timekeeping.c 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935
  1. /*
  2. * linux/kernel/time/timekeeping.c
  3. *
  4. * Kernel timekeeping code and accessor functions
  5. *
  6. * This code was moved from linux/kernel/timer.c.
  7. * Please see that file for copyright and history logs.
  8. *
  9. */
  10. #include <linux/module.h>
  11. #include <linux/interrupt.h>
  12. #include <linux/percpu.h>
  13. #include <linux/init.h>
  14. #include <linux/mm.h>
  15. #include <linux/sched.h>
  16. #include <linux/sysdev.h>
  17. #include <linux/clocksource.h>
  18. #include <linux/jiffies.h>
  19. #include <linux/time.h>
  20. #include <linux/tick.h>
  21. #include <linux/stop_machine.h>
  22. /* Structure holding internal timekeeping values. */
  23. struct timekeeper {
  24. /* Current clocksource used for timekeeping. */
  25. struct clocksource *clock;
  26. /* The shift value of the current clocksource. */
  27. int shift;
  28. /* Number of clock cycles in one NTP interval. */
  29. cycle_t cycle_interval;
  30. /* Number of clock shifted nano seconds in one NTP interval. */
  31. u64 xtime_interval;
  32. /* Raw nano seconds accumulated per NTP interval. */
  33. u32 raw_interval;
  34. /* Clock shifted nano seconds remainder not stored in xtime.tv_nsec. */
  35. u64 xtime_nsec;
  36. /* Difference between accumulated time and NTP time in ntp
  37. * shifted nano seconds. */
  38. s64 ntp_error;
  39. /* Shift conversion between clock shifted nano seconds and
  40. * ntp shifted nano seconds. */
  41. int ntp_error_shift;
  42. /* NTP adjusted clock multiplier */
  43. u32 mult;
  44. };
  45. struct timekeeper timekeeper;
  46. /**
  47. * timekeeper_setup_internals - Set up internals to use clocksource clock.
  48. *
  49. * @clock: Pointer to clocksource.
  50. *
  51. * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
  52. * pair and interval request.
  53. *
  54. * Unless you're the timekeeping code, you should not be using this!
  55. */
  56. static void timekeeper_setup_internals(struct clocksource *clock)
  57. {
  58. cycle_t interval;
  59. u64 tmp;
  60. timekeeper.clock = clock;
  61. clock->cycle_last = clock->read(clock);
  62. /* Do the ns -> cycle conversion first, using original mult */
  63. tmp = NTP_INTERVAL_LENGTH;
  64. tmp <<= clock->shift;
  65. tmp += clock->mult/2;
  66. do_div(tmp, clock->mult);
  67. if (tmp == 0)
  68. tmp = 1;
  69. interval = (cycle_t) tmp;
  70. timekeeper.cycle_interval = interval;
  71. /* Go back from cycles -> shifted ns */
  72. timekeeper.xtime_interval = (u64) interval * clock->mult;
  73. timekeeper.raw_interval =
  74. ((u64) interval * clock->mult) >> clock->shift;
  75. timekeeper.xtime_nsec = 0;
  76. timekeeper.shift = clock->shift;
  77. timekeeper.ntp_error = 0;
  78. timekeeper.ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
  79. /*
  80. * The timekeeper keeps its own mult values for the currently
  81. * active clocksource. These value will be adjusted via NTP
  82. * to counteract clock drifting.
  83. */
  84. timekeeper.mult = clock->mult;
  85. }
  86. /* Timekeeper helper functions. */
  87. static inline s64 timekeeping_get_ns(void)
  88. {
  89. cycle_t cycle_now, cycle_delta;
  90. struct clocksource *clock;
  91. /* read clocksource: */
  92. clock = timekeeper.clock;
  93. cycle_now = clock->read(clock);
  94. /* calculate the delta since the last update_wall_time: */
  95. cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
  96. /* return delta convert to nanoseconds using ntp adjusted mult. */
  97. return clocksource_cyc2ns(cycle_delta, timekeeper.mult,
  98. timekeeper.shift);
  99. }
  100. static inline s64 timekeeping_get_ns_raw(void)
  101. {
  102. cycle_t cycle_now, cycle_delta;
  103. struct clocksource *clock;
  104. /* read clocksource: */
  105. clock = timekeeper.clock;
  106. cycle_now = clock->read(clock);
  107. /* calculate the delta since the last update_wall_time: */
  108. cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
  109. /* return delta convert to nanoseconds using ntp adjusted mult. */
  110. return clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
  111. }
  112. /*
  113. * This read-write spinlock protects us from races in SMP while
  114. * playing with xtime.
