sched.c 214 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <linux/smp_lock.h>
  35. #include <asm/mmu_context.h>
  36. #include <linux/interrupt.h>
  37. #include <linux/capability.h>
  38. #include <linux/completion.h>
  39. #include <linux/kernel_stat.h>
  40. #include <linux/debug_locks.h>
  41. #include <linux/perf_event.h>
  42. #include <linux/security.h>
  43. #include <linux/notifier.h>
  44. #include <linux/profile.h>
  45. #include <linux/freezer.h>
  46. #include <linux/vmalloc.h>
  47. #include <linux/blkdev.h>
  48. #include <linux/delay.h>
  49. #include <linux/pid_namespace.h>
  50. #include <linux/smp.h>
  51. #include <linux/threads.h>
  52. #include <linux/timer.h>
  53. #include <linux/rcupdate.h>
  54. #include <linux/cpu.h>
  55. #include <linux/cpuset.h>
  56. #include <linux/percpu.h>
  57. #include <linux/proc_fs.h>
  58. #include <linux/seq_file.h>
  59. #include <linux/stop_machine.h>
  60. #include <linux/sysctl.h>
  61. #include <linux/syscalls.h>
  62. #include <linux/times.h>
  63. #include <linux/tsacct_kern.h>
  64. #include <linux/kprobes.h>
  65. #include <linux/delayacct.h>
  66. #include <linux/unistd.h>
  67. #include <linux/pagemap.h>
  68. #include <linux/hrtimer.h>
  69. #include <linux/tick.h>
  70. #include <linux/debugfs.h>
  71. #include <linux/ctype.h>
  72. #include <linux/ftrace.h>
  73. #include <linux/slab.h>
  74. #include <asm/tlb.h>
  75. #include <asm/irq_regs.h>
  76. #include "sched_cpupri.h"
  77. #define CREATE_TRACE_POINTS
  78. #include <trace/events/sched.h>
  79. /*
  80. * Convert user-nice values [ -20 ... 0 ... 19 ]
  81. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  82. * and back.
  83. */
  84. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  85. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  86. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  87. /*
  88. * 'User priority' is the nice value converted to something we
  89. * can work with better when scaling various scheduler parameters,
  90. * it's a [ 0 ... 39 ] range.
  91. */
  92. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  93. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  94. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  95. /*
  96. * Helpers for converting nanosecond timing to jiffy resolution
  97. */
  98. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  99. #define NICE_0_LOAD SCHED_LOAD_SCALE
  100. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  101. /*
  102. * These are the 'tuning knobs' of the scheduler:
  103. *
  104. * default timeslice is 100 msecs (used only for SCHED_RR tasks).
  105. * Timeslices get refilled after they expire.
  106. */
  107. #define DEF_TIMESLICE (100 * HZ / 1000)
  108. /*
  109. * single value that denotes runtime == period, ie unlimited time.
  110. */
  111. #define RUNTIME_INF ((u64)~0ULL)
  112. static inline int rt_policy(int policy)
  113. {
  114. if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
  115. return 1;
  116. return 0;
  117. }
  118. static inline int task_has_rt_policy(struct task_struct *p)
  119. {
  120. return rt_policy(p->policy);
  121. }
  122. /*
  123. * This is the priority-queue data structure of the RT scheduling class:
  124. */
  125. struct rt_prio_array {
  126. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  127. struct list_head queue[MAX_RT_PRIO];
  128. };
  129. struct rt_bandwidth {
  130. /* nests inside the rq lock: */
  131. raw_spinlock_t rt_runtime_lock;
  132. ktime_t rt_period;
  133. u64 rt_runtime;
  134. struct hrtimer rt_period_timer;
  135. };
  136. static struct rt_bandwidth def_rt_bandwidth;
  137. static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
  138. static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
  139. {
  140. struct rt_bandwidth *rt_b =
  141. container_of(timer, struct rt_bandwidth, rt_period_timer);
  142. ktime_t now;
  143. int overrun;
  144. int idle = 0;
  145. for (;;) {
  146. now = hrtimer_cb_get_time(timer);
  147. overrun = hrtimer_forward(timer, now, rt_b->rt_period);
  148. if (!overrun)
  149. break;
  150. idle = do_sched_rt_period_timer(rt_b, overrun);
  151. }
  152. return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  153. }
  154. static
  155. void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
  156. {
  157. rt_b->rt_period = ns_to_ktime(period);
  158. rt_b->rt_runtime = runtime;
  159. raw_spin_lock_init(&rt_b->rt_runtime_lock);
  160. hrtimer_init(&rt_b->rt_period_timer,
  161. CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  162. rt_b->rt_period_timer.function = sched_rt_period_timer;
  163. }
  164. static inline int rt_bandwidth_enabled(void)
  165. {
  166. return sysctl_sched_rt_runtime >= 0;
  167. }
  168. static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
  169. {
  170. ktime_t now;
  171. if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
  172. return;
  173. if (hrtimer_active(&rt_b->rt_period_timer))
  174. return;
  175. raw_spin_lock(&rt_b->rt_runtime_lock);
  176. for (;;) {
  177. unsigned long delta;
  178. ktime_t soft, hard;
  179. if (hrtimer_active(&rt_b->rt_period_timer))
  180. break;
  181. now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
  182. hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
  183. soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
  184. hard = hrtimer_get_expires(&rt_b->rt_period_timer);
  185. delta = ktime_to_ns(ktime_sub(hard, soft));
  186. __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
  187. HRTIMER_MODE_ABS_PINNED, 0);
  188. }
  189. raw_spin_unlock(&rt_b->rt_runtime_lock);
  190. }
  191. #ifdef CONFIG_RT_GROUP_SCHED
  192. static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
  193. {
  194. hrtimer_cancel(&rt_b->rt_period_timer);
  195. }
  196. #endif
  197. /*
  198. * sched_domains_mutex serializes calls to arch_init_sched_domains,
  199. * detach_destroy_domains and partition_sched_domains.
  200. */
  201. static DEFINE_MUTEX(sched_domains_mutex);
  202. #ifdef CONFIG_CGROUP_SCHED
  203. #include <linux/cgroup.h>
  204. struct cfs_rq;
  205. static LIST_HEAD(task_groups);
  206. /* task group related information */
  207. struct task_group {
  208. struct cgroup_subsys_state css;
  209. #ifdef CONFIG_FAIR_GROUP_SCHED
  210. /* schedulable entities of this group on each cpu */
  211. struct sched_entity **se;
  212. /* runqueue "owned" by this group on each cpu */
  213. struct cfs_rq **cfs_rq;
  214. unsigned long shares;
  215. #endif
  216. #ifdef CONFIG_RT_GROUP_SCHED
  217. struct sched_rt_entity **rt_se;
  218. struct rt_rq **rt_rq;
  219. struct rt_bandwidth rt_bandwidth;
  220. #endif
  221. struct rcu_head rcu;
  222. struct list_head list;
  223. struct task_group *parent;
  224. struct list_head siblings;
  225. struct list_head children;
  226. };
  227. #define root_task_group init_task_group
  228. /* task_group_lock serializes add/remove of task groups and also changes to
  229. * a task group's cpu shares.
  230. */
  231. static DEFINE_SPINLOCK(task_group_lock);
  232. #ifdef CONFIG_FAIR_GROUP_SCHED
  233. #ifdef CONFIG_SMP
  234. static int root_task_group_empty(void)
  235. {
  236. return list_empty(&root_task_group.children);
  237. }
  238. #endif
  239. # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
  240. /*
  241. * A weight of 0 or 1 can cause arithmetics problems.
  242. * A weight of a cfs_rq is the sum of weights of which entities
  243. * are queued on this cfs_rq, so a weight of a entity should not be
  244. * too large, so as the shares value of a task group.
  245. * (The default weight is 1024 - so there's no practical
  246. * limitation from this.)
  247. */
  248. #define MIN_SHARES 2
  249. #define MAX_SHARES (1UL << 18)
  250. static int init_task_group_load = INIT_TASK_GROUP_LOAD;
  251. #endif
  252. /* Default task group.
  253. * Every task in system belong to this group at bootup.
  254. */
  255. struct task_group init_task_group;
  256. #endif /* CONFIG_CGROUP_SCHED */
  257. /* CFS-related fields in a runqueue */
  258. struct cfs_rq {
  259. struct load_weight load;
  260. unsigned long nr_running;
  261. u64 exec_clock;
  262. u64 min_vruntime;
  263. struct rb_root tasks_timeline;
  264. struct rb_node *rb_leftmost;
  265. struct list_head tasks;
  266. struct list_head *balance_iterator;
  267. /*
  268. * 'curr' points to currently running entity on this cfs_rq.
  269. * It is set to NULL otherwise (i.e when none are currently running).
  270. */
  271. struct sched_entity *curr, *next, *last;
  272. unsigned int nr_spread_over;
  273. #ifdef CONFIG_FAIR_GROUP_SCHED
  274. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  275. /*
  276. * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  277. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  278. * (like users, containers etc.)
  279. *
  280. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  281. * list is used during load balance.
  282. */
  283. struct list_head leaf_cfs_rq_list;
  284. struct task_group *tg; /* group that "owns" this runqueue */
  285. #ifdef CONFIG_SMP
  286. /*
  287. * the part of load.weight contributed by tasks
  288. */
  289. unsigned long task_weight;
  290. /*
  291. * h_load = weight * f(tg)
  292. *
  293. * Where f(tg) is the recursive weight fraction assigned to
  294. * this group.
  295. */
  296. unsigned long h_load;
  297. /*
  298. * this cpu's part of tg->shares
  299. */
  300. unsigned long shares;
  301. /*
  302. * load.weight at the time we set shares
  303. */
  304. unsigned long rq_weight;
  305. #endif
  306. #endif
  307. };
  308. /* Real-Time classes' related field in a runqueue: */
  309. struct rt_rq {
  310. struct rt_prio_array active;
  311. unsigned long rt_nr_running;
  312. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  313. struct {
  314. int curr; /* highest queued rt task prio */
  315. #ifdef CONFIG_SMP
  316. int next; /* next highest */
  317. #endif
  318. } highest_prio;
  319. #endif
  320. #ifdef CONFIG_SMP
  321. unsigned long rt_nr_migratory;
  322. unsigned long rt_nr_total;
  323. int overloaded;
  324. struct plist_head pushable_tasks;
  325. #endif
  326. int rt_throttled;
  327. u64 rt_time;
  328. u64 rt_runtime;
  329. /* Nests inside the rq lock: */
  330. raw_spinlock_t rt_runtime_lock;
  331. #ifdef CONFIG_RT_GROUP_SCHED
  332. unsigned long rt_nr_boosted;
  333. struct rq *rq;
  334. struct list_head leaf_rt_rq_list;
  335. struct task_group *tg;
  336. #endif
  337. };
  338. #ifdef CONFIG_SMP
  339. /*
  340. * We add the notion of a root-domain which will be used to define per-domain
  341. * variables. Each exclusive cpuset essentially defines an island domain by
  342. * fully partitioning the member cpus from any other cpuset. Whenever a new
  343. * exclusive cpuset is created, we also create and attach a new root-domain
  344. * object.
  345. *
  346. */
  347. struct root_domain {
  348. atomic_t refcount;
  349. cpumask_var_t span;
  350. cpumask_var_t online;
  351. /*
  352. * The "RT overload" flag: it gets set if a CPU has more than
  353. * one runnable RT task.
  354. */
  355. cpumask_var_t rto_mask;
  356. atomic_t rto_count;
  357. #ifdef CONFIG_SMP
  358. struct cpupri cpupri;
  359. #endif
  360. };
  361. /*
  362. * By default the system creates a single root-domain with all cpus as
  363. * members (mimicking the global state we have today).
  364. */
  365. static struct root_domain def_root_domain;
  366. #endif
  367. /*
  368. * This is the main, per-CPU runqueue data structure.
