \
  151. SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
  152. SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
  153. SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
  154. #else
  155. # define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
  156. SLAB_CACHE_DMA | \
  157. SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
  158. SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
  159. SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
  160. #endif
  161. /*
  162. * kmem_bufctl_t:
  163. *
  164. * Bufctl's are used for linking objs within a slab
  165. * linked offsets.
  166. *
  167. * This implementation relies on "struct page" for locating the cache &
  168. * slab an object belongs to.
  169. * This allows the bufctl structure to be small (one int), but limits
  170. * the number of objects a slab (not a cache) can contain when off-slab
  171. * bufctls are used. The limit is the size of the largest general cache
  172. * that does not use off-slab slabs.
  173. * For 32bit archs with 4 kB pages, is this 56.
  174. * This is not serious, as it is only for large objects, when it is unwise
  175. * to have too many per slab.
  176. * Note: This limit can be raised by introducing a general cache whose size
  177. * is less than 512 (PAGE_SIZE<<3), but greater than 256.
  178. */
  179. typedef unsigned int kmem_bufctl_t;
  180. #define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
  181. #define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
  182. #define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
  183. #define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
  184. /*
  185. * struct slab
  186. *
  187. * Manages the objs in a slab. Placed either at the beginning of mem allocated
  188. * for a slab, or allocated from an general cache.
  189. * Slabs are chained into three list: fully used, partial, fully free slabs.
  190. */
  191. struct slab {
  192. struct list_head list;
  193. unsigned long colouroff;
  194. void *s_mem; /* including colour offset */
  195. unsigned int inuse; /* num of objs active in slab */
  196. kmem_bufctl_t free;
  197. unsigned short nodeid;
  198. };
  199. /*
  200. * struct slab_rcu
  201. *
  202. * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
  203. * arrange for kmem_freepages to be called via RCU. This is useful if
  204. * we need to approach a kernel structure obliquely, from its address
  205. * obtained without the usual locking. We can lock the structure to
  206. * stabilize it and check it's still at the given address, only if we
  207. * can be sure that the memory has not been meanwhile reused for some
  208. * other kind of object (which our subsystem's lock might corrupt).
  209. *
  210. * rcu_read_lock before reading the address, then rcu_read_unlock after
  211. * taking the spinlock within the structure expected at that address.
  212. *
  213. * We assume struct slab_rcu can overlay struct slab when destroying.
  214. */
  215. struct slab_rcu {
  216. struct rcu_head head;
  217. struct kmem_cache *cachep;
  218. void *addr;
  219. };
  220. /*
  221. * struct array_cache
  222. *
  223. * Purpose:
  224. * - LIFO ordering, to hand out cache-warm objects from _alloc
  225. * - reduce the number of linked list operations
  226. * - reduce spinlock operations
  227. *
  228. * The limit is stored in the per-cpu structure to reduce the data cache
  229. * footprint.
  230. *
  231. */
  232. struct array_cache {
  233. unsigned int avail;
  234. unsigned int limit;
  235. unsigned int batchcount;
  236. unsigned int touched;
  237. spinlock_t lock;
  238. void *entry[]; /*
  239. * Must have this definition in here for the proper
  240. * alignment of array_cache. Also simplifies accessing
  241. * the entries.
  242. */
  243. };
  244. /*
  245. * bootstrap: The caches do not work without cpuarrays anymore, but the
  246. * cpuarrays are allocated from the generic caches...
  247. */
  248. #define BOOT_CPUCACHE_ENTRIES 1
  249. struct arraycache_init {
  250. struct array_cache cache;
  251. void *entries[BOOT_CPUCACHE_ENTRIES];
  252. };
  253. /*
  254. * The slab lists for all objects.
  255. */
  256. struct kmem_list3 {
  257. struct list_head slabs_partial; /* partial list first, better asm code */
  258. struct list_head slabs_full;
  259. struct list_head slabs_free;
  260. unsigned long free_objects;
  261. unsigned int free_limit;
  262. unsigned int colour_next; /* Per-node cache coloring */
  263. spinlock_t list_lock;
  264. struct array_cache *shared; /* shared per node */
  265. struct array_cache **alien; /* on other nodes */
  266. unsigned long next_reap; /* updated without locking */
  267. int free_touched; /* updated without locking */
  268. };
  269. /*
  270. * Need this for bootstrapping a per node allocator.
  271. */
  272. #define NUM_INIT_LISTS (3 * MAX_NUMNODES)
  273. struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
  274. #define CACHE_CACHE 0
  275. #define SIZE_AC MAX_NUMNODES
  276. #define SIZE_L3 (2 * MAX_NUMNODES)
  277. static int drain_freelist(struct kmem_cache *cache,
  278. struct kmem_list3 *l3, int tofree);
  279. static void free_block(struct kmem_cache *cachep, void **objpp, int len,
  280. int node);
  281. static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
  282. static void cache_reap(struct work_struct *unused);
  283. /*
  284. * This function must be completely optimized away if a constant is passed to
  285. * it. Mostly the same as what is in linux/slab.h except it returns an index.
  286. */
  287. static __always_inline int index_of(const size_t size)
  288. {
  289. extern void __bad_size(void);
  290. if (__builtin_constant_p(size)) {
  291. int i = 0;
  292. #define CACHE(x) \
  293. if (size <=x) \
  294. return i; \
  295. else \
  296. i++;
  297. #include <linux/kmalloc_sizes.h>
  298. #undef CACHE
  299. __bad_size();
  300. } else
  301. __bad_size();
  302. return 0;
  303. }
  304. static int slab_early_init = 1;
  305. #define INDEX_AC index_of(sizeof(struct arraycache_init))
  306. #define INDEX_L3 index_of(sizeof(struct kmem_list3))
  307. static void kmem_list3_init(struct kmem_list3 *parent)
  308. {
  309. INIT_LIST_HEAD(&parent->slabs_full);
  310. INIT_LIST_HEAD(&parent->slabs_partial);
  311. INIT_LIST_HEAD(&parent->slabs_free);
  312. parent->shared = NULL;
  313. parent->alien = NULL;
  314. parent->colour_next = 0;
  315. spin_lock_init(&parent->list_lock);
  316. parent->free_objects = 0;
  317. parent->free_touched = 0;
  318. }
  319. #define MAKE_LIST(cachep, listp, slab, nodeid) \
  320. do { \
  321. INIT_LIST_HEAD(listp); \
  322. list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
  323. } while (0)
  324. #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
  325. do { \
  326. MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
  327. MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
  328. MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
  329. } while (0)
  330. #define CFLGS_OFF_SLAB (0x80000000UL)
  331. #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
  332. #define BATCHREFILL_LIMIT 16
  333. /*
  334. * Optimization question: fewer reaps means less probability for unnessary
  335. * cpucache drain/refill cycles.
  336. *
  337. * OTOH the cpuarrays can contain lots of objects,
  338. * which could lock up otherwise freeable slabs.
  339. */
  340. #define REAPTIMEOUT_CPUC (2*HZ)
  341. #define REAPTIMEOUT_LIST3 (4*HZ)
  342. #if STATS
  343. #define STATS_INC_ACTIVE(x) ((x)->num_active++)
  344. #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
  345. #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
  346. #define STATS_INC_GROWN(x) ((x)->grown++)
  347. #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
  348. #define STATS_SET_HIGH(x) \
  349. do { \
  350. if ((x)->num_active > (x)->high_mark) \
  351. (x)->high_mark = (x)->num_active; \
  352. } while (0)
  353. #define STATS_INC_ERR(x) ((x)->errors++)
  354. #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
  355. #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
  356. #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
  357. #define STATS_SET_FREEABLE(x, i) \
  358. do { \
  359. if ((x)->max_freeable < i) \
  360. (x)->max_freeable = i; \
  361. } while (0)
  362. #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
  363. #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
  364. #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
  365. #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
  366. #else
  367. #define STATS_INC_ACTIVE(x) do { } while (0)
  368. #define STATS_DEC_ACTIVE(x) do { } while (0)
  369. #define STATS_INC_ALLOCED(x) do { } while (0)
  370. #define STATS_INC_GROWN(x) do { } while (0)
  371. #define STATS_ADD_REAPED(x,y) do { } while (0)
  372. #define STATS_SET_HIGH(x) do { } while (0)
  373. #define STATS_INC_ERR(x) do { } while (0)
  374. #define STATS_INC_NODEALLOCS(x) do { } while (0)
  375. #define STATS_INC_NODEFREES(x) do { } while (0)
  376. #define STATS_INC_ACOVERFLOW(x) do { } while (0)
  377. #define STATS_SET_FREEABLE(x, i) do { } while (0)
  378. #define STATS_INC_ALLOCHIT(x) do { } while (0)
  379. #define STATS_INC_ALLOCMISS(x) do { } while (0)
  380. #define STATS_INC_FREEHIT(x) do { } while (0)
  381. #define STATS_INC_FREEMISS(x) do { } while (0)
  382. #endif
  383. #if DEBUG
  384. /*
  385. * memory layout of objects:
  386. * 0 : objp
  387. * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
  388. * the end of an object is aligned with the end of the real
  389. * allocation. Catches writes behind the end of the allocation.
  390. * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
  391. * redzone word.
  392. * cachep->obj_offset: The real object.
  393. * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
  394. * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
  395. * [BYTES_PER_WORD long]
  396. */
  397. static int obj_offset(struct kmem_cache *cachep)
  398. {
  399. return cachep->obj_offset;
  400. }
  401. static int obj_size(struct kmem_cache *cachep)
  402. {
  403. return cachep->obj_size;
  404. }
  405. static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
  406. {
  407. BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
  408. return (unsigned long long*) (objp + obj_offset(cachep) -
  409. sizeof(unsigned long long));
  410. }
  411. static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
  412. {
  413. BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
  414. if (cachep->flags & SLAB_STORE_USER)
  415. return (unsigned long long *)(objp + cachep->buffer_size -
  416. sizeof(unsigned long long) -
  417. REDZONE_ALIGN);
  418. return (unsigned long long *) (objp + cachep->buffer_size -
  419. sizeof(unsigned long long));
  420. }
  421. static void **dbg_userword(struct kmem_cache *cachep, void *objp)
  422. {
  423. BUG_ON(!(cachep->flags & SLAB_STORE_USER));
  424. return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
  425. }
  426. #else
  427. #define obj_offset(x) 0
  428. #define obj_size(cachep) (cachep->buffer_size)
  429. #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
  430. #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
  431. #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
  432. #endif
  433. #ifdef CONFIG_TRACING
  434. size_t slab_buffer_size(struct kmem_cache *cachep)
  435. {
  436. return cachep->buffer_size;
  437. }
  438. EXPORT_SYMBOL(slab_buffer_size);
  439. #endif
  440. /*
  441. * Do not go above this order unless 0 objects fit into the slab.
  442. */
  443. #define BREAK_GFP_ORDER_HI 1
  444. #define BREAK_GFP_ORDER_LO 0
  445. static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
  446. /*
  447. * Functions for storing/retrieving the cachep and or slab from the page
  448. * allocator. These are used to find the slab an obj belongs to. With kfree(),
  449. * these are used to find the cache which an obj belongs to.
  450. */
  451. static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
  452. {
  453. page->lru.next = (struct list_head *)cache;
  454. }
  455. static inline struct kmem_cache *page_get_cache(struct page *page)
  456. {
  457. page = compound_head(page);
  458. BUG_ON(!PageSlab(page));
  459. return (struct kmem_cache *)page->lru.next;
  460. }
  461. static inline void page_set_slab(struct page *page, struct slab *slab)
  462. {
  463. page->lru.prev = (struct list_head *)slab;
  464. }
  465. static inline struct slab *page_get_slab(struct page *page)
  466. {
  467. BUG_ON(!PageSlab(page));
  468. return (struct slab *)page->lru.prev;
  469. }
  470. static inline struct kmem_cache *virt_to_cache(const void *obj)
  471. {
  472. struct page *page = virt_to_head_page(obj);
  473. return page_get_cache(page);
  474. }
  475. static inline struct slab *virt_to_slab(const void *obj)
  476. {
  477. struct page *page = virt_to_head_page(obj);
  478. return page_get_slab(page);
  479. }
  480. static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
  481. unsigned int idx)
  482. {
  483. return slab->s_mem + cache->buffer_size * idx;
  484. }
  485. /*
  486. * We want to avoid an expensive divide : (offset / cache->buffer_size)
  487. * Using the fact that buffer_size is a constant for a particular cache,
  488. * we can replace (offset / cache->buffer_size) by
  489. * reciprocal_divide(offset, cache->reciprocal_buffer_size)
  490. */
  491. static inline unsigned int obj_to_index(const struct kmem_cache *cache,
  492. const struct slab *slab, void *obj)
  493. {
  494. u32 offset = (obj - slab->s_mem);
  495. return reciprocal_divide(offset, cache->reciprocal_buffer_size);
  496. }
  497. /*
  498. * These are the default caches for kmalloc. Custom caches can have other sizes.
  499. */
  500. struct cache_sizes malloc_sizes[] = {
  501. #define CACHE(x) { .cs_size = (x) },
  502. #include <linux/kmalloc_sizes.h>
  503. CACHE(ULONG_MAX)
  504. #undef CACHE
  505. };
  506. EXPORT_SYMBOL(malloc_sizes);
  507. /* Must match cache_sizes above. Out of line to keep cache footprint low. */
  508. struct cache_names {
  509. char *name;
  510. char *name_dma;
  511. };
  512. static struct cache_names __initdata cache_names[] = {
  513. #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
  514. #include <linux/kmalloc_sizes.h>
  515. {NULL,}
  516. #undef CACHE
  517. };
  518. static struct arraycache_init initarray_cache __initdata =
  519. { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
  520. static struct arraycache_init initarray_generic =
  521. { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
  522. /* internal cache of cache description objs */
  523. static struct kmem_cache cache_cache = {
  524. .batchcount = 1,
  525. .limit = BOOT_CPUCACHE_ENTRIES,
  526. .shared = 1,
  527. .buffer_size = sizeof(struct kmem_cache),
  528. .name = "kmem_cache",
  529. };
  530. #define BAD_ALIEN_MAGIC 0x01020304ul
  531. /*
  532. * chicken and egg problem: delay the per-cpu array allocation
  533. * until the general caches are up.
  534. */
  535. static enum {
  536. NONE,
  537. PARTIAL_AC,
  538. PARTIAL_L3,
  539. EARLY,
  540. FULL
  541. } g_cpucache_up;
  542. /*
  543. * used by boot code to determine if it can use slab based allocator
  544. */
  545. int slab_is_available(void)
  546. {
  547. return g_cpucache_up >= EARLY;
  548. }
  549. #ifdef CONFIG_LOCKDEP
  550. /*
  551. * Slab sometimes uses the kmalloc slabs to store the slab headers
  552. * for other slabs "off slab".
  553. * The locking for this is tricky in that it nests within the locks
  554. * of all other slabs in a few places; to deal with this special
  555. * locking we put on-slab caches into a separate lock-class.
  556. *
  557. * We set lock class for alien array caches which are up during init.
  558. * The lock annotation will be lost if all cpus of a node goes down and
  559. * then comes back up during hotplug
  560. */
  561. static struct lock_class_key on_slab_l3_key;
  562. static struct lock_class_key on_slab_alc_key;
  563. static void init_node_lock_keys(int q)
  564. {
  565. struct cache_sizes *s = malloc_sizes;
  566. if (g_cpucache_up != FULL)
  567. return;
  568. for (s = malloc_sizes; s->cs_size != ULONG_MAX; s++) {
  569. struct array_cache **alc;
  570. struct kmem_list3 *l3;
  571. int r;
  572. l3 = s->cs_cachep->nodelists[q];
  573. if (!l3 || OFF_SLAB(s->cs_cachep))
  574. continue;
  575. lockdep_set_class(&l3->list_lock, &on_slab_l3_key);
  576. alc = l3->alien;
  577. /*
  578. * FIXME: This check for BAD_ALIEN_MAGIC
  579. * should go away when common slab code is taught to
  580. * work even without alien caches.
  581. * Currently, non NUMA code returns BAD_ALIEN_MAGIC
  582. * for alloc_alien_cache,
  583. */
  584. if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
  585. continue;
  586. for_each_node(r) {
  587. if (alc[r])
  588. lockdep_set_class(&alc[r]->lock,
  589. &on_slab_alc_key);
  590. }
  591. }
  592. }
  593. static inline void init_lock_keys(void)
  594. {
  595. int node;
  596. for_each_node(node)
  597. init_node_lock_keys(node);
  598. }
  599. #else
  600. static void init_node_lock_keys(int q)
  601. {
  602. }
  603. static inline void init_lock_keys(void)
  604. {
  605. }
  606. #endif
  607. /*
  608. * Guard access to the cache-chain.
  609. */
  610. static DEFINE_MUTEX(cache_chain_mutex);
  611. static struct list_head cache_chain;
  612. static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
  613. static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
  614. {
  615. return cachep->array[smp_processor_id()];
  616. }
  617. static inline struct kmem_cache *__find_general_cachep(size_t size,
  618. gfp_t gfpflags)
  619. {
  620. struct cache_sizes *csizep = malloc_sizes;
  621. #if DEBUG
  622. /* This happens if someone tries to call
  623. * kmem_cache_create(), or __kmalloc(), before
  624. * the generic caches are initialized.
  625. */
  626. BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
  627. #endif
  628. if (!size)
  629. return ZERO_SIZE_PTR;
  630. while (size > csizep->cs_size)
  631. csizep++;
  632. /*
  633. * Really subtle: The last entry with cs->cs_size==ULONG_MAX
  634. * has cs_{dma,}cachep==NULL. Thus no special case
  635. * for large kmalloc calls required.
  636. */
  637. #ifdef CONFIG_ZONE_DMA
  638. if (unlikely(gfpflags & GFP_DMA))
  639. return csizep->cs_dmacachep;
  640. #endif
  641. return csizep->cs_cachep;
  642. }
  643. static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
  644. {
  645. return __find_general_cachep(size, gfpflags);
  646. }
  647. static size_t slab_mgmt_size(size_t nr_objs, size_t align)
  648. {
  649. return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
  650. }
  651. /*
  652. * Calculate the number of objects and left-over bytes for a given buffer size.
  653. */
  654. static void cache_estimate(unsigned long gfporder, size_t buffer_size,
  655. size_t align, int flags, size_t *left_over,
  656. unsigned int *num)
  657. {
  658. int nr_objs;
  659. size_t mgmt_size;
  660. size_t slab_size = PAGE_SIZE << gfporder;
  661. /*
  662. * The slab management structure can be either off the slab or
  663. * on it. For the latter case, the memory allocated for a
  664. * slab is used for:
  665. *
  666. * - The struct slab
  667. * - One kmem_bufctl_t for each object
  668. * - Padding to respect alignment of @align
  669. * - @buffer_size bytes for each object
  670. *
  671. * If the slab management structure is off the slab, then the
  672. * alignment will already be calculated into the size. Because
  673. * the slabs are all pages aligned, the objects will be at the
  674. * correct alignment when allocated.
  675. */
  676. if (flags & CFLGS_OFF_SLAB) {
  677. mgmt_size = 0;
  678. nr_objs = slab_size / buffer_size;
  679. if (nr_objs > SLAB_LIMIT)
  680. nr_objs = SLAB_LIMIT;
  681. } else {
  682. /*
  683. * Ignore padding for the initial guess. The padding
  684. * is at most @align-1 bytes, and @buffer_size is at
  685. * least @align. In the worst case, this result will
  686. * be one greater than the number of objects that fit
  687. * into the memory allocation when taking the padding
  688. * into account.
  689. */
  690. nr_objs = (slab_size - sizeof(struct slab)) /
  691. (buffer_size + sizeof(kmem_bufctl_t));
  692. /*
  693. * This calculated number will be either the right
  694. * amount, or one greater than what we want.
  695. */
  696. if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
  697. > slab_size)
  698. nr_objs--;
  699. if (nr_objs > SLAB_LIMIT)
  700. nr_objs = SLAB_LIMIT;
  701. mgmt_size = slab_mgmt_size(nr_objs, align);
  702. }
  703. *num = nr_objs;
  704. *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
  705. }
  706. #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
  707. static void __slab_error(const char *function, struct kmem_cache *cachep,
  708. char *msg)
  709. {
  710. printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
  711. function, cachep->name, msg);
  712. dump_stack();
  713. }
  714. /*
  715. * By default on NUMA we use alien caches to stage the freeing of
  716. * objects allocated from other nodes. This causes massive memory
  717. * inefficiencies when using fake NUMA setup to split memory into a
  718. * large number of small nodes, so it can be disabled on the command
  719. * line
  720. */
  721. static int use_alien_caches __read_mostly = 1;
  722. static int __init noaliencache_setup(char *s)
  723. {
  724. use_alien_caches = 0;
  725. return 1;
  726. }
  727. __setup("noaliencache", noaliencache_setup);
  728. #ifdef CONFIG_NUMA
  729. /*
  730. * Special reaping functions for NUMA systems called from cache_reap().
  731. * These take care of doing round robin flushing of alien caches (containing
  732. * objects freed on different nodes from which they were allocated) and the
  733. * flushing of remote pcps by calling drain_node_pages.
  734. */
  735. static DEFINE_PER_CPU(unsigned long, slab_reap_node);
  736. static void init_reap_node(int cpu)
  737. {
  738. int node;
  739. node = next_node(cpu_to_mem(cpu), node_online_map);
  740. if (node == MAX_NUMNODES)
  741. node = first_node(node_online_map);
  742. per_cpu(slab_reap_node, cpu) = node;
  743. }
  744. static void next_reap_node(void)
  745. {
  746. int node = __get_cpu_var(slab_reap_node);
  747. node = next_node(node, node_online_map);
  748. if (unlikely(node >= MAX_NUMNODES))
  749. node = first_node(node_online_map);
  750. __get_cpu_var(slab_reap_node) = node;
  751. }
  752. #else
  753. #define init_reap_node(cpu) do { } while (0)
  754. #define next_reap_node(void) do { } while (0)
  755. #endif
  756. /*
  757. * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
  758. * via the workqueue/eventd.
  759. * Add the CPU number into the expiration time to minimize the possibility of
  760. * the CPUs getting into lockstep and contending for the global cache chain
  761. * lock.
  762. */
  763. static void __cpuinit start_cpu_timer(int cpu)
  764. {
  765. struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
  766. /*
  767. * When this gets called from do_initcalls via cpucache_init(),
  768. * init_workqueues() has already run, so keventd will be setup
  769. * at that time.
  770. */
  771. if (keventd_up() && reap_work->work.func == NULL) {
  772. init_reap_node(cpu);
  773. INIT_DELAYED_WORK(reap_work, cache_reap);
  774. schedule_delayed_work_on(cpu, reap_work,
  775. __round_jiffies_relative(HZ, cpu));
  776. }
  777. }
  778. static struct array_cache *alloc_arraycache(int node, int entries,
  779. int batchcount, gfp_t gfp)
  780. {
  781. int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
  782. struct array_cache *nc = NULL;
  783. nc = kmalloc_node(memsize, gfp, node);
  784. /*
  785. * The array_cache structures contain pointers to free object.
  786. * However, when such objects are allocated or transfered to another
  787. * cache the pointers are not cleared and they could be counted as
  788. * valid references during a kmemleak scan. Therefore, kmemleak must
  789. * not scan such objects.
  790. */
  791. kmemleak_no_scan(nc);
  792. if (nc) {
  793. nc->avail = 0;
  794. nc->limit = entries;
  795. nc->batchcount = batchcount;
  796. nc->touched = 0;
  797. spin_lock_init(&nc->lock);
  798. }
  799. return nc;
  800. }
  801. /*
  802. * Transfer objects in one arraycache to another.
  803. * Locking must be handled by the caller.
  804. *
  805. * Return the number of entries transferred.
  806. */
  807. static int transfer_objects(struct array_cache *to,
  808. struct array_cache *from, unsigned int max)
  809. {
  810. /* Figure out how many entries to transfer */
  811. int nr = min(min(from->avail, max), to->limit - to->avail);
  812. if (!nr)
  813. return 0;
  814. memcpy(to->entry + to->avail, from->entry + from->avail -nr,
  815. sizeof(void *) *nr);
  816. from->avail -= nr;
  817. to->avail += nr;
  818. return nr;
  819. }
  820. #ifndef CONFIG_NUMA
  821. #define drain_alien_cache(cachep, alien) do { } while (0)
  822. #define reap_alien(cachep, l3) do { } while (0)
  823. static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
  824. {
  825. return (struct array_cache **)BAD_ALIEN_MAGIC;
  826. }
  827. static inline void free_alien_cache(struct array_cache **ac_ptr)
  828. {
  829. }
  830. static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
  831. {
  832. return 0;
  833. }
  834. static inline void *alternate_node_alloc(struct kmem_cache *cachep,
  835. gfp_t flags)
  836. {
  837. return NULL;
  838. }
  839. static inline void *____cache_alloc_node(struct kmem_cache *cachep,
  840. gfp_t flags, int nodeid)
  841. {
  842. return NULL;
  843. }
  844. #else /* CONFIG_NUMA */
  845. static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
  846. static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
  847. static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
  848. {
  849. struct array_cache **ac_ptr;
  850. int memsize = sizeof(void *) * nr_node_ids;
  851. int i;
  852. if (limit > 1)
  853. limit = 12;
  854. ac_ptr = kzalloc_node(memsize, gfp, node);
  855. if (ac_ptr) {
  856. for_each_node(i) {
  857. if (i == node || !node_online(i))
  858. continue;
  859. ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp);
  860. if (!ac_ptr[i]) {
  861. for (i--; i >= 0; i--)
  862. kfree(ac_ptr[i]);
  863. kfree(ac_ptr);
  864. return NULL;
  865. }
  866. }
  867. }
  868. return ac_ptr;
  869. }
  870. static void free_alien_cache(struct array_cache **ac_ptr)
  871. {
  872. int i;
  873. if (!ac_ptr)
  874. return;
  875. for_each_node(i)
  876. kfree(ac_ptr[i]);
  877. kfree(ac_ptr);
  878. }
  879. static void __drain_alien_cache(struct kmem_cache *cachep,
  880. struct array_cache *ac, int node)
  881. {
  882. struct kmem_list3 *rl3 = cachep->nodelists[node];
  883. if (ac->avail) {
  884. spin_lock(&rl3->list_lock);
  885. /*
  886. * Stuff objects into the remote nodes shared array first.
  887. * That way we could avoid the overhead of putting the objects
  888. * into the free lists and getting them back later.
  889. */
  890. if (rl3->shared)
  891. transfer_objects(rl3->shared, ac, ac->limit);
  892. free_block(cachep, ac->entry, ac->avail, node);
  893. ac->avail = 0;
  894. spin_unlock(&rl3->list_lock);
  895. }
  896. }
  897. /*
  898. * Called from cache_reap() to regularly drain alien caches round robin.
  899. */
  900. static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
  901. {
  902. int node = __get_cpu_var(slab_reap_node);
  903. if (l3->alien) {
  904. struct array_cache *ac = l3->alien[node];
  905. if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
  906. __drain_alien_cache(cachep, ac, node);
  907. spin_unlock_irq(&ac->lock);
  908. }
  909. }
  910. }
  911. static void drain_alien_cache(struct kmem_cache *cachep,
  912. struct array_cache **alien)
  913. {
  914. int i = 0;
  915. struct array_cache *ac;
  916. unsigned long flags;
  917. for_each_online_node(i) {
  918. ac = alien[i];
  919. if (ac) {
  920. spin_lock_irqsave(&ac->lock, flags);
  921. __drain_alien_cache(cachep, ac, i);
  922. spin_unlock_irqrestore(&ac->lock, flags);
  923. }
  924. }
  925. }
  926. static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
  927. {
  928. struct slab *slabp = virt_to_slab(objp);
  929. int nodeid = slabp->nodeid;
  930. struct kmem_list3 *l3;
  931. struct array_cache *alien = NULL;
  932. int node;
  933. node = numa_mem_id();
  934. /*
  935. * Make sure we are not freeing a object from another node to the array
  936. * cache on this cpu.
  937. */
  938. if (likely(slabp->nodeid == node))
  939. return 0;
  940. l3 = cachep->nodelists[node];
  941. STATS_INC_NODEFREES(cachep);
  942. if (l3->alien && l3->alien[nodeid]) {
  943. alien = l3->alien[nodeid];
  944. spin_lock(&alien->lock);
  945. if (unlikely(alien->avail == alien->limit)) {
  946. STATS_INC_ACOVERFLOW(cachep);
  947. __drain_alien_cache(cachep, alien, nodeid);
  948. }
  949. alien->entry[alien->avail++] = objp;
  950. spin_unlock(&alien->lock);
  951. } else {
  952. spin_lock(&(cachep->nodelists[nodeid])->list_lock);
  953. free_block(cachep, &objp, 1, nodeid);
  954. spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
  955. }
  956. return 1;
  957. }
  958. #endif
  959. /*
  960. * Allocates and initializes nodelists for a node on each slab cache, used for
  961. * either memory or cpu hotplug. If memory is being hot-added, the kmem_list3
  962. * will be allocated off-node since memory is not yet online for the new node.
  963. * When hotplugging memory or a cpu, existing nodelists are not replaced if
  964. * already in use.
  965. *
  966. * Must hold cache_chain_mutex.
  967. */
  968. static int init_cache_nodelists_node(int node)
  969. {
  970. struct kmem_cache *cachep;
  971. struct kmem_list3 *l3;
  972. const int memsize = sizeof(struct kmem_list3);
  973. list_for_each_entry(cachep, &cache_chain, next) {
  974. /*
  975. * Set up the size64 kmemlist for cpu before we can
  976. * begin anything. Make sure some other cpu on this
  977. * node has not already allocated this
  978. */
  979. if (!cachep->nodelists[node]) {
  980. l3 = kmalloc_node(memsize, GFP_KERNEL, node);
  981. if (!l3)
  982. return -ENOMEM;
  983. kmem_list3_init(l3);
  984. l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
  985. ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
  986. /*
  987. * The l3s don't come and go as CPUs come and
  988. * go. cache_chain_mutex is sufficient
  989. * protection here.
  990. */
  991. cachep->nodelists[node] = l3;
  992. }
  993. spin_lock_irq(&cachep->nodelists[node]->list_lock);
  994. cachep->nodelists[node]->free_limit =
  995. (1 + nr_cpus_node(node)) *
  996. cachep->batchcount + cachep->num;
  997. spin_unlock_irq(&cachep->nodelists[node]->list_lock);
  998. }
  999. return 0;
  1000. }
  1001. static void __cpuinit cpuup_canceled(long cpu)
  1002. {
  1003. struct kmem_cache *cachep;
  1004. struct kmem_list3 *l3 = NULL;
  1005. int node = cpu_to_mem(cpu);
  1006. const struct cpumask *mask = cpumask_of_node(node);
  1007. list_for_each_entry(cachep, &cache_chain, next) {
  1008. struct array_cache *nc;
  1009. struct array_cache *shared;
  1010. struct array_cache **alien;
  1011. /* cpu is dead; no one can alloc from it. */
  1012. nc = cachep->array[cpu];
  1013. cachep->array[cpu] = NULL;
  1014. l3 = cachep->nodelists[node];
  1015. if (!l3)
  1016. goto free_array_cache;
  1017. spin_lock_irq(&l3->list_lock);
  1018. /* Free limit for this kmem_list3 */
  1019. l3->free_limit -= cachep->batchcount;
  1020. if (nc)
  1021. free_block(cachep, nc->entry, nc->avail, node);
  1022. if (!cpumask_empty(mask)) {
  1023. spin_unlock_irq(&l3->list_lock);
  1024. goto free_array_cache;
  1025. }
  1026. shared = l3->shared;
  1027. if (shared) {
  1028. free_block(cachep, shared->entry,
  1029. shared->avail, node);
  1030. l3->shared = NULL;
  1031. }
  1032. alien = l3->alien;
  1033. l3->alien = NULL;
  1034. spin_unlock_irq(&l3->list_lock);
  1035. kfree(shared);
  1036. if (alien) {
  1037. drain_alien_cache(cachep, alien);
  1038. free_alien_cache(alien);
  1039. }
  1040. free_array_cache:
  1041. kfree(nc);
  1042. }
  1043. /*
  1044. * In the previous loop, all the objects were freed to
  1045. * the respective cache's slabs, now we can go ahead and
  1046. * shrink each nodelist to its limit.
  1047. */
  1048. list_for_each_entry(cachep, &cache_chain, next) {
  1049. l3 = cachep->nodelists[node];
  1050. if (!l3)
  1051. continue;
  1052. drain_freelist(cachep, l3, l3->free_objects);
  1053. }
  1054. }
  1055. static int __cpuinit cpuup_prepare(long cpu)
  1056. {
  1057. struct kmem_cache *cachep;
  1058. struct kmem_list3 *l3 = NULL;
  1059. int node = cpu_to_mem(cpu);
  1060. int err;
  1061. /*
  1062. * We need to do this right in the beginning since
  1063. * alloc_arraycache's are going to use this list.
  1064. * kmalloc_node allows us to add the slab to the right
  1065. * kmem_list3 and not this cpu's kmem_list3
  1066. */
  1067. err = init_cache_nodelists_node(node);
  1068. if (err < 0)
  1069. goto bad;
  1070. /*
  1071. * Now we can go ahead with allocating the shared arrays and
  1072. * array caches
  1073. */
  1074. list_for_each_entry(cachep, &cache_chain, next) {
  1075. struct array_cache *nc;
  1076. struct array_cache *shared = NULL;
  1077. struct array_cache **alien = NULL;
  1078. nc = alloc_arraycache(node, cachep->limit,
  1079. cachep->batchcount, GFP_KERNEL);
  1080. if (!nc)
  1081. goto bad;
  1082. if (cachep->shared) {
  1083. shared = alloc_arraycache(node,
  1084. cachep->shared * cachep->batchcount,
  1085. 0xbaadf00d, GFP_KERNEL);
  1086. if (!shared) {
  1087. kfree(nc);
  1088. goto bad;
  1089. }
  1090. }
  1091. if (use_alien_caches) {
  1092. alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
  1093. if (!alien) {
  1094. kfree(shared);
  1095. kfree(nc);
  1096. goto bad;
  1097. }
  1098. }
  1099. cachep->array[cpu] = nc;
  1100. l3 = cachep->nodelists[node];
  1101. BUG_ON(!l3);
  1102. spin_lock_irq(&l3->list_lock);
  1103. if (!l3->shared) {
  1104. /*
  1105. * We are serialised from CPU_DEAD or
  1106. * CPU_UP_CANCELLED by the cpucontrol lock
  1107. */
  1108. l3->shared = shared;
  1109. shared = NULL;
  1110. }
  1111. #ifdef CONFIG_NUMA
  1112. if (!l3->alien) {
  1113. l3->alien = alien;
  1114. alien = NULL;
  1115. }
  1116. #endif
  1117. spin_unlock_irq(&l3->list_lock);
  1118. kfree(shared);
  1119. free_alien_cache(alien);
  1120. }
  1121. init_node_lock_keys(node);
  1122. return 0;
  1123. bad:
  1124. cpuup_canceled(cpu);
  1125. return -ENOMEM;
  1126. }
  1127. static int __cpuinit cpuup_callback(struct notifier_block *nfb,
  1128. unsigned long action, void *hcpu)
  1129. {
  1130. long cpu = (long)hcpu;
  1131. int err = 0;
  1132. switch (action) {
  1133. case CPU_UP_PREPARE:
  1134. case CPU_UP_PREPARE_FROZEN:
  1135. mutex_lock(&cache_chain_mutex);
  1136. err = cpuup_prepare(cpu);
  1137. mutex_unlock(&cache_chain_mutex);
  1138. break;
  1139. case CPU_ONLINE:
  1140. case CPU_ONLINE_FROZEN:
  1141. start_cpu_timer(cpu);
  1142. break;
  1143. #ifdef CONFIG_HOTPLUG_CPU
  1144. case CPU_DOWN_PREPARE:
  1145. case CPU_DOWN_PREPARE_FROZEN:
  1146. /*
  1147. * Shutdown cache reaper. Note that the cache_chain_mutex is
  1148. * held so that if cache_reap() is invoked it cannot do
  1149. * anything expensive but will only modify reap_work
  1150. * and reschedule the timer.
  1151. */
  1152. cancel_rearming_delayed_work(&per_cpu(slab_reap_work, cpu));
  1153. /* Now the cache_reaper is guaranteed to be not running. */
  1154. per_cpu(slab_reap_work, cpu).work.func = NULL;
  1155. break;
  1156. case CPU_DOWN_FAILED:
  1157. case CPU_DOWN_FAILED_FROZEN:
  1158. start_cpu_timer(cpu);
  1159. break;
  1160. case CPU_DEAD:
  1161. case CPU_DEAD_FROZEN:
  1162. /*
  1163. * Even if all the cpus of a node are down, we don't free the
  1164. * kmem_list3 of any cache. This to avoid a race between
  1165. * cpu_down, and a kmalloc allocation from another cpu for
  1166. * memory from the node of the cpu going down. The list3
  1167. * structure is usually allocated from kmem_cache_create() and
  1168. * gets destroyed at kmem_cache_destroy().
  1169. */
  1170. /* fall through */
  1171. #endif
  1172. case CPU_UP_CANCELED:
  1173. case CPU_UP_CANCELED_FROZEN:
  1174. mutex_lock(&cache_chain_mutex);
  1175. cpuup_canceled(cpu);
  1176. mutex_unlock(&cache_chain_mutex);
  1177. break;
  1178. }
  1179. return notifier_from_errno(err);
  1180. }
  1181. static struct notifier_block __cpuinitdata cpucache_notifier = {
  1182. &cpuup_callback, NULL, 0
  1183. };
  1184. #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
  1185. /*
  1186. * Drains freelist for a node on each slab cache, used for memory hot-remove.
  1187. * Returns -EBUSY if all objects cannot be drained so that the node is not
  1188. * removed.
  1189. *
  1190. * Must hold cache_chain_mutex.
  1191. */
  1192. static int __meminit drain_cache_nodelists_node(int node)
  1193. {
  1194. struct kmem_cache *cachep;
  1195. int ret = 0;
  1196. list_for_each_entry(cachep, &cache_chain, next) {
  1197. struct kmem_list3 *l3;
  1198. l3 = cachep->nodelists[node];
  1199. if (!l3)
  1200. continue;
  1201. drain_freelist(cachep, l3, l3->free_objects);
  1202. if (!list_empty(&l3->slabs_full) ||
  1203. !list_empty(&l3->slabs_partial)) {
  1204. ret = -EBUSY;
  1205. break;
  1206. }
  1207. }
  1208. return ret;
  1209. }
  1210. static int __meminit slab_memory_callback(struct notifier_block *self,
  1211. unsigned long action, void *arg)
  1212. {
  1213. struct memory_notify *mnb = arg;
  1214. int ret = 0;
  1215. int nid;
  1216. nid = mnb->status_change_nid;
  1217. if (nid < 0)
  1218. goto out;
  1219. switch (action) {
  1220. case MEM_GOING_ONLINE:
  1221. mutex_lock(&cache_chain_mutex);
  1222. ret = init_cache_nodelists_node(nid);
  1223. mutex_unlock(&cache_chain_mutex);
  1224. break;
  1225. case MEM_GOING_OFFLINE:
  1226. mutex_lock(&cache_chain_mutex);
  1227. ret = drain_cache_nodelists_node(nid);
  1228. mutex_unlock(&cache_chain_mutex);
  1229. break;
  1230. case MEM_ONLINE:
  1231. case MEM_OFFLINE:
  1232. case MEM_CANCEL_ONLINE:
  1233. case MEM_CANCEL_OFFLINE:
  1234. break;
  1235. }
  1236. out:
  1237. return ret ? notifier_from_errno(ret) : NOTIFY_OK;
  1238. }
  1239. #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
  1240. /*
  1241. * swap the static kmem_list3 with kmalloced memory
  1242. */
  1243. static void __init init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
  1244. int nodeid)
  1245. {
  1246. struct kmem_list3 *ptr;
  1247. ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_NOWAIT, nodeid);
  1248. BUG_ON(!ptr);
  1249. memcpy(ptr, list, sizeof(struct kmem_list3));
  1250. /*
  1251. * Do not assume that spinlocks can be initialized via memcpy:
  1252. */
  1253. spin_lock_init(&ptr->list_lock);
  1254. MAKE_ALL_LISTS(cachep, ptr, nodeid);
  1255. cachep->nodelists[nodeid] = ptr;
  1256. }
  1257. /*
  1258. * For setting up all the kmem_list3s for cache whose buffer_size is same as
  1259. * size of kmem_list3.
  1260. */
  1261. static void __init set_up_list3s(struct kmem_cache *cachep, int index)
  1262. {
  1263. int node;
  1264. for_each_online_node(node) {
  1265. cachep->nodelists[node] = &initkmem_list3[index + node];
  1266. cachep->nodelists[node]->next_reap = jiffies +
  1267. REAPTIMEOUT_LIST3 +
  1268. ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
  1269. }
  1270. }
  1271. /*
  1272. * Initialisation. Called after the page allocator have been initialised and
  1273. * before smp_init().
  1274. */
  1275. void __init kmem_cache_init(void)
  1276. {
  1277. size_t left_over;
  1278. struct cache_sizes *sizes;
  1279. struct cache_names *names;
  1280. int i;
  1281. int order;
  1282. int node;
  1283. if (num_possible_nodes() == 1)
  1284. use_alien_caches = 0;
  1285. for (i = 0; i < NUM_INIT_LISTS; i++) {
  1286. kmem_list3_init(&initkmem_list3[i]);
  1287. if (i < MAX_NUMNODES)
  1288. cache_cache.nodelists[i] = NULL;
  1289. }
  1290. set_up_list3s(&cache_cache, CACHE_CACHE);
  1291. /*
  1292. * Fragmentation resistance on low memory - only use bigger
  1293. * page orders on machines with more than 32MB of memory.
  1294. */
  1295. if (totalram_pages > (32 << 20) >> PAGE_SHIFT)
  1296. slab_break_gfp_order = BREAK_GFP_ORDER_HI;
  1297. /* Bootstrap is tricky, because several objects are allocated
  1298. * from caches that do not exist yet:
  1299. * 1) initialize the cache_cache cache: it contains the struct
  1300. * kmem_cache structures of all caches, except cache_cache itself:
  1301. * cache_cache is statically allocated.
  1302. * Initially an __init data area is used for the head array and the
  1303. * kmem_list3 structures, it's replaced with a kmalloc allocated
  1304. * array at the end of the bootstrap.
  1305. * 2) Create the first kmalloc cache.
  1306. * The struct kmem_cache for the new cache is allocated normally.
  1307. * An __init data area is used for the head array.
  1308. * 3) Create the remaining kmalloc caches, with minimally sized
  1309. * head arrays.
  1310. * 4) Replace the __init data head arrays for cache_cache and the first
  1311. * kmalloc cache with kmalloc allocated arrays.
  1312. * 5) Replace the __init data for kmem_list3 for cache_cache and
  1313. * the other cache's with kmalloc allocated memory.
  1314. * 6) Resize the head arrays of the kmalloc caches to their final sizes.
  1315. */
  1316. node = numa_mem_id();
  1317. /* 1) create the cache_cache */
  1318. INIT_LIST_HEAD(&cache_chain);
  1319. list_add(&cache_cache.next, &cache_chain);
  1320. cache_cache.colour_off = cache_line_size();
  1321. cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
  1322. cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE + node];
  1323. /*
  1324. * struct kmem_cache size depends on nr_node_ids, which
  1325. * can be less than MAX_NUMNODES.
  1326. */
  1327. cache_cache.buffer_size = offsetof(struct kmem_cache, nodelists) +
  1328. nr_node_ids * sizeof(struct kmem_list3 *);
  1329. #if DEBUG
  1330. cache_cache.obj_size = cache_cache.buffer_size;
  1331. #endif
  1332. cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
  1333. cache_line_size());
  1334. cache_cache.reciprocal_buffer_size =
  1335. reciprocal_value(cache_cache.buffer_size);
  1336. for (order = 0; order < MAX_ORDER; order++) {
  1337. cache_estimate(order, cache_cache.buffer_size,
  1338. cache_line_size(), 0, &left_over, &cache_cache.num);
  1339. if (cache_cache.num)
  1340. break;
  1341. }
  1342. BUG_ON(!cache_cache.num);
  1343. cache_cache.gfporder = order;
  1344. cache_cache.colour = left_over / cache_cache.colour_off;
  1345. cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
  1346. sizeof(struct slab), cache_line_size());
  1347. /* 2+3) create the kmalloc caches */
  1348. sizes = malloc_sizes;
  1349. names = cache_names;
  1350. /*
  1351. * Initialize the caches that provide memory for the array cache and the
  1352. * kmem_list3 structures first. Without this, further allocations will
  1353. * bug.
  1354. */
  1355. sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
  1356. sizes[INDEX_AC].cs_size,
  1357. ARCH_KMALLOC_MINALIGN,
  1358. ARCH_KMALLOC_FLAGS|SLAB_PANIC,
  1359. NULL);
  1360. if (INDEX_AC != INDEX_L3) {
  1361. sizes[INDEX_L3].cs_cachep =
  1362. kmem_cache_create(names[INDEX_L3].name,
  1363. sizes[INDEX_L3].cs_size,
  1364. ARCH_KMALLOC_MINALIGN,
  1365. ARCH_KMALLOC_FLAGS|SLAB_PANIC,
  1366. NULL);
  1367. }
  1368. slab_early_init = 0;
  1369. while (sizes->cs_size != ULONG_MAX) {
  1370. /*
  1371. * For performance, all the general caches are L1 aligned.
  1372. * This should be particularly beneficial on SMP boxes, as it
  1373. * eliminates "false sharing".
  1374. * Note for systems short on memory removing the alignment will
  1375. * allow tighter packing of the smaller caches.
  1376. */
  1377. if (!sizes->cs_cachep) {
  1378. sizes->cs_cachep = kmem_cache_create(names->name,
  1379. sizes->cs_size,
  1380. ARCH_KMALLOC_MINALIGN,
  1381. ARCH_KMALLOC_FLAGS|SLAB_PANIC,
  1382. NULL);
  1383. }
  1384. #ifdef CONFIG_ZONE_DMA
  1385. sizes->cs_dmacachep = kmem_cache_create(
  1386. names->name_dma,
  1387. sizes->cs_size,
  1388. ARCH_KMALLOC_MINALIGN,
  1389. ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
  1390. SLAB_PANIC,
  1391. NULL);
  1392. #endif
  1393. sizes++;
  1394. names++;
  1395. }
  1396. /* 4) Replace the bootstrap head arrays */
  1397. {
  1398. struct array_cache *ptr;
  1399. ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
  1400. BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
  1401. memcpy(ptr, cpu_cache_get(&cache_cache),
  1402. sizeof(struct arraycache_init));
  1403. /*
  1404. * Do not assume that spinlocks can be initialized via memcpy:
  1405. */
  1406. spin_lock_init(&ptr->lock);
  1407. cache_cache.array[smp_processor_id()] = ptr;
  1408. ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
  1409. BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
  1410. != &initarray_generic.cache);
  1411. memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
  1412. sizeof(struct arraycache_init));
  1413. /*
  1414. * Do not assume that spinlocks can be initialized via memcpy:
  1415. */
  1416. spin_lock_init(&ptr->lock);
  1417. malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
  1418. ptr;
  1419. }
  1420. /* 5) Replace the bootstrap kmem_list3's */
  1421. {
  1422. int nid;
  1423. for_each_online_node(nid) {
  1424. init_list(&cache_cache, &initkmem_list3[CACHE_CACHE + nid], nid);
  1425. init_list(malloc_sizes[INDEX_AC].cs_cachep,
  1426. &initkmem_list3[SIZE_AC + nid], nid);
  1427. if (INDEX_AC != INDEX_L3) {
  1428. init_list(malloc_sizes[INDEX_L3].cs_cachep,
  1429. &initkmem_list3[SIZE_L3 + nid], nid);
  1430. }
  1431. }
  1432. }
  1433. g_cpucache_up = EARLY;
  1434. }
  1435. void __init kmem_cache_init_late(void)
  1436. {
  1437. struct kmem_cache *cachep;
  1438. /* 6) resize the head arrays to their final sizes */
  1439. mutex_lock(&cache_chain_mutex);
  1440. list_for_each_entry(cachep, &cache_chain, next)
  1441. if (enable_cpucache(cachep, GFP_NOWAIT))
  1442. BUG();
  1443. mutex_unlock(&cache_chain_mutex);
  1444. /* Done! */
  1445. g_cpucache_up = FULL;
  1446. /* Annotate slab for lockdep -- annotate the malloc caches */
  1447. init_lock_keys();
  1448. /*
  1449. * Register a cpu startup notifier callback that initializes
  1450. * cpu_cache_get for all new cpus
  1451. */
  1452. register_cpu_notifier(&cpucache_notifier);
  1453. #ifdef CONFIG_NUMA
  1454. /*
  1455. * Register a memory hotplug callback that initializes and frees
  1456. * nodelists.
  1457. */
  1458. hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
  1459. #endif
  1460. /*
  1461. * The reap timers are started later, with a module init call: That part
  1462. * of the kernel is not yet operational.
  1463. */
  1464. }
  1465. static int __init cpucache_init(void)
  1466. {
  1467. int cpu;
  1468. /*
  1469. * Register the timers that return unneeded pages to the page allocator
  1470. */
  1471. for_each_online_cpu(cpu)
  1472. start_cpu_timer(cpu);
  1473. return 0;
  1474. }
  1475. __initcall(cpucache_init);
  1476. /*
  1477. * Interface to system's page allocator. No need to hold the cache-lock.
  1478. *
  1479. * If we requested dmaable memory, we will get it. Even if we
  1480. * did not request dmaable memory, we might get it, but that
  1481. * would be relatively rare and ignorable.
  1482. */
  1483. static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
  1484. {
  1485. struct page *page;
  1486. int nr_pages;
  1487. int i;
  1488. #ifndef CONFIG_MMU
  1489. /*
  1490. * Nommu uses slab's for process anonymous memory allocations, and thus
  1491. * requires __GFP_COMP to properly refcount higher order allocations
  1492. */
  1493. flags |= __GFP_COMP;
  1494. #endif
  1495. flags |= cachep->gfpflags;
  1496. if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
  1497. flags |= __GFP_RECLAIMABLE;
  1498. page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
  1499. if (!page)
  1500. return NULL;
  1501. nr_pages = (1 << cachep->gfporder);
  1502. if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
  1503. add_zone_page_state(page_zone(page),
  1504. NR_SLAB_RECLAIMABLE, nr_pages);
  1505. else
  1506. add_zone_page_state(page_zone(page),
  1507. NR_SLAB_UNRECLAIMABLE, nr_pages);
  1508. for (i = 0; i < nr_pages; i++)
  1509. __SetPageSlab(page + i);
  1510. if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
  1511. kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
  1512. if (cachep->ctor)
  1513. kmemcheck_mark_uninitialized_pages(page, nr_pages);
  1514. else
  1515. kmemcheck_mark_unallocated_pages(page, nr_pages);
  1516. }
  1517. return page_address(page);
  1518. }
  1519. /*
  1520. * Interface to system's page release.
  1521. */
  1522. static void kmem_freepages(struct kmem_cache *cachep, void *addr)
  1523. {
  1524. unsigned long i = (1 << cachep->gfporder);
  1525. struct page *page = virt_to_page(addr);
  1526. const unsigned long nr_freed = i;
  1527. kmemcheck_free_shadow(page, cachep->gfporder);
  1528. if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
  1529. sub_zone_page_state(page_zone(page),
  1530. NR_SLAB_RECLAIMABLE, nr_freed);
  1531. else
  1532. sub_zone_page_state(page_zone(page),
  1533. NR_SLAB_UNRECLAIMABLE, nr_freed);
  1534. while (i--) {
  1535. BUG_ON(!PageSlab(page));
  1536. __ClearPageSlab(page);
  1537. page++;
  1538. }
  1539. if (current->reclaim_state)
  1540. current->reclaim_state->reclaimed_slab += nr_freed;
  1541. free_pages((unsigned long)addr, cachep->gfporder);
  1542. }
  1543. static void kmem_rcu_free(struct rcu_head *head)
  1544. {
  1545. struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
  1546. struct kmem_cache *cachep = slab_rcu->cachep;
  1547. kmem_freepages(cachep, slab_rcu->addr);
  1548. if (OFF_SLAB(cachep))
  1549. kmem_cache_free(cachep->slabp_cache, slab_rcu);
  1550. }
  1551. #if DEBUG
  1552. #ifdef CONFIG_DEBUG_PAGEALLOC
  1553. static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
  1554. unsigned long caller)
  1555. {
  1556. int size = obj_size(cachep);
  1557. addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
  1558. if (size < 5 * sizeof(unsigned long))
  1559. return;
  1560. *addr++ = 0x12345678;
  1561. *addr++ = caller;
  1562. *addr++ = smp_processor_id();
  1563. size -= 3 * sizeof(unsigned long);
  1564. {
  1565. unsigned long *sptr = &caller;
  1566. unsigned long svalue;
  1567. while (!kstack_end(sptr)) {
  1568. svalue = *sptr++;
  1569. if (kernel_text_address(svalue)) {
  1570. *addr++ = svalue;
  1571. size -= sizeof(unsigned long);
  1572. if (size <= sizeof(unsigned long))
  1573. break;
  1574. }
  1575. }
  1576. }
  1577. *addr++ = 0x87654321;
  1578. }
  1579. #endif
  1580. static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
  1581. {
  1582. int size = obj_size(cachep);
  1583. addr = &((char *)addr)[obj_offset(cachep)];
  1584. memset(addr, val, size);
  1585. *(unsigned char *)(addr + size - 1) = POISON_END;
  1586. }
  1587. static void dump_line(char *data, int offset, int limit)
  1588. {
  1589. int i;
  1590. unsigned char error = 0;
  1591. int bad_count = 0;
  1592. printk(KERN_ERR "%03x:", offset);
  1593. for (i = 0; i < limit; i++) {
  1594. if (data[offset + i] != POISON_FREE) {
  1595. error = data[offset + i];
  1596. bad_count++;
  1597. }
  1598. printk(" %02x", (unsigned char)data[offset + i]);
  1599. }
  1600. printk("\n");
  1601. if (bad_count == 1) {
  1602. error ^= POISON_FREE;
  1603. if (!(error & (error - 1))) {
  1604. printk(KERN_ERR "Single bit error detected. Probably "
  1605. "bad RAM.\n");
  1606. #ifdef CONFIG_X86
  1607. printk(KERN_ERR "Run memtest86+ or a similar memory "
  1608. "test tool.\n");
  1609. #else
  1610. printk(KERN_ERR "Run a memory test tool.\n");
  1611. #endif
  1612. }
  1613. }
  1614. }
  1615. #endif
  1616. #if DEBUG
  1617. static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
  1618. {
  1619. int i, size;
  1620. char *realobj;
  1621. if (cachep->flags & SLAB_RED_ZONE) {
  1622. printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
  1623. *dbg_redzone1(cachep, objp),
  1624. *dbg_redzone2(cachep, objp));
  1625. }
  1626. if (cachep->flags & SLAB_STORE_USER) {
  1627. printk(KERN_ERR "Last user: [<%p>]",
  1628. *dbg_userword(cachep, objp));
  1629. print_symbol("(%s)",
  1630. (unsigned long)*dbg_userword(cachep, objp));
  1631. printk("\n");
  1632. }
  1633. realobj = (char *)objp + obj_offset(cachep);
  1634. size = obj_size(cachep);
  1635. for (i = 0; i < size && lines; i += 16, lines--) {
  1636. int limit;
  1637. limit = 16;
  1638. if (i + limit > size)
  1639. limit = size - i;
  1640. dump_line(realobj, i, limit);
  1641. }
  1642. }
  1643. static void check_poison_obj(struct kmem_cache *cachep, void *objp)
  1644. {
  1645. char *realobj;
  1646. int size, i;
  1647. int lines = 0;
  1648. realobj = (char *)objp + obj_offset(cachep);
  1649. size = obj_size(cachep);
  1650. for (i = 0; i < size; i++) {
  1651. char exp = POISON_FREE;
  1652. if (i == size - 1)
  1653. exp = POISON_END;
  1654. if (realobj[i] != exp) {
  1655. int limit;
  1656. /* Mismatch ! */
  1657. /* Print header */
  1658. if (lines == 0) {
  1659. printk(KERN_ERR
  1660. "Slab corruption: %s start=%p, len=%d\n",
  1661. cachep->name, realobj, size);
  1662. print_objinfo(cachep, objp, 0);
  1663. }
  1664. /* Hexdump the affected line */
  1665. i = (i / 16) * 16;
  1666. limit = 16;
  1667. if (i + limit > size)
  1668. limit = size - i;
  1669. dump_line(realobj, i, limit);
  1670. i += 16;
  1671. lines++;
  1672. /* Limit to 5 lines */
  1673. if (lines > 5)
  1674. break;
  1675. }
  1676. }
  1677. if (lines != 0) {
  1678. /* Print some data about the neighboring objects, if they
  1679. * exist:
  1680. */
  1681. struct slab *slabp = virt_to_slab(objp);
  1682. unsigned int objnr;
  1683. objnr = obj_to_index(cachep, slabp, objp);
  1684. if (objnr) {
  1685. objp = index_to_obj(cachep, slabp, objnr - 1);
  1686. realobj = (char *)objp + obj_offset(cachep);
  1687. printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
  1688. realobj, size);
  1689. print_objinfo(cachep, objp, 2);
  1690. }
  1691. if (objnr + 1 < cachep->num) {
  1692. objp = index_to_obj(cachep, slabp, objnr + 1);
  1693. realobj = (char *)objp + obj_offset(cachep);
  1694. printk(KERN_ERR "Next obj: start=%p, len=%d\n",
  1695. realobj, size);
  1696. print_objinfo(cachep, objp, 2);
  1697. }
  1698. }
  1699. }
  1700. #endif
  1701. #if DEBUG
  1702. static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
  1703. {
  1704. int i;
  1705. for (i = 0; i < cachep->num; i++) {
  1706. void *objp = index_to_obj(cachep, slabp, i);
  1707. if (cachep->flags & SLAB_POISON) {
  1708. #ifdef CONFIG_DEBUG_PAGEALLOC
  1709. if (cachep->buffer_size % PAGE_SIZE == 0 &&
  1710. OFF_SLAB(cachep))
  1711. kernel_map_pages(virt_to_page(objp),
  1712. cachep->buffer_size / PAGE_SIZE, 1);
  1713. else
  1714. check_poison_obj(cachep, objp);
  1715. #else
  1716. check_poison_obj(cachep, objp);
  1717. #endif
  1718. }
  1719. if (cachep->flags & SLAB_RED_ZONE) {
  1720. if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
  1721. slab_error(cachep, "start of a freed object "
  1722. "was overwritten");
  1723. if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
  1724. slab_error(cachep, "end of a freed object "
  1725. "was overwritten");
  1726. }
  1727. }
  1728. }
  1729. #else
  1730. static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
  1731. {
  1732. }
  1733. #endif
  1734. /**
  1735. * slab_destroy - destroy and release all objects in a slab
  1736. * @cachep: cache pointer being destroyed
  1737. * @slabp: slab pointer being destroyed
  1738. *
  1739. * Destroy all the objs in a slab, and release the mem back to the system.
  1740. * Before calling the slab must have been unlinked from the cache. The
  1741. * cache-lock is not held/needed.
  1742. */
  1743. static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
  1744. {
  1745. void *addr = slabp->s_mem - slabp->colouroff;
  1746. slab_destroy_debugcheck(cachep, slabp);
  1747. if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
  1748. struct slab_rcu *slab_rcu;
  1749. slab_rcu = (struct slab_rcu *)slabp;
  1750. slab_rcu->cachep = cachep;
  1751. slab_rcu->addr = addr;
  1752. call_rcu(&slab_rcu->head, kmem_rcu_free);
  1753. } else {
  1754. kmem_freepages(cachep, addr);
  1755. if (OFF_SLAB(cachep))
  1756. kmem_cache_free(cachep->slabp_cache, slabp);
  1757. }
  1758. }
  1759. static void __kmem_cache_destroy(struct kmem_cache *cachep)
  1760. {
  1761. int i;
  1762. struct kmem_list3 *l3;
  1763. for_each_online_cpu(i)
  1764. kfree(cachep->array[i]);
  1765. /* NUMA: free the list3 structures */
  1766. for_each_online_node(i) {
  1767. l3 = cachep->nodelists[i];
  1768. if (l3) {
  1769. kfree(l3->shared);
  1770. free_alien_cache(l3->alien);
  1771. kfree(l3);
  1772. }
  1773. }
  1774. kmem_cache_free(&cache_cache, cachep);
  1775. }
  1776. /**
  1777. * calculate_slab_order - calculate size (page order) of slabs
  1778. * @cachep: pointer to the cache that is being created
  1779. * @size: size of objects to be created in this cache.
  1780. * @align: required alignment for the objects.
  1781. * @flags: slab allocation flags
  1782. *
  1783. * Also calculates the number of objects per slab.
  1784. *
  1785. * This could be made much more intelligent. For now, try to avoid using
  1786. * high order pages for slabs. When the gfp() functions are more friendly
  1787. * towards high-order requests, this should be changed.
  1788. */
  1789. static size_t calculate_slab_order(struct kmem_cache *cachep,
  1790. size_t size, size_t align, unsigned long flags)
  1791. {
  1792. unsigned long offslab_limit;
  1793. size_t left_over = 0;
  1794. int gfporder;
  1795. for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
  1796. unsigned int num;
  1797. size_t remainder;
  1798. cache_estimate(gfporder, size, align, flags, &remainder, &num);
  1799. if (!num)
  1800. continue;
  1801. if (flags & CFLGS_OFF_SLAB) {
  1802. /*
  1803. * Max number of objs-per-slab for caches which
  1804. * use off-slab slabs. Needed to avoid a possible
  1805. * looping condition in cache_grow().
  1806. */
  1807. offslab_limit = size - sizeof(struct slab);
  1808. offslab_limit /= sizeof(kmem_bufctl_t);
  1809. if (num > offslab_limit)
  1810. break;
  1811. }
  1812. /* Found something acceptable - save it away */
  1813. cachep->num = num;
  1814. cachep->gfporder = gfporder;
  1815. left_over = remainder;
  1816. /*
  1817. * A VFS-reclaimable slab tends to have most allocations
  1818. * as GFP_NOFS and we really don't want to have to be allocating
  1819. * higher-order pages when we are unable to shrink dcache.
  1820. */
  1821. if (flags & SLAB_RECLAIM_ACCOUNT)
  1822. break;
  1823. /*
  1824. * Large number of objects is good, but very large slabs are
  1825. * currently bad for the gfp()s.
  1826. */
  1827. if (gfporder >= slab_break_gfp_order)
  1828. break;
  1829. /*
  1830. * Acceptable internal fragmentation?
  1831. */
  1832. if (left_over * 8 <= (PAGE_SIZE << gfporder))
  1833. break;
  1834. }
  1835. return left_over;
  1836. }
  1837. static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
  1838. {
  1839. if (g_cpucache_up == FULL)
  1840. return enable_cpucache(cachep, gfp);
  1841. if (g_cpucache_up == NONE) {
  1842. /*
  1843. * Note: the first kmem_cache_create must create the cache
  1844. * that's used by kmalloc(24), otherwise the creation of
  1845. * further caches will BUG().
  1846. */
  1847. cachep->array[smp_processor_id()] = &initarray_generic.cache;
  1848. /*
  1849. * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
  1850. * the first cache, then we need to set up all its list3s,
  1851. * otherwise the creation of further caches will BUG().
  1852. */
  1853. set_up_list3s(cachep, SIZE_AC);
  1854. if (INDEX_AC == INDEX_L3)
  1855. g_cpucache_up = PARTIAL_L3;
  1856. else
  1857. g_cpucache_up = PARTIAL_AC;
  1858. } else {
  1859. cachep->array[smp_processor_id()] =
  1860. kmalloc(sizeof(struct arraycache_init), gfp);
  1861. if (g_cpucache_up == PARTIAL_AC) {
  1862. set_up_list3s(cachep, SIZE_L3);
  1863. g_cpucache_up = PARTIAL_L3;
  1864. } else {
  1865. int node;
  1866. for_each_online_node(node) {
  1867. cachep->nodelists[node] =
  1868. kmalloc_node(sizeof(struct kmem_list3),
  1869. gfp, node);
  1870. BUG_ON(!cachep->nodelists[node]);
  1871. kmem_list3_init(cachep->nodelists[node]);
  1872. }
  1873. }
  1874. }
  1875. cachep->nodelists[numa_mem_id()]->next_reap =
  1876. jiffies + REAPTIMEOUT_LIST3 +
  1877. ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
  1878. cpu_cache_get(cachep)->avail = 0;
  1879. cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
  1880. cpu_cache_get(cachep)->batchcount = 1;
  1881. cpu_cache_get(cachep)->touched = 0;
  1882. cachep->batchcount = 1;
  1883. cachep->limit = BOOT_CPUCACHE_ENTRIES;
  1884. return 0;
  1885. }
  1886. /**
  1887. * kmem_cache_create - Create a cache.
  1888. * @name: A string which is used in /proc/slabinfo to identify this cache.
  1889. * @size: The size of objects to be created in this cache.
  1890. * @align: The required alignment for the objects.
  1891. * @flags: SLAB flags
  1892. * @ctor: A constructor for the objects.
  1893. *
  1894. * Returns a ptr to the cache on success, NULL on failure.
  1895. * Cannot be called within a int, but can be interrupted.
  1896. * The @ctor is run when new pages are allocated by the cache.
  1897. *
  1898. * @name must be valid until the cache is destroyed. This implies that
  1899. * the module calling this has to destroy the cache before getting unloaded.
  1900. * Note that kmem_cache_name() is not guaranteed to return the same pointer,
  1901. * therefore applications must manage it themselves.
  1902. *
  1903. * The flags are
  1904. *
  1905. * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
  1906. * to catch references to uninitialised memory.
  1907. *
  1908. * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
  1909. * for buffer overruns.
  1910. *
  1911. * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
  1912. * cacheline. This can be beneficial if you're counting cycles as closely
  1913. * as davem.
  1914. */
  1915. struct kmem_cache *
  1916. kmem_cache_create (const char *name, size_t size, size_t align,
  1917. unsigned long flags, void (*ctor)(void *))
  1918. {
  1919. size_t left_over, slab_size, ralign;
  1920. struct kmem_cache *cachep = NULL, *pc;
  1921. gfp_t gfp;
  1922. /*
  1923. * Sanity checks... these are all serious usage bugs.
  1924. */
  1925. if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
  1926. size > KMALLOC_MAX_SIZE) {
  1927. printk(KERN_ERR "%s: Early error in slab %s\n", __func__,
  1928. name);
  1929. BUG();
  1930. }
  1931. /*
  1932. * We use cache_chain_mutex to ensure a consistent view of
  1933. * cpu_online_mask as well. Please see cpuup_callback
  1934. */
  1935. if (slab_is_available()) {
  1936. get_online_cpus();
  1937. mutex_lock(&cache_chain_mutex);
  1938. }
  1939. list_for_each_entry(pc, &cache_chain, next) {
  1940. char tmp;
  1941. int res;
  1942. /*
  1943. * This happens when the module gets unloaded and doesn't
  1944. * destroy its slab cache and no-one else reuses the vmalloc
  1945. * area of the module. Print a warning.
  1946. */
  1947. res = probe_kernel_address(pc->name, tmp);
  1948. if (res) {
  1949. printk(KERN_ERR
  1950. "SLAB: cache with size %d has lost its name\n",
  1951. pc->buffer_size);
  1952. continue;
  1953. }
  1954. if (!strcmp(pc->name, name)) {
  1955. printk(KERN_ERR
  1956. "kmem_cache_create: duplicate cache %s\n", name);
  1957. dump_stack();
  1958. goto oops;
  1959. }
  1960. }
  1961. #if DEBUG
  1962. WARN_ON(strchr(name, ' ')); /* It confuses parsers */
  1963. #if FORCED_DEBUG
  1964. /*
  1965. * Enable redzoning and last user accounting, except for caches with
  1966. * large objects, if the increased size would increase the object size
  1967. * above the next power of two: caches with object sizes just above a
  1968. * power of two have a significant amount of internal fragmentation.
  1969. */
  1970. if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
  1971. 2 * sizeof(unsigned long long)))
  1972. flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
  1973. if (!(flags & SLAB_DESTROY_BY_RCU))
  1974. flags |= SLAB_POISON;
  1975. #endif
  1976. if (flags & SLAB_DESTROY_BY_RCU)
  1977. BUG_ON(flags & SLAB_POISON);
  1978. #endif
  1979. /*
  1980. * Always checks flags, a caller might be expecting debug support which
  1981. * isn't available.
  1982. */
  1983. BUG_ON(flags & ~CREATE_MASK);
  1984. /*
  1985. * Check that size is in terms of words. This is needed to avoid
  1986. * unaligned accesses for some archs when redzoning is used, and makes
  1987. * sure any on-slab bufctl's are also correctly aligned.
  1988. */
  1989. if (size & (BYTES_PER_WORD - 1)) {
  1990. size += (BYTES_PER_WORD - 1);
  1991. size &= ~(BYTES_PER_WORD - 1);
  1992. }
  1993. /* calculate the final buffer alignment: */
  1994. /* 1) arch recommendation: can be overridden for debug */
  1995. if (flags & SLAB_HWCACHE_ALIGN) {
  1996. /*
  1997. * Default alignment: as specified by the arch code. Except if
  1998. * an object is really small, then squeeze multiple objects into
  1999. * one cacheline.
  2000. */
  2001. ralign = cache_line_size();
  2002. while (size <= ralign / 2)
  2003. ralign /= 2;
  2004. } else {
  2005. ralign = BYTES_PER_WORD;
  2006. }
  2007. /*
  2008. * Redzoning and user store require word alignment or possibly larger.
  2009. * Note this will be overridden by architecture or caller mandated
  2010. * alignment if either is greater than BYTES_PER_WORD.
  2011. */
  2012. if (flags & SLAB_STORE_USER)
  2013. ralign = BYTES_PER_WORD;
  2014. if (flags & SLAB_RED_ZONE) {
  2015. ralign = REDZONE_ALIGN;
  2016. /* If redzoning, ensure that the second redzone is suitably
  2017. * aligned, by adjusting the object size accordingly. */
  2018. size += REDZONE_ALIGN - 1;
  2019. size &= ~(REDZONE_ALIGN - 1);
  2020. }
  2021. /* 2) arch mandated alignment */
  2022. if (ralign < ARCH_SLAB_MINALIGN) {
  2023. ralign = ARCH_SLAB_MINALIGN;
  2024. }
  2025. /* 3) caller mandated alignment */
  2026. if (ralign < align) {
  2027. ralign = align;
  2028. }
  2029. /* disable debug if not aligning with REDZONE_ALIGN */
  2030. if (ralign & (__alignof__(unsigned long long) - 1))
  2031. flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
  2032. /*
  2033. * 4) Store it.
  2034. */
  2035. align = ralign;
  2036. if (slab_is_available())
  2037. gfp = GFP_KERNEL;
  2038. else
  2039. gfp = GFP_NOWAIT;
  2040. /* Get cache's description obj. */
  2041. cachep = kmem_cache_zalloc(&cache_cache, gfp);
  2042. if (!cachep)
  2043. goto oops;
  2044. #if DEBUG
  2045. cachep->obj_size = size;
  2046. /*
  2047. * Both debugging options require word-alignment which is calculated
  2048. * into align above.
  2049. */
  2050. if (flags & SLAB_RED_ZONE) {
  2051. /* add space for red zone words */
  2052. cachep->obj_offset += align;
  2053. size += align + sizeof(unsigned long long);
  2054. }
  2055. if (flags & SLAB_STORE_USER) {
  2056. /* user store requires one word storage behind the end of
  2057. * the real object. But if the second red zone needs to be
  2058. * aligned to 64 bits, we must allow that much space.
  2059. */
  2060. if (flags & SLAB_RED_ZONE)
  2061. size += REDZONE_ALIGN;
  2062. else
  2063. size += BYTES_PER_WORD;
  2064. }
  2065. #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
  2066. if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
  2067. && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
  2068. cachep->obj_offset += PAGE_SIZE - size;
  2069. size = PAGE_SIZE;
  2070. }
  2071. #endif
  2072. #endif
  2073. /*
  2074. * Determine if the slab management is 'on' or 'off' slab.
  2075. * (bootstrapping cannot cope with offslab caches so don't do
  2076. * it too early on. Always use on-slab management when
  2077. * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
  2078. */
  2079. if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init &&
  2080. !(flags & SLAB_NOLEAKTRACE))
  2081. /*
  2082. * Size is large, assume best to place the slab management obj
  2083. * off-slab (should allow better packing of objs).
  2084. */
  2085. flags |= CFLGS_OFF_SLAB;
  2086. size = ALIGN(size, align);
  2087. left_over = calculate_slab_order(cachep, size, align, flags);
  2088. if (!cachep->num) {
  2089. printk(KERN_ERR
  2090. "kmem_cache_create: couldn't create cache %s.\n", name);
  2091. kmem_cache_free(&cache_cache, cachep);
  2092. cachep = NULL;
  2093. goto oops;
  2094. }
  2095. slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
  2096. + sizeof(struct slab), align);
  2097. /*
  2098. * If the slab has been placed off-slab, and we have enough space then
  2099. * move it on-slab. This is at the expense of any extra colouring.
  2100. */
  2101. if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
  2102. flags &= ~CFLGS_OFF_SLAB;
  2103. left_over -= slab_size;
  2104. }
  2105. if (flags & CFLGS_OFF_SLAB) {
  2106. /* really off slab. No need for manual alignment */
  2107. slab_size =
  2108. cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
  2109. #ifdef CONFIG_PAGE_POISONING
  2110. /* If we're going to use the generic kernel_map_pages()
  2111. * poisoning, then it's going to smash the contents of
  2112. * the redzone and userword anyhow, so switch them off.
  2113. */
  2114. if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
  2115. flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
  2116. #endif
  2117. }
  2118. cachep->colour_off = cache_line_size();
  2119. /* Offset must be a multiple of the alignment. */
  2120. if (cachep->colour_off < align)
  2121. cachep->colour_off = align;
  2122. cachep->colour = left_over / cachep->colour_off;
  2123. cachep->slab_size = slab_size;
  2124. cachep->flags = flags;
  2125. cachep->gfpflags = 0;
  2126. if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
  2127. cachep->gfpflags |= GFP_DMA;
  2128. cachep->buffer_size = size;
  2129. cachep->reciprocal_buffer_size = reciprocal_value(size);
  2130. if (flags & CFLGS_OFF_SLAB) {
  2131. cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
  2132. /*
  2133. * This is a possibility for one of the malloc_sizes caches.
  2134. * But since we go off slab only for object size greater than
  2135. * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
  2136. * this should not happen at all.
  2137. * But leave a BUG_ON for some lucky dude.
  2138. */
  2139. BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));
  2140. }
  2141. cachep->ctor = ctor;
  2142. cachep->name = name;
  2143. if (setup_cpu_cache(cachep, gfp)) {
  2144. __kmem_cache_destroy(cachep);
  2145. cachep = NULL;
  2146. goto oops;
  2147. }
  2148. /* cache setup completed, link it into the list */
  2149. list_add(&cachep->next, &cache_chain);
  2150. oops:
  2151. if (!cachep && (flags & SLAB_PANIC))
  2152. panic("kmem_cache_create(): failed to create slab `%s'\n",
  2153. name);
  2154. if (slab_is_available()) {
  2155. mutex_unlock(&cache_chain_mutex);
  2156. put_online_cpus();
  2157. }
  2158. return cachep;
  2159. }
  2160. EXPORT_SYMBOL(kmem_cache_create);
  2161. #if DEBUG
  2162. static void check_irq_off(void)
  2163. {
  2164. BUG_ON(!irqs_disabled());
  2165. }
  2166. static void check_irq_on(void)
  2167. {
  2168. BUG_ON(irqs_disabled());
  2169. }
  2170. static void check_spinlock_acquired(struct kmem_cache *cachep)
  2171. {
  2172. #ifdef CONFIG_SMP
  2173. check_irq_off();
  2174. assert_spin_locked(&cachep->nodelists[numa_mem_id()]->list_lock);
  2175. #endif
  2176. }
  2177. static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
  2178. {
  2179. #ifdef CONFIG_SMP
  2180. check_irq_off();
  2181. assert_spin_locked(&cachep->nodelists[node]->list_lock);
  2182. #endif
  2183. }
  2184. #else
  2185. #define check_irq_off() do { } while(0)
  2186. #define check_irq_on() do { } while(0)
  2187. #define check_spinlock_acquired(x) do { } while(0)
  2188. #define check_spinlock_acquired_node(x, y) do { } while(0)
  2189. #endif
  2190. static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
  2191. struct array_cache *ac,
  2192. int force, int node);
  2193. static void do_drain(void *arg)
  2194. {
  2195. struct kmem_cache *cachep = arg;
  2196. struct array_cache *ac;
  2197. int node = numa_mem_id();
  2198. check_irq_off();
  2199. ac = cpu_cache_get(cachep);
  2200. spin_lock(&cachep->nodelists[node]->list_lock);
  2201. free_block(cachep, ac->entry, ac->avail, node);
  2202. spin_unlock(&cachep->nodelists[node]->list_lock);
  2203. ac->avail = 0;
  2204. }
  2205. static void drain_cpu_caches(struct kmem_cache *cachep)
  2206. {
  2207. struct kmem_list3 *l3;
  2208. int node;
  2209. on_each_cpu(do_drain, cachep, 1);
  2210. check_irq_on();
  2211. for_each_online_node(node) {
  2212. l3 = cachep->nodelists[node];
  2213. if (l3 && l3->alien)
  2214. drain_alien_cache(cachep, l3->alien);
  2215. }
  2216. for_each_online_node(node) {
  2217. l3 = cachep->nodelists[node];
  2218. if (l3)
  2219. drain_array(cachep, l3, l3->shared, 1, node);
  2220. }
  2221. }
  2222. /*
  2223. * Remove slabs from the list of free slabs.
  2224. * Specify the number of slabs to drain in tofree.
  2225. *
  2226. * Returns the actual number of slabs released.
  2227. */
  2228. static int drain_freelist(struct kmem_cache *cache,
  2229. struct kmem_list3 *l3, int tofree)
  2230. {
  2231. struct list_head *p;
  2232. int nr_freed;
  2233. struct slab *slabp;
  2234. nr_freed = 0;
  2235. while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
  2236. spin_lock_irq(&l3->list_lock);
  2237. p = l3->slabs_free.prev;
  2238. if (p == &l3->slabs_free) {
  2239. spin_unlock_irq(&l3->list_lock);
  2240. goto out;
  2241. }
  2242. slabp = list_entry(p, struct slab, list);
  2243. #if DEBUG
  2244. BUG_ON(slabp->inuse);
  2245. #endif
  2246. list_del(&slabp->list);
  2247. /*
  2248. * Safe to drop the lock. The slab is no longer linked
  2249. * to the cache.
  2250. */
  2251. l3->free_objects -= cache->num;
  2252. spin_unlock_irq(&l3->list_lock);
  2253. slab_destroy(cache, slabp);
  2254. nr_freed++;
  2255. }
  2256. out:
  2257. return nr_freed;
  2258. }
  2259. /* Called with cache_chain_mutex held to protect against cpu hotplug */
  2260. static int __cache_shrink(struct kmem_cache *cachep)
  2261. {
  2262. int ret = 0, i = 0;
  2263. struct kmem_list3 *l3;
  2264. drain_cpu_caches(cachep);
  2265. check_irq_on();
  2266. for_each_online_node(i) {
  2267. l3 = cachep->nodelists[i];
  2268. if (!l3)
  2269. continue;
  2270. drain_freelist(cachep, l3, l3->free_objects);
  2271. ret += !list_empty(&l3->slabs_full) ||
  2272. !list_empty(&l3->slabs_partial);
  2273. }
  2274. return (ret ? 1 : 0);
  2275. }
  2276. /**
  2277. * kmem_cache_shrink - Shrink a cache.
  2278. * @cachep: The cache to shrink.
  2279. *
  2280. * Releases as many slabs as possible for a cache.
  2281. * To help debugging, a zero exit status indicates all slabs were released.
  2282. */
  2283. int kmem_cache_shrink(struct kmem_cache *cachep)
  2284. {
  2285. int ret;
  2286. BUG_ON(!cachep || in_interrupt());
  2287. get_online_cpus();
  2288. mutex_lock(&cache_chain_mutex);
  2289. ret = __cache_shrink(cachep);
  2290. mutex_unlock(&cache_chain_mutex);
  2291. put_online_cpus();
  2292. return ret;
  2293. }
  2294. EXPORT_SYMBOL(kmem_cache_shrink);
  2295. /**
  2296. * kmem_cache_destroy - delete a cache
  2297. * @cachep: the cache to destroy
  2298. *
  2299. * Remove a &struct kmem_cache object from the slab cache.
  2300. *
  2301. * It is expected this function will be called by a module when it is
  2302. * unloaded. This will remove the cache completely, and avoid a duplicate
  2303. * cache being allocated each time a module is loaded and unloaded, if the
  2304. * module doesn't have persistent in-kernel storage across loads and unloads.
  2305. *
  2306. * The cache must be empty before calling this function.
  2307. *
  2308. * The caller must guarantee that noone will allocate memory from the cache
  2309. * during the kmem_cache_destroy().
  2310. */
  2311. void kmem_cache_destroy(struct kmem_cache *cachep)
  2312. {
  2313. BUG_ON(!cachep || in_interrupt());
  2314. /* Find the cache in the chain of caches. */
  2315. get_online_cpus();
  2316. mutex_lock(&cache_chain_mutex);
  2317. /*
  2318. * the chain is never empty, cache_cache is never destroyed
  2319. */
  2320. list_del(&cachep->next);
  2321. if (__cache_shrink(cachep)) {
  2322. slab_error(cachep, "Can't free all objects");
  2323. list_add(&cachep->next, &cache_chain);
  2324. mutex_unlock(&cache_chain_mutex);
  2325. put_online_cpus();
  2326. return;
  2327. }
  2328. if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
  2329. rcu_barrier();
  2330. __kmem_cache_destroy(cachep);
  2331. mutex_unlock(&cache_chain_mutex);
  2332. put_online_cpus();
  2333. }
  2334. EXPORT_SYMBOL(kmem_cache_destroy);
  2335. /*
  2336. * Get the memory for a slab management obj.
  2337. * For a slab cache when the slab descriptor is off-slab, slab descriptors
  2338. * always come from malloc_sizes caches. The slab descriptor cannot
  2339. * come from the same cache which is getting created because,
  2340. * when we are searching for an appropriate cache for these
  2341. * descriptors in kmem_cache_create, we search through the malloc_sizes array.
  2342. * If we are creating a malloc_sizes cache here it would not be visible to
  2343. * kmem_find_general_cachep till the initialization is complete.
  2344. * Hence we cannot have slabp_cache same as the original cache.
  2345. */
  2346. static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
  2347. int colour_off, gfp_t local_flags,
  2348. int nodeid)
  2349. {
  2350. struct slab *slabp;
  2351. if (OFF_SLAB(cachep)) {
  2352. /* Slab management obj is off-slab. */
  2353. slabp = kmem_cache_alloc_node(cachep->slabp_cache,
  2354. local_flags, nodeid);
  2355. /*
  2356. * If the first object in the slab is leaked (it's allocated
  2357. * but no one has a reference to it), we want to make sure
  2358. * kmemleak does not treat the ->s_mem pointer as a reference
  2359. * to the object. Otherwise we will not report the leak.
  2360. */
  2361. kmemleak_scan_area(&slabp->list, sizeof(struct list_head),
  2362. local_flags);
  2363. if (!slabp)
  2364. return NULL;
  2365. } else {
  2366. slabp = objp + colour_off;
  2367. colour_off += cachep->slab_size;
  2368. }
  2369. slabp->inuse = 0;
  2370. slabp->colouroff = colour_off;
  2371. slabp->s_mem = objp + colour_off;
  2372. slabp->nodeid = nodeid;
  2373. slabp->free = 0;
  2374. return slabp;
  2375. }
  2376. static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
  2377. {
  2378. return (kmem_bufctl_t *) (slabp + 1);
  2379. }
  2380. static void cache_init_objs(struct kmem_cache *cachep,
  2381. struct slab *slabp)
  2382. {
  2383. int i;
  2384. for (i = 0; i < cachep->num; i++) {
  2385. void *objp = index_to_obj(cachep, slabp, i);
  2386. #if DEBUG
  2387. /* need to poison the objs? */
  2388. if (cachep->flags & SLAB_POISON)
  2389. poison_obj(cachep, objp, POISON_FREE);
  2390. if (cachep->flags & SLAB_STORE_USER)
  2391. *dbg_userword(cachep, objp) = NULL;
  2392. if (cachep->flags & SLAB_RED_ZONE) {
  2393. *dbg_redzone1(cachep, objp) = RED_INACTIVE;
  2394. *dbg_redzone2(cachep, objp) = RED_INACTIVE;
  2395. }
  2396. /*
  2397. * Constructors are not allowed to allocate memory from the same
  2398. * cache which they are a constructor for. Otherwise, deadlock.
  2399. * They must also be threaded.
  2400. */
  2401. if (cachep->ctor && !(cachep->flags & SLAB_POISON))
  2402. cachep->ctor(objp + obj_offset(cachep));
  2403. if (cachep->flags & SLAB_RED_ZONE) {
  2404. if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
  2405. slab_error(cachep, "constructor overwrote the"
  2406. " end of an object");
  2407. if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
  2408. slab_error(cachep, "constructor overwrote the"
  2409. " start of an object");
  2410. }
  2411. if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
  2412. OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
  2413. kernel_map_pages(virt_to_page(objp),
  2414. cachep->buffer_size / PAGE_SIZE, 0);
  2415. #else
  2416. if (cachep->ctor)
  2417. cachep->ctor(objp);
  2418. #endif
  2419. slab_bufctl(slabp)[i] = i + 1;
  2420. }
  2421. slab_bufctl(slabp)[i - 1] = BUFCTL_END;
  2422. }
  2423. static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
  2424. {
  2425. if (CONFIG_ZONE_DMA_FLAG) {
  2426. if (flags & GFP_DMA)
  2427. BUG_ON(!(cachep->gfpflags & GFP_DMA));
  2428. else
  2429. BUG_ON(cachep->gfpflags & GFP_DMA);
  2430. }
  2431. }
  2432. static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
  2433. int nodeid)
  2434. {
  2435. void *objp = index_to_obj(cachep, slabp, slabp->free);
  2436. kmem_bufctl_t next;
  2437. slabp->inuse++;
  2438. next = slab_bufctl(slabp)[slabp->free];
  2439. #if DEBUG
  2440. slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
  2441. WARN_ON(slabp->nodeid != nodeid);
  2442. #endif
  2443. slabp->free = next;
  2444. return objp;
  2445. }
  2446. static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
  2447. void *objp, int nodeid)
  2448. {
  2449. unsigned int objnr = obj_to_index(cachep, slabp, objp);
  2450. #if DEBUG
  2451. /* Verify that the slab belongs to the intended node */
  2452. WARN_ON(slabp->nodeid != nodeid);
  2453. if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
  2454. printk(KERN_ERR "slab: double free detected in cache "
  2455. "'%s', objp %p\n", cachep->name, objp);
  2456. BUG();
  2457. }
  2458. #endif
  2459. slab_bufctl(slabp)[objnr] = slabp->free;
  2460. slabp->free = objnr;
  2461. slabp->inuse--;
  2462. }
  2463. /*
  2464. * Map pages beginning at addr to the given cache and slab. This is required
  2465. * for the slab allocator to be able to lookup the cache and slab of a
  2466. * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
  2467. */
  2468. static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
  2469. void *addr)
  2470. {
  2471. int nr_pages;
  2472. struct page *page;
  2473. page = virt_to_page(addr);
  2474. nr_pages = 1;
  2475. if (likely(!PageCompound(page)))
  2476. nr_pages <<= cache->gfporder;
  2477. do {
  2478. page_set_cache(page, cache);
  2479. page_set_slab(page, slab);
  2480. page++;
  2481. } while (--nr_pages);
  2482. }
  2483. /*
  2484. * Grow (by 1) the number of slabs within a cache. This is called by
  2485. * kmem_cache_alloc() when there are no active objs left in a cache.
  2486. */
  2487. static int cache_grow(struct kmem_cache *cachep,
  2488. gfp_t flags, int nodeid, void *objp)
  2489. {
  2490. struct slab *slabp;
  2491. size_t offset;
  2492. gfp_t local_flags;
  2493. struct kmem_list3 *l3;
  2494. /*
  2495. * Be lazy and only check for valid flags here, keeping it out of the
  2496. * critical path in kmem_cache_alloc().
  2497. */
  2498. BUG_ON(flags & GFP_SLAB_BUG_MASK);
  2499. local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
  2500. /* Take the l3 list lock to change the colour_next on this node */
  2501. check_irq_off();
  2502. l3 = cachep->nodelists[nodeid];
  2503. spin_lock(&l3->list_lock);
  2504. /* Get colour for the slab, and cal the next value. */
  2505. offset = l3->colour_next;
  2506. l3->colour_next++;
  2507. if (l3->colour_next >= cachep->colour)
  2508. l3->colour_next = 0;
  2509. spin_unlock(&l3->list_lock);
  2510. offset *= cachep->colour_off;
  2511. if (local_flags & __GFP_WAIT)
  2512. local_irq_enable();
  2513. /*
  2514. * The test for missing atomic flag is performed here, rather than
  2515. * the more obvious place, simply to reduce the critical path length
  2516. * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
  2517. * will eventually be caught here (where it matters).
  2518. */
  2519. kmem_flagcheck(cachep, flags);
  2520. /*
  2521. * Get mem for the objs. Attempt to allocate a physical page from
  2522. * 'nodeid'.
  2523. */
  2524. if (!objp)
  2525. objp = kmem_getpages(cachep, local_flags, nodeid);
  2526. if (!objp)
  2527. goto failed;
  2528. /* Get slab management. */
  2529. slabp = alloc_slabmgmt(cachep, objp, offset,
  2530. local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
  2531. if (!slabp)
  2532. goto opps1;
  2533. slab_map_pages(cachep, slabp, objp);
  2534. cache_init_objs(cachep, slabp);
  2535. if (local_flags & __GFP_WAIT)
  2536. local_irq_disable();
  2537. check_irq_off();
  2538. spin_lock(&l3->list_lock);
  2539. /* Make slab active. */
  2540. list_add_tail(&slabp->list, &(l3->slabs_free));
  2541. STATS_INC_GROWN(cachep);
  2542. l3->free_objects += cachep->num;
  2543. spin_unlock(&l3->list_lock);
  2544. return 1;
  2545. opps1:
  2546. kmem_freepages(cachep, objp);
  2547. failed:
  2548. if (local_flags & __GFP_WAIT)
  2549. local_irq_disable();
  2550. return 0;
  2551. }
  2552. #if DEBUG
  2553. /*
  2554. * Perform extra freeing checks:
  2555. * - detect bad pointers.
  2556. * - POISON/RED_ZONE checking
  2557. */
  2558. static void kfree_debugcheck(const void *objp)
  2559. {
  2560. if (!virt_addr_valid(objp)) {
  2561. printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
  2562. (unsigned long)objp);
  2563. BUG();
  2564. }
  2565. }
  2566. static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
  2567. {
  2568. unsigned long long redzone1, redzone2;
  2569. redzone1 = *dbg_redzone1(cache, obj);
  2570. redzone2 = *dbg_redzone2(cache, obj);
  2571. /*
  2572. * Redzone is ok.
  2573. */
  2574. if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
  2575. return;
  2576. if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
  2577. slab_error(cache, "double free detected");
  2578. else
  2579. slab_error(cache, "memory outside object was overwritten");
  2580. printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
  2581. obj, redzone1, redzone2);
  2582. }
  2583. static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
  2584. void *caller)
  2585. {
  2586. struct page *page;
  2587. unsigned int objnr;
  2588. struct slab *slabp;
  2589. BUG_ON(virt_to_cache(objp) != cachep);
  2590. objp -= obj_offset(cachep);
  2591. kfree_debugcheck(objp);
  2592. page = virt_to_head_page(objp);
  2593. slabp = page_get_slab(page);
  2594. if (cachep->flags & SLAB_RED_ZONE) {
  2595. verify_redzone_free(cachep, objp);
  2596. *dbg_redzone1(cachep, objp) = RED_INACTIVE;
  2597. *dbg_redzone2(cachep, objp) = RED_INACTIVE;
  2598. }
  2599. if (cachep->flags & SLAB_STORE_USER)
  2600. *dbg_userword(cachep, objp) = caller;
  2601. objnr = obj_to_index(cachep, slabp, objp);
  2602. BUG_ON(objnr >= cachep->num);
  2603. BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
  2604. #ifdef CONFIG_DEBUG_SLAB_LEAK
  2605. slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
  2606. #endif
  2607. if (cachep->flags & SLAB_POISON) {
  2608. #ifdef CONFIG_DEBUG_PAGEALLOC
  2609. if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
  2610. store_stackinfo(cachep, objp, (unsigned long)caller);
  2611. kernel_map_pages(virt_to_page(objp),
  2612. cachep->buffer_size / PAGE_SIZE, 0);
  2613. } else {
  2614. poison_obj(cachep, objp, POISON_FREE);
  2615. }
  2616. #else
  2617. poison_obj(cachep, objp, POISON_FREE);
  2618. #endif
  2619. }
  2620. return objp;
  2621. }
  2622. static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
  2623. {
  2624. kmem_bufctl_t i;
  2625. int entries = 0;
  2626. /* Check slab's freelist to see if this obj is there. */
  2627. for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
  2628. entries++;
  2629. if (entries > cachep->num || i >= cachep->num)
  2630. goto bad;
  2631. }
  2632. if (entries != cachep->num - slabp->inuse) {
  2633. bad:
  2634. printk(KERN_ERR "slab: Internal list corruption detected in "
  2635. "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
  2636. cachep->name, cachep->num, slabp, slabp->inuse);
  2637. for (i = 0;
  2638. i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
  2639. i++) {
  2640. if (i % 16 == 0)
  2641. printk("\n%03x:", i);
  2642. printk(" %02x", ((unsigned char *)slabp)[i]);
  2643. }
  2644. printk("\n");
  2645. BUG();
  2646. }
  2647. }
  2648. #else
  2649. #define kfree_debugcheck(x) do { } while(0)
  2650. #define cache_free_debugcheck(x,objp,z) (objp)
  2651. #define check_slabp(x,y) do { } while(0)
  2652. #endif
  2653. static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
  2654. {
  2655. int batchcount;
  2656. struct kmem_list3 *l3;
  2657. struct array_cache *ac;
  2658. int node;
  2659. retry:
  2660. check_irq_off();
  2661. node = numa_mem_id();
  2662. ac = cpu_cache_get(cachep);
  2663. batchcount = ac->batchcount;
  2664. if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
  2665. /*
  2666. * If there was little recent activity on this cache, then
  2667. * perform only a partial refill. Otherwise we could generate
  2668. * refill bouncing.
  2669. */
  2670. batchcount = BATCHREFILL_LIMIT;
  2671. }
  2672. l3 = cachep->nodelists[node];
  2673. BUG_ON(ac->avail > 0 || !l3);
  2674. spin_lock(&l3->list_lock);
  2675. /* See if we can refill from the shared array */
  2676. if (l3->shared && transfer_objects(ac, l3->shared, batchcount)) {
  2677. l3->shared->touched = 1;
  2678. goto alloc_done;
  2679. }
  2680. while (batchcount > 0) {
  2681. struct list_head *entry;
  2682. struct slab *slabp;
  2683. /* Get slab alloc is to come from. */
  2684. entry = l3->slabs_partial.next;
  2685. if (entry == &l3->slabs_partial) {
  2686. l3->free_touched = 1;
  2687. entry = l3->slabs_free.next;
  2688. if (entry == &l3->slabs_free)
  2689. goto must_grow;
  2690. }
  2691. slabp = list_entry(entry, struct slab, list);
  2692. check_slabp(cachep, slabp);
  2693. check_spinlock_acquired(cachep);
  2694. /*
  2695. * The slab was either on partial or free list so
  2696. * there must be at least one object available for
  2697. * allocation.
  2698. */
  2699. BUG_ON(slabp->inuse >= cachep->num);
  2700. while (slabp->inuse < cachep->num && batchcount--) {
  2701. STATS_INC_ALLOCED(cachep);
  2702. STATS_INC_ACTIVE(cachep);
  2703. STATS_SET_HIGH(cachep);
  2704. ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
  2705. node);
  2706. }
  2707. check_slabp(cachep, slabp);
  2708. /* move slabp to correct slabp list: */
  2709. list_del(&slabp->list);
  2710. if (slabp->free == BUFCTL_END)
  2711. list_add(&slabp->list, &l3->slabs_full);
  2712. else
  2713. list_add(&slabp->list, &l3->slabs_partial);
  2714. }
  2715. must_grow:
  2716. l3->free_objects -= ac->avail;
  2717. alloc_done:
  2718. spin_unlock(&l3->list_lock);
  2719. if (unlikely(!ac->avail)) {
  2720. int x;
  2721. x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
  2722. /* cache_grow can reenable interrupts, then ac could change. */
  2723. ac = cpu_cache_get(cachep);
  2724. if (!x && ac->avail == 0) /* no objects in sight? abort */
  2725. return NULL;
  2726. if (!ac->avail) /* objects refilled by interrupt? */
  2727. goto retry;
  2728. }
  2729. ac->touched = 1;
  2730. return ac->entry[--ac->avail];
  2731. }
  2732. static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
  2733. gfp_t flags)
  2734. {
  2735. might_sleep_if(flags & __GFP_WAIT);
  2736. #if DEBUG
  2737. kmem_flagcheck(cachep, flags);
  2738. #endif
  2739. }
  2740. #if DEBUG
  2741. static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
  2742. gfp_t flags, void *objp, void *caller)
  2743. {
  2744. if (!objp)
  2745. return objp;
  2746. if (cachep->flags & SLAB_POISON) {
  2747. #ifdef CONFIG_DEBUG_PAGEALLOC
  2748. if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
  2749. kernel_map_pages(virt_to_page(objp),
  2750. cachep->buffer_size / PAGE_SIZE, 1);
  2751. else
  2752. check_poison_obj(cachep, objp);
  2753. #else
  2754. check_poison_obj(cachep, objp);
  2755. #endif
  2756. poison_obj(cachep, objp, POISON_INUSE);
  2757. }
  2758. if (cachep->flags & SLAB_STORE_USER)
  2759. *dbg_userword(cachep, objp) = caller;
  2760. if (cachep->flags & SLAB_RED_ZONE) {
  2761. if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
  2762. *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
  2763. slab_error(cachep, "double free, or memory outside"
  2764. " object was overwritten");
  2765. printk(KERN_ERR
  2766. "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
  2767. objp, *dbg_redzone1(cachep, objp),
  2768. *dbg_redzone2(cachep, objp));
  2769. }
  2770. *dbg_redzone1(cachep, objp) = RED_ACTIVE;
  2771. *dbg_redzone2(cachep, objp) = RED_ACTIVE;
  2772. }
  2773. #ifdef CONFIG_DEBUG_SLAB_LEAK
  2774. {
  2775. struct slab *slabp;
  2776. unsigned objnr;
  2777. slabp = page_get_slab(virt_to_head_page(objp));
  2778. objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
  2779. slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
  2780. }
  2781. #endif
  2782. objp += obj_offset(cachep);
  2783. if (cachep->ctor && cachep->flags & SLAB_POISON)
  2784. cachep->ctor(objp);
  2785. #if ARCH_SLAB_MINALIGN
  2786. if ((u32)objp & (ARCH_SLAB_MINALIGN-1)) {
  2787. printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
  2788. objp, ARCH_SLAB_MINALIGN);
  2789. }
  2790. #endif
  2791. return objp;
  2792. }
  2793. #else
  2794. #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
  2795. #endif
  2796. static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
  2797. {
  2798. if (cachep == &cache_cache)
  2799. return false;
  2800. return should_failslab(obj_size(cachep), flags, cachep->flags);
  2801. }
  2802. static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
  2803. {
  2804. void *objp;
  2805. struct array_cache *ac;
  2806. check_irq_off();
  2807. ac = cpu_cache_get(cachep);
  2808. if (likely(ac->avail)) {
  2809. STATS_INC_ALLOCHIT(cachep);
  2810. ac->touched = 1;
  2811. objp = ac->entry[--ac->avail];
  2812. } else {
  2813. STATS_INC_ALLOCMISS(cachep);
  2814. objp = cache_alloc_refill(cachep, flags);
  2815. /*
  2816. * the 'ac' may be updated by cache_alloc_refill(),
  2817. * and kmemleak_erase() requires its correct value.
  2818. */
  2819. ac = cpu_cache_get(cachep);
  2820. }
  2821. /*
  2822. * To avoid a false negative, if an object that is in one of the
  2823. * per-CPU caches is leaked, we need to make sure kmemleak doesn't
  2824. * treat the array pointers as a reference to the object.
  2825. */
  2826. if (objp)
  2827. kmemleak_erase(&ac->entry[ac->avail]);
  2828. return objp;
  2829. }
  2830. #ifdef CONFIG_NUMA
  2831. /*
  2832. * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
  2833. *
  2834. * If we are in_interrupt, then process context, including cpusets and
  2835. * mempolicy, may not apply and should not be used for allocation policy.
  2836. */
  2837. static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
  2838. {
  2839. int nid_alloc, nid_here;
  2840. if (in_interrupt() || (flags & __GFP_THISNODE))
  2841. return NULL;
  2842. nid_alloc = nid_here = numa_mem_id();
  2843. get_mems_allowed();
  2844. if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
  2845. nid_alloc = cpuset_slab_spread_node();
  2846. else if (current->mempolicy)
  2847. nid_alloc = slab_node(current->mempolicy);
  2848. put_mems_allowed();
  2849. if (nid_alloc != nid_here)
  2850. return ____cache_alloc_node(cachep, flags, nid_alloc);
  2851. return NULL;
  2852. }
  2853. /*
  2854. * Fallback function if there was no memory available and no objects on a
  2855. * certain node and fall back is permitted. First we scan all the
  2856. * available nodelists for available objects. If that fails then we
  2857. * perform an allocation without specifying a node. This allows the page
  2858. * allocator to do its reclaim / fallback magic. We then insert the
  2859. * slab into the proper nodelist and then allocate from it.
  2860. */
  2861. static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
  2862. {
  2863. struct zonelist *zonelist;
  2864. gfp_t local_flags;
  2865. struct zoneref *z;
  2866. struct zone *zone;
  2867. enum zone_type high_zoneidx = gfp_zone(flags);
  2868. void *obj = NULL;
  2869. int nid;
  2870. if (flags & __GFP_THISNODE)
  2871. return NULL;
  2872. get_mems_allowed();
  2873. zonelist = node_zonelist(slab_node(current->mempolicy), flags);
  2874. local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
  2875. retry:
  2876. /*
  2877. * Look through allowed nodes for objects available
  2878. * from existing per node queues.
  2879. */
  2880. for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
  2881. nid = zone_to_nid(zone);
  2882. if (cpuset_zone_allowed_hardwall(zone, flags) &&
  2883. cache->nodelists[nid] &&
  2884. cache->nodelists[nid]->free_objects) {
  2885. obj = ____cache_alloc_node(cache,
  2886. flags | GFP_THISNODE, nid);
  2887. if (obj)
  2888. break;
  2889. }
  2890. }
  2891. if (!obj) {
  2892. /*
  2893. * This allocation will be performed within the constraints
  2894. * of the current cpuset / memory policy requirements.
  2895. * We may trigger various forms of reclaim on the allowed
  2896. * set and go into memory reserves if necessary.
  2897. */
  2898. if (local_flags & __GFP_WAIT)
  2899. local_irq_enable();
  2900. kmem_flagcheck(cache, flags);
  2901. obj = kmem_getpages(cache, local_flags, numa_mem_id());
  2902. if (local_flags & __GFP_WAIT)
  2903. local_irq_disable();
  2904. if (obj) {
  2905. /*
  2906. * Insert into the appropriate per node queues
  2907. */
  2908. nid = page_to_nid(virt_to_page(obj));
  2909. if (cache_grow(cache, flags, nid, obj)) {
  2910. obj = ____cache_alloc_node(cache,
  2911. flags | GFP_THISNODE, nid);
  2912. if (!obj)
  2913. /*
  2914. * Another processor may allocate the
  2915. * objects in the slab since we are
  2916. * not holding any locks.
  2917. */
  2918. goto retry;
  2919. } else {
  2920. /* cache_grow already freed obj */
  2921. obj = NULL;
  2922. }
  2923. }
  2924. }
  2925. put_mems_allowed();
  2926. return obj;
  2927. }
  2928. /*
  2929. * A interface to enable slab creation on nodeid
  2930. */
  2931. static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
  2932. int nodeid)
  2933. {
  2934. struct list_head *entry;
  2935. struct slab *slabp;
  2936. struct kmem_list3 *l3;
  2937. void *obj;
  2938. int x;
  2939. l3 = cachep->nodelists[nodeid];
  2940. BUG_ON(!l3);
  2941. retry:
  2942. check_irq_off();
  2943. spin_lock(&l3->list_lock);
  2944. entry = l3->slabs_partial.next;
  2945. if (entry == &l3->slabs_partial) {
  2946. l3->free_touched = 1;
  2947. entry = l3->slabs_free.next;
  2948. if (entry == &l3->slabs_free)
  2949. goto must_grow;
  2950. }
  2951. slabp = list_entry(entry, struct slab, list);
  2952. check_spinlock_acquired_node(cachep, nodeid);
  2953. check_slabp(cachep, slabp);
  2954. STATS_INC_NODEALLOCS(cachep);
  2955. STATS_INC_ACTIVE(cachep);
  2956. STATS_SET_HIGH(cachep);
  2957. BUG_ON(slabp->inuse == cachep->num);
  2958. obj = slab_get_obj(cachep, slabp, nodeid);
  2959. check_slabp(cachep, slabp);
  2960. l3->free_objects--;
  2961. /* move slabp to correct slabp list: */
  2962. list_del(&slabp->list);
  2963. if (slabp->free == BUFCTL_END)
  2964. list_add(&slabp->list, &l3->slabs_full);
  2965. else
  2966. list_add(&slabp->list, &l3->slabs_partial);
  2967. spin_unlock(&l3->list_lock);
  2968. goto done;
  2969. must_grow:
  2970. spin_unlock(&l3->list_lock);
  2971. x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
  2972. if (x)
  2973. goto retry;
  2974. return fallback_alloc(cachep, flags);
  2975. done:
  2976. return obj;
  2977. }
  2978. /**
  2979. * kmem_cache_alloc_node - Allocate an object on the specified node
  2980. * @cachep: The cache to allocate from.
  2981. * @flags: See kmalloc().
  2982. * @nodeid: node number of the target node.
  2983. * @caller: return address of caller, used for debug information
  2984. *
  2985. * Identical to kmem_cache_alloc but it will allocate memory on the given
  2986. * node, which can improve the performance for cpu bound structures.
  2987. *
  2988. * Fallback to other node is possible if __GFP_THISNODE is not set.
  2989. */
  2990. static __always_inline void *
  2991. __cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
  2992. void *caller)
  2993. {
  2994. unsigned long save_flags;
  2995. void *ptr;
  2996. int slab_node = numa_mem_id();
  2997. flags &= gfp_allowed_mask;
  2998. lockdep_trace_alloc(flags);
  2999. if (slab_should_failslab(cachep, flags))
  3000. return NULL;
  3001. cache_alloc_debugcheck_before(cachep, flags);
  3002. local_irq_save(save_flags);
  3003. if (nodeid == -1)
  3004. nodeid = slab_node;
  3005. if (unlikely(!cachep->nodelists[nodeid])) {
  3006. /* Node not bootstrapped yet */
  3007. ptr = fallback_alloc(cachep, flags);
  3008. goto out;
  3009. }
  3010. if (nodeid == slab_node) {
  3011. /*
  3012. * Use the locally cached objects if possible.
  3013. * However ____cache_alloc does not allow fallback
  3014. * to other nodes. It may fail while we still have
  3015. * objects on other nodes available.
  3016. */
  3017. ptr = ____cache_alloc(cachep, flags);
  3018. if (ptr)
  3019. goto out;
  3020. }
  3021. /* ___cache_alloc_node can fall back to other nodes */
  3022. ptr = ____cache_alloc_node(cachep, flags, nodeid);
  3023. out:
  3024. local_irq_restore(save_flags);
  3025. ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
  3026. kmemleak_alloc_recursive(ptr, obj_size(cachep), 1, cachep->flags,
  3027. flags);
  3028. if (likely(ptr))
  3029. kmemcheck_slab_alloc(cachep, flags, ptr, obj_size(cachep));
  3030. if (unlikely((flags & __GFP_ZERO) && ptr))
  3031. memset(ptr, 0, obj_size(cachep));
  3032. return ptr;
  3033. }
  3034. static __always_inline void *
  3035. __do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
  3036. {
  3037. void *objp;
  3038. if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
  3039. objp = alternate_node_alloc(cache, flags);
  3040. if (objp)
  3041. goto out;
  3042. }
  3043. objp = ____cache_alloc(cache, flags);
  3044. /*
  3045. * We may just have run out of memory on the local node.
  3046. * ____cache_alloc_node() knows how to locate memory on other nodes
  3047. */
  3048. if (!objp)
  3049. objp = ____cache_alloc_node(cache, flags, numa_mem_id());
  3050. out:
  3051. return objp;
  3052. }
  3053. #else
  3054. static __always_inline void *
  3055. __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
  3056. {
  3057. return ____cache_alloc(cachep, flags);
  3058. }
  3059. #endif /* CONFIG_NUMA */
  3060. static __always_inline void *
  3061. __cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
  3062. {
  3063. unsigned long save_flags;
  3064. void *objp;
  3065. flags &= gfp_allowed_mask;
  3066. lockdep_trace_alloc(flags);
  3067. if (slab_should_failslab(cachep, flags))
  3068. return NULL;
  3069. cache_alloc_debugcheck_before(cachep, flags);
  3070. local_irq_save(save_flags);
  3071. objp = __do_cache_alloc(cachep, flags);
  3072. local_irq_restore(save_flags);
  3073. objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
  3074. kmemleak_alloc_recursive(objp, obj_size(cachep), 1, cachep->flags,
  3075. flags);
  3076. prefetchw(objp);
  3077. if (likely(objp))
  3078. kmemcheck_slab_alloc(cachep, flags, objp, obj_size(cachep));
  3079. if (unlikely((flags & __GFP_ZERO) && objp))
  3080. memset(objp, 0, obj_size(cachep));
  3081. return objp;
  3082. }
  3083. /*
  3084. * Caller needs to acquire correct kmem_list's list_lock
  3085. */
  3086. static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
  3087. int node)
  3088. {
  3089. int i;
  3090. struct kmem_list3 *l3;
  3091. for (i = 0; i < nr_objects; i++) {
  3092. void *objp = objpp[i];
  3093. struct slab *slabp;
  3094. slabp = virt_to_slab(objp);
  3095. l3 = cachep->nodelists[node];
  3096. list_del(&slabp->list);
  3097. check_spinlock_acquired_node(cachep, node);
  3098. check_slabp(cachep, slabp);
  3099. slab_put_obj(cachep, slabp, objp, node);
  3100. STATS_DEC_ACTIVE(cachep);
  3101. l3->free_objects++;
  3102. check_slabp(cachep, slabp);
  3103. /* fixup slab chains */
  3104. if (slabp->inuse == 0) {
  3105. if (l3->free_objects > l3->free_limit) {
  3106. l3->free_objects -= cachep->num;
  3107. /* No need to drop any previously held
  3108. * lock here, even if we have a off-slab slab
  3109. * descriptor it is guaranteed to come from
  3110. * a different cache, refer to comments before
  3111. * alloc_slabmgmt.
  3112. */
  3113. slab_destroy(cachep, slabp);
  3114. } else {
  3115. list_add(&slabp->list, &l3->slabs_free);
  3116. }
  3117. } else {
  3118. /* Unconditionally move a slab to the end of the
  3119. * partial list on free - maximum time for the
  3120. * other objects to be freed, too.
  3121. */
  3122. list_add_tail(&slabp->list, &l3->slabs_partial);
  3123. }
  3124. }
  3125. }
  3126. static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
  3127. {
  3128. int batchcount;
  3129. struct kmem_list3 *l3;
  3130. int node = numa_mem_id();
  3131. batchcount = ac->batchcount;
  3132. #if DEBUG
  3133. BUG_ON(!batchcount || batchcount > ac->avail);
  3134. #endif
  3135. check_irq_off();
  3136. l3 = cachep->nodelists[node];
  3137. spin_lock(&l3->list_lock);
  3138. if (l3->shared) {
  3139. struct array_cache *shared_array = l3->shared;
  3140. int max = shared_array->limit - shared_array->avail;
  3141. if (max) {
  3142. if (batchcount > max)
  3143. batchcount = max;
  3144. memcpy(&(shared_array->entry[shared_array->avail]),
  3145. ac->entry, sizeof(void *) * batchcount);
  3146. shared_array->avail += batchcount;
  3147. goto free_done;
  3148. }
  3149. }
  3150. free_block(cachep, ac->entry, batchcount, node);
  3151. free_done:
  3152. #if STATS
  3153. {
  3154. int i = 0;
  3155. struct list_head *p;
  3156. p = l3->slabs_free.next;
  3157. while (p != &(l3->slabs_free)) {
  3158. struct slab *slabp;
  3159. slabp = list_entry(p, struct slab, list);
  3160. BUG_ON(slabp->inuse);
  3161. i++;
  3162. p = p->next;
  3163. }
  3164. STATS_SET_FREEABLE(cachep, i);
  3165. }
  3166. #endif
  3167. spin_unlock(&l3->list_lock);
  3168. ac->avail -= batchcount;
  3169. memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
  3170. }
  3171. /*
  3172. * Release an obj back to its cache. If the obj has a constructed state, it must
  3173. * be in this state _before_ it is released. Called with disabled ints.
  3174. */
  3175. static inline void __cache_free(struct kmem_cache *cachep, void *objp)
  3176. {
  3177. struct array_cache *ac = cpu_cache_get(cachep);
  3178. check_irq_off();
  3179. kmemleak_free_recursive(objp, cachep->flags);
  3180. objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
  3181. kmemcheck_slab_free(cachep, objp, obj_size(cachep));
  3182. /*
  3183. * Skip calling cache_free_alien() when the platform is not numa.
  3184. * This will avoid cache misses that happen while accessing slabp (which
  3185. * is per page memory reference) to get nodeid. Instead use a global
  3186. * variable to skip the call, which is mostly likely to be present in
  3187. * the cache.
  3188. */
  3189. if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
  3190. return;
  3191. if (likely(ac->avail < ac->limit)) {
  3192. STATS_INC_FREEHIT(cachep);
  3193. ac->entry[ac->avail++] = objp;
  3194. return;
  3195. } else {
  3196. STATS_INC_FREEMISS(cachep);
  3197. cache_flusharray(cachep, ac);
  3198. ac->entry[ac->avail++] = objp;
  3199. }
  3200. }
  3201. /**
  3202. * kmem_cache_alloc - Allocate an object
  3203. * @cachep: The cache to allocate from.
  3204. * @flags: See kmalloc().
  3205. *
  3206. * Allocate an object from this cache. The flags are only relevant
  3207. * if the cache has no available objects.
  3208. */
  3209. void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
  3210. {
  3211. void *ret = __cache_alloc(cachep, flags, __builtin_return_address(0));
  3212. trace_kmem_cache_alloc(_RET_IP_, ret,
  3213. obj_size(cachep), cachep->buffer_size, flags);
  3214. return ret;
  3215. }
  3216. EXPORT_SYMBOL(kmem_cache_alloc);
  3217. #ifdef CONFIG_TRACING
  3218. void *kmem_cache_alloc_notrace(struct kmem_cache *cachep, gfp_t flags)
  3219. {
  3220. return __cache_alloc(cachep, flags, __builtin_return_address(0));
  3221. }
  3222. EXPORT_SYMBOL(kmem_cache_alloc_notrace);
  3223. #endif
  3224. /**
  3225. * kmem_ptr_validate - check if an untrusted pointer might be a slab entry.
  3226. * @cachep: the cache we're checking against
  3227. * @ptr: pointer to validate
  3228. *
  3229. * This verifies that the untrusted pointer looks sane;
  3230. * it is _not_ a guarantee that the pointer is actually
  3231. * part of the slab cache in question, but it at least
  3232. * validates that the pointer can be dereferenced and
  3233. * looks half-way sane.
  3234. *
  3235. * Currently only used for dentry validation.
  3236. */
  3237. int kmem_ptr_validate(struct kmem_cache *cachep, const void *ptr)
  3238. {
  3239. unsigned long size = cachep->buffer_size;
  3240. struct page *page;
  3241. if (unlikely(!kern_ptr_validate(ptr, size)))
  3242. goto out;
  3243. page = virt_to_page(ptr);
  3244. if (unlikely(!PageSlab(page)))
  3245. goto out;
  3246. if (unlikely(page_get_cache(page) != cachep))
  3247. goto out;
  3248. return 1;
  3249. out:
  3250. return 0;
  3251. }
  3252. #ifdef CONFIG_NUMA
  3253. void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
  3254. {
  3255. void *ret = __cache_alloc_node(cachep, flags, nodeid,
  3256. __builtin_return_address(0));
  3257. trace_kmem_cache_alloc_node(_RET_IP_, ret,
  3258. obj_size(cachep), cachep->buffer_size,
  3259. flags, nodeid);
  3260. return ret;
  3261. }
  3262. EXPORT_SYMBOL(kmem_cache_alloc_node);
  3263. #ifdef CONFIG_TRACING
  3264. void *kmem_cache_alloc_node_notrace(struct kmem_cache *cachep,
  3265. gfp_t flags,
  3266. int nodeid)
  3267. {
  3268. return __cache_alloc_node(cachep, flags, nodeid,
  3269. __builtin_return_address(0));
  3270. }
  3271. EXPORT_SYMBOL(kmem_cache_alloc_node_notrace);
  3272. #endif
  3273. static __always_inline void *
  3274. __do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller)
  3275. {
  3276. struct kmem_cache *cachep;
  3277. void *ret;
  3278. cachep = kmem_find_general_cachep(size, flags);
  3279. if (unlikely(ZERO_OR_NULL_PTR(cachep)))
  3280. return cachep;
  3281. ret = kmem_cache_alloc_node_notrace(cachep, flags, node);
  3282. trace_kmalloc_node((unsigned long) caller, ret,
  3283. size, cachep->buffer_size, flags, node);
  3284. return ret;
  3285. }
  3286. #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
  3287. void *__kmalloc_node(size_t size, gfp_t flags, int node)
  3288. {
  3289. return __do_kmalloc_node(size, flags, node,
  3290. __builtin_return_address(0));
  3291. }
  3292. EXPORT_SYMBOL(__kmalloc_node);
  3293. void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
  3294. int node, unsigned long caller)
  3295. {
  3296. return __do_kmalloc_node(size, flags, node, (void *)caller);
  3297. }
  3298. EXPORT_SYMBOL(__kmalloc_node_track_caller);
  3299. #else
  3300. void *__kmalloc_node(size_t size, gfp_t flags, int node)
  3301. {
  3302. return __do_kmalloc_node(size, flags, node, NULL);
  3303. }
  3304. EXPORT_SYMBOL(__kmalloc_node);
  3305. #endif /* CONFIG_DEBUG_SLAB || CONFIG_TRACING */
  3306. #endif /* CONFIG_NUMA */
  3307. /**
  3308. * __do_kmalloc - allocate memory
  3309. * @size: how many bytes of memory are required.
  3310. * @flags: the type of memory to allocate (see kmalloc).
  3311. * @caller: function caller for debug tracking of the caller
  3312. */
  3313. static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
  3314. void *caller)
  3315. {
  3316. struct kmem_cache *cachep;
  3317. void *ret;
  3318. /* If you want to save a few bytes .text space: replace
  3319. * __ with kmem_.
  3320. * Then kmalloc uses the uninlined functions instead of the inline
  3321. * functions.
  3322. */
  3323. cachep = __find_general_cachep(size, flags);
  3324. if (unlikely(ZERO_OR_NULL_PTR(cachep)))
  3325. return cachep;
  3326. ret = __cache_alloc(cachep, flags, caller);
  3327. trace_kmalloc((unsigned long) caller, ret,
  3328. size, cachep->buffer_size, flags);
  3329. return ret;
  3330. }
  3331. #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
  3332. void *__kmalloc(size_t size, gfp_t flags)
  3333. {
  3334. return __do_kmalloc(size, flags, __builtin_return_address(0));
  3335. }
  3336. EXPORT_SYMBOL(__kmalloc);
  3337. void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
  3338. {
  3339. return __do_kmalloc(size, flags, (void *)caller);
  3340. }
  3341. EXPORT_SYMBOL(__kmalloc_track_caller);
  3342. #else
  3343. void *__kmalloc(size_t size, gfp_t flags)
  3344. {
  3345. return __do_kmalloc(size, flags, NULL);
  3346. }
  3347. EXPORT_SYMBOL(__kmalloc);
  3348. #endif
  3349. /**
  3350. * kmem_cache_free - Deallocate an object
  3351. * @cachep: The cache the allocation was from.
  3352. * @objp: The previously allocated object.
  3353. *
  3354. * Free an object which was previously allocated from this
  3355. * cache.
  3356. */
  3357. void kmem_cache_free(struct kmem_cache *cachep, void *objp)
  3358. {
  3359. unsigned long flags;
  3360. local_irq_save(flags);
  3361. debug_check_no_locks_freed(objp, obj_size(cachep));
  3362. if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
  3363. debug_check_no_obj_freed(objp, obj_size(cachep));
  3364. __cache_free(cachep, objp);
  3365. local_irq_restore(flags);
  3366. trace_kmem_cache_free(_RET_IP_, objp);
  3367. }
  3368. EXPORT_SYMBOL(kmem_cache_free);
  3369. /**
  3370. * kfree - free previously allocated memory
  3371. * @objp: pointer returned by kmalloc.
  3372. *
  3373. * If @objp is NULL, no operation is performed.
  3374. *
  3375. * Don't free memory not originally allocated by kmalloc()
  3376. * or you will run into trouble.
  3377. */
  3378. void kfree(const void *objp)
  3379. {
  3380. struct kmem_cache *c;
  3381. unsigned long flags;
  3382. trace_kfree(_RET_IP_, objp);
  3383. if (unlikely(ZERO_OR_NULL_PTR(objp)))
  3384. return;
  3385. local_irq_save(flags);
  3386. kfree_debugcheck(objp);
  3387. c = virt_to_cache(objp);
  3388. debug_check_no_locks_freed(objp, obj_size(c));
  3389. debug_check_no_obj_freed(objp, obj_size(c));
  3390. __cache_free(c, (void *)objp);
  3391. local_irq_restore(flags);
  3392. }
  3393. EXPORT_SYMBOL(kfree);
  3394. unsigned int kmem_cache_size(struct kmem_cache *cachep)
  3395. {
  3396. return obj_size(cachep);
  3397. }
  3398. EXPORT_SYMBOL(kmem_cache_size);
  3399. const char *kmem_cache_name(struct kmem_cache *cachep)
  3400. {
  3401. return cachep->name;
  3402. }
  3403. EXPORT_SYMBOL_GPL(kmem_cache_name);
  3404. /*
  3405. * This initializes kmem_list3 or resizes various caches for all nodes.
  3406. */
  3407. static int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp)
  3408. {
  3409. int node;
  3410. struct kmem_list3 *l3;
  3411. struct array_cache *new_shared;
  3412. struct array_cache **new_alien = NULL;
  3413. for_each_online_node(node) {
  3414. if (use_alien_caches) {
  3415. new_alien = alloc_alien_cache(node, cachep->limit, gfp);
  3416. if (!new_alien)
  3417. goto fail;
  3418. }
  3419. new_shared = NULL;
  3420. if (cachep->shared) {
  3421. new_shared = alloc_arraycache(node,
  3422. cachep->shared*cachep->batchcount,
  3423. 0xbaadf00d, gfp);
  3424. if (!new_shared) {
  3425. free_alien_cache(new_alien);
  3426. goto fail;
  3427. }
  3428. }
  3429. l3 = cachep->nodelists[node];
  3430. if (l3) {
  3431. struct array_cache *shared = l3->shared;
  3432. spin_lock_irq(&l3->list_lock);
  3433. if (shared)
  3434. free_block(cachep, shared->entry,
  3435. shared->avail, node);
  3436. l3->shared = new_shared;
  3437. if (!l3->alien) {
  3438. l3->alien = new_alien;
  3439. new_alien = NULL;
  3440. }
  3441. l3->free_limit = (1 + nr_cpus_node(node)) *
  3442. cachep->batchcount + cachep->num;
  3443. spin_unlock_irq(&l3->list_lock);
  3444. kfree(shared);
  3445. free_alien_cache(new_alien);
  3446. continue;
  3447. }
  3448. l3 = kmalloc_node(sizeof(struct kmem_list3), gfp, node);
  3449. if (!l3) {
  3450. free_alien_cache(new_alien);
  3451. kfree(new_shared);
  3452. goto fail;
  3453. }
  3454. kmem_list3_init(l3);
  3455. l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
  3456. ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
  3457. l3->shared = new_shared;
  3458. l3->alien = new_alien;
  3459. l3->free_limit = (1 + nr_cpus_node(node)) *
  3460. cachep->batchcount + cachep->num;
  3461. cachep->nodelists[node] = l3;
  3462. }
  3463. return 0;
  3464. fail:
  3465. if (!cachep->next.next) {
  3466. /* Cache is not active yet. Roll back what we did */
  3467. node--;
  3468. while (node >= 0) {
  3469. if (cachep->nodelists[node]) {
  3470. l3 = cachep->nodelists[node];
  3471. kfree(l3->shared);
  3472. free_alien_cache(l3->alien);
  3473. kfree(l3);
  3474. cachep->nodelists[node] = NULL;
  3475. }
  3476. node--;
  3477. }
  3478. }
  3479. return -ENOMEM;
  3480. }
  3481. struct ccupdate_struct {
  3482. struct kmem_cache *cachep;
  3483. struct array_cache *new[NR_CPUS];
  3484. };
  3485. static void do_ccupdate_local(void *info)
  3486. {
  3487. struct ccupdate_struct *new = info;
  3488. struct array_cache *old;
  3489. check_irq_off();
  3490. old = cpu_cache_get(new->cachep);
  3491. new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
  3492. new->new[smp_processor_id()] = old;
  3493. }
  3494. /* Always called with the cache_chain_mutex held */
  3495. static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
  3496. int batchcount, int shared, gfp_t gfp)
  3497. {
  3498. struct ccupdate_struct *new;
  3499. int i;
  3500. new = kzalloc(sizeof(*new), gfp);
  3501. if (!new)
  3502. return -ENOMEM;
  3503. for_each_online_cpu(i) {
  3504. new->new[i] = alloc_arraycache(cpu_to_mem(i), limit,
  3505. batchcount, gfp);
  3506. if (!new->new[i]) {
  3507. for (i--; i >= 0; i--)
  3508. kfree(new->new[i]);
  3509. kfree(new);
  3510. return -ENOMEM;
  3511. }
  3512. }
  3513. new->cachep = cachep;
  3514. on_each_cpu(do_ccupdate_local, (void *)new, 1);
  3515. check_irq_on();
  3516. cachep->batchcount = batchcount;
  3517. cachep->limit = limit;
  3518. cachep->shared = shared;
  3519. for_each_online_cpu(i) {
  3520. struct array_cache *ccold = new->new[i];
  3521. if (!ccold)
  3522. continue;
  3523. spin_lock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock);
  3524. free_block(cachep, ccold->entry, ccold->avail, cpu_to_mem(i));
  3525. spin_unlock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock);
  3526. kfree(ccold);
  3527. }
  3528. kfree(new);
  3529. return alloc_kmemlist(cachep, gfp);
  3530. }
  3531. /* Called with cache_chain_mutex held always */
  3532. static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
  3533. {
  3534. int err;
  3535. int limit, shared;
  3536. /*
  3537. * The head array serves three purposes:
  3538. * - create a LIFO ordering, i.e. return objects that are cache-warm
  3539. * - reduce the number of spinlock operations.
  3540. * - reduce the number of linked list operations on the slab and
  3541. * bufctl chains: array operations are cheaper.
  3542. * The numbers are guessed, we should auto-tune as described by
  3543. * Bonwick.
  3544. */
  3545. if (cachep->buffer_size > 131072)
  3546. limit = 1;
  3547. else if (cachep->buffer_size > PAGE_SIZE)
  3548. limit = 8;
  3549. else if (cachep->buffer_size > 1024)
  3550. limit = 24;
  3551. else if (cachep->buffer_size > 256)
  3552. limit = 54;
  3553. else
  3554. limit = 120;
  3555. /*
  3556. * CPU bound tasks (e.g. network routing) can exhibit cpu bound
  3557. * allocation behaviour: Most allocs on one cpu, most free operations
  3558. * on another cpu. For these cases, an efficient object passing between
  3559. * cpus is necessary. This is provided by a shared array. The array
  3560. * replaces Bonwick's magazine layer.
  3561. * On uniprocessor, it's functionally equivalent (but less efficient)
  3562. * to a larger limit. Thus disabled by default.
  3563. */
  3564. shared = 0;
  3565. if (cachep->buffer_size <= PAGE_SIZE && num_possible_cpus() > 1)
  3566. shared = 8;
  3567. #if DEBUG
  3568. /*
  3569. * With debugging enabled, large batchcount lead to excessively long
  3570. * periods with disabled local interrupts. Limit the batchcount
  3571. */
  3572. if (limit > 32)
  3573. limit = 32;
  3574. #endif
  3575. err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared, gfp);
  3576. if (err)
  3577. printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
  3578. cachep->name, -err);
  3579. return err;
  3580. }
  3581. /*
  3582. * Drain an array if it contains any elements taking the l3 lock only if
  3583. * necessary. Note that the l3 listlock also protects the array_cache
  3584. * if drain_array() is used on the shared array.
  3585. */
  3586. void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
  3587. struct array_cache *ac, int force, int node)
  3588. {
  3589. int tofree;
  3590. if (!ac || !ac->avail)
  3591. return;
  3592. if (ac->touched && !force) {
  3593. ac->touched = 0;
  3594. } else {
  3595. spin_lock_irq(&l3->list_lock);
  3596. if (ac->avail) {
  3597. tofree = force ? ac->avail : (ac->limit + 4) / 5;
  3598. if (tofree > ac->avail)
  3599. tofree = (ac->avail + 1) / 2;
  3600. free_block(cachep, ac->entry, tofree, node);
  3601. ac->avail -= tofree;
  3602. memmove(ac->entry, &(ac->entry[tofree]),
  3603. sizeof(void *) * ac->avail);
  3604. }
  3605. spin_unlock_irq(&l3->list_lock);
  3606. }
  3607. }
  3608. /**
  3609. * cache_reap - Reclaim memory from caches.
  3610. * @w: work descriptor
  3611. *
  3612. * Called from workqueue/eventd every few seconds.
  3613. * Purpose:
  3614. * - clear the per-cpu caches for this CPU.
  3615. * - return freeable pages to the main free memory pool.
  3616. *
  3617. * If we cannot acquire the cache chain mutex then just give up - we'll try
  3618. * again on the next iteration.
  3619. */
  3620. static void cache_reap(struct work_struct *w)
  3621. {
  3622. struct kmem_cache *searchp;
  3623. struct kmem_list3 *l3;
  3624. int node = numa_mem_id();
  3625. struct delayed_work *work = to_delayed_work(w);
  3626. if (!mutex_trylock(&cache_chain_mutex))
  3627. /* Give up. Setup the next iteration. */
  3628. goto out;
  3629. list_for_each_entry(searchp, &cache_chain, next) {
  3630. check_irq_on();
  3631. /*
  3632. * We only take the l3 lock if absolutely necessary and we
  3633. * have established with reasonable certainty that
  3634. * we can do some work if the lock was obtained.
  3635. */
  3636. l3 = searchp->nodelists[node];
  3637. reap_alien(searchp, l3);
  3638. drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
  3639. /*
  3640. * These are racy checks but it does not matter
  3641. * if we skip one check or scan twice.
  3642. */
  3643. if (time_after(l3->next_reap, jiffies))
  3644. goto next;
  3645. l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
  3646. drain_array(searchp, l3, l3->shared, 0, node);
  3647. if (l3->free_touched)
  3648. l3->free_touched = 0;
  3649. else {
  3650. int freed;
  3651. freed = drain_freelist(searchp, l3, (l3->free_limit +
  3652. 5 * searchp->num - 1) / (5 * searchp->num));
  3653. STATS_ADD_REAPED(searchp, freed);
  3654. }
  3655. next:
  3656. cond_resched();
  3657. }
  3658. check_irq_on();
  3659. mutex_unlock(&cache_chain_mutex);
  3660. next_reap_node();
  3661. out:
  3662. /* Set up the next iteration */
  3663. schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
  3664. }
  3665. #ifdef CONFIG_SLABINFO
  3666. static void print_slabinfo_header(struct seq_file *m)
  3667. {
  3668. /*
  3669. * Output format version, so at least we can change it
  3670. * without _too_ many complaints.
  3671. */
  3672. #if STATS
  3673. seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
  3674. #else
  3675. seq_puts(m, "slabinfo - version: 2.1\n");
  3676. #endif
  3677. seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
  3678. "<objperslab> <pagesperslab>");
  3679. seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
  3680. seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
  3681. #if STATS
  3682. seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
  3683. "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
  3684. seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
  3685. #endif
  3686. seq_putc(m, '\n');
  3687. }
  3688. static void *s_start(struct seq_file *m, loff_t *pos)
  3689. {
  3690. loff_t n = *pos;
  3691. mutex_lock(&cache_chain_mutex);
  3692. if (!n)
  3693. print_slabinfo_header(m);
  3694. return seq_list_start(&cache_chain, *pos);
  3695. }
  3696. static void *s_next(struct seq_file *m, void *p, loff_t *pos)
  3697. {
  3698. return seq_list_next(p, &cache_chain, pos);
  3699. }
  3700. static void s_stop(struct seq_file *m, void *p)
  3701. {
  3702. mutex_unlock(&cache_chain_mutex);
  3703. }
  3704. static int s_show(struct seq_file *m, void *p)
  3705. {
  3706. struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
  3707. struct slab *slabp;
  3708. unsigned long active_objs;
  3709. unsigned long num_objs;
  3710. unsigned long active_slabs = 0;
  3711. unsigned long num_slabs, free_objects = 0, shared_avail = 0;
  3712. const char *name;
  3713. char *error = NULL;
  3714. int node;
  3715. struct kmem_list3 *l3;
  3716. active_objs = 0;
  3717. num_slabs = 0;
  3718. for_each_online_node(node) {
  3719. l3 = cachep->nodelists[node];
  3720. if (!l3)
  3721. continue;
  3722. check_irq_on();
  3723. spin_lock_irq(&l3->list_lock);
  3724. list_for_each_entry(slabp, &l3->slabs_full, list) {
  3725. if (slabp->inuse != cachep->num && !error)
  3726. error = "slabs_full accounting error";
  3727. active_objs += cachep->num;
  3728. active_slabs++;
  3729. }
  3730. list_for_each_entry(slabp, &l3->slabs_partial, list) {
  3731. if (slabp->inuse == cachep->num && !error)
  3732. error = "slabs_partial inuse accounting error";
  3733. if (!slabp->inuse && !error)
  3734. error = "slabs_partial/inuse accounting error";
  3735. active_objs += slabp->inuse;
  3736. active_slabs++;
  3737. }
  3738. list_for_each_entry(slabp, &l3->slabs_free, list) {
  3739. if (slabp->inuse && !error)
  3740. error = "slabs_free/inuse accounting error";
  3741. num_slabs++;
  3742. }
  3743. free_objects += l3->free_objects;
  3744. if (l3->shared)
  3745. shared_avail += l3->shared->avail;
  3746. spin_unlock_irq(&l3->list_lock);
  3747. }
  3748. num_slabs += active_slabs;
  3749. num_objs = num_slabs * cachep->num;
  3750. if (num_objs - active_objs != free_objects && !error)
  3751. error = "free_objects accounting error";
  3752. name = cachep->name;
  3753. if (error)
  3754. printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
  3755. seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
  3756. name, active_objs, num_objs, cachep->buffer_size,
  3757. cachep->num, (1 << cachep->gfporder));
  3758. seq_printf(m, " : tunables %4u %4u %4u",
  3759. cachep->limit, cachep->batchcount, cachep->shared);
  3760. seq_printf(m, " : slabdata %6lu %6lu %6lu",
  3761. active_slabs, num_slabs, shared_avail);
  3762. #if STATS
  3763. { /* list3 stats */
  3764. unsigned long high = cachep->high_mark;
  3765. unsigned long allocs = cachep->num_allocations;
  3766. unsigned long grown = cachep->grown;
  3767. unsigned long reaped = cachep->reaped;
  3768. unsigned long errors = cachep->errors;
  3769. unsigned long max_freeable = cachep->max_freeable;
  3770. unsigned long node_allocs = cachep->node_allocs;
  3771. unsigned long node_frees = cachep->node_frees;
  3772. unsigned long overflows = cachep->node_overflow;
  3773. seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu "
  3774. "%4lu %4lu %4lu %4lu %4lu",
  3775. allocs, high, grown,
  3776. reaped, errors, max_freeable, node_allocs,
  3777. node_frees, overflows);
  3778. }
  3779. /* cpu stats */
  3780. {
  3781. unsigned long allochit = atomic_read(&cachep->allochit);
  3782. unsigned long allocmiss = atomic_read(&cachep->allocmiss);
  3783. unsigned long freehit = atomic_read(&cachep->freehit);
  3784. unsigned long freemiss = atomic_read(&cachep->freemiss);
  3785. seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
  3786. allochit, allocmiss, freehit, freemiss);
  3787. }
  3788. #endif
  3789. seq_putc(m, '\n');
  3790. return 0;
  3791. }
  3792. /*
  3793. * slabinfo_op - iterator that generates /proc/slabinfo
  3794. *
  3795. * Output layout:
  3796. * cache-name
  3797. * num-active-objs
  3798. * total-objs
  3799. * object size
  3800. * num-active-slabs
  3801. * total-slabs
  3802. * num-pages-per-slab
  3803. * + further values on SMP and with statistics enabled
  3804. */
  3805. static const struct seq_operations slabinfo_op = {
  3806. .start = s_start,
  3807. .next = s_next,
  3808. .stop = s_stop,
  3809. .show = s_show,
  3810. };
  3811. #define MAX_SLABINFO_WRITE 128
  3812. /**
  3813. * slabinfo_write - Tuning for the slab allocator
  3814. * @file: unused
  3815. * @buffer: user buffer
  3816. * @count: data length
  3817. * @ppos: unused
  3818. */
  3819. ssize_t slabinfo_write(struct file *file, const char __user * buffer,
  3820. size_t count, loff_t *ppos)
  3821. {
  3822. char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
  3823. int limit, batchcount, shared, res;
  3824. struct kmem_cache *cachep;
  3825. if (count > MAX_SLABINFO_WRITE)
  3826. return -EINVAL;
  3827. if (copy_from_user(&kbuf, buffer, count))
  3828. return -EFAULT;
  3829. kbuf[MAX_SLABINFO_WRITE] = '\0';
  3830. tmp = strchr(kbuf, ' ');
  3831. if (!tmp)
  3832. return -EINVAL;
  3833. *tmp = '\0';
  3834. tmp++;
  3835. if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
  3836. return -EINVAL;
  3837. /* Find the cache in the chain of caches. */
  3838. mutex_lock(&cache_chain_mutex);
  3839. res = -EINVAL;
  3840. list_for_each_entry(cachep, &cache_chain, next) {
  3841. if (!strcmp(cachep->name, kbuf)) {
  3842. if (limit < 1 || batchcount < 1 ||
  3843. batchcount > limit || shared < 0) {
  3844. res = 0;
  3845. } else {
  3846. res = do_tune_cpucache(cachep, limit,
  3847. batchcount, shared,
  3848. GFP_KERNEL);
  3849. }
  3850. break;
  3851. }
  3852. }
  3853. mutex_unlock(&cache_chain_mutex);
  3854. if (res >= 0)
  3855. res = count;
  3856. return res;
  3857. }
  3858. static int slabinfo_open(struct inode *inode, struct file *file)
  3859. {
  3860. return seq_open(file, &slabinfo_op);
  3861. }
  3862. static const struct file_operations proc_slabinfo_operations = {
  3863. .open = slabinfo_open,
  3864. .read = seq_read,
  3865. .write = slabinfo_write,
  3866. .llseek = seq_lseek,
  3867. .release = seq_release,
  3868. };
  3869. #ifdef CONFIG_DEBUG_SLAB_LEAK
  3870. static void *leaks_start(struct seq_file *m, loff_t *pos)
  3871. {
  3872. mutex_lock(&cache_chain_mutex);
  3873. return seq_list_start(&cache_chain, *pos);
  3874. }
  3875. static inline int add_caller(unsigned long *n, unsigned long v)
  3876. {
  3877. unsigned long *p;
  3878. int l;
  3879. if (!v)
  3880. return 1;
  3881. l = n[1];
  3882. p = n + 2;
  3883. while (l) {
  3884. int i = l/2;
  3885. unsigned long *q = p + 2 * i;
  3886. if (*q == v) {
  3887. q[1]++;
  3888. return 1;
  3889. }
  3890. if (*q > v) {
  3891. l = i;
  3892. } else {
  3893. p = q + 2;
  3894. l -= i + 1;
  3895. }
  3896. }
  3897. if (++n[1] == n[0])
  3898. return 0;
  3899. memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
  3900. p[0] = v;
  3901. p[1] = 1;
  3902. return 1;
  3903. }
  3904. static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
  3905. {
  3906. void *p;
  3907. int i;
  3908. if (n[0] == n[1])
  3909. return;
  3910. for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
  3911. if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
  3912. continue;
  3913. if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
  3914. return;
  3915. }
  3916. }
  3917. static void show_symbol(struct seq_file *m, unsigned long address)
  3918. {
  3919. #ifdef CONFIG_KALLSYMS
  3920. unsigned long offset, size;
  3921. char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
  3922. if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
  3923. seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
  3924. if (modname[0])
  3925. seq_printf(m, " [%s]", modname);
  3926. return;
  3927. }
  3928. #endif
  3929. seq_printf(m, "%p", (void *)address);
  3930. }
  3931. static int leaks_show(struct seq_file *m, void *p)
  3932. {
  3933. struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
  3934. struct slab *slabp;
  3935. struct kmem_list3 *l3;
  3936. const char *name;
  3937. unsigned long *n = m->private;
  3938. int node;
  3939. int i;
  3940. if (!(cachep->flags & SLAB_STORE_USER))
  3941. return 0;
  3942. if (!(cachep->flags & SLAB_RED_ZONE))
  3943. return 0;
  3944. /* OK, we can do it */
  3945. n[1] = 0;
  3946. for_each_online_node(node) {
  3947. l3 = cachep->nodelists[node];
  3948. if (!l3)
  3949. continue;
  3950. check_irq_on();
  3951. spin_lock_irq(&l3->list_lock);
  3952. list_for_each_entry(slabp, &l3->slabs_full, list)
  3953. handle_slab(n, cachep, slabp);
  3954. list_for_each_entry(slabp, &l3->slabs_partial, list)
  3955. handle_slab(n, cachep, slabp);
  3956. spin_unlock_irq(&l3->list_lock);
  3957. }
  3958. name = cachep->name;
  3959. if (n[0] == n[1]) {
  3960. /* Increase the buffer size */
  3961. mutex_unlock(&cache_chain_mutex);
  3962. m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
  3963. if (!m->private) {
  3964. /* Too bad, we are really out */
  3965. m->private = n;
  3966. mutex_lock(&cache_chain_mutex);
  3967. return -ENOMEM;
  3968. }
  3969. *(unsigned long *)m->private = n[0] * 2;
  3970. kfree(n);
  3971. mutex_lock(&cache_chain_mutex);
  3972. /* Now make sure this entry will be retried */
  3973. m->count = m->size;
  3974. return 0;
  3975. }
  3976. for (i = 0; i < n[1]; i++) {
  3977. seq_printf(m, "%s: %lu ", name, n[2*i+3]);
  3978. show_symbol(m, n[2*i+2]);
  3979. seq_putc(m, '\n');
  3980. }
  3981. return 0;
  3982. }
  3983. static const struct seq_operations slabstats_op = {
  3984. .start = leaks_start,
  3985. .next = s_next,
  3986. .stop = s_stop,
  3987. .show = leaks_show,
  3988. };
  3989. static int slabstats_open(struct inode *inode, struct file *file)
  3990. {
  3991. unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
  3992. int ret = -ENOMEM;
  3993. if (n) {
  3994. ret = seq_open(file, &slabstats_op);
  3995. if (!ret) {
  3996. struct seq_file *m = file->private_data;
  3997. *n = PAGE_SIZE / (2 * sizeof(unsigned long));
  3998. m->private = n;
  3999. n = NULL;
  4000. }
  4001. kfree(n);
  4002. }
  4003. return ret;
  4004. }
  4005. static const struct file_operations proc_slabstats_operations = {
  4006. .open = slabstats_open,
  4007. .read = seq_read,
  4008. .llseek = seq_lseek,
  4009. .release = seq_release_private,
  4010. };
  4011. #endif
  4012. static int __init slab_proc_init(void)
  4013. {
  4014. proc_create("slabinfo",S_IWUSR|S_IRUGO,NULL,&proc_slabinfo_operations);
  4015. #ifdef CONFIG_DEBUG_SLAB_LEAK
  4016. proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
  4017. #endif
  4018. return 0;
  4019. }
  4020. module_init(slab_proc_init);
  4021. #endif
  4022. /**
  4023. * ksize - get the actual amount of memory allocated for a given object
  4024. * @objp: Pointer to the object
  4025. *
  4026. * kmalloc may internally round up allocations and return more memory
  4027. * than requested. ksize() can be used to determine the actual amount of
  4028. * memory allocated. The caller may use this additional memory, even though
  4029. * a smaller amount of memory was initially specified with the kmalloc call.
  4030. * The caller must guarantee that objp points to a valid object previously
  4031. * allocated with either kmalloc() or kmem_cache_alloc(). The object
  4032. * must not be freed during the duration of the call.
  4033. */
  4034. size_t ksize(const void *objp)
  4035. {
  4036. BUG_ON(!objp);
  4037. if (unlikely(objp == ZERO_SIZE_PTR))
  4038. return 0;
  4039. return obj_size(virt_to_cache(objp));
  4040. }
  4041. EXPORT_SYMBOL(ksize);