  115. */
  116. __cacheline_aligned_in_smp DEFINE_SEQLOCK(xtime_lock);
  117. /*
  118. * The current time
  119. * wall_to_monotonic is what we need to add to xtime (or xtime corrected
  120. * for sub jiffie times) to get to monotonic time. Monotonic is pegged
  121. * at zero at system boot time, so wall_to_monotonic will be negative,
  122. * however, we will ALWAYS keep the tv_nsec part positive so we can use
  123. * the usual normalization.
  124. *
  125. * wall_to_monotonic is moved after resume from suspend for the monotonic
  126. * time not to jump. We need to add total_sleep_time to wall_to_monotonic
  127. * to get the real boot based time offset.
  128. *
  129. * - wall_to_monotonic is no longer the boot time, getboottime must be
  130. * used instead.
  131. */
  132. struct timespec xtime __attribute__ ((aligned (16)));
  133. struct timespec wall_to_monotonic __attribute__ ((aligned (16)));
  134. static struct timespec total_sleep_time;
  135. /*
  136. * The raw monotonic time for the CLOCK_MONOTONIC_RAW posix clock.
  137. */
  138. struct timespec raw_time;
  139. /* flag for if timekeeping is suspended */
  140. int __read_mostly timekeeping_suspended;
  141. /* must hold xtime_lock */
  142. void timekeeping_leap_insert(int leapsecond)
  143. {
  144. xtime.tv_sec += leapsecond;
  145. wall_to_monotonic.tv_sec -= leapsecond;
  146. update_vsyscall(&xtime, timekeeper.clock, timekeeper.mult);
  147. }
  148. #ifdef CONFIG_GENERIC_TIME
  149. /**
  150. * timekeeping_forward_now - update clock to the current time
  151. *
  152. * Forward the current clock to update its state since the last call to
  153. * update_wall_time(). This is useful before significant clock changes,
  154. * as it avoids having to deal with this time offset explicitly.
  155. */
  156. static void timekeeping_forward_now(void)
  157. {
  158. cycle_t cycle_now, cycle_delta;
  159. struct clocksource *clock;
  160. s64 nsec;
  161. clock = timekeeper.clock;
  162. cycle_now = clock->read(clock);
  163. cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
  164. clock->cycle_last = cycle_now;
  165. nsec = clocksource_cyc2ns(cycle_delta, timekeeper.mult,
  166. timekeeper.shift);
  167. /* If arch requires, add in gettimeoffset() */
  168. nsec += arch_gettimeoffset();
  169. timespec_add_ns(&xtime, nsec);
  170. nsec = clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
  171. timespec_add_ns(&raw_time, nsec);
  172. }
  173. /**
  174. * getnstimeofday - Returns the time of day in a timespec
  175. * @ts: pointer to the timespec to be set
  176. *
  177. * Returns the time of day in a timespec.
  178. */
  179. void getnstimeofday(struct timespec *ts)
  180. {
  181. unsigned long seq;
  182. s64 nsecs;
  183. WARN_ON(timekeeping_suspended);
  184. do {
  185. seq = read_seqbegin(&xtime_lock);
  186. *ts = xtime;
  187. nsecs = timekeeping_get_ns();
  188. /* If arch requires, add in gettimeoffset() */
  189. nsecs += arch_gettimeoffset();
  190. } while (read_seqretry(&xtime_lock, seq));
  191. timespec_add_ns(ts, nsecs);
  192. }
  193. EXPORT_SYMBOL(getnstimeofday);
  194. ktime_t ktime_get(void)
  195. {
  196. unsigned int seq;
  197. s64 secs, nsecs;
  198. WARN_ON(timekeeping_suspended);
  199. do {
  200. seq = read_seqbegin(&xtime_lock);
  201. secs = xtime.tv_sec + wall_to_monotonic.tv_sec;
  202. nsecs = xtime.tv_nsec + wall_to_monotonic.tv_nsec;
  203. nsecs += timekeeping_get_ns();
  204. } while (read_seqretry(&xtime_lock, seq));
  205. /*
  206. * Use ktime_set/ktime_add_ns to create a proper ktime on
  207. * 32-bit architectures without CONFIG_KTIME_SCALAR.
  208. */
  209. return ktime_add_ns(ktime_set(secs, 0), nsecs);
  210. }
  211. EXPORT_SYMBOL_GPL(ktime_get);
  212. /**
  213. * ktime_get_ts - get the monotonic clock in timespec format
  214. * @ts: pointer to timespec variable
  215. *
  216. * The function calculates the monotonic clock from the realtime
  217. * clock and the wall_to_monotonic offset and stores the result
  218. * in normalized timespec format in the variable pointed to by @ts.
  219. */
  220. void ktime_get_ts(struct timespec *ts)
  221. {
  222. struct timespec tomono;
  223. unsigned int seq;
  224. s64 nsecs;
  225. WARN_ON(timekeeping_suspended);
  226. do {
  227. seq = read_seqbegin(&xtime_lock);
  228. *ts = xtime;
  229. tomono = wall_to_monotonic;
  230. nsecs = timekeeping_get_ns();
  231. } while (read_seqretry(&xtime_lock, seq));
  232. set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec,
  233. ts->tv_nsec + tomono.tv_nsec + nsecs);
  234. }
  235. EXPORT_SYMBOL_GPL(ktime_get_ts);
  236. /**
  237. * do_gettimeofday - Returns the time of day in a timeval
  238. * @tv: pointer to the timeval to be set
  239. *
  240. * NOTE: Users should be converted to using getnstimeofday()
  241. */
  242. void do_gettimeofday(struct timeval *tv)
  243. {
  244. struct timespec now;
  245. getnstimeofday(&now);
  246. tv->tv_sec = now.tv_sec;
  247. tv->tv_usec = now.tv_nsec/1000;
  248. }
  249. EXPORT_SYMBOL(do_gettimeofday);
  250. /**
  251. * do_settimeofday - Sets the time of day
  252. * @tv: pointer to the timespec variable containing the new time
  253. *
  254. * Sets the time of day to the new time and update NTP and notify hrtimers
  255. */
  256. int do_settimeofday(struct timespec *tv)
  257. {
  258. struct timespec ts_delta;
  259. unsigned long flags;
  260. if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
  261. return -EINVAL;
  262. write_seqlock_irqsave(&xtime_lock, flags);
  263. timekeeping_forward_now();
  264. ts_delta.tv_sec = tv->tv_sec - xtime.tv_sec;
  265. ts_delta.tv_nsec = tv->tv_nsec - xtime.tv_nsec;
  266. wall_to_monotonic = timespec_sub(wall_to_monotonic, ts_delta);
  267. xtime = *tv;
  268. timekeeper.ntp_error = 0;
  269. ntp_clear();
  270. update_vsyscall(&xtime, timekeeper.clock, timekeeper.mult);
  271. write_sequnlock_irqrestore(&xtime_lock, flags);
  272. /* signal hrtimers about time change */
  273. clock_was_set();
  274. return 0;
  275. }
  276. EXPORT_SYMBOL(do_settimeofday);
  277. /**
  278. * change_clocksource - Swaps clocksources if a new one is available
  279. *
  280. * Accumulates current time interval and initializes new clocksource
  281. */
  282. static int change_clocksource(void *data)
  283. {
  284. struct clocksource *new, *old;
  285. new = (struct clocksource *) data;
  286. timekeeping_forward_now();
  287. if (!new->enable || new->enable(new) == 0) {
  288. old = timekeeper.clock;
  289. timekeeper_setup_internals(new);
  290. if (old->disable)
  291. old->disable(old);
  292. }
  293. return 0;
  294. }
  295. /**
  296. * timekeeping_notify - Install a new clock source
  297. * @clock: pointer to the clock source
  298. *
  299. * This function is called from clocksource.c after a new, better clock
  300. * source has been registered. The caller holds the clocksource_mutex.
  301. */
  302. void timekeeping_notify(struct clocksource *clock)
  303. {
  304. if (timekeeper.clock == clock)
  305. return;
  306. stop_machine(change_clocksource, clock, NULL);
  307. tick_clock_notify();
  308. }
  309. #else /* GENERIC_TIME */
  310. static inline void timekeeping_forward_now(void) { }
  311. /**
  312. * ktime_get - get the monotonic time in ktime_t format
  313. *
  314. * returns the time in ktime_t format
  315. */
  316. ktime_t ktime_get(void)
  317. {
  318. struct timespec now;
  319. ktime_get_ts(&now);
  320. return timespec_to_ktime(now);
  321. }
  322. EXPORT_SYMBOL_GPL(ktime_get);
  323. /**
  324. * ktime_get_ts - get the monotonic clock in timespec format
  325. * @ts: pointer to timespec variable
  326. *
  327. * The function calculates the monotonic clock from the realtime
  328. * clock and the wall_to_monotonic offset and stores the result
  329. * in normalized timespec format in the variable pointed to by @ts.
  330. */
  331. void ktime_get_ts(struct timespec *ts)
  332. {
  333. struct timespec tomono;
  334. unsigned long seq;
  335. do {
  336. seq = read_seqbegin(&xtime_lock);
  337. getnstimeofday(ts);
  338. tomono = wall_to_monotonic;
  339. } while (read_seqretry(&xtime_lock, seq));
  340. set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec,
  341. ts->tv_nsec + tomono.tv_nsec);
  342. }
  343. EXPORT_SYMBOL_GPL(ktime_get_ts);
  344. #endif /* !GENERIC_TIME */
  345. /**
  346. * ktime_get_real - get the real (wall-) time in ktime_t format
  347. *
  348. * returns the time in ktime_t format
  349. */
  350. ktime_t ktime_get_real(void)
  351. {
  352. struct timespec now;
  353. getnstimeofday(&now);
  354. return timespec_to_ktime(now);
  355. }
  356. EXPORT_SYMBOL_GPL(ktime_get_real);
  357. /**
  358. * getrawmonotonic - Returns the raw monotonic time in a timespec
  359. * @ts: pointer to the timespec to be set
  360. *
  361. * Returns the raw monotonic time (completely un-modified by ntp)
  362. */
  363. void getrawmonotonic(struct timespec *ts)
  364. {
  365. unsigned long seq;
  366. s64 nsecs;
  367. do {
  368. seq = read_seqbegin(&xtime_lock);
  369. nsecs = timekeeping_get_ns_raw();
  370. *ts = raw_time;
  371. } while (read_seqretry(&xtime_lock, seq));
  372. timespec_add_ns(ts, nsecs);
  373. }
  374. EXPORT_SYMBOL(getrawmonotonic);
  375. /**
  376. * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
  377. */
  378. int timekeeping_valid_for_hres(void)
  379. {
  380. unsigned long seq;
  381. int ret;
  382. do {
  383. seq = read_seqbegin(&xtime_lock);
  384. ret = timekeeper.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
  385. } while (read_seqretry(&xtime_lock, seq));
  386. return ret;
  387. }
  388. /**
  389. * timekeeping_max_deferment - Returns max time the clocksource can be deferred
  390. *
  391. * Caller must observe xtime_lock via read_seqbegin/read_seqretry to
  392. * ensure that the clocksource does not change!
  393. */
  394. u64 timekeeping_max_deferment(void)
  395. {
  396. return timekeeper.clock->max_idle_ns;
  397. }
  398. /**
  399. * read_persistent_clock - Return time from the persistent clock.
  400. *
  401. * Weak dummy function for arches that do not yet support it.
  402. * Reads the time from the battery backed persistent clock.
  403. * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
  404. *
  405. * XXX - Do be sure to remove it once all arches implement it.
  406. */
  407. void __attribute__((weak)) read_persistent_clock(struct timespec *ts)
  408. {
  409. ts->tv_sec = 0;
  410. ts->tv_nsec = 0;
  411. }
  412. /**
  413. * read_boot_clock - Return time of the system start.
  414. *
  415. * Weak dummy function for arches that do not yet support it.
  416. * Function to read the exact time the system has been started.
  417. * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
  418. *
  419. * XXX - Do be sure to remove it once all arches implement it.
  420. */
  421. void __attribute__((weak)) read_boot_clock(struct timespec *ts)
  422. {
  423. ts->tv_sec = 0;
  424. ts->tv_nsec = 0;
  425. }
  426. /*
  427. * timekeeping_init - Initializes the clocksource and common timekeeping values
  428. */
  429. void __init timekeeping_init(void)
  430. {
  431. struct clocksource *clock;
  432. unsigned long flags;
  433. struct timespec now, boot;
  434. read_persistent_clock(&now);
  435. read_boot_clock(&boot);
  436. write_seqlock_irqsave(&xtime_lock, flags);
  437. ntp_init();
  438. clock = clocksource_default_clock();
  439. if (clock->enable)
  440. clock->enable(clock);
  441. timekeeper_setup_internals(clock);
  442. xtime.tv_sec = now.tv_sec;
  443. xtime.tv_nsec = now.tv_nsec;
  444. raw_time.tv_sec = 0;
  445. raw_time.tv_nsec = 0;
  446. if (boot.tv_sec == 0 && boot.tv_nsec == 0) {
  447. boot.tv_sec = xtime.tv_sec;
  448. boot.tv_nsec = xtime.tv_nsec;
  449. }
  450. set_normalized_timespec(&wall_to_monotonic,
  451. -boot.tv_sec, -boot.tv_nsec);
  452. total_sleep_time.tv_sec = 0;
  453. total_sleep_time.tv_nsec = 0;
  454. write_sequnlock_irqrestore(&xtime_lock, flags);
  455. }
  456. /* time in seconds when suspend began */
  457. static struct timespec timekeeping_suspend_time;
  458. /**
  459. * timekeeping_resume - Resumes the generic timekeeping subsystem.
  460. * @dev: unused
  461. *
  462. * This is for the generic clocksource timekeeping.
  463. * xtime/wall_to_monotonic/jiffies/etc are
  464. * still managed by arch specific suspend/resume code.
  465. */
  466. static int timekeeping_resume(struct sys_device *dev)
  467. {
  468. unsigned long flags;
  469. struct timespec ts;
  470. read_persistent_clock(&ts);
  471. clocksource_resume();
  472. write_seqlock_irqsave(&xtime_lock, flags);
  473. if (timespec_compare(&ts, &timekeeping_suspend_time) > 0) {
  474. ts = timespec_sub(ts, timekeeping_suspend_time);
  475. xtime = timespec_add_safe(xtime, ts);
  476. wall_to_monotonic = timespec_sub(wall_to_monotonic, ts);
  477. total_sleep_time = timespec_add_safe(total_sleep_time, ts);
  478. }
  479. /* re-base the last cycle value */
  480. timekeeper.clock->cycle_last = timekeeper.clock->read(timekeeper.clock);
  481. timekeeper.ntp_error = 0;
  482. timekeeping_suspended = 0;
  483. write_sequnlock_irqrestore(&xtime_lock, flags);
  484. touch_softlockup_watchdog();
  485. clockevents_notify(CLOCK_EVT_NOTIFY_RESUME, NULL);
  486. /* Resume hrtimers */
  487. hres_timers_resume();
  488. return 0;
  489. }
  490. static int timekeeping_suspend(struct sys_device *dev, pm_message_t state)
  491. {
  492. unsigned long flags;
  493. read_persistent_clock(&timekeeping_suspend_time);
  494. write_seqlock_irqsave(&xtime_lock, flags);
  495. timekeeping_forward_now();
  496. timekeeping_suspended = 1;
  497. write_sequnlock_irqrestore(&xtime_lock, flags);
  498. clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL);
  499. clocksource_suspend();
  500. return 0;
  501. }
  502. /* sysfs resume/suspend bits for timekeeping */
  503. static struct sysdev_class timekeeping_sysclass = {
  504. .name = "timekeeping",
  505. .resume = timekeeping_resume,
  506. .suspend = timekeeping_suspend,
  507. };
  508. static struct sys_device device_timer = {
  509. .id = 0,
  510. .cls = &timekeeping_sysclass,
  511. };
  512. static int __init timekeeping_init_device(void)
  513. {
  514. int error = sysdev_class_register(&timekeeping_sysclass);
  515. if (!error)
  516. error = sysdev_register(&device_timer);
  517. return error;
  518. }
  519. device_initcall(timekeeping_init_device);
  520. /*
  521. * If the error is already larger, we look ahead even further
  522. * to compensate for late or lost adjustments.
  523. */
  524. static __always_inline int timekeeping_bigadjust(s64 error, s64 *interval,
  525. s64 *offset)
  526. {
  527. s64 tick_error, i;
  528. u32 look_ahead, adj;
  529. s32 error2, mult;
  530. /*
  531. * Use the current error value to determine how much to look ahead.
  532. * The larger the error the slower we adjust for it to avoid problems
  533. * with losing too many ticks, otherwise we would overadjust and
  534. * produce an even larger error. The smaller the adjustment the
  535. * faster we try to adjust for it, as lost ticks can do less harm
  536. * here. This is tuned so that an error of about 1 msec is adjusted
  537. * within about 1 sec (or 2^20 nsec in 2^SHIFT_HZ ticks).
  538. */
  539. error2 = timekeeper.ntp_error >> (NTP_SCALE_SHIFT + 22 - 2 * SHIFT_HZ);
  540. error2 = abs(error2);
  541. for (look_ahead = 0; error2 > 0; look_ahead++)
  542. error2 >>= 2;
  543. /*
  544. * Now calculate the error in (1 << look_ahead) ticks, but first
  545. * remove the single look ahead already included in the error.
  546. */
  547. tick_error = tick_length >> (timekeeper.ntp_error_shift + 1);
  548. tick_error -= timekeeper.xtime_interval >> 1;
  549. error = ((error - tick_error) >> look_ahead) + tick_error;
  550. /* Finally calculate the adjustment shift value. */
  551. i = *interval;
  552. mult = 1;
  553. if (error < 0) {
  554. error = -error;
  555. *interval = -*interval;
  556. *offset = -*offset;
  557. mult = -1;
  558. }
  559. for (adj = 0; error > i; adj++)
  560. error >>= 1;
  561. *interval <<= adj;
  562. *offset <<= adj;
  563. return mult << adj;
  564. }
  565. /*
  566. * Adjust the multiplier to reduce the error value,
  567. * this is optimized for the most common adjustments of -1,0,1,
  568. * for other values we can do a bit more work.
  569. */
  570. static void timekeeping_adjust(s64 offset)
  571. {
  572. s64 error, interval = timekeeper.cycle_interval;
  573. int adj;
  574. error = timekeeper.ntp_error >> (timekeeper.ntp_error_shift - 1);
  575. if (error > interval) {
  576. error >>= 2;
  577. if (likely(error <= interval))
  578. adj = 1;
  579. else
  580. adj = timekeeping_bigadjust(error, &interval, &offset);
  581. } else if (error < -interval) {
  582. error >>= 2;
  583. if (likely(error >= -interval)) {
  584. adj = -1;
  585. interval = -interval;
  586. offset = -offset;
  587. } else
  588. adj = timekeeping_bigadjust(error, &interval, &offset);
  589. } else
  590. return;
  591. timekeeper.mult += adj;
  592. timekeeper.xtime_interval += interval;
  593. timekeeper.xtime_nsec -= offset;
  594. timekeeper.ntp_error -= (interval - offset) <<
  595. timekeeper.ntp_error_shift;
  596. }
  597. /**
  598. * logarithmic_accumulation - shifted accumulation of cycles
  599. *
  600. * This functions accumulates a shifted interval of cycles into
  601. * into a shifted interval nanoseconds. Allows for O(log) accumulation
  602. * loop.
  603. *
  604. * Returns the unconsumed cycles.
  605. */
  606. static cycle_t logarithmic_accumulation(cycle_t offset, int shift)
  607. {
  608. u64 nsecps = (u64)NSEC_PER_SEC << timekeeper.shift;
  609. /* If the offset is smaller then a shifted interval, do nothing */
  610. if (offset < timekeeper.cycle_interval<<shift)
  611. return offset;
  612. /* Accumulate one shifted interval */
  613. offset -= timekeeper.cycle_interval << shift;
  614. timekeeper.clock->cycle_last += timekeeper.cycle_interval << shift;
  615. timekeeper.xtime_nsec += timekeeper.xtime_interval << shift;
  616. while (timekeeper.xtime_nsec >= nsecps) {
  617. timekeeper.xtime_nsec -= nsecps;
  618. xtime.tv_sec++;
  619. second_overflow();
  620. }
  621. /* Accumulate into raw time */
  622. raw_time.tv_nsec += timekeeper.raw_interval << shift;;
  623. while (raw_time.tv_nsec >= NSEC_PER_SEC) {
  624. raw_time.tv_nsec -= NSEC_PER_SEC;
  625. raw_time.tv_sec++;
  626. }
  627. /* Accumulate error between NTP and clock interval */
  628. timekeeper.ntp_error += tick_length << shift;
  629. timekeeper.ntp_error -= timekeeper.xtime_interval <<
  630. (timekeeper.ntp_error_shift + shift);
  631. return offset;
  632. }
  633. /**
  634. * update_wall_time - Uses the current clocksource to increment the wall time
  635. *
  636. * Called from the timer interrupt, must hold a write on xtime_lock.
  637. */
  638. void update_wall_time(void)
  639. {
  640. struct clocksource *clock;
  641. cycle_t offset;
  642. int shift = 0, maxshift;
  643. /* Make sure we're fully resumed: */
  644. if (unlikely(timekeeping_suspended))
  645. return;
  646. clock = timekeeper.clock;
  647. #ifdef CONFIG_GENERIC_TIME
  648. offset = (clock->read(clock) - clock->cycle_last) & clock->mask;
  649. #else
  650. offset = timekeeper.cycle_interval;
  651. #endif
  652. timekeeper.xtime_nsec = (s64)xtime.tv_nsec << timekeeper.shift;
  653. /*
  654. * With NO_HZ we may have to accumulate many cycle_intervals
  655. * (think "ticks") worth of time at once. To do this efficiently,
  656. * we calculate the largest doubling multiple of cycle_intervals
  657. * that is smaller then the offset. We then accumulate that
  658. * chunk in one go, and then try to consume the next smaller
  659. * doubled multiple.
  660. */
  661. shift = ilog2(offset) - ilog2(timekeeper.cycle_interval);
  662. shift = max(0, shift);
  663. /* Bound shift to one less then what overflows tick_length */
  664. maxshift = (8*sizeof(tick_length) - (ilog2(tick_length)+1)) - 1;
  665. shift = min(shift, maxshift);
  666. while (offset >= timekeeper.cycle_interval) {
  667. offset = logarithmic_accumulation(offset, shift);
  668. if(offset < timekeeper.cycle_interval<<shift)
  669. shift--;
  670. }
  671. /* correct the clock when NTP error is too big */
  672. timekeeping_adjust(offset);
  673. /*
  674. * Since in the loop above, we accumulate any amount of time
  675. * in xtime_nsec over a second into xtime.tv_sec, its possible for
  676. * xtime_nsec to be fairly small after the loop. Further, if we're
  677. * slightly speeding the clocksource up in timekeeping_adjust(),
  678. * its possible the required corrective factor to xtime_nsec could
  679. * cause it to underflow.
  680. *
  681. * Now, we cannot simply roll the accumulated second back, since
  682. * the NTP subsystem has been notified via second_overflow. So
  683. * instead we push xtime_nsec forward by the amount we underflowed,
  684. * and add that amount into the error.
  685. *
  686. * We'll correct this error next time through this function, when
  687. * xtime_nsec is not as small.
  688. */
  689. if (unlikely((s64)timekeeper.xtime_nsec < 0)) {
  690. s64 neg = -(s64)timekeeper.xtime_nsec;
  691. timekeeper.xtime_nsec = 0;
  692. timekeeper.ntp_error += neg << timekeeper.ntp_error_shift;
  693. }
  694. /*
  695. * Store full nanoseconds into xtime after rounding it up and
  696. * add the remainder to the error difference.
  697. */
  698. xtime.tv_nsec = ((s64) timekeeper.xtime_nsec >> timekeeper.shift) + 1;
  699. timekeeper.xtime_nsec -= (s64) xtime.tv_nsec << timekeeper.shift;
  700. timekeeper.ntp_error += timekeeper.xtime_nsec <<
  701. timekeeper.ntp_error_shift;
  702. /*
  703. * Finally, make sure that after the rounding
  704. * xtime.tv_nsec isn't larger then NSEC_PER_SEC
  705. */
  706. if (unlikely(xtime.tv_nsec >= NSEC_PER_SEC)) {
  707. xtime.tv_nsec -= NSEC_PER_SEC;
  708. xtime.tv_sec++;
  709. second_overflow();
  710. }
  711. /* check to see if there is a new clocksource to use */
  712. update_vsyscall(&xtime, timekeeper.clock, timekeeper.mult);
  713. }
  714. /**
  715. * getboottime - Return the real time of system boot.
  716. * @ts: pointer to the timespec to be set
  717. *
  718. * Returns the time of day in a timespec.
  719. *
  720. * This is based on the wall_to_monotonic offset and the total suspend
  721. * time. Calls to settimeofday will affect the value returned (which
  722. * basically means that however wrong your real time clock is at boot time,
  723. * you get the right time here).
  724. */
  725. void getboottime(struct timespec *ts)
  726. {
  727. struct timespec boottime = {
  728. .tv_sec = wall_to_monotonic.tv_sec + total_sleep_time.tv_sec,
  729. .tv_nsec = wall_to_monotonic.tv_nsec + total_sleep_time.tv_nsec
  730. };
  731. set_normalized_timespec(ts, -boottime.tv_sec, -boottime.tv_nsec);
  732. }
  733. EXPORT_SYMBOL_GPL(getboottime);
  734. /**
  735. * monotonic_to_bootbased - Convert the monotonic time to boot based.
  736. * @ts: pointer to the timespec to be converted
  737. */
  738. void monotonic_to_bootbased(struct timespec *ts)
  739. {
  740. *ts = timespec_add_safe(*ts, total_sleep_time);
  741. }
  742. EXPORT_SYMBOL_GPL(monotonic_to_bootbased);
  743. unsigned long get_seconds(void)
  744. {
  745. return xtime.tv_sec;
  746. }
  747. EXPORT_SYMBOL(get_seconds);
  748. struct timespec __current_kernel_time(void)
  749. {
  750. return xtime;
  751. }
  752. struct timespec current_kernel_time(void)
  753. {
  754. struct timespec now;
  755. unsigned long seq;
  756. do {
  757. seq = read_seqbegin(&xtime_lock);
  758. now = xtime;
  759. } while (read_seqretry(&xtime_lock, seq));
  760. return now;
  761. }
  762. EXPORT_SYMBOL(current_kernel_time);
  763. struct timespec get_monotonic_coarse(void)
  764. {
  765. struct timespec now, mono;
  766. unsigned long seq;
  767. do {
  768. seq = read_seqbegin(&xtime_lock);
  769. now = xtime;
  770. mono = wall_to_monotonic;
  771. } while (read_seqretry(&xtime_lock, seq));
  772. set_normalized_timespec(&now, now.tv_sec + mono.tv_sec,
  773. now.tv_nsec + mono.tv_nsec);
  774. return now;
  775. }