  369. *
  370. * Locking rule: those places that want to lock multiple runqueues
  371. * (such as the load balancing or the thread migration code), lock
  372. * acquire operations must be ordered by ascending &runqueue.
  373. */
  374. struct rq {
  375. /* runqueue lock: */
  376. raw_spinlock_t lock;
  377. /*
  378. * nr_running and cpu_load should be in the same cacheline because
  379. * remote CPUs use both these fields when doing load calculation.
  380. */
  381. unsigned long nr_running;
  382. #define CPU_LOAD_IDX_MAX 5
  383. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  384. #ifdef CONFIG_NO_HZ
  385. u64 nohz_stamp;
  386. unsigned char in_nohz_recently;
  387. #endif
  388. unsigned int skip_clock_update;
  389. /* capture load from *all* tasks on this cpu: */
  390. struct load_weight load;
  391. unsigned long nr_load_updates;
  392. u64 nr_switches;
  393. struct cfs_rq cfs;
  394. struct rt_rq rt;
  395. #ifdef CONFIG_FAIR_GROUP_SCHED
  396. /* list of leaf cfs_rq on this cpu: */
  397. struct list_head leaf_cfs_rq_list;
  398. #endif
  399. #ifdef CONFIG_RT_GROUP_SCHED
  400. struct list_head leaf_rt_rq_list;
  401. #endif
  402. /*
  403. * This is part of a global counter where only the total sum
  404. * over all CPUs matters. A task can increase this counter on
  405. * one CPU and if it got migrated afterwards it may decrease
  406. * it on another CPU. Always updated under the runqueue lock:
  407. */
  408. unsigned long nr_uninterruptible;
  409. struct task_struct *curr, *idle;
  410. unsigned long next_balance;
  411. struct mm_struct *prev_mm;
  412. u64 clock;
  413. atomic_t nr_iowait;
  414. #ifdef CONFIG_SMP
  415. struct root_domain *rd;
  416. struct sched_domain *sd;
  417. unsigned long cpu_power;
  418. unsigned char idle_at_tick;
  419. /* For active balancing */
  420. int post_schedule;
  421. int active_balance;
  422. int push_cpu;
  423. struct cpu_stop_work active_balance_work;
  424. /* cpu of this runqueue: */
  425. int cpu;
  426. int online;
  427. unsigned long avg_load_per_task;
  428. u64 rt_avg;
  429. u64 age_stamp;
  430. u64 idle_stamp;
  431. u64 avg_idle;
  432. #endif
  433. /* calc_load related fields */
  434. unsigned long calc_load_update;
  435. long calc_load_active;
  436. #ifdef CONFIG_SCHED_HRTICK
  437. #ifdef CONFIG_SMP
  438. int hrtick_csd_pending;
  439. struct call_single_data hrtick_csd;
  440. #endif
  441. struct hrtimer hrtick_timer;
  442. #endif
  443. #ifdef CONFIG_SCHEDSTATS
  444. /* latency stats */
  445. struct sched_info rq_sched_info;
  446. unsigned long long rq_cpu_time;
  447. /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
  448. /* sys_sched_yield() stats */
  449. unsigned int yld_count;
  450. /* schedule() stats */
  451. unsigned int sched_switch;
  452. unsigned int sched_count;
  453. unsigned int sched_goidle;
  454. /* try_to_wake_up() stats */
  455. unsigned int ttwu_count;
  456. unsigned int ttwu_local;
  457. /* BKL stats */
  458. unsigned int bkl_count;
  459. #endif
  460. };
  461. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  462. static inline
  463. void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
  464. {
  465. rq->curr->sched_class->check_preempt_curr(rq, p, flags);
  466. /*
  467. * A queue event has occurred, and we're going to schedule. In
  468. * this case, we can save a useless back to back clock update.
  469. */
  470. if (test_tsk_need_resched(p))
  471. rq->skip_clock_update = 1;
  472. }
  473. static inline int cpu_of(struct rq *rq)
  474. {
  475. #ifdef CONFIG_SMP
  476. return rq->cpu;
  477. #else
  478. return 0;
  479. #endif
  480. }
  481. #define rcu_dereference_check_sched_domain(p) \
  482. rcu_dereference_check((p), \
  483. rcu_read_lock_sched_held() || \
  484. lockdep_is_held(&sched_domains_mutex))
  485. /*
  486. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  487. * See detach_destroy_domains: synchronize_sched for details.
  488. *
  489. * The domain tree of any CPU may only be accessed from within
  490. * preempt-disabled sections.
  491. */
  492. #define for_each_domain(cpu, __sd) \
  493. for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  494. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  495. #define this_rq() (&__get_cpu_var(runqueues))
  496. #define task_rq(p) cpu_rq(task_cpu(p))
  497. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  498. #define raw_rq() (&__raw_get_cpu_var(runqueues))
  499. #ifdef CONFIG_CGROUP_SCHED
  500. /*
  501. * Return the group to which this tasks belongs.
  502. *
  503. * We use task_subsys_state_check() and extend the RCU verification
  504. * with lockdep_is_held(&task_rq(p)->lock) because cpu_cgroup_attach()
  505. * holds that lock for each task it moves into the cgroup. Therefore
  506. * by holding that lock, we pin the task to the current cgroup.
  507. */
  508. static inline struct task_group *task_group(struct task_struct *p)
  509. {
  510. struct cgroup_subsys_state *css;
  511. css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
  512. lockdep_is_held(&task_rq(p)->lock));
  513. return container_of(css, struct task_group, css);
  514. }
  515. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  516. static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
  517. {
  518. #ifdef CONFIG_FAIR_GROUP_SCHED
  519. p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
  520. p->se.parent = task_group(p)->se[cpu];
  521. #endif
  522. #ifdef CONFIG_RT_GROUP_SCHED
  523. p->rt.rt_rq = task_group(p)->rt_rq[cpu];
  524. p->rt.parent = task_group(p)->rt_se[cpu];
  525. #endif
  526. }
  527. #else /* CONFIG_CGROUP_SCHED */
  528. static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
  529. static inline struct task_group *task_group(struct task_struct *p)
  530. {
  531. return NULL;
  532. }
  533. #endif /* CONFIG_CGROUP_SCHED */
  534. inline void update_rq_clock(struct rq *rq)
  535. {
  536. if (!rq->skip_clock_update)
  537. rq->clock = sched_clock_cpu(cpu_of(rq));
  538. }
  539. /*
  540. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  541. */
  542. #ifdef CONFIG_SCHED_DEBUG
  543. # define const_debug __read_mostly
  544. #else
  545. # define const_debug static const
  546. #endif
  547. /**
  548. * runqueue_is_locked
  549. * @cpu: the processor in question.
  550. *
  551. * Returns true if the current cpu runqueue is locked.
  552. * This interface allows printk to be called with the runqueue lock
  553. * held and know whether or not it is OK to wake up the klogd.
  554. */
  555. int runqueue_is_locked(int cpu)
  556. {
  557. return raw_spin_is_locked(&cpu_rq(cpu)->lock);
  558. }
  559. /*
  560. * Debugging: various feature bits
  561. */
  562. #define SCHED_FEAT(name, enabled) \
  563. __SCHED_FEAT_##name ,
  564. enum {
  565. #include "sched_features.h"
  566. };
  567. #undef SCHED_FEAT
  568. #define SCHED_FEAT(name, enabled) \
  569. (1UL << __SCHED_FEAT_##name) * enabled |
  570. const_debug unsigned int sysctl_sched_features =
  571. #include "sched_features.h"
  572. 0;
  573. #undef SCHED_FEAT
  574. #ifdef CONFIG_SCHED_DEBUG
  575. #define SCHED_FEAT(name, enabled) \
  576. #name ,
  577. static __read_mostly char *sched_feat_names[] = {
  578. #include "sched_features.h"
  579. NULL
  580. };
  581. #undef SCHED_FEAT
  582. static int sched_feat_show(struct seq_file *m, void *v)
  583. {
  584. int i;
  585. for (i = 0; sched_feat_names[i]; i++) {
  586. if (!(sysctl_sched_features & (1UL << i)))
  587. seq_puts(m, "NO_");
  588. seq_printf(m, "%s ", sched_feat_names[i]);
  589. }
  590. seq_puts(m, "\n");
  591. return 0;
  592. }
  593. static ssize_t
  594. sched_feat_write(struct file *filp, const char __user *ubuf,
  595. size_t cnt, loff_t *ppos)
  596. {
  597. char buf[64];
  598. char *cmp = buf;
  599. int neg = 0;
  600. int i;
  601. if (cnt > 63)
  602. cnt = 63;
  603. if (copy_from_user(&buf, ubuf, cnt))
  604. return -EFAULT;
  605. buf[cnt] = 0;
  606. if (strncmp(buf, "NO_", 3) == 0) {
  607. neg = 1;
  608. cmp += 3;
  609. }
  610. for (i = 0; sched_feat_names[i]; i++) {
  611. int len = strlen(sched_feat_names[i]);
  612. if (strncmp(cmp, sched_feat_names[i], len) == 0) {
  613. if (neg)
  614. sysctl_sched_features &= ~(1UL << i);
  615. else
  616. sysctl_sched_features |= (1UL << i);
  617. break;
  618. }
  619. }
  620. if (!sched_feat_names[i])
  621. return -EINVAL;
  622. *ppos += cnt;
  623. return cnt;
  624. }
  625. static int sched_feat_open(struct inode *inode, struct file *filp)
  626. {
  627. return single_open(filp, sched_feat_show, NULL);
  628. }
  629. static const struct file_operations sched_feat_fops = {
  630. .open = sched_feat_open,
  631. .write = sched_feat_write,
  632. .read = seq_read,
  633. .llseek = seq_lseek,
  634. .release = single_release,
  635. };
  636. static __init int sched_init_debug(void)
  637. {
  638. debugfs_create_file("sched_features", 0644, NULL, NULL,
  639. &sched_feat_fops);
  640. return 0;
  641. }
  642. late_initcall(sched_init_debug);
  643. #endif
  644. #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
  645. /*
  646. * Number of tasks to iterate in a single balance run.
  647. * Limited because this is done with IRQs disabled.
  648. */
  649. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  650. /*
  651. * ratelimit for updating the group shares.
  652. * default: 0.25ms
  653. */
  654. unsigned int sysctl_sched_shares_ratelimit = 250000;
  655. unsigned int normalized_sysctl_sched_shares_ratelimit = 250000;
  656. /*
  657. * Inject some fuzzyness into changing the per-cpu group shares
  658. * this avoids remote rq-locks at the expense of fairness.
  659. * default: 4
  660. */
  661. unsigned int sysctl_sched_shares_thresh = 4;
  662. /*
  663. * period over which we average the RT time consumption, measured
  664. * in ms.
  665. *
  666. * default: 1s
  667. */
  668. const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
  669. /*
  670. * period over which we measure -rt task cpu usage in us.
  671. * default: 1s
  672. */
  673. unsigned int sysctl_sched_rt_period = 1000000;
  674. static __read_mostly int scheduler_running;
  675. /*
  676. * part of the period that we allow rt tasks to run in us.
  677. * default: 0.95s
  678. */
  679. int sysctl_sched_rt_runtime = 950000;
  680. static inline u64 global_rt_period(void)
  681. {
  682. return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
  683. }
  684. static inline u64 global_rt_runtime(void)
  685. {
  686. if (sysctl_sched_rt_runtime < 0)
  687. return RUNTIME_INF;
  688. return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
  689. }
  690. #ifndef prepare_arch_switch
  691. # define prepare_arch_switch(next) do { } while (0)
  692. #endif
  693. #ifndef finish_arch_switch
  694. # define finish_arch_switch(prev) do { } while (0)
  695. #endif
  696. static inline int task_current(struct rq *rq, struct task_struct *p)
  697. {
  698. return rq->curr == p;
  699. }
  700. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  701. static inline int task_running(struct rq *rq, struct task_struct *p)
  702. {
  703. return task_current(rq, p);
  704. }
  705. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  706. {
  707. }
  708. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  709. {
  710. #ifdef CONFIG_DEBUG_SPINLOCK
  711. /* this is a valid case when another task releases the spinlock */
  712. rq->lock.owner = current;
  713. #endif
  714. /*
  715. * If we are tracking spinlock dependencies then we have to
  716. * fix up the runqueue lock - which gets 'carried over' from
  717. * prev into current:
  718. */
  719. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  720. raw_spin_unlock_irq(&rq->lock);
  721. }
  722. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  723. static inline int task_running(struct rq *rq, struct task_struct *p)
  724. {
  725. #ifdef CONFIG_SMP
  726. return p->oncpu;
  727. #else
  728. return task_current(rq, p);
  729. #endif
  730. }
  731. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  732. {
  733. #ifdef CONFIG_SMP
  734. /*
  735. * We can optimise this out completely for !SMP, because the
  736. * SMP rebalancing from interrupt is the only thing that cares
  737. * here.
  738. */
  739. next->oncpu = 1;
  740. #endif
  741. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  742. raw_spin_unlock_irq(&rq->lock);
  743. #else
  744. raw_spin_unlock(&rq->lock);
  745. #endif
  746. }
  747. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  748. {
  749. #ifdef CONFIG_SMP
  750. /*
  751. * After ->oncpu is cleared, the task can be moved to a different CPU.
  752. * We must ensure this doesn't happen until the switch is completely
  753. * finished.
  754. */
  755. smp_wmb();
  756. prev->oncpu = 0;
  757. #endif
  758. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  759. local_irq_enable();
  760. #endif
  761. }
  762. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  763. /*
  764. * Check whether the task is waking, we use this to synchronize ->cpus_allowed
  765. * against ttwu().
  766. */
  767. static inline int task_is_waking(struct task_struct *p)
  768. {
  769. return unlikely(p->state == TASK_WAKING);
  770. }
  771. /*
  772. * __task_rq_lock - lock the runqueue a given task resides on.
  773. * Must be called interrupts disabled.
  774. */
  775. static inline struct rq *__task_rq_lock(struct task_struct *p)
  776. __acquires(rq->lock)
  777. {
  778. struct rq *rq;
  779. for (;;) {
  780. rq = task_rq(p);
  781. raw_spin_lock(&rq->lock);
  782. if (likely(rq == task_rq(p)))
  783. return rq;
  784. raw_spin_unlock(&rq->lock);
  785. }
  786. }
  787. /*
  788. * task_rq_lock - lock the runqueue a given task resides on and disable
  789. * interrupts. Note the ordering: we can safely lookup the task_rq without
  790. * explicitly disabling preemption.
  791. */
  792. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  793. __acquires(rq->lock)
  794. {
  795. struct rq *rq;
  796. for (;;) {
  797. local_irq_save(*flags);
  798. rq = task_rq(p);
  799. raw_spin_lock(&rq->lock);
  800. if (likely(rq == task_rq(p)))
  801. return rq;
  802. raw_spin_unlock_irqrestore(&rq->lock, *flags);
  803. }
  804. }
  805. static void __task_rq_unlock(struct rq *rq)
  806. __releases(rq->lock)
  807. {
  808. raw_spin_unlock(&rq->lock);
  809. }
  810. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  811. __releases(rq->lock)
  812. {
  813. raw_spin_unlock_irqrestore(&rq->lock, *flags);
  814. }
  815. /*
  816. * this_rq_lock - lock this runqueue and disable interrupts.
  817. */
  818. static struct rq *this_rq_lock(void)
  819. __acquires(rq->lock)
  820. {
  821. struct rq *rq;
  822. local_irq_disable();
  823. rq = this_rq();
  824. raw_spin_lock(&rq->lock);
  825. return rq;
  826. }
  827. #ifdef CONFIG_SCHED_HRTICK
  828. /*
  829. * Use HR-timers to deliver accurate preemption points.
  830. *
  831. * Its all a bit involved since we cannot program an hrt while holding the
  832. * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
  833. * reschedule event.
  834. *
  835. * When we get rescheduled we reprogram the hrtick_timer outside of the
  836. * rq->lock.
  837. */
  838. /*
  839. * Use hrtick when:
  840. * - enabled by features
  841. * - hrtimer is actually high res
  842. */
  843. static inline int hrtick_enabled(struct rq *rq)
  844. {
  845. if (!sched_feat(HRTICK))
  846. return 0;
  847. if (!cpu_active(cpu_of(rq)))
  848. return 0;
  849. return hrtimer_is_hres_active(&rq->hrtick_timer);
  850. }
  851. static void hrtick_clear(struct rq *rq)
  852. {
  853. if (hrtimer_active(&rq->hrtick_timer))
  854. hrtimer_cancel(&rq->hrtick_timer);
  855. }
  856. /*
  857. * High-resolution timer tick.
  858. * Runs from hardirq context with interrupts disabled.
  859. */
  860. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  861. {
  862. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  863. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  864. raw_spin_lock(&rq->lock);
  865. update_rq_clock(rq);
  866. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  867. raw_spin_unlock(&rq->lock);
  868. return HRTIMER_NORESTART;
  869. }
  870. #ifdef CONFIG_SMP
  871. /*
  872. * called from hardirq (IPI) context
  873. */
  874. static void __hrtick_start(void *arg)
  875. {
  876. struct rq *rq = arg;
  877. raw_spin_lock(&rq->lock);
  878. hrtimer_restart(&rq->hrtick_timer);
  879. rq->hrtick_csd_pending = 0;
  880. raw_spin_unlock(&rq->lock);
  881. }
  882. /*
  883. * Called to set the hrtick timer state.
  884. *
  885. * called with rq->lock held and irqs disabled
  886. */
  887. static void hrtick_start(struct rq *rq, u64 delay)
  888. {
  889. struct hrtimer *timer = &rq->hrtick_timer;
  890. ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
  891. hrtimer_set_expires(timer, time);
  892. if (rq == this_rq()) {
  893. hrtimer_restart(timer);
  894. } else if (!rq->hrtick_csd_pending) {
  895. __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
  896. rq->hrtick_csd_pending = 1;
  897. }
  898. }
  899. static int
  900. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  901. {
  902. int cpu = (int)(long)hcpu;
  903. switch (action) {
  904. case CPU_UP_CANCELED:
  905. case CPU_UP_CANCELED_FROZEN:
  906. case CPU_DOWN_PREPARE:
  907. case CPU_DOWN_PREPARE_FROZEN:
  908. case CPU_DEAD:
  909. case CPU_DEAD_FROZEN:
  910. hrtick_clear(cpu_rq(cpu));
  911. return NOTIFY_OK;
  912. }
  913. return NOTIFY_DONE;
  914. }
  915. static __init void init_hrtick(void)
  916. {
  917. hotcpu_notifier(hotplug_hrtick, 0);
  918. }
  919. #else
  920. /*
  921. * Called to set the hrtick timer state.
  922. *
  923. * called with rq->lock held and irqs disabled
  924. */
  925. static void hrtick_start(struct rq *rq, u64 delay)
  926. {
  927. __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
  928. HRTIMER_MODE_REL_PINNED, 0);
  929. }
  930. static inline void init_hrtick(void)
  931. {
  932. }
  933. #endif /* CONFIG_SMP */
  934. static void init_rq_hrtick(struct rq *rq)
  935. {
  936. #ifdef CONFIG_SMP
  937. rq->hrtick_csd_pending = 0;
  938. rq->hrtick_csd.flags = 0;
  939. rq->hrtick_csd.func = __hrtick_start;
  940. rq->hrtick_csd.info = rq;
  941. #endif
  942. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  943. rq->hrtick_timer.function = hrtick;
  944. }
  945. #else /* CONFIG_SCHED_HRTICK */
  946. static inline void hrtick_clear(struct rq *rq)
  947. {
  948. }
  949. static inline void init_rq_hrtick(struct rq *rq)
  950. {
  951. }
  952. static inline void init_hrtick(void)
  953. {
  954. }
  955. #endif /* CONFIG_SCHED_HRTICK */
  956. /*
  957. * resched_task - mark a task 'to be rescheduled now'.
  958. *
  959. * On UP this means the setting of the need_resched flag, on SMP it
  960. * might also involve a cross-CPU call to trigger the scheduler on
  961. * the target CPU.
  962. */
  963. #ifdef CONFIG_SMP
  964. #ifndef tsk_is_polling
  965. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  966. #endif
  967. static void resched_task(struct task_struct *p)
  968. {
  969. int cpu;
  970. assert_raw_spin_locked(&task_rq(p)->lock);
  971. if (test_tsk_need_resched(p))
  972. return;
  973. set_tsk_need_resched(p);
  974. cpu = task_cpu(p);
  975. if (cpu == smp_processor_id())
  976. return;
  977. /* NEED_RESCHED must be visible before we test polling */
  978. smp_mb();
  979. if (!tsk_is_polling(p))
  980. smp_send_reschedule(cpu);
  981. }
  982. static void resched_cpu(int cpu)
  983. {
  984. struct rq *rq = cpu_rq(cpu);
  985. unsigned long flags;
  986. if (!raw_spin_trylock_irqsave(&rq->lock, flags))
  987. return;
  988. resched_task(cpu_curr(cpu));
  989. raw_spin_unlock_irqrestore(&rq->lock, flags);
  990. }
  991. #ifdef CONFIG_NO_HZ
  992. /*
  993. * When add_timer_on() enqueues a timer into the timer wheel of an
  994. * idle CPU then this timer might expire before the next timer event
  995. * which is scheduled to wake up that CPU. In case of a completely
  996. * idle system the next event might even be infinite time into the
  997. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  998. * leaves the inner idle loop so the newly added timer is taken into
  999. * account when the CPU goes back to idle and evaluates the timer
  1000. * wheel for the next timer event.
  1001. */
  1002. void wake_up_idle_cpu(int cpu)
  1003. {
  1004. struct rq *rq = cpu_rq(cpu);
  1005. if (cpu == smp_processor_id())
  1006. return;
  1007. /*
  1008. * This is safe, as this function is called with the timer
  1009. * wheel base lock of (cpu) held. When the CPU is on the way
  1010. * to idle and has not yet set rq->curr to idle then it will
  1011. * be serialized on the timer wheel base lock and take the new
  1012. * timer into account automatically.
  1013. */
  1014. if (rq->curr != rq->idle)
  1015. return;
  1016. /*
  1017. * We can set TIF_RESCHED on the idle task of the other CPU
  1018. * lockless. The worst case is that the other CPU runs the
  1019. * idle task through an additional NOOP schedule()
  1020. */
  1021. set_tsk_need_resched(rq->idle);
  1022. /* NEED_RESCHED must be visible before we test polling */
  1023. smp_mb();
  1024. if (!tsk_is_polling(rq->idle))
  1025. smp_send_reschedule(cpu);
  1026. }
  1027. int nohz_ratelimit(int cpu)
  1028. {
  1029. struct rq *rq = cpu_rq(cpu);
  1030. u64 diff = rq->clock - rq->nohz_stamp;
  1031. rq->nohz_stamp = rq->clock;
  1032. return diff < (NSEC_PER_SEC / HZ) >> 1;
  1033. }
  1034. #endif /* CONFIG_NO_HZ */
  1035. static u64 sched_avg_period(void)
  1036. {
  1037. return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
  1038. }
  1039. static void sched_avg_update(struct rq *rq)
  1040. {
  1041. s64 period = sched_avg_period();
  1042. while ((s64)(rq->clock - rq->age_stamp) > period) {
  1043. /*
  1044. * Inline assembly required to prevent the compiler
  1045. * optimising this loop into a divmod call.
  1046. * See __iter_div_u64_rem() for another example of this.
  1047. */
  1048. asm("" : "+rm" (rq->age_stamp));
  1049. rq->age_stamp += period;
  1050. rq->rt_avg /= 2;
  1051. }
  1052. }
  1053. static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
  1054. {
  1055. rq->rt_avg += rt_delta;
  1056. sched_avg_update(rq);
  1057. }
  1058. #else /* !CONFIG_SMP */
  1059. static void resched_task(struct task_struct *p)
  1060. {
  1061. assert_raw_spin_locked(&task_rq(p)->lock);
  1062. set_tsk_need_resched(p);
  1063. }
  1064. static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
  1065. {
  1066. }
  1067. #endif /* CONFIG_SMP */
  1068. #if BITS_PER_LONG == 32
  1069. # define WMULT_CONST (~0UL)
  1070. #else
  1071. # define WMULT_CONST (1UL << 32)
  1072. #endif
  1073. #define WMULT_SHIFT 32
  1074. /*
  1075. * Shift right and round:
  1076. */
  1077. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  1078. /*
  1079. * delta *= weight / lw
  1080. */
  1081. static unsigned long
  1082. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  1083. struct load_weight *lw)
  1084. {
  1085. u64 tmp;
  1086. if (!lw->inv_weight) {
  1087. if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
  1088. lw->inv_weight = 1;
  1089. else
  1090. lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
  1091. / (lw->weight+1);
  1092. }
  1093. tmp = (u64)delta_exec * weight;
  1094. /*
  1095. * Check whether we'd overflow the 64-bit multiplication:
  1096. */
  1097. if (unlikely(tmp > WMULT_CONST))
  1098. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  1099. WMULT_SHIFT/2);
  1100. else
  1101. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  1102. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  1103. }
  1104. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  1105. {
  1106. lw->weight += inc;
  1107. lw->inv_weight = 0;
  1108. }
  1109. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  1110. {
  1111. lw->weight -= dec;
  1112. lw->inv_weight = 0;
  1113. }
  1114. /*
  1115. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  1116. * of tasks with abnormal "nice" values across CPUs the contribution that
  1117. * each task makes to its run queue's load is weighted according to its
  1118. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  1119. * scaled version of the new time slice allocation that they receive on time
  1120. * slice expiry etc.
  1121. */
  1122. #define WEIGHT_IDLEPRIO 3
  1123. #define WMULT_IDLEPRIO 1431655765
  1124. /*
  1125. * Nice levels are multiplicative, with a gentle 10% change for every
  1126. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  1127. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  1128. * that remained on nice 0.
  1129. *
  1130. * The "10% effect" is relative and cumulative: from _any_ nice level,
  1131. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  1132. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  1133. * If a task goes up by ~10% and another task goes down by ~10% then
  1134. * the relative distance between them is ~25%.)
  1135. */
  1136. static const int prio_to_weight[40] = {
  1137. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  1138. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  1139. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  1140. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  1141. /* 0 */ 1024, 820, 655, 526, 423,
  1142. /* 5 */ 335, 272, 215, 172, 137,
  1143. /* 10 */ 110, 87, 70, 56, 45,
  1144. /* 15 */ 36, 29, 23, 18, 15,
  1145. };
  1146. /*
  1147. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  1148. *
  1149. * In cases where the weight does not change often, we can use the
  1150. * precalculated inverse to speed up arithmetics by turning divisions
  1151. * into multiplications:
  1152. */
  1153. static const u32 prio_to_wmult[40] = {
  1154. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  1155. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  1156. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  1157. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  1158. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  1159. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  1160. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  1161. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  1162. };
  1163. /* Time spent by the tasks of the cpu accounting group executing in ... */
  1164. enum cpuacct_stat_index {
  1165. CPUACCT_STAT_USER, /* ... user mode */
  1166. CPUACCT_STAT_SYSTEM, /* ... kernel mode */
  1167. CPUACCT_STAT_NSTATS,
  1168. };
  1169. #ifdef CONFIG_CGROUP_CPUACCT
  1170. static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
  1171. static void cpuacct_update_stats(struct task_struct *tsk,
  1172. enum cpuacct_stat_index idx, cputime_t val);
  1173. #else
  1174. static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
  1175. static inline void cpuacct_update_stats(struct task_struct *tsk,
  1176. enum cpuacct_stat_index idx, cputime_t val) {}
  1177. #endif
  1178. static inline void inc_cpu_load(struct rq *rq, unsigned long load)
  1179. {
  1180. update_load_add(&rq->load, load);
  1181. }
  1182. static inline void dec_cpu_load(struct rq *rq, unsigned long load)
  1183. {
  1184. update_load_sub(&rq->load, load);
  1185. }
  1186. #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
  1187. typedef int (*tg_visitor)(struct task_group *, void *);
  1188. /*
  1189. * Iterate the full tree, calling @down when first entering a node and @up when
  1190. * leaving it for the final time.
  1191. */
  1192. static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
  1193. {
  1194. struct task_group *parent, *child;
  1195. int ret;
  1196. rcu_read_lock();
  1197. parent = &root_task_group;
  1198. down:
  1199. ret = (*down)(parent, data);
  1200. if (ret)
  1201. goto out_unlock;
  1202. list_for_each_entry_rcu(child, &parent->children, siblings) {
  1203. parent = child;
  1204. goto down;
  1205. up:
  1206. continue;
  1207. }
  1208. ret = (*up)(parent, data);
  1209. if (ret)
  1210. goto out_unlock;
  1211. child = parent;
  1212. parent = parent->parent;
  1213. if (parent)
  1214. goto up;
  1215. out_unlock:
  1216. rcu_read_unlock();
  1217. return ret;
  1218. }
  1219. static int tg_nop(struct task_group *tg, void *data)
  1220. {
  1221. return 0;
  1222. }
  1223. #endif
  1224. #ifdef CONFIG_SMP
  1225. /* Used instead of source_load when we know the type == 0 */
  1226. static unsigned long weighted_cpuload(const int cpu)
  1227. {
  1228. return cpu_rq(cpu)->load.weight;
  1229. }
  1230. /*
  1231. * Return a low guess at the load of a migration-source cpu weighted
  1232. * according to the scheduling class and "nice" value.
  1233. *
  1234. * We want to under-estimate the load of migration sources, to
  1235. * balance conservatively.
  1236. */
  1237. static unsigned long source_load(int cpu, int type)
  1238. {
  1239. struct rq *rq = cpu_rq(cpu);
  1240. unsigned long total = weighted_cpuload(cpu);
  1241. if (type == 0 || !sched_feat(LB_BIAS))
  1242. return total;
  1243. return min(rq->cpu_load[type-1], total);
  1244. }
  1245. /*
  1246. * Return a high guess at the load of a migration-target cpu weighted
  1247. * according to the scheduling class and "nice" value.
  1248. */
  1249. static unsigned long target_load(int cpu, int type)
  1250. {
  1251. struct rq *rq = cpu_rq(cpu);
  1252. unsigned long total = weighted_cpuload(cpu);
  1253. if (type == 0 || !sched_feat(LB_BIAS))
  1254. return total;
  1255. return max(rq->cpu_load[type-1], total);
  1256. }
  1257. static unsigned long power_of(int cpu)
  1258. {
  1259. return cpu_rq(cpu)->cpu_power;
  1260. }
  1261. static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
  1262. static unsigned long cpu_avg_load_per_task(int cpu)
  1263. {
  1264. struct rq *rq = cpu_rq(cpu);
  1265. unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
  1266. if (nr_running)
  1267. rq->avg_load_per_task = rq->load.weight / nr_running;
  1268. else
  1269. rq->avg_load_per_task = 0;
  1270. return rq->avg_load_per_task;
  1271. }
  1272. #ifdef CONFIG_FAIR_GROUP_SCHED
  1273. static __read_mostly unsigned long __percpu *update_shares_data;
  1274. static void __set_se_shares(struct sched_entity *se, unsigned long shares);
  1275. /*
  1276. * Calculate and set the cpu's group shares.
  1277. */
  1278. static void update_group_shares_cpu(struct task_group *tg, int cpu,
  1279. unsigned long sd_shares,
  1280. unsigned long sd_rq_weight,
  1281. unsigned long *usd_rq_weight)
  1282. {
  1283. unsigned long shares, rq_weight;
  1284. int boost = 0;
  1285. rq_weight = usd_rq_weight[cpu];
  1286. if (!rq_weight) {
  1287. boost = 1;
  1288. rq_weight = NICE_0_LOAD;
  1289. }
  1290. /*
  1291. * \Sum_j shares_j * rq_weight_i
  1292. * shares_i = -----------------------------
  1293. * \Sum_j rq_weight_j
  1294. */
  1295. shares = (sd_shares * rq_weight) / sd_rq_weight;
  1296. shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
  1297. if (abs(shares - tg->se[cpu]->load.weight) >
  1298. sysctl_sched_shares_thresh) {
  1299. struct rq *rq = cpu_rq(cpu);
  1300. unsigned long flags;
  1301. raw_spin_lock_irqsave(&rq->lock, flags);
  1302. tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
  1303. tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
  1304. __set_se_shares(tg->se[cpu], shares);
  1305. raw_spin_unlock_irqrestore(&rq->lock, flags);
  1306. }
  1307. }
  1308. /*
  1309. * Re-compute the task group their per cpu shares over the given domain.
  1310. * This needs to be done in a bottom-up fashion because the rq weight of a
  1311. * parent group depends on the shares of its child groups.
  1312. */
  1313. static int tg_shares_up(struct task_group *tg, void *data)
  1314. {
  1315. unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0;
  1316. unsigned long *usd_rq_weight;
  1317. struct sched_domain *sd = data;
  1318. unsigned long flags;
  1319. int i;
  1320. if (!tg->se[0])
  1321. return 0;
  1322. local_irq_save(flags);
  1323. usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
  1324. for_each_cpu(i, sched_domain_span(sd)) {
  1325. weight = tg->cfs_rq[i]->load.weight;
  1326. usd_rq_weight[i] = weight;
  1327. rq_weight += weight;
  1328. /*
  1329. * If there are currently no tasks on the cpu pretend there
  1330. * is one of average load so that when a new task gets to
  1331. * run here it will not get delayed by group starvation.
  1332. */
  1333. if (!weight)
  1334. weight = NICE_0_LOAD;
  1335. sum_weight += weight;
  1336. shares += tg->cfs_rq[i]->shares;
  1337. }
  1338. if (!rq_weight)
  1339. rq_weight = sum_weight;
  1340. if ((!shares && rq_weight) || shares > tg->shares)
  1341. shares = tg->shares;
  1342. if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
  1343. shares = tg->shares;
  1344. for_each_cpu(i, sched_domain_span(sd))
  1345. update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
  1346. local_irq_restore(flags);
  1347. return 0;
  1348. }
  1349. /*
  1350. * Compute the cpu's hierarchical load factor for each task group.
  1351. * This needs to be done in a top-down fashion because the load of a child
  1352. * group is a fraction of its parents load.
  1353. */
  1354. static int tg_load_down(struct task_group *tg, void *data)
  1355. {
  1356. unsigned long load;
  1357. long cpu = (long)data;
  1358. if (!tg->parent) {
  1359. load = cpu_rq(cpu)->load.weight;
  1360. } else {
  1361. load = tg->parent->cfs_rq[cpu]->h_load;
  1362. load *= tg->cfs_rq[cpu]->shares;
  1363. load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
  1364. }
  1365. tg->cfs_rq[cpu]->h_load = load;
  1366. return 0;
  1367. }
  1368. static void update_shares(struct sched_domain *sd)
  1369. {
  1370. s64 elapsed;
  1371. u64 now;
  1372. if (root_task_group_empty())
  1373. return;
  1374. now = cpu_clock(raw_smp_processor_id());
  1375. elapsed = now - sd->last_update;
  1376. if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
  1377. sd->last_update = now;
  1378. walk_tg_tree(tg_nop, tg_shares_up, sd);
  1379. }
  1380. }
  1381. static void update_h_load(long cpu)
  1382. {
  1383. walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
  1384. }
  1385. #else
  1386. static inline void update_shares(struct sched_domain *sd)
  1387. {
  1388. }
  1389. #endif
  1390. #ifdef CONFIG_PREEMPT
  1391. static void double_rq_lock(struct rq *rq1, struct rq *rq2);
  1392. /*
  1393. * fair double_lock_balance: Safely acquires both rq->locks in a fair
  1394. * way at the expense of forcing extra atomic operations in all
  1395. * invocations. This assures that the double_lock is acquired using the
  1396. * same underlying policy as the spinlock_t on this architecture, which
  1397. * reduces latency compared to the unfair variant below. However, it
  1398. * also adds more overhead and therefore may reduce throughput.
  1399. */
  1400. static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1401. __releases(this_rq->lock)
  1402. __acquires(busiest->lock)
  1403. __acquires(this_rq->lock)
  1404. {
  1405. raw_spin_unlock(&this_rq->lock);
  1406. double_rq_lock(this_rq, busiest);
  1407. return 1;
  1408. }
  1409. #else
  1410. /*
  1411. * Unfair double_lock_balance: Optimizes throughput at the expense of
  1412. * latency by eliminating extra atomic operations when the locks are
  1413. * already in proper order on entry. This favors lower cpu-ids and will
  1414. * grant the double lock to lower cpus over higher ids under contention,
  1415. * regardless of entry order into the function.
  1416. */
  1417. static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1418. __releases(this_rq->lock)
  1419. __acquires(busiest->lock)
  1420. __acquires(this_rq->lock)
  1421. {
  1422. int ret = 0;
  1423. if (unlikely(!raw_spin_trylock(&busiest->lock))) {
  1424. if (busiest < this_rq) {
  1425. raw_spin_unlock(&this_rq->lock);
  1426. raw_spin_lock(&busiest->lock);
  1427. raw_spin_lock_nested(&this_rq->lock,
  1428. SINGLE_DEPTH_NESTING);
  1429. ret = 1;
  1430. } else
  1431. raw_spin_lock_nested(&busiest->lock,
  1432. SINGLE_DEPTH_NESTING);
  1433. }
  1434. return ret;
  1435. }
  1436. #endif /* CONFIG_PREEMPT */
  1437. /*
  1438. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  1439. */
  1440. static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1441. {
  1442. if (unlikely(!irqs_disabled())) {
  1443. /* printk() doesn't work good under rq->lock */
  1444. raw_spin_unlock(&this_rq->lock);
  1445. BUG_ON(1);
  1446. }
  1447. return _double_lock_balance(this_rq, busiest);
  1448. }
  1449. static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
  1450. __releases(busiest->lock)
  1451. {
  1452. raw_spin_unlock(&busiest->lock);
  1453. lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
  1454. }
  1455. /*
  1456. * double_rq_lock - safely lock two runqueues
  1457. *
  1458. * Note this does not disable interrupts like task_rq_lock,
  1459. * you need to do so manually before calling.
  1460. */
  1461. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  1462. __acquires(rq1->lock)
  1463. __acquires(rq2->lock)
  1464. {
  1465. BUG_ON(!irqs_disabled());
  1466. if (rq1 == rq2) {
  1467. raw_spin_lock(&rq1->lock);
  1468. __acquire(rq2->lock); /* Fake it out ;) */
  1469. } else {
  1470. if (rq1 < rq2) {
  1471. raw_spin_lock(&rq1->lock);
  1472. raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
  1473. } else {
  1474. raw_spin_lock(&rq2->lock);
  1475. raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
  1476. }
  1477. }
  1478. }
  1479. /*
  1480. * double_rq_unlock - safely unlock two runqueues
  1481. *
  1482. * Note this does not restore interrupts like task_rq_unlock,
  1483. * you need to do so manually after calling.
  1484. */
  1485. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  1486. __releases(rq1->lock)
  1487. __releases(rq2->lock)
  1488. {
  1489. raw_spin_unlock(&rq1->lock);
  1490. if (rq1 != rq2)
  1491. raw_spin_unlock(&rq2->lock);
  1492. else
  1493. __release(rq2->lock);
  1494. }
  1495. #endif
  1496. #ifdef CONFIG_FAIR_GROUP_SCHED
  1497. static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
  1498. {
  1499. #ifdef CONFIG_SMP
  1500. cfs_rq->shares = shares;
  1501. #endif
  1502. }
  1503. #endif
  1504. static void calc_load_account_idle(struct rq *this_rq);
  1505. static void update_sysctl(void);
  1506. static int get_update_sysctl_factor(void);
  1507. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  1508. {
  1509. set_task_rq(p, cpu);
  1510. #ifdef CONFIG_SMP
  1511. /*
  1512. * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
  1513. * successfuly executed on another CPU. We must ensure that updates of
  1514. * per-task data have been completed by this moment.
  1515. */
  1516. smp_wmb();
  1517. task_thread_info(p)->cpu = cpu;
  1518. #endif
  1519. }
  1520. static const struct sched_class rt_sched_class;
  1521. #define sched_class_highest (&rt_sched_class)
  1522. #define for_each_class(class) \
  1523. for (class = sched_class_highest; class; class = class->next)
  1524. #include "sched_stats.h"
  1525. static void inc_nr_running(struct rq *rq)
  1526. {
  1527. rq->nr_running++;
  1528. }
  1529. static void dec_nr_running(struct rq *rq)
  1530. {
  1531. rq->nr_running--;
  1532. }
  1533. static void set_load_weight(struct task_struct *p)
  1534. {
  1535. if (task_has_rt_policy(p)) {
  1536. p->se.load.weight = 0;
  1537. p->se.load.inv_weight = WMULT_CONST;
  1538. return;
  1539. }
  1540. /*
  1541. * SCHED_IDLE tasks get minimal weight:
  1542. */
  1543. if (p->policy == SCHED_IDLE) {
  1544. p->se.load.weight = WEIGHT_IDLEPRIO;
  1545. p->se.load.inv_weight = WMULT_IDLEPRIO;
  1546. return;
  1547. }
  1548. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  1549. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  1550. }
  1551. static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
  1552. {
  1553. update_rq_clock(rq);
  1554. sched_info_queued(p);
  1555. p->sched_class->enqueue_task(rq, p, flags);
  1556. p->se.on_rq = 1;
  1557. }
  1558. static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
  1559. {
  1560. update_rq_clock(rq);
  1561. sched_info_dequeued(p);
  1562. p->sched_class->dequeue_task(rq, p, flags);
  1563. p->se.on_rq = 0;
  1564. }
  1565. /*
  1566. * activate_task - move a task to the runqueue.
  1567. */
  1568. static void activate_task(struct rq *rq, struct task_struct *p, int flags)
  1569. {
  1570. if (task_contributes_to_load(p))
  1571. rq->nr_uninterruptible--;
  1572. enqueue_task(rq, p, flags);
  1573. inc_nr_running(rq);
  1574. }
  1575. /*
  1576. * deactivate_task - remove a task from the runqueue.
  1577. */
  1578. static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
  1579. {
  1580. if (task_contributes_to_load(p))
  1581. rq->nr_uninterruptible++;
  1582. dequeue_task(rq, p, flags);
  1583. dec_nr_running(rq);
  1584. }
  1585. #include "sched_idletask.c"
  1586. #include "sched_fair.c"
  1587. #include "sched_rt.c"
  1588. #ifdef CONFIG_SCHED_DEBUG
  1589. # include "sched_debug.c"
  1590. #endif
  1591. /*
  1592. * __normal_prio - return the priority that is based on the static prio
  1593. */
  1594. static inline int __normal_prio(struct task_struct *p)
  1595. {
  1596. return p->static_prio;
  1597. }
  1598. /*
  1599. * Calculate the expected normal priority: i.e. priority
  1600. * without taking RT-inheritance into account. Might be
  1601. * boosted by interactivity modifiers. Changes upon fork,
  1602. * setprio syscalls, and whenever the interactivity
  1603. * estimator recalculates.
  1604. */
  1605. static inline int normal_prio(struct task_struct *p)
  1606. {
  1607. int prio;
  1608. if (task_has_rt_policy(p))
  1609. prio = MAX_RT_PRIO-1 - p->rt_priority;
  1610. else
  1611. prio = __normal_prio(p);
  1612. return prio;
  1613. }
  1614. /*
  1615. * Calculate the current priority, i.e. the priority
  1616. * taken into account by the scheduler. This value might
  1617. * be boosted by RT tasks, or might be boosted by
  1618. * interactivity modifiers. Will be RT if the task got
  1619. * RT-boosted. If not then it returns p->normal_prio.
  1620. */
  1621. static int effective_prio(struct task_struct *p)
  1622. {
  1623. p->normal_prio = normal_prio(p);
  1624. /*
  1625. * If we are RT tasks or we were boosted to RT priority,
  1626. * keep the priority unchanged. Otherwise, update priority
  1627. * to the normal priority:
  1628. */
  1629. if (!rt_prio(p->prio))
  1630. return p->normal_prio;
  1631. return p->prio;
  1632. }
  1633. /**
  1634. * task_curr - is this task currently executing on a CPU?
  1635. * @p: the task in question.
  1636. */
  1637. inline int task_curr(const struct task_struct *p)
  1638. {
  1639. return cpu_curr(task_cpu(p)) == p;
  1640. }
  1641. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  1642. const struct sched_class *prev_class,
  1643. int oldprio, int running)
  1644. {
  1645. if (prev_class != p->sched_class) {
  1646. if (prev_class->switched_from)
  1647. prev_class->switched_from(rq, p, running);
  1648. p->sched_class->switched_to(rq, p, running);
  1649. } else
  1650. p->sched_class->prio_changed(rq, p, oldprio, running);
  1651. }
  1652. #ifdef CONFIG_SMP
  1653. /*
  1654. * Is this task likely cache-hot:
  1655. */
  1656. static int
  1657. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  1658. {
  1659. s64 delta;
  1660. if (p->sched_class != &fair_sched_class)
  1661. return 0;
  1662. /*
  1663. * Buddy candidates are cache hot:
  1664. */
  1665. if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
  1666. (&p->se == cfs_rq_of(&p->se)->next ||
  1667. &p->se == cfs_rq_of(&p->se)->last))
  1668. return 1;
  1669. if (sysctl_sched_migration_cost == -1)
  1670. return 1;
  1671. if (sysctl_sched_migration_cost == 0)
  1672. return 0;
  1673. delta = now - p->se.exec_start;
  1674. return delta < (s64)sysctl_sched_migration_cost;
  1675. }
  1676. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  1677. {
  1678. #ifdef CONFIG_SCHED_DEBUG
  1679. /*
  1680. * We should never call set_task_cpu() on a blocked task,
  1681. * ttwu() will sort out the placement.
  1682. */
  1683. WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
  1684. !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
  1685. #endif
  1686. trace_sched_migrate_task(p, new_cpu);
  1687. if (task_cpu(p) != new_cpu) {
  1688. p->se.nr_migrations++;
  1689. perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
  1690. }
  1691. __set_task_cpu(p, new_cpu);
  1692. }
  1693. struct migration_arg {
  1694. struct task_struct *task;
  1695. int dest_cpu;
  1696. };
  1697. static int migration_cpu_stop(void *data);
  1698. /*
  1699. * The task's runqueue lock must be held.
  1700. * Returns true if you have to wait for migration thread.
  1701. */
  1702. static bool migrate_task(struct task_struct *p, int dest_cpu)
  1703. {
  1704. struct rq *rq = task_rq(p);
  1705. /*
  1706. * If the task is not on a runqueue (and not running), then
  1707. * the next wake-up will properly place the task.
  1708. */
  1709. return p->se.on_rq || task_running(rq, p);
  1710. }
  1711. /*
  1712. * wait_task_inactive - wait for a thread to unschedule.
  1713. *
  1714. * If @match_state is nonzero, it's the @p->state value just checked and
  1715. * not expected to change. If it changes, i.e. @p might have woken up,
  1716. * then return zero. When we succeed in waiting for @p to be off its CPU,
  1717. * we return a positive number (its total switch count). If a second call
  1718. * a short while later returns the same number, the caller can be sure that
  1719. * @p has remained unscheduled the whole time.
  1720. *
  1721. * The caller must ensure that the task *will* unschedule sometime soon,
  1722. * else this function might spin for a *long* time. This function can't
  1723. * be called with interrupts off, or it may introduce deadlock with
  1724. * smp_call_function() if an IPI is sent by the same process we are
  1725. * waiting to become inactive.
  1726. */
  1727. unsigned long wait_task_inactive(struct task_struct *p, long match_state)
  1728. {
  1729. unsigned long flags;
  1730. int running, on_rq;
  1731. unsigned long ncsw;
  1732. struct rq *rq;
  1733. for (;;) {
  1734. /*
  1735. * We do the initial early heuristics without holding
  1736. * any task-queue locks at all. We'll only try to get
  1737. * the runqueue lock when things look like they will
  1738. * work out!
  1739. */
  1740. rq = task_rq(p);
  1741. /*
  1742. * If the task is actively running on another CPU
  1743. * still, just relax and busy-wait without holding
  1744. * any locks.
  1745. *
  1746. * NOTE! Since we don't hold any locks, it's not
  1747. * even sure that "rq" stays as the right runqueue!
  1748. * But we don't care, since "task_running()" will
  1749. * return false if the runqueue has changed and p
  1750. * is actually now running somewhere else!
  1751. */
  1752. while (task_running(rq, p)) {
  1753. if (match_state && unlikely(p->state != match_state))
  1754. return 0;
  1755. cpu_relax();
  1756. }
  1757. /*
  1758. * Ok, time to look more closely! We need the rq
  1759. * lock now, to be *sure*. If we're wrong, we'll
  1760. * just go back and repeat.
  1761. */
  1762. rq = task_rq_lock(p, &flags);
  1763. trace_sched_wait_task(p);
  1764. running = task_running(rq, p);
  1765. on_rq = p->se.on_rq;
  1766. ncsw = 0;
  1767. if (!match_state || p->state == match_state)
  1768. ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
  1769. task_rq_unlock(rq, &flags);
  1770. /*
  1771. * If it changed from the expected state, bail out now.
  1772. */
  1773. if (unlikely(!ncsw))
  1774. break;
  1775. /*
  1776. * Was it really running after all now that we
  1777. * checked with the proper locks actually held?
  1778. *
  1779. * Oops. Go back and try again..
  1780. */
  1781. if (unlikely(running)) {
  1782. cpu_relax();
  1783. continue;
  1784. }
  1785. /*
  1786. * It's not enough that it's not actively running,
  1787. * it must be off the runqueue _entirely_, and not
  1788. * preempted!
  1789. *
  1790. * So if it was still runnable (but just not actively
  1791. * running right now), it's preempted, and we should
  1792. * yield - it could be a while.
  1793. */
  1794. if (unlikely(on_rq)) {
  1795. schedule_timeout_uninterruptible(1);
  1796. continue;
  1797. }
  1798. /*
  1799. * Ahh, all good. It wasn't running, and it wasn't
  1800. * runnable, which means that it will never become
  1801. * running in the future either. We're all done!
  1802. */
  1803. break;
  1804. }
  1805. return ncsw;
  1806. }
  1807. /***
  1808. * kick_process - kick a running thread to enter/exit the kernel
  1809. * @p: the to-be-kicked thread
  1810. *
  1811. * Cause a process which is running on another CPU to enter
  1812. * kernel-mode, without any delay. (to get signals handled.)
  1813. *
  1814. * NOTE: this function doesnt have to take the runqueue lock,
  1815. * because all it wants to ensure is that the remote task enters
  1816. * the kernel. If the IPI races and the task has been migrated
  1817. * to another CPU then no harm is done and the purpose has been
  1818. * achieved as well.
  1819. */
  1820. void kick_process(struct task_struct *p)
  1821. {
  1822. int cpu;
  1823. preempt_disable();
  1824. cpu = task_cpu(p);
  1825. if ((cpu != smp_processor_id()) && task_curr(p))
  1826. smp_send_reschedule(cpu);
  1827. preempt_enable();
  1828. }
  1829. EXPORT_SYMBOL_GPL(kick_process);
  1830. #endif /* CONFIG_SMP */
  1831. /**
  1832. * task_oncpu_function_call - call a function on the cpu on which a task runs
  1833. * @p: the task to evaluate
  1834. * @func: the function to be called
  1835. * @info: the function call argument
  1836. *
  1837. * Calls the function @func when the task is currently running. This might
  1838. * be on the current CPU, which just calls the function directly
  1839. */
  1840. void task_oncpu_function_call(struct task_struct *p,
  1841. void (*func) (void *info), void *info)
  1842. {
  1843. int cpu;
  1844. preempt_disable();
  1845. cpu = task_cpu(p);
  1846. if (task_curr(p))
  1847. smp_call_function_single(cpu, func, info, 1);
  1848. preempt_enable();
  1849. }
  1850. #ifdef CONFIG_SMP
  1851. /*
  1852. * ->cpus_allowed is protected by either TASK_WAKING or rq->lock held.
  1853. */
  1854. static int select_fallback_rq(int cpu, struct task_struct *p)
  1855. {
  1856. int dest_cpu;
  1857. const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
  1858. /* Look for allowed, online CPU in same node. */
  1859. for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
  1860. if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  1861. return dest_cpu;
  1862. /* Any allowed, online CPU? */
  1863. dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
  1864. if (dest_cpu < nr_cpu_ids)
  1865. return dest_cpu;
  1866. /* No more Mr. Nice Guy. */
  1867. if (unlikely(dest_cpu >= nr_cpu_ids)) {
  1868. dest_cpu = cpuset_cpus_allowed_fallback(p);
  1869. /*
  1870. * Don't tell them about moving exiting tasks or
  1871. * kernel threads (both mm NULL), since they never
  1872. * leave kernel.
  1873. */
  1874. if (p->mm && printk_ratelimit()) {
  1875. printk(KERN_INFO "process %d (%s) no "
  1876. "longer affine to cpu%d\n",
  1877. task_pid_nr(p), p->comm, cpu);
  1878. }
  1879. }
  1880. return dest_cpu;
  1881. }
  1882. /*
  1883. * The caller (fork, wakeup) owns TASK_WAKING, ->cpus_allowed is stable.
  1884. */
  1885. static inline
  1886. int select_task_rq(struct rq *rq, struct task_struct *p, int sd_flags, int wake_flags)
  1887. {
  1888. int cpu = p->sched_class->select_task_rq(rq, p, sd_flags, wake_flags);
  1889. /*
  1890. * In order not to call set_task_cpu() on a blocking task we need
  1891. * to rely on ttwu() to place the task on a valid ->cpus_allowed
  1892. * cpu.
  1893. *
  1894. * Since this is common to all placement strategies, this lives here.
  1895. *
  1896. * [ this allows ->select_task() to simply return task_cpu(p) and
  1897. * not worry about this generic constraint ]
  1898. */
  1899. if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
  1900. !cpu_online(cpu)))
  1901. cpu = select_fallback_rq(task_cpu(p), p);
  1902. return cpu;
  1903. }
  1904. static void update_avg(u64 *avg, u64 sample)
  1905. {
  1906. s64 diff = sample - *avg;
  1907. *avg += diff >> 3;
  1908. }
  1909. #endif
  1910. /***
  1911. * try_to_wake_up - wake up a thread
  1912. * @p: the to-be-woken-up thread
  1913. * @state: the mask of task states that can be woken
  1914. * @sync: do a synchronous wakeup?
  1915. *
  1916. * Put it on the run-queue if it's not already there. The "current"
  1917. * thread is always on the run-queue (except when the actual
  1918. * re-schedule is in progress), and as such you're allowed to do
  1919. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1920. * runnable without the overhead of this.
  1921. *
  1922. * returns failure only if the task is already active.
  1923. */
  1924. static int try_to_wake_up(struct task_struct *p, unsigned int state,
  1925. int wake_flags)
  1926. {
  1927. int cpu, orig_cpu, this_cpu, success = 0;
  1928. unsigned long flags;
  1929. unsigned long en_flags = ENQUEUE_WAKEUP;
  1930. struct rq *rq;
  1931. this_cpu = get_cpu();
  1932. smp_wmb();
  1933. rq = task_rq_lock(p, &flags);
  1934. if (!(p->state & state))
  1935. goto out;
  1936. if (p->se.on_rq)
  1937. goto out_running;
  1938. cpu = task_cpu(p);
  1939. orig_cpu = cpu;
  1940. #ifdef CONFIG_SMP
  1941. if (unlikely(task_running(rq, p)))
  1942. goto out_activate;
  1943. /*
  1944. * In order to handle concurrent wakeups and release the rq->lock
  1945. * we put the task in TASK_WAKING state.
  1946. *
  1947. * First fix up the nr_uninterruptible count:
  1948. */
  1949. if (task_contributes_to_load(p)) {
  1950. if (likely(cpu_online(orig_cpu)))
  1951. rq->nr_uninterruptible--;
  1952. else
  1953. this_rq()->nr_uninterruptible--;
  1954. }
  1955. p->state = TASK_WAKING;
  1956. if (p->sched_class->task_waking) {
  1957. p->sched_class->task_waking(rq, p);
  1958. en_flags |= ENQUEUE_WAKING;
  1959. }
  1960. cpu = select_task_rq(rq, p, SD_BALANCE_WAKE, wake_flags);
  1961. if (cpu != orig_cpu)
  1962. set_task_cpu(p, cpu);
  1963. __task_rq_unlock(rq);
  1964. rq = cpu_rq(cpu);
  1965. raw_spin_lock(&rq->lock);
  1966. /*
  1967. * We migrated the task without holding either rq->lock, however
  1968. * since the task is not on the task list itself, nobody else
  1969. * will try and migrate the task, hence the rq should match the
  1970. * cpu we just moved it to.
  1971. */
  1972. WARN_ON(task_cpu(p) != cpu);
  1973. WARN_ON(p->state != TASK_WAKING);
  1974. #ifdef CONFIG_SCHEDSTATS
  1975. schedstat_inc(rq, ttwu_count);
  1976. if (cpu == this_cpu)
  1977. schedstat_inc(rq, ttwu_local);
  1978. else {
  1979. struct sched_domain *sd;
  1980. for_each_domain(this_cpu, sd) {
  1981. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  1982. schedstat_inc(sd, ttwu_wake_remote);
  1983. break;
  1984. }
  1985. }
  1986. }
  1987. #endif /* CONFIG_SCHEDSTATS */
  1988. out_activate:
  1989. #endif /* CONFIG_SMP */
  1990. schedstat_inc(p, se.statistics.nr_wakeups);
  1991. if (wake_flags & WF_SYNC)
  1992. schedstat_inc(p, se.statistics.nr_wakeups_sync);
  1993. if (orig_cpu != cpu)
  1994. schedstat_inc(p, se.statistics.nr_wakeups_migrate);
  1995. if (cpu == this_cpu)
  1996. schedstat_inc(p, se.statistics.nr_wakeups_local);
  1997. else
  1998. schedstat_inc(p, se.statistics.nr_wakeups_remote);
  1999. activate_task(rq, p, en_flags);
  2000. success = 1;
  2001. out_running:
  2002. trace_sched_wakeup(p, success);
  2003. check_preempt_curr(rq, p, wake_flags);
  2004. p->state = TASK_RUNNING;
  2005. #ifdef CONFIG_SMP
  2006. if (p->sched_class->task_woken)
  2007. p->sched_class->task_woken(rq, p);
  2008. if (unlikely(rq->idle_stamp)) {
  2009. u64 delta = rq->clock - rq->idle_stamp;
  2010. u64 max = 2*sysctl_sched_migration_cost;
  2011. if (delta > max)
  2012. rq->avg_idle = max;
  2013. else
  2014. update_avg(&rq->avg_idle, delta);
  2015. rq->idle_stamp = 0;
  2016. }
  2017. #endif
  2018. out:
  2019. task_rq_unlock(rq, &flags);
  2020. put_cpu();
  2021. return success;
  2022. }
  2023. /**
  2024. * wake_up_process - Wake up a specific process
  2025. * @p: The process to be woken up.
  2026. *
  2027. * Attempt to wake up the nominated process and move it to the set of runnable
  2028. * processes. Returns 1 if the process was woken up, 0 if it was already
  2029. * running.
  2030. *
  2031. * It may be assumed that this function implies a write memory barrier before
  2032. * changing the task state if and only if any tasks are woken up.
  2033. */
  2034. int wake_up_process(struct task_struct *p)
  2035. {
  2036. return try_to_wake_up(p, TASK_ALL, 0);
  2037. }
  2038. EXPORT_SYMBOL(wake_up_process);
  2039. int wake_up_state(struct task_struct *p, unsigned int state)
  2040. {
  2041. return try_to_wake_up(p, state, 0);
  2042. }
  2043. /*
  2044. * Perform scheduler related setup for a newly forked process p.
  2045. * p is forked by current.
  2046. *
  2047. * __sched_fork() is basic setup used by init_idle() too:
  2048. */
  2049. static void __sched_fork(struct task_struct *p)
  2050. {
  2051. p->se.exec_start = 0;
  2052. p->se.sum_exec_runtime = 0;
  2053. p->se.prev_sum_exec_runtime = 0;
  2054. p->se.nr_migrations = 0;
  2055. #ifdef CONFIG_SCHEDSTATS
  2056. memset(&p->se.statistics, 0, sizeof(p->se.statistics));
  2057. #endif
  2058. INIT_LIST_HEAD(&p->rt.run_list);
  2059. p->se.on_rq = 0;
  2060. INIT_LIST_HEAD(&p->se.group_node);
  2061. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2062. INIT_HLIST_HEAD(&p->preempt_notifiers);
  2063. #endif
  2064. }
  2065. /*
  2066. * fork()/clone()-time setup:
  2067. */
  2068. void sched_fork(struct task_struct *p, int clone_flags)
  2069. {
  2070. int cpu = get_cpu();
  2071. __sched_fork(p);
  2072. /*
  2073. * We mark the process as running here. This guarantees that
  2074. * nobody will actually run it, and a signal or other external
  2075. * event cannot wake it up and insert it on the runqueue either.
  2076. */
  2077. p->state = TASK_RUNNING;
  2078. /*
  2079. * Revert to default priority/policy on fork if requested.
  2080. */
  2081. if (unlikely(p->sched_reset_on_fork)) {
  2082. if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
  2083. p->policy = SCHED_NORMAL;
  2084. p->normal_prio = p->static_prio;
  2085. }
  2086. if (PRIO_TO_NICE(p->static_prio) < 0) {
  2087. p->static_prio = NICE_TO_PRIO(0);
  2088. p->normal_prio = p->static_prio;
  2089. set_load_weight(p);
  2090. }
  2091. /*
  2092. * We don't need the reset flag anymore after the fork. It has
  2093. * fulfilled its duty:
  2094. */
  2095. p->sched_reset_on_fork = 0;
  2096. }
  2097. /*
  2098. * Make sure we do not leak PI boosting priority to the child.
  2099. */
  2100. p->prio = current->normal_prio;
  2101. if (!rt_prio(p->prio))
  2102. p->sched_class = &fair_sched_class;
  2103. if (p->sched_class->task_fork)
  2104. p->sched_class->task_fork(p);
  2105. /*
  2106. * The child is not yet in the pid-hash so no cgroup attach races,
  2107. * and the cgroup is pinned to this child due to cgroup_fork()
  2108. * is ran before sched_fork().
  2109. *
  2110. * Silence PROVE_RCU.
  2111. */
  2112. rcu_read_lock();
  2113. set_task_cpu(p, cpu);
  2114. rcu_read_unlock();
  2115. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  2116. if (likely(sched_info_on()))
  2117. memset(&p->sched_info, 0, sizeof(p->sched_info));
  2118. #endif
  2119. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  2120. p->oncpu = 0;
  2121. #endif
  2122. #ifdef CONFIG_PREEMPT
  2123. /* Want to start with kernel preemption disabled. */
  2124. task_thread_info(p)->preempt_count = 1;
  2125. #endif
  2126. plist_node_init(&p->pushable_tasks, MAX_PRIO);
  2127. put_cpu();
  2128. }
  2129. /*
  2130. * wake_up_new_task - wake up a newly created task for the first time.
  2131. *
  2132. * This function will do some initial scheduler statistics housekeeping
  2133. * that must be done for every newly created context, then puts the task
  2134. * on the runqueue and wakes it.
  2135. */
  2136. void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  2137. {
  2138. unsigned long flags;
  2139. struct rq *rq;
  2140. int cpu __maybe_unused = get_cpu();
  2141. #ifdef CONFIG_SMP
  2142. rq = task_rq_lock(p, &flags);
  2143. p->state = TASK_WAKING;
  2144. /*
  2145. * Fork balancing, do it here and not earlier because:
  2146. * - cpus_allowed can change in the fork path
  2147. * - any previously selected cpu might disappear through hotplug
  2148. *
  2149. * We set TASK_WAKING so that select_task_rq() can drop rq->lock
  2150. * without people poking at ->cpus_allowed.
  2151. */
  2152. cpu = select_task_rq(rq, p, SD_BALANCE_FORK, 0);
  2153. set_task_cpu(p, cpu);
  2154. p->state = TASK_RUNNING;
  2155. task_rq_unlock(rq, &flags);
  2156. #endif
  2157. rq = task_rq_lock(p, &flags);
  2158. activate_task(rq, p, 0);
  2159. trace_sched_wakeup_new(p, 1);
  2160. check_preempt_curr(rq, p, WF_FORK);
  2161. #ifdef CONFIG_SMP
  2162. if (p->sched_class->task_woken)
  2163. p->sched_class->task_woken(rq, p);
  2164. #endif
  2165. task_rq_unlock(rq, &flags);
  2166. put_cpu();
  2167. }
  2168. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2169. /**
  2170. * preempt_notifier_register - tell me when current is being preempted & rescheduled
  2171. * @notifier: notifier struct to register
  2172. */
  2173. void preempt_notifier_register(struct preempt_notifier *notifier)
  2174. {
  2175. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  2176. }
  2177. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  2178. /**
  2179. * preempt_notifier_unregister - no longer interested in preemption notifications
  2180. * @notifier: notifier struct to unregister
  2181. *
  2182. * This is safe to call from within a preemption notifier.
  2183. */
  2184. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  2185. {
  2186. hlist_del(&notifier->link);
  2187. }
  2188. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  2189. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2190. {
  2191. struct preempt_notifier *notifier;
  2192. struct hlist_node *node;
  2193. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2194. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  2195. }
  2196. static void
  2197. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2198. struct task_struct *next)
  2199. {
  2200. struct preempt_notifier *notifier;
  2201. struct hlist_node *node;
  2202. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2203. notifier->ops->sched_out(notifier, next);
  2204. }
  2205. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  2206. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2207. {
  2208. }
  2209. static void
  2210. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2211. struct task_struct *next)
  2212. {
  2213. }
  2214. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  2215. /**
  2216. * prepare_task_switch - prepare to switch tasks
  2217. * @rq: the runqueue preparing to switch
  2218. * @prev: the current task that is being switched out
  2219. * @next: the task we are going to switch to.
  2220. *
  2221. * This is called with the rq lock held and interrupts off. It must
  2222. * be paired with a subsequent finish_task_switch after the context
  2223. * switch.
  2224. *
  2225. * prepare_task_switch sets up locking and calls architecture specific
  2226. * hooks.
  2227. */
  2228. static inline void
  2229. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  2230. struct task_struct *next)
  2231. {
  2232. fire_sched_out_preempt_notifiers(prev, next);
  2233. prepare_lock_switch(rq, next);
  2234. prepare_arch_switch(next);
  2235. }
  2236. /**
  2237. * finish_task_switch - clean up after a task-switch
  2238. * @rq: runqueue associated with task-switch
  2239. * @prev: the thread we just switched away from.
  2240. *
  2241. * finish_task_switch must be called after the context switch, paired
  2242. * with a prepare_task_switch call before the context switch.
  2243. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  2244. * and do any other architecture-specific cleanup actions.
  2245. *
  2246. * Note that we may have delayed dropping an mm in context_switch(). If
  2247. * so, we finish that here outside of the runqueue lock. (Doing it
  2248. * with the lock held can cause deadlocks; see schedule() for
  2249. * details.)
  2250. */
  2251. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  2252. __releases(rq->lock)
  2253. {
  2254. struct mm_struct *mm = rq->prev_mm;
  2255. long prev_state;
  2256. rq->prev_mm = NULL;
  2257. /*
  2258. * A task struct has one reference for the use as "current".
  2259. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  2260. * schedule one last time. The schedule call will never return, and
  2261. * the scheduled task must drop that reference.
  2262. * The test for TASK_DEAD must occur while the runqueue locks are
  2263. * still held, otherwise prev could be scheduled on another cpu, die
  2264. * there before we look at prev->state, and then the reference would
  2265. * be dropped twice.
  2266. * Manfred Spraul <manfred@colorfullife.com>
  2267. */
  2268. prev_state = prev->state;
  2269. finish_arch_switch(prev);
  2270. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  2271. local_irq_disable();
  2272. #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
  2273. perf_event_task_sched_in(current);
  2274. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  2275. local_irq_enable();
  2276. #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
  2277. finish_lock_switch(rq, prev);
  2278. fire_sched_in_preempt_notifiers(current);
  2279. if (mm)
  2280. mmdrop(mm);
  2281. if (unlikely(prev_state == TASK_DEAD)) {
  2282. /*
  2283. * Remove function-return probe instances associated with this
  2284. * task and put them back on the free list.
  2285. */
  2286. kprobe_flush_task(prev);
  2287. put_task_struct(prev);
  2288. }
  2289. }
  2290. #ifdef CONFIG_SMP
  2291. /* assumes rq->lock is held */
  2292. static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
  2293. {
  2294. if (prev->sched_class->pre_schedule)
  2295. prev->sched_class->pre_schedule(rq, prev);
  2296. }
  2297. /* rq->lock is NOT held, but preemption is disabled */
  2298. static inline void post_schedule(struct rq *rq)
  2299. {
  2300. if (rq->post_schedule) {
  2301. unsigned long flags;
  2302. raw_spin_lock_irqsave(&rq->lock, flags);
  2303. if (rq->curr->sched_class->post_schedule)
  2304. rq->curr->sched_class->post_schedule(rq);
  2305. raw_spin_unlock_irqrestore(&rq->lock, flags);
  2306. rq->post_schedule = 0;
  2307. }
  2308. }
  2309. #else
  2310. static inline void pre_schedule(struct rq *rq, struct task_struct *p)
  2311. {
  2312. }
  2313. static inline void post_schedule(struct rq *rq)
  2314. {
  2315. }
  2316. #endif
  2317. /**
  2318. * schedule_tail - first thing a freshly forked thread must call.
  2319. * @prev: the thread we just switched away from.
  2320. */
  2321. asmlinkage void schedule_tail(struct task_struct *prev)
  2322. __releases(rq->lock)
  2323. {
  2324. struct rq *rq = this_rq();
  2325. finish_task_switch(rq, prev);
  2326. /*
  2327. * FIXME: do we need to worry about rq being invalidated by the
  2328. * task_switch?
  2329. */
  2330. post_schedule(rq);
  2331. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  2332. /* In this case, finish_task_switch does not reenable preemption */
  2333. preempt_enable();
  2334. #endif
  2335. if (current->set_child_tid)
  2336. put_user(task_pid_vnr(current), current->set_child_tid);
  2337. }
  2338. /*
  2339. * context_switch - switch to the new MM and the new
  2340. * thread's register state.
  2341. */
  2342. static inline void
  2343. context_switch(struct rq *rq, struct task_struct *prev,
  2344. struct task_struct *next)
  2345. {
  2346. struct mm_struct *mm, *oldmm;
  2347. prepare_task_switch(rq, prev, next);
  2348. trace_sched_switch(prev, next);
  2349. mm = next->mm;
  2350. oldmm = prev->active_mm;
  2351. /*
  2352. * For paravirt, this is coupled with an exit in switch_to to
  2353. * combine the page table reload and the switch backend into
  2354. * one hypercall.
  2355. */
  2356. arch_start_context_switch(prev);
  2357. if (likely(!mm)) {
  2358. next->active_mm = oldmm;
  2359. atomic_inc(&oldmm->mm_count);
  2360. enter_lazy_tlb(oldmm, next);
  2361. } else
  2362. switch_mm(oldmm, mm, next);
  2363. if (likely(!prev->mm)) {
  2364. prev->active_mm = NULL;
  2365. rq->prev_mm = oldmm;
  2366. }
  2367. /*
  2368. * Since the runqueue lock will be released by the next
  2369. * task (which is an invalid locking op but in the case
  2370. * of the scheduler it's an obvious special-case), so we
  2371. * do an early lockdep release here:
  2372. */
  2373. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  2374. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  2375. #endif
  2376. /* Here we just switch the register state and the stack. */
  2377. switch_to(prev, next, prev);
  2378. barrier();
  2379. /*
  2380. * this_rq must be evaluated again because prev may have moved
  2381. * CPUs since it called schedule(), thus the 'rq' on its stack
  2382. * frame will be invalid.
  2383. */
  2384. finish_task_switch(this_rq(), prev);
  2385. }
  2386. /*
  2387. * nr_running, nr_uninterruptible and nr_context_switches:
  2388. *
  2389. * externally visible scheduler statistics: current number of runnable
  2390. * threads, current number of uninterruptible-sleeping threads, total
  2391. * number of context switches performed since bootup.
  2392. */
  2393. unsigned long nr_running(void)
  2394. {
  2395. unsigned long i, sum = 0;
  2396. for_each_online_cpu(i)
  2397. sum += cpu_rq(i)->nr_running;
  2398. return sum;
  2399. }
  2400. unsigned long nr_uninterruptible(void)
  2401. {
  2402. unsigned long i, sum = 0;
  2403. for_each_possible_cpu(i)
  2404. sum += cpu_rq(i)->nr_uninterruptible;
  2405. /*
  2406. * Since we read the counters lockless, it might be slightly
  2407. * inaccurate. Do not allow it to go below zero though:
  2408. */
  2409. if (unlikely((long)sum < 0))
  2410. sum = 0;
  2411. return sum;
  2412. }
  2413. unsigned long long nr_context_switches(void)
  2414. {
  2415. int i;
  2416. unsigned long long sum = 0;
  2417. for_each_possible_cpu(i)
  2418. sum += cpu_rq(i)->nr_switches;
  2419. return sum;
  2420. }
  2421. unsigned long nr_iowait(void)
  2422. {
  2423. unsigned long i, sum = 0;
  2424. for_each_possible_cpu(i)
  2425. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  2426. return sum;
  2427. }
  2428. unsigned long nr_iowait_cpu(int cpu)
  2429. {
  2430. struct rq *this = cpu_rq(cpu);
  2431. return atomic_read(&this->nr_iowait);
  2432. }
  2433. unsigned long this_cpu_load(void)
  2434. {
  2435. struct rq *this = this_rq();
  2436. return this->cpu_load[0];
  2437. }
  2438. /* Variables and functions for calc_load */
  2439. static atomic_long_t calc_load_tasks;
  2440. static unsigned long calc_load_update;
  2441. unsigned long avenrun[3];
  2442. EXPORT_SYMBOL(avenrun);
  2443. static long calc_load_fold_active(struct rq *this_rq)
  2444. {
  2445. long nr_active, delta = 0;
  2446. nr_active = this_rq->nr_running;
  2447. nr_active += (long) this_rq->nr_uninterruptible;
  2448. if (nr_active != this_rq->calc_load_active) {
  2449. delta = nr_active - this_rq->calc_load_active;
  2450. this_rq->calc_load_active = nr_active;
  2451. }
  2452. return delta;
  2453. }
  2454. #ifdef CONFIG_NO_HZ
  2455. /*
  2456. * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
  2457. *
  2458. * When making the ILB scale, we should try to pull this in as well.
  2459. */
  2460. static atomic_long_t calc_load_tasks_idle;
  2461. static void calc_load_account_idle(struct rq *this_rq)
  2462. {
  2463. long delta;
  2464. delta = calc_load_fold_active(this_rq);
  2465. if (delta)
  2466. atomic_long_add(delta, &calc_load_tasks_idle);
  2467. }
  2468. static long calc_load_fold_idle(void)
  2469. {
  2470. long delta = 0;
  2471. /*
  2472. * Its got a race, we don't care...
  2473. */
  2474. if (atomic_long_read(&calc_load_tasks_idle))
  2475. delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
  2476. return delta;
  2477. }
  2478. #else
  2479. static void calc_load_account_idle(struct rq *this_rq)
  2480. {
  2481. }
  2482. static inline long calc_load_fold_idle(void)
  2483. {
  2484. return 0;
  2485. }
  2486. #endif
  2487. /**
  2488. * get_avenrun - get the load average array
  2489. * @loads: pointer to dest load array
  2490. * @offset: offset to add
  2491. * @shift: shift count to shift the result left
  2492. *
  2493. * These values are estimates at best, so no need for locking.
  2494. */
  2495. void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
  2496. {
  2497. loads[0] = (avenrun[0] + offset) << shift;
  2498. loads[1] = (avenrun[1] + offset) << shift;
  2499. loads[2] = (avenrun[2] + offset) << shift;
  2500. }
  2501. static unsigned long
  2502. calc_load(unsigned long load, unsigned long exp, unsigned long active)
  2503. {
  2504. load *= exp;
  2505. load += active * (FIXED_1 - exp);
  2506. return load >> FSHIFT;
  2507. }
  2508. /*
  2509. * calc_load - update the avenrun load estimates 10 ticks after the
  2510. * CPUs have updated calc_load_tasks.
  2511. */
  2512. void calc_global_load(void)
  2513. {
  2514. unsigned long upd = calc_load_update + 10;
  2515. long active;
  2516. if (time_before(jiffies, upd))
  2517. return;
  2518. active = atomic_long_read(&calc_load_tasks);
  2519. active = active > 0 ? active * FIXED_1 : 0;
  2520. avenrun[0] = calc_load(avenrun[0], EXP_1, active);
  2521. avenrun[1] = calc_load(avenrun[1], EXP_5, active);
  2522. avenrun[2] = calc_load(avenrun[2], EXP_15, active);
  2523. calc_load_update += LOAD_FREQ;
  2524. }
  2525. /*
  2526. * Called from update_cpu_load() to periodically update this CPU's
  2527. * active count.
  2528. */
  2529. static void calc_load_account_active(struct rq *this_rq)
  2530. {
  2531. long delta;
  2532. if (time_before(jiffies, this_rq->calc_load_update))
  2533. return;
  2534. delta = calc_load_fold_active(this_rq);
  2535. delta += calc_load_fold_idle();
  2536. if (delta)
  2537. atomic_long_add(delta, &calc_load_tasks);
  2538. this_rq->calc_load_update += LOAD_FREQ;
  2539. }
  2540. /*
  2541. * Update rq->cpu_load[] statistics. This function is usually called every
  2542. * scheduler tick (TICK_NSEC).
  2543. */
  2544. static void update_cpu_load(struct rq *this_rq)
  2545. {
  2546. unsigned long this_load = this_rq->load.weight;
  2547. int i, scale;
  2548. this_rq->nr_load_updates++;
  2549. /* Update our load: */
  2550. for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  2551. unsigned long old_load, new_load;
  2552. /* scale is effectively 1 << i now, and >> i divides by scale */
  2553. old_load = this_rq->cpu_load[i];
  2554. new_load = this_load;
  2555. /*
  2556. * Round up the averaging division if load is increasing. This
  2557. * prevents us from getting stuck on 9 if the load is 10, for
  2558. * example.
  2559. */
  2560. if (new_load > old_load)
  2561. new_load += scale-1;
  2562. this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
  2563. }
  2564. calc_load_account_active(this_rq);
  2565. }
  2566. #ifdef CONFIG_SMP
  2567. /*
  2568. * sched_exec - execve() is a valuable balancing opportunity, because at
  2569. * this point the task has the smallest effective memory and cache footprint.
  2570. */
  2571. void sched_exec(void)
  2572. {
  2573. struct task_struct *p = current;
  2574. unsigned long flags;
  2575. struct rq *rq;
  2576. int dest_cpu;
  2577. rq = task_rq_lock(p, &flags);
  2578. dest_cpu = p->sched_class->select_task_rq(rq, p, SD_BALANCE_EXEC, 0);
  2579. if (dest_cpu == smp_processor_id())
  2580. goto unlock;
  2581. /*
  2582. * select_task_rq() can race against ->cpus_allowed
  2583. */
  2584. if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed) &&
  2585. likely(cpu_active(dest_cpu)) && migrate_task(p, dest_cpu)) {
  2586. struct migration_arg arg = { p, dest_cpu };
  2587. task_rq_unlock(rq, &flags);
  2588. stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
  2589. return;
  2590. }
  2591. unlock:
  2592. task_rq_unlock(rq, &flags);
  2593. }
  2594. #endif
  2595. DEFINE_PER_CPU(struct kernel_stat, kstat);
  2596. EXPORT_PER_CPU_SYMBOL(kstat);
  2597. /*
  2598. * Return any ns on the sched_clock that have not yet been accounted in
  2599. * @p in case that task is currently running.
  2600. *
  2601. * Called with task_rq_lock() held on @rq.
  2602. */
  2603. static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
  2604. {
  2605. u64 ns = 0;
  2606. if (task_current(rq, p)) {
  2607. update_rq_clock(rq);
  2608. ns = rq->clock - p->se.exec_start;
  2609. if ((s64)ns < 0)
  2610. ns = 0;
  2611. }
  2612. return ns;
  2613. }
  2614. unsigned long long task_delta_exec(struct task_struct *p)
  2615. {
  2616. unsigned long flags;
  2617. struct rq *rq;
  2618. u64 ns = 0;
  2619. rq = task_rq_lock(p, &flags);
  2620. ns = do_task_delta_exec(p, rq);
  2621. task_rq_unlock(rq, &flags);
  2622. return ns;
  2623. }
  2624. /*
  2625. * Return accounted runtime for the task.
  2626. * In case the task is currently running, return the runtime plus current's
  2627. * pending runtime that have not been accounted yet.
  2628. */
  2629. unsigned long long task_sched_runtime(struct task_struct *p)
  2630. {
  2631. unsigned long flags;
  2632. struct rq *rq;
  2633. u64 ns = 0;
  2634. rq = task_rq_lock(p, &flags);
  2635. ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
  2636. task_rq_unlock(rq, &flags);
  2637. return ns;
  2638. }
  2639. /*
  2640. * Return sum_exec_runtime for the thread group.
  2641. * In case the task is currently running, return the sum plus current's
  2642. * pending runtime that have not been accounted yet.
  2643. *
  2644. * Note that the thread group might have other running tasks as well,
  2645. * so the return value not includes other pending runtime that other
  2646. * running tasks might have.
  2647. */
  2648. unsigned long long thread_group_sched_runtime(struct task_struct *p)
  2649. {
  2650. struct task_cputime totals;
  2651. unsigned long flags;
  2652. struct rq *rq;
  2653. u64 ns;
  2654. rq = task_rq_lock(p, &flags);
  2655. thread_group_cputime(p, &totals);
  2656. ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
  2657. task_rq_unlock(rq, &flags);
  2658. return ns;
  2659. }
  2660. /*
  2661. * Account user cpu time to a process.
  2662. * @p: the process that the cpu time gