memory-failure.c 34 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331
  1. /*
  2. * Copyright (C) 2008, 2009 Intel Corporation
  3. * Authors: Andi Kleen, Fengguang Wu
  4. *
  5. * This software may be redistributed and/or modified under the terms of
  6. * the GNU General Public License ("GPL") version 2 only as published by the
  7. * Free Software Foundation.
  8. *
  9. * High level machine check handler. Handles pages reported by the
  10. * hardware as being corrupted usually due to a 2bit ECC memory or cache
  11. * failure.
  12. *
  13. * Handles page cache pages in various states. The tricky part
  14. * here is that we can access any page asynchronous to other VM
  15. * users, because memory failures could happen anytime and anywhere,
  16. * possibly violating some of their assumptions. This is why this code
  17. * has to be extremely careful. Generally it tries to use normal locking
  18. * rules, as in get the standard locks, even if that means the
  19. * error handling takes potentially a long time.
  20. *
  21. * The operation to map back from RMAP chains to processes has to walk
  22. * the complete process list and has non linear complexity with the number
  23. * mappings. In short it can be quite slow. But since memory corruptions
  24. * are rare we hope to get away with this.
  25. */
  26. /*
  27. * Notebook:
  28. * - hugetlb needs more code
  29. * - kcore/oldmem/vmcore/mem/kmem check for hwpoison pages
  30. * - pass bad pages to kdump next kernel
  31. */
  32. #define DEBUG 1 /* remove me in 2.6.34 */
  33. #include <linux/kernel.h>
  34. #include <linux/mm.h>
  35. #include <linux/page-flags.h>
  36. #include <linux/kernel-page-flags.h>
  37. #include <linux/sched.h>
  38. #include <linux/ksm.h>
  39. #include <linux/rmap.h>
  40. #include <linux/pagemap.h>
  41. #include <linux/swap.h>
  42. #include <linux/backing-dev.h>
  43. #include <linux/migrate.h>
  44. #include <linux/page-isolation.h>
  45. #include <linux/suspend.h>
  46. #include <linux/slab.h>
  47. #include <linux/swapops.h>
  48. #include "internal.h"
  49. int sysctl_memory_failure_early_kill __read_mostly = 0;
  50. int sysctl_memory_failure_recovery __read_mostly = 1;
  51. atomic_long_t mce_bad_pages __read_mostly = ATOMIC_LONG_INIT(0);
  52. #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
  53. u32 hwpoison_filter_enable = 0;
  54. u32 hwpoison_filter_dev_major = ~0U;
  55. u32 hwpoison_filter_dev_minor = ~0U;
  56. u64 hwpoison_filter_flags_mask;
  57. u64 hwpoison_filter_flags_value;
  58. EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
  59. EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
  60. EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
  61. EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
  62. EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
  63. static int hwpoison_filter_dev(struct page *p)
  64. {
  65. struct address_space *mapping;
  66. dev_t dev;
  67. if (hwpoison_filter_dev_major == ~0U &&
  68. hwpoison_filter_dev_minor == ~0U)
  69. return 0;
  70. /*
  71. * page_mapping() does not accept slab page
  72. */
  73. if (PageSlab(p))
  74. return -EINVAL;
  75. mapping = page_mapping(p);
  76. if (mapping == NULL || mapping->host == NULL)
  77. return -EINVAL;
  78. dev = mapping->host->i_sb->s_dev;
  79. if (hwpoison_filter_dev_major != ~0U &&
  80. hwpoison_filter_dev_major != MAJOR(dev))
  81. return -EINVAL;
  82. if (hwpoison_filter_dev_minor != ~0U &&
  83. hwpoison_filter_dev_minor != MINOR(dev))
  84. return -EINVAL;
  85. return 0;
  86. }
  87. static int hwpoison_filter_flags(struct page *p)
  88. {
  89. if (!hwpoison_filter_flags_mask)
  90. return 0;
  91. if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
  92. hwpoison_filter_flags_value)
  93. return 0;
  94. else
  95. return -EINVAL;
  96. }
  97. /*
  98. * This allows stress tests to limit test scope to a collection of tasks
  99. * by putting them under some memcg. This prevents killing unrelated/important
  100. * processes such as /sbin/init. Note that the target task may share clean
  101. * pages with init (eg. libc text), which is harmless. If the target task
  102. * share _dirty_ pages with another task B, the test scheme must make sure B
  103. * is also included in the memcg. At last, due to race conditions this filter
  104. * can only guarantee that the page either belongs to the memcg tasks, or is
  105. * a freed page.
  106. */
  107. #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
  108. u64 hwpoison_filter_memcg;
  109. EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
  110. static int hwpoison_filter_task(struct page *p)
  111. {
  112. struct mem_cgroup *mem;
  113. struct cgroup_subsys_state *css;
  114. unsigned long ino;
  115. if (!hwpoison_filter_memcg)
  116. return 0;
  117. mem = try_get_mem_cgroup_from_page(p);
  118. if (!mem)
  119. return -EINVAL;
  120. css = mem_cgroup_css(mem);
  121. /* root_mem_cgroup has NULL dentries */
  122. if (!css->cgroup->dentry)
  123. return -EINVAL;
  124. ino = css->cgroup->dentry->d_inode->i_ino;
  125. css_put(css);
  126. if (ino != hwpoison_filter_memcg)
  127. return -EINVAL;
  128. return 0;
  129. }
  130. #else
  131. static int hwpoison_filter_task(struct page *p) { return 0; }
  132. #endif
  133. int hwpoison_filter(struct page *p)
  134. {
  135. if (!hwpoison_filter_enable)
  136. return 0;
  137. if (hwpoison_filter_dev(p))
  138. return -EINVAL;
  139. if (hwpoison_filter_flags(p))
  140. return -EINVAL;
  141. if (hwpoison_filter_task(p))
  142. return -EINVAL;
  143. return 0;
  144. }
  145. #else
  146. int hwpoison_filter(struct page *p)
  147. {
  148. return 0;
  149. }
  150. #endif
  151. EXPORT_SYMBOL_GPL(hwpoison_filter);
  152. /*
  153. * Send all the processes who have the page mapped an ``action optional''
  154. * signal.
  155. */
  156. static int kill_proc_ao(struct task_struct *t, unsigned long addr, int trapno,
  157. unsigned long pfn)
  158. {
  159. struct siginfo si;
  160. int ret;
  161. printk(KERN_ERR
  162. "MCE %#lx: Killing %s:%d early due to hardware memory corruption\n",
  163. pfn, t->comm, t->pid);
  164. si.si_signo = SIGBUS;
  165. si.si_errno = 0;
  166. si.si_code = BUS_MCEERR_AO;
  167. si.si_addr = (void *)addr;
  168. #ifdef __ARCH_SI_TRAPNO
  169. si.si_trapno = trapno;
  170. #endif
  171. si.si_addr_lsb = PAGE_SHIFT;
  172. /*
  173. * Don't use force here, it's convenient if the signal
  174. * can be temporarily blocked.
  175. * This could cause a loop when the user sets SIGBUS
  176. * to SIG_IGN, but hopefully noone will do that?
  177. */
  178. ret = send_sig_info(SIGBUS, &si, t); /* synchronous? */
  179. if (ret < 0)
  180. printk(KERN_INFO "MCE: Error sending signal to %s:%d: %d\n",
  181. t->comm, t->pid, ret);
  182. return ret;
  183. }
  184. /*
  185. * When a unknown page type is encountered drain as many buffers as possible
  186. * in the hope to turn the page into a LRU or free page, which we can handle.
  187. */
  188. void shake_page(struct page *p, int access)
  189. {
  190. if (!PageSlab(p)) {
  191. lru_add_drain_all();
  192. if (PageLRU(p))
  193. return;
  194. drain_all_pages();
  195. if (PageLRU(p) || is_free_buddy_page(p))
  196. return;
  197. }
  198. /*
  199. * Only all shrink_slab here (which would also
  200. * shrink other caches) if access is not potentially fatal.
  201. */
  202. if (access) {
  203. int nr;
  204. do {
  205. nr = shrink_slab(1000, GFP_KERNEL, 1000);
  206. if (page_count(p) == 0)
  207. break;
  208. } while (nr > 10);
  209. }
  210. }
  211. EXPORT_SYMBOL_GPL(shake_page);
  212. /*
  213. * Kill all processes that have a poisoned page mapped and then isolate
  214. * the page.
  215. *
  216. * General strategy:
  217. * Find all processes having the page mapped and kill them.
  218. * But we keep a page reference around so that the page is not
  219. * actually freed yet.
  220. * Then stash the page away
  221. *
  222. * There's no convenient way to get back to mapped processes
  223. * from the VMAs. So do a brute-force search over all
  224. * running processes.
  225. *
  226. * Remember that machine checks are not common (or rather
  227. * if they are common you have other problems), so this shouldn't
  228. * be a performance issue.
  229. *
  230. * Also there are some races possible while we get from the
  231. * error detection to actually handle it.
  232. */
  233. struct to_kill {
  234. struct list_head nd;
  235. struct task_struct *tsk;
  236. unsigned long addr;
  237. unsigned addr_valid:1;
  238. };
  239. /*
  240. * Failure handling: if we can't find or can't kill a process there's
  241. * not much we can do. We just print a message and ignore otherwise.
  242. */
  243. /*
  244. * Schedule a process for later kill.
  245. * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
  246. * TBD would GFP_NOIO be enough?
  247. */
  248. static void add_to_kill(struct task_struct *tsk, struct page *p,
  249. struct vm_area_struct *vma,
  250. struct list_head *to_kill,
  251. struct to_kill **tkc)
  252. {
  253. struct to_kill *tk;
  254. if (*tkc) {
  255. tk = *tkc;
  256. *tkc = NULL;
  257. } else {
  258. tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
  259. if (!tk) {
  260. printk(KERN_ERR
  261. "MCE: Out of memory while machine check handling\n");
  262. return;
  263. }
  264. }
  265. tk->addr = page_address_in_vma(p, vma);
  266. tk->addr_valid = 1;
  267. /*
  268. * In theory we don't have to kill when the page was
  269. * munmaped. But it could be also a mremap. Since that's
  270. * likely very rare kill anyways just out of paranoia, but use
  271. * a SIGKILL because the error is not contained anymore.
  272. */
  273. if (tk->addr == -EFAULT) {
  274. pr_debug("MCE: Unable to find user space address %lx in %s\n",
  275. page_to_pfn(p), tsk->comm);
  276. tk->addr_valid = 0;
  277. }
  278. get_task_struct(tsk);
  279. tk->tsk = tsk;
  280. list_add_tail(&tk->nd, to_kill);
  281. }
  282. /*
  283. * Kill the processes that have been collected earlier.
  284. *
  285. * Only do anything when DOIT is set, otherwise just free the list
  286. * (this is used for clean pages which do not need killing)
  287. * Also when FAIL is set do a force kill because something went
  288. * wrong earlier.
  289. */
  290. static void kill_procs_ao(struct list_head *to_kill, int doit, int trapno,
  291. int fail, unsigned long pfn)
  292. {
  293. struct to_kill *tk, *next;
  294. list_for_each_entry_safe (tk, next, to_kill, nd) {
  295. if (doit) {
  296. /*
  297. * In case something went wrong with munmapping
  298. * make sure the process doesn't catch the
  299. * signal and then access the memory. Just kill it.
  300. */
  301. if (fail || tk->addr_valid == 0) {
  302. printk(KERN_ERR
  303. "MCE %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
  304. pfn, tk->tsk->comm, tk->tsk->pid);
  305. force_sig(SIGKILL, tk->tsk);
  306. }
  307. /*
  308. * In theory the process could have mapped
  309. * something else on the address in-between. We could
  310. * check for that, but we need to tell the
  311. * process anyways.
  312. */
  313. else if (kill_proc_ao(tk->tsk, tk->addr, trapno,
  314. pfn) < 0)
  315. printk(KERN_ERR
  316. "MCE %#lx: Cannot send advisory machine check signal to %s:%d\n",
  317. pfn, tk->tsk->comm, tk->tsk->pid);
  318. }
  319. put_task_struct(tk->tsk);
  320. kfree(tk);
  321. }
  322. }
  323. static int task_early_kill(struct task_struct *tsk)
  324. {
  325. if (!tsk->mm)
  326. return 0;
  327. if (tsk->flags & PF_MCE_PROCESS)
  328. return !!(tsk->flags & PF_MCE_EARLY);
  329. return sysctl_memory_failure_early_kill;
  330. }
  331. /*
  332. * Collect processes when the error hit an anonymous page.
  333. */
  334. static void collect_procs_anon(struct page *page, struct list_head *to_kill,
  335. struct to_kill **tkc)
  336. {
  337. struct vm_area_struct *vma;
  338. struct task_struct *tsk;
  339. struct anon_vma *av;
  340. read_lock(&tasklist_lock);
  341. av = page_lock_anon_vma(page);
  342. if (av == NULL) /* Not actually mapped anymore */
  343. goto out;
  344. for_each_process (tsk) {
  345. struct anon_vma_chain *vmac;
  346. if (!task_early_kill(tsk))
  347. continue;
  348. list_for_each_entry(vmac, &av->head, same_anon_vma) {
  349. vma = vmac->vma;
  350. if (!page_mapped_in_vma(page, vma))
  351. continue;
  352. if (vma->vm_mm == tsk->mm)
  353. add_to_kill(tsk, page, vma, to_kill, tkc);
  354. }
  355. }
  356. page_unlock_anon_vma(av);
  357. out:
  358. read_unlock(&tasklist_lock);
  359. }
  360. /*
  361. * Collect processes when the error hit a file mapped page.
  362. */
  363. static void collect_procs_file(struct page *page, struct list_head *to_kill,
  364. struct to_kill **tkc)
  365. {
  366. struct vm_area_struct *vma;
  367. struct task_struct *tsk;
  368. struct prio_tree_iter iter;
  369. struct address_space *mapping = page->mapping;
  370. /*
  371. * A note on the locking order between the two locks.
  372. * We don't rely on this particular order.
  373. * If you have some other code that needs a different order
  374. * feel free to switch them around. Or add a reverse link
  375. * from mm_struct to task_struct, then this could be all
  376. * done without taking tasklist_lock and looping over all tasks.
  377. */
  378. read_lock(&tasklist_lock);
  379. spin_lock(&mapping->i_mmap_lock);
  380. for_each_process(tsk) {
  381. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  382. if (!task_early_kill(tsk))
  383. continue;
  384. vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff,
  385. pgoff) {
  386. /*
  387. * Send early kill signal to tasks where a vma covers
  388. * the page but the corrupted page is not necessarily
  389. * mapped it in its pte.
  390. * Assume applications who requested early kill want
  391. * to be informed of all such data corruptions.
  392. */
  393. if (vma->vm_mm == tsk->mm)
  394. add_to_kill(tsk, page, vma, to_kill, tkc);
  395. }
  396. }
  397. spin_unlock(&mapping->i_mmap_lock);
  398. read_unlock(&tasklist_lock);
  399. }
  400. /*
  401. * Collect the processes who have the corrupted page mapped to kill.
  402. * This is done in two steps for locking reasons.
  403. * First preallocate one tokill structure outside the spin locks,
  404. * so that we can kill at least one process reasonably reliable.
  405. */
  406. static void collect_procs(struct page *page, struct list_head *tokill)
  407. {
  408. struct to_kill *tk;
  409. if (!page->mapping)
  410. return;
  411. tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
  412. if (!tk)
  413. return;
  414. if (PageAnon(page))
  415. collect_procs_anon(page, tokill, &tk);
  416. else
  417. collect_procs_file(page, tokill, &tk);
  418. kfree(tk);
  419. }
  420. /*
  421. * Error handlers for various types of pages.
  422. */
  423. enum outcome {
  424. IGNORED, /* Error: cannot be handled */
  425. FAILED, /* Error: handling failed */
  426. DELAYED, /* Will be handled later */
  427. RECOVERED, /* Successfully recovered */
  428. };
  429. static const char *action_name[] = {
  430. [IGNORED] = "Ignored",
  431. [FAILED] = "Failed",
  432. [DELAYED] = "Delayed",
  433. [RECOVERED] = "Recovered",
  434. };
  435. /*
  436. * XXX: It is possible that a page is isolated from LRU cache,
  437. * and then kept in swap cache or failed to remove from page cache.
  438. * The page count will stop it from being freed by unpoison.
  439. * Stress tests should be aware of this memory leak problem.
  440. */
  441. static int delete_from_lru_cache(struct page *p)
  442. {
  443. if (!isolate_lru_page(p)) {
  444. /*
  445. * Clear sensible page flags, so that the buddy system won't
  446. * complain when the page is unpoison-and-freed.
  447. */
  448. ClearPageActive(p);
  449. ClearPageUnevictable(p);
  450. /*
  451. * drop the page count elevated by isolate_lru_page()
  452. */
  453. page_cache_release(p);
  454. return 0;
  455. }
  456. return -EIO;
  457. }
  458. /*
  459. * Error hit kernel page.
  460. * Do nothing, try to be lucky and not touch this instead. For a few cases we
  461. * could be more sophisticated.
  462. */
  463. static int me_kernel(struct page *p, unsigned long pfn)
  464. {
  465. return IGNORED;
  466. }
  467. /*
  468. * Page in unknown state. Do nothing.
  469. */
  470. static int me_unknown(struct page *p, unsigned long pfn)
  471. {
  472. printk(KERN_ERR "MCE %#lx: Unknown page state\n", pfn);
  473. return FAILED;
  474. }
  475. /*
  476. * Clean (or cleaned) page cache page.
  477. */
  478. static int me_pagecache_clean(struct page *p, unsigned long pfn)
  479. {
  480. int err;
  481. int ret = FAILED;
  482. struct address_space *mapping;
  483. delete_from_lru_cache(p);
  484. /*
  485. * For anonymous pages we're done the only reference left
  486. * should be the one m_f() holds.
  487. */
  488. if (PageAnon(p))
  489. return RECOVERED;
  490. /*
  491. * Now truncate the page in the page cache. This is really
  492. * more like a "temporary hole punch"
  493. * Don't do this for block devices when someone else
  494. * has a reference, because it could be file system metadata
  495. * and that's not safe to truncate.
  496. */
  497. mapping = page_mapping(p);
  498. if (!mapping) {
  499. /*
  500. * Page has been teared down in the meanwhile
  501. */
  502. return FAILED;
  503. }
  504. /*
  505. * Truncation is a bit tricky. Enable it per file system for now.
  506. *
  507. * Open: to take i_mutex or not for this? Right now we don't.
  508. */
  509. if (mapping->a_ops->error_remove_page) {
  510. err = mapping->a_ops->error_remove_page(mapping, p);
  511. if (err != 0) {
  512. printk(KERN_INFO "MCE %#lx: Failed to punch page: %d\n",
  513. pfn, err);
  514. } else if (page_has_private(p) &&
  515. !try_to_release_page(p, GFP_NOIO)) {
  516. pr_debug("MCE %#lx: failed to release buffers\n", pfn);
  517. } else {
  518. ret = RECOVERED;
  519. }
  520. } else {
  521. /*
  522. * If the file system doesn't support it just invalidate
  523. * This fails on dirty or anything with private pages
  524. */
  525. if (invalidate_inode_page(p))
  526. ret = RECOVERED;
  527. else
  528. printk(KERN_INFO "MCE %#lx: Failed to invalidate\n",
  529. pfn);
  530. }
  531. return ret;
  532. }
  533. /*
  534. * Dirty cache page page
  535. * Issues: when the error hit a hole page the error is not properly
  536. * propagated.
  537. */
  538. static int me_pagecache_dirty(struct page *p, unsigned long pfn)
  539. {
  540. struct address_space *mapping = page_mapping(p);
  541. SetPageError(p);
  542. /* TBD: print more information about the file. */
  543. if (mapping) {
  544. /*
  545. * IO error will be reported by write(), fsync(), etc.
  546. * who check the mapping.
  547. * This way the application knows that something went
  548. * wrong with its dirty file data.
  549. *
  550. * There's one open issue:
  551. *
  552. * The EIO will be only reported on the next IO
  553. * operation and then cleared through the IO map.
  554. * Normally Linux has two mechanisms to pass IO error
  555. * first through the AS_EIO flag in the address space
  556. * and then through the PageError flag in the page.
  557. * Since we drop pages on memory failure handling the
  558. * only mechanism open to use is through AS_AIO.
  559. *
  560. * This has the disadvantage that it gets cleared on
  561. * the first operation that returns an error, while
  562. * the PageError bit is more sticky and only cleared
  563. * when the page is reread or dropped. If an
  564. * application assumes it will always get error on
  565. * fsync, but does other operations on the fd before
  566. * and the page is dropped inbetween then the error
  567. * will not be properly reported.
  568. *
  569. * This can already happen even without hwpoisoned
  570. * pages: first on metadata IO errors (which only
  571. * report through AS_EIO) or when the page is dropped
  572. * at the wrong time.
  573. *
  574. * So right now we assume that the application DTRT on
  575. * the first EIO, but we're not worse than other parts
  576. * of the kernel.
  577. */
  578. mapping_set_error(mapping, EIO);
  579. }
  580. return me_pagecache_clean(p, pfn);
  581. }
  582. /*
  583. * Clean and dirty swap cache.
  584. *
  585. * Dirty swap cache page is tricky to handle. The page could live both in page
  586. * cache and swap cache(ie. page is freshly swapped in). So it could be
  587. * referenced concurrently by 2 types of PTEs:
  588. * normal PTEs and swap PTEs. We try to handle them consistently by calling
  589. * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
  590. * and then
  591. * - clear dirty bit to prevent IO
  592. * - remove from LRU
  593. * - but keep in the swap cache, so that when we return to it on
  594. * a later page fault, we know the application is accessing
  595. * corrupted data and shall be killed (we installed simple
  596. * interception code in do_swap_page to catch it).
  597. *
  598. * Clean swap cache pages can be directly isolated. A later page fault will
  599. * bring in the known good data from disk.
  600. */
  601. static int me_swapcache_dirty(struct page *p, unsigned long pfn)
  602. {
  603. ClearPageDirty(p);
  604. /* Trigger EIO in shmem: */
  605. ClearPageUptodate(p);
  606. if (!delete_from_lru_cache(p))
  607. return DELAYED;
  608. else
  609. return FAILED;
  610. }
  611. static int me_swapcache_clean(struct page *p, unsigned long pfn)
  612. {
  613. delete_from_swap_cache(p);
  614. if (!delete_from_lru_cache(p))
  615. return RECOVERED;
  616. else
  617. return FAILED;
  618. }
  619. /*
  620. * Huge pages. Needs work.
  621. * Issues:
  622. * No rmap support so we cannot find the original mapper. In theory could walk
  623. * all MMs and look for the mappings, but that would be non atomic and racy.
  624. * Need rmap for hugepages for this. Alternatively we could employ a heuristic,
  625. * like just walking the current process and hoping it has it mapped (that
  626. * should be usually true for the common "shared database cache" case)
  627. * Should handle free huge pages and dequeue them too, but this needs to
  628. * handle huge page accounting correctly.
  629. */
  630. static int me_huge_page(struct page *p, unsigned long pfn)
  631. {
  632. return FAILED;
  633. }
  634. /*
  635. * Various page states we can handle.
  636. *
  637. * A page state is defined by its current page->flags bits.
  638. * The table matches them in order and calls the right handler.
  639. *
  640. * This is quite tricky because we can access page at any time
  641. * in its live cycle, so all accesses have to be extremly careful.
  642. *
  643. * This is not complete. More states could be added.
  644. * For any missing state don't attempt recovery.
  645. */
  646. #define dirty (1UL << PG_dirty)
  647. #define sc (1UL << PG_swapcache)
  648. #define unevict (1UL << PG_unevictable)
  649. #define mlock (1UL << PG_mlocked)
  650. #define writeback (1UL << PG_writeback)
  651. #define lru (1UL << PG_lru)
  652. #define swapbacked (1UL << PG_swapbacked)
  653. #define head (1UL << PG_head)
  654. #define tail (1UL << PG_tail)
  655. #define compound (1UL << PG_compound)
  656. #define slab (1UL << PG_slab)
  657. #define reserved (1UL << PG_reserved)
  658. static struct page_state {
  659. unsigned long mask;
  660. unsigned long res;
  661. char *msg;
  662. int (*action)(struct page *p, unsigned long pfn);
  663. } error_states[] = {
  664. { reserved, reserved, "reserved kernel", me_kernel },
  665. /*
  666. * free pages are specially detected outside this table:
  667. * PG_buddy pages only make a small fraction of all free pages.
  668. */
  669. /*
  670. * Could in theory check if slab page is free or if we can drop
  671. * currently unused objects without touching them. But just
  672. * treat it as standard kernel for now.
  673. */
  674. { slab, slab, "kernel slab", me_kernel },
  675. #ifdef CONFIG_PAGEFLAGS_EXTENDED
  676. { head, head, "huge", me_huge_page },
  677. { tail, tail, "huge", me_huge_page },
  678. #else
  679. { compound, compound, "huge", me_huge_page },
  680. #endif
  681. { sc|dirty, sc|dirty, "swapcache", me_swapcache_dirty },
  682. { sc|dirty, sc, "swapcache", me_swapcache_clean },
  683. { unevict|dirty, unevict|dirty, "unevictable LRU", me_pagecache_dirty},
  684. { unevict, unevict, "unevictable LRU", me_pagecache_clean},
  685. { mlock|dirty, mlock|dirty, "mlocked LRU", me_pagecache_dirty },
  686. { mlock, mlock, "mlocked LRU", me_pagecache_clean },
  687. { lru|dirty, lru|dirty, "LRU", me_pagecache_dirty },
  688. { lru|dirty, lru, "clean LRU", me_pagecache_clean },
  689. /*
  690. * Catchall entry: must be at end.
  691. */
  692. { 0, 0, "unknown page state", me_unknown },
  693. };
  694. #undef dirty
  695. #undef sc
  696. #undef unevict
  697. #undef mlock
  698. #undef writeback
  699. #undef lru
  700. #undef swapbacked
  701. #undef head
  702. #undef tail
  703. #undef compound
  704. #undef slab
  705. #undef reserved
  706. static void action_result(unsigned long pfn, char *msg, int result)
  707. {
  708. struct page *page = pfn_to_page(pfn);
  709. printk(KERN_ERR "MCE %#lx: %s%s page recovery: %s\n",
  710. pfn,
  711. PageDirty(page) ? "dirty " : "",
  712. msg, action_name[result]);
  713. }
  714. static int page_action(struct page_state *ps, struct page *p,
  715. unsigned long pfn)
  716. {
  717. int result;
  718. int count;
  719. result = ps->action(p, pfn);
  720. action_result(pfn, ps->msg, result);
  721. count = page_count(p) - 1;
  722. if (ps->action == me_swapcache_dirty && result == DELAYED)
  723. count--;
  724. if (count != 0) {
  725. printk(KERN_ERR
  726. "MCE %#lx: %s page still referenced by %d users\n",
  727. pfn, ps->msg, count);
  728. result = FAILED;
  729. }
  730. /* Could do more checks here if page looks ok */
  731. /*
  732. * Could adjust zone counters here to correct for the missing page.
  733. */
  734. return (result == RECOVERED || result == DELAYED) ? 0 : -EBUSY;
  735. }
  736. #define N_UNMAP_TRIES 5
  737. /*
  738. * Do all that is necessary to remove user space mappings. Unmap
  739. * the pages and send SIGBUS to the processes if the data was dirty.
  740. */
  741. static int hwpoison_user_mappings(struct page *p, unsigned long pfn,
  742. int trapno)
  743. {
  744. enum ttu_flags ttu = TTU_UNMAP | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
  745. struct address_space *mapping;
  746. LIST_HEAD(tokill);
  747. int ret;
  748. int i;
  749. int kill = 1;
  750. if (PageReserved(p) || PageSlab(p))
  751. return SWAP_SUCCESS;
  752. /*
  753. * This check implies we don't kill processes if their pages
  754. * are in the swap cache early. Those are always late kills.
  755. */
  756. if (!page_mapped(p))
  757. return SWAP_SUCCESS;
  758. if (PageCompound(p) || PageKsm(p))
  759. return SWAP_FAIL;
  760. if (PageSwapCache(p)) {
  761. printk(KERN_ERR
  762. "MCE %#lx: keeping poisoned page in swap cache\n", pfn);
  763. ttu |= TTU_IGNORE_HWPOISON;
  764. }
  765. /*
  766. * Propagate the dirty bit from PTEs to struct page first, because we
  767. * need this to decide if we should kill or just drop the page.
  768. * XXX: the dirty test could be racy: set_page_dirty() may not always
  769. * be called inside page lock (it's recommended but not enforced).
  770. */
  771. mapping = page_mapping(p);
  772. if (!PageDirty(p) && mapping && mapping_cap_writeback_dirty(mapping)) {
  773. if (page_mkclean(p)) {
  774. SetPageDirty(p);
  775. } else {
  776. kill = 0;
  777. ttu |= TTU_IGNORE_HWPOISON;
  778. printk(KERN_INFO
  779. "MCE %#lx: corrupted page was clean: dropped without side effects\n",
  780. pfn);
  781. }
  782. }
  783. /*
  784. * First collect all the processes that have the page
  785. * mapped in dirty form. This has to be done before try_to_unmap,
  786. * because ttu takes the rmap data structures down.
  787. *
  788. * Error handling: We ignore errors here because
  789. * there's nothing that can be done.
  790. */
  791. if (kill)
  792. collect_procs(p, &tokill);
  793. /*
  794. * try_to_unmap can fail temporarily due to races.
  795. * Try a few times (RED-PEN better strategy?)
  796. */
  797. for (i = 0; i < N_UNMAP_TRIES; i++) {
  798. ret = try_to_unmap(p, ttu);
  799. if (ret == SWAP_SUCCESS)
  800. break;
  801. pr_debug("MCE %#lx: try_to_unmap retry needed %d\n", pfn, ret);
  802. }
  803. if (ret != SWAP_SUCCESS)
  804. printk(KERN_ERR "MCE %#lx: failed to unmap page (mapcount=%d)\n",
  805. pfn, page_mapcount(p));
  806. /*
  807. * Now that the dirty bit has been propagated to the
  808. * struct page and all unmaps done we can decide if
  809. * killing is needed or not. Only kill when the page
  810. * was dirty, otherwise the tokill list is merely
  811. * freed. When there was a problem unmapping earlier
  812. * use a more force-full uncatchable kill to prevent
  813. * any accesses to the poisoned memory.
  814. */
  815. kill_procs_ao(&tokill, !!PageDirty(p), trapno,
  816. ret != SWAP_SUCCESS, pfn);
  817. return ret;
  818. }
  819. int __memory_failure(unsigned long pfn, int trapno, int flags)
  820. {
  821. struct page_state *ps;
  822. struct page *p;
  823. int res;
  824. if (!sysctl_memory_failure_recovery)
  825. panic("Memory failure from trap %d on page %lx", trapno, pfn);
  826. if (!pfn_valid(pfn)) {
  827. printk(KERN_ERR
  828. "MCE %#lx: memory outside kernel control\n",
  829. pfn);
  830. return -ENXIO;
  831. }
  832. p = pfn_to_page(pfn);
  833. if (TestSetPageHWPoison(p)) {
  834. printk(KERN_ERR "MCE %#lx: already hardware poisoned\n", pfn);
  835. return 0;
  836. }
  837. atomic_long_add(1, &mce_bad_pages);
  838. /*
  839. * We need/can do nothing about count=0 pages.
  840. * 1) it's a free page, and therefore in safe hand:
  841. * prep_new_page() will be the gate keeper.
  842. * 2) it's part of a non-compound high order page.
  843. * Implies some kernel user: cannot stop them from
  844. * R/W the page; let's pray that the page has been
  845. * used and will be freed some time later.
  846. * In fact it's dangerous to directly bump up page count from 0,
  847. * that may make page_freeze_refs()/page_unfreeze_refs() mismatch.
  848. */
  849. if (!(flags & MF_COUNT_INCREASED) &&
  850. !get_page_unless_zero(compound_head(p))) {
  851. if (is_free_buddy_page(p)) {
  852. action_result(pfn, "free buddy", DELAYED);
  853. return 0;
  854. } else {
  855. action_result(pfn, "high order kernel", IGNORED);
  856. return -EBUSY;
  857. }
  858. }
  859. /*
  860. * We ignore non-LRU pages for good reasons.
  861. * - PG_locked is only well defined for LRU pages and a few others
  862. * - to avoid races with __set_page_locked()
  863. * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
  864. * The check (unnecessarily) ignores LRU pages being isolated and
  865. * walked by the page reclaim code, however that's not a big loss.
  866. */
  867. if (!PageLRU(p))
  868. shake_page(p, 0);
  869. if (!PageLRU(p)) {
  870. /*
  871. * shake_page could have turned it free.
  872. */
  873. if (is_free_buddy_page(p)) {
  874. action_result(pfn, "free buddy, 2nd try", DELAYED);
  875. return 0;
  876. }
  877. action_result(pfn, "non LRU", IGNORED);
  878. put_page(p);
  879. return -EBUSY;
  880. }
  881. /*
  882. * Lock the page and wait for writeback to finish.
  883. * It's very difficult to mess with pages currently under IO
  884. * and in many cases impossible, so we just avoid it here.
  885. */
  886. lock_page_nosync(p);
  887. /*
  888. * unpoison always clear PG_hwpoison inside page lock
  889. */
  890. if (!PageHWPoison(p)) {
  891. printk(KERN_ERR "MCE %#lx: just unpoisoned\n", pfn);
  892. res = 0;
  893. goto out;
  894. }
  895. if (hwpoison_filter(p)) {
  896. if (TestClearPageHWPoison(p))
  897. atomic_long_dec(&mce_bad_pages);
  898. unlock_page(p);
  899. put_page(p);
  900. return 0;
  901. }
  902. wait_on_page_writeback(p);
  903. /*
  904. * Now take care of user space mappings.
  905. * Abort on fail: __remove_from_page_cache() assumes unmapped page.
  906. */
  907. if (hwpoison_user_mappings(p, pfn, trapno) != SWAP_SUCCESS) {
  908. printk(KERN_ERR "MCE %#lx: cannot unmap page, give up\n", pfn);
  909. res = -EBUSY;
  910. goto out;
  911. }
  912. /*
  913. * Torn down by someone else?
  914. */
  915. if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
  916. action_result(pfn, "already truncated LRU", IGNORED);
  917. res = -EBUSY;
  918. goto out;
  919. }
  920. res = -EBUSY;
  921. for (ps = error_states;; ps++) {
  922. if ((p->flags & ps->mask) == ps->res) {
  923. res = page_action(ps, p, pfn);
  924. break;
  925. }
  926. }
  927. out:
  928. unlock_page(p);
  929. return res;
  930. }
  931. EXPORT_SYMBOL_GPL(__memory_failure);
  932. /**
  933. * memory_failure - Handle memory failure of a page.
  934. * @pfn: Page Number of the corrupted page
  935. * @trapno: Trap number reported in the signal to user space.
  936. *
  937. * This function is called by the low level machine check code
  938. * of an architecture when it detects hardware memory corruption
  939. * of a page. It tries its best to recover, which includes
  940. * dropping pages, killing processes etc.
  941. *
  942. * The function is primarily of use for corruptions that
  943. * happen outside the current execution context (e.g. when
  944. * detected by a background scrubber)
  945. *
  946. * Must run in process context (e.g. a work queue) with interrupts
  947. * enabled and no spinlocks hold.
  948. */
  949. void memory_failure(unsigned long pfn, int trapno)
  950. {
  951. __memory_failure(pfn, trapno, 0);
  952. }
  953. /**
  954. * unpoison_memory - Unpoison a previously poisoned page
  955. * @pfn: Page number of the to be unpoisoned page
  956. *
  957. * Software-unpoison a page that has been poisoned by
  958. * memory_failure() earlier.
  959. *
  960. * This is only done on the software-level, so it only works
  961. * for linux injected failures, not real hardware failures
  962. *
  963. * Returns 0 for success, otherwise -errno.
  964. */
  965. int unpoison_memory(unsigned long pfn)
  966. {
  967. struct page *page;
  968. struct page *p;
  969. int freeit = 0;
  970. if (!pfn_valid(pfn))
  971. return -ENXIO;
  972. p = pfn_to_page(pfn);
  973. page = compound_head(p);
  974. if (!PageHWPoison(p)) {
  975. pr_debug("MCE: Page was already unpoisoned %#lx\n", pfn);
  976. return 0;
  977. }
  978. if (!get_page_unless_zero(page)) {
  979. if (TestClearPageHWPoison(p))
  980. atomic_long_dec(&mce_bad_pages);
  981. pr_debug("MCE: Software-unpoisoned free page %#lx\n", pfn);
  982. return 0;
  983. }
  984. lock_page_nosync(page);
  985. /*
  986. * This test is racy because PG_hwpoison is set outside of page lock.
  987. * That's acceptable because that won't trigger kernel panic. Instead,
  988. * the PG_hwpoison page will be caught and isolated on the entrance to
  989. * the free buddy page pool.
  990. */
  991. if (TestClearPageHWPoison(p)) {
  992. pr_debug("MCE: Software-unpoisoned page %#lx\n", pfn);
  993. atomic_long_dec(&mce_bad_pages);
  994. freeit = 1;
  995. }
  996. unlock_page(page);
  997. put_page(page);
  998. if (freeit)
  999. put_page(page);
  1000. return 0;
  1001. }
  1002. EXPORT_SYMBOL(unpoison_memory);
  1003. static struct page *new_page(struct page *p, unsigned long private, int **x)
  1004. {
  1005. int nid = page_to_nid(p);
  1006. return alloc_pages_exact_node(nid, GFP_HIGHUSER_MOVABLE, 0);
  1007. }
  1008. /*
  1009. * Safely get reference count of an arbitrary page.
  1010. * Returns 0 for a free page, -EIO for a zero refcount page
  1011. * that is not free, and 1 for any other page type.
  1012. * For 1 the page is returned with increased page count, otherwise not.
  1013. */
  1014. static int get_any_page(struct page *p, unsigned long pfn, int flags)
  1015. {
  1016. int ret;
  1017. if (flags & MF_COUNT_INCREASED)
  1018. return 1;
  1019. /*
  1020. * The lock_system_sleep prevents a race with memory hotplug,
  1021. * because the isolation assumes there's only a single user.
  1022. * This is a big hammer, a better would be nicer.
  1023. */
  1024. lock_system_sleep();
  1025. /*
  1026. * Isolate the page, so that it doesn't get reallocated if it
  1027. * was free.
  1028. */
  1029. set_migratetype_isolate(p);
  1030. if (!get_page_unless_zero(compound_head(p))) {
  1031. if (is_free_buddy_page(p)) {
  1032. pr_debug("get_any_page: %#lx free buddy page\n", pfn);
  1033. /* Set hwpoison bit while page is still isolated */
  1034. SetPageHWPoison(p);
  1035. ret = 0;
  1036. } else {
  1037. pr_debug("get_any_page: %#lx: unknown zero refcount page type %lx\n",
  1038. pfn, p->flags);
  1039. ret = -EIO;
  1040. }
  1041. } else {
  1042. /* Not a free page */
  1043. ret = 1;
  1044. }
  1045. unset_migratetype_isolate(p);
  1046. unlock_system_sleep();
  1047. return ret;
  1048. }
  1049. /**
  1050. * soft_offline_page - Soft offline a page.
  1051. * @page: page to offline
  1052. * @flags: flags. Same as memory_failure().
  1053. *
  1054. * Returns 0 on success, otherwise negated errno.
  1055. *
  1056. * Soft offline a page, by migration or invalidation,
  1057. * without killing anything. This is for the case when
  1058. * a page is not corrupted yet (so it's still valid to access),
  1059. * but has had a number of corrected errors and is better taken
  1060. * out.
  1061. *
  1062. * The actual policy on when to do that is maintained by
  1063. * user space.
  1064. *
  1065. * This should never impact any application or cause data loss,
  1066. * however it might take some time.
  1067. *
  1068. * This is not a 100% solution for all memory, but tries to be
  1069. * ``good enough'' for the majority of memory.
  1070. */
  1071. int soft_offline_page(struct page *page, int flags)
  1072. {
  1073. int ret;
  1074. unsigned long pfn = page_to_pfn(page);
  1075. ret = get_any_page(page, pfn, flags);
  1076. if (ret < 0)
  1077. return ret;
  1078. if (ret == 0)
  1079. goto done;
  1080. /*
  1081. * Page cache page we can handle?
  1082. */
  1083. if (!PageLRU(page)) {
  1084. /*
  1085. * Try to free it.
  1086. */
  1087. put_page(page);
  1088. shake_page(page, 1);
  1089. /*
  1090. * Did it turn free?
  1091. */
  1092. ret = get_any_page(page, pfn, 0);
  1093. if (ret < 0)
  1094. return ret;
  1095. if (ret == 0)
  1096. goto done;
  1097. }
  1098. if (!PageLRU(page)) {
  1099. pr_debug("soft_offline: %#lx: unknown non LRU page type %lx\n",
  1100. pfn, page->flags);
  1101. return -EIO;
  1102. }
  1103. lock_page(page);
  1104. wait_on_page_writeback(page);
  1105. /*
  1106. * Synchronized using the page lock with memory_failure()
  1107. */
  1108. if (PageHWPoison(page)) {
  1109. unlock_page(page);
  1110. put_page(page);
  1111. pr_debug("soft offline: %#lx page already poisoned\n", pfn);
  1112. return -EBUSY;
  1113. }
  1114. /*
  1115. * Try to invalidate first. This should work for
  1116. * non dirty unmapped page cache pages.
  1117. */
  1118. ret = invalidate_inode_page(page);
  1119. unlock_page(page);
  1120. /*
  1121. * Drop count because page migration doesn't like raised
  1122. * counts. The page could get re-allocated, but if it becomes
  1123. * LRU the isolation will just fail.
  1124. * RED-PEN would be better to keep it isolated here, but we
  1125. * would need to fix isolation locking first.
  1126. */
  1127. put_page(page);
  1128. if (ret == 1) {
  1129. ret = 0;
  1130. pr_debug("soft_offline: %#lx: invalidated\n", pfn);
  1131. goto done;
  1132. }
  1133. /*
  1134. * Simple invalidation didn't work.
  1135. * Try to migrate to a new page instead. migrate.c
  1136. * handles a large number of cases for us.
  1137. */
  1138. ret = isolate_lru_page(page);
  1139. if (!ret) {
  1140. LIST_HEAD(pagelist);
  1141. list_add(&page->lru, &pagelist);
  1142. ret = migrate_pages(&pagelist, new_page, MPOL_MF_MOVE_ALL, 0);
  1143. if (ret) {
  1144. pr_debug("soft offline: %#lx: migration failed %d, type %lx\n",
  1145. pfn, ret, page->flags);
  1146. if (ret > 0)
  1147. ret = -EIO;
  1148. }
  1149. } else {
  1150. pr_debug("soft offline: %#lx: isolation failed: %d, page count %d, type %lx\n",
  1151. pfn, ret, page_count(page), page->flags);
  1152. }
  1153. if (ret)
  1154. return ret;
  1155. done:
  1156. atomic_long_add(1, &mce_bad_pages);
  1157. SetPageHWPoison(page);
  1158. /* keep elevated page count for bad page */
  1159. return ret;
  1160. }
  1161. /*
  1162. * The caller must hold current->mm->mmap_sem in read mode.
  1163. */
  1164. int is_hwpoison_address(unsigned long addr)
  1165. {
  1166. pgd_t *pgdp;
  1167. pud_t pud, *pudp;
  1168. pmd_t pmd, *pmdp;
  1169. pte_t pte, *ptep;
  1170. swp_entry_t entry;
  1171. pgdp = pgd_offset(current->mm, addr);
  1172. if (!pgd_present(*pgdp))
  1173. return 0;
  1174. pudp = pud_offset(pgdp, addr);
  1175. pud = *pudp;
  1176. if (!pud_present(pud) || pud_large(pud))
  1177. return 0;
  1178. pmdp = pmd_offset(pudp, addr);
  1179. pmd = *pmdp;
  1180. if (!pmd_present(pmd) || pmd_large(pmd))
  1181. return 0;
  1182. ptep = pte_offset_map(pmdp, addr);
  1183. pte = *ptep;
  1184. pte_unmap(ptep);
  1185. if (!is_swap_pte(pte))
  1186. return 0;
  1187. entry = pte_to_swp_entry(pte);
  1188. return is_hwpoison_entry(entry);
  1189. }
  1190. EXPORT_SYMBOL_GPL(is_hwpoison_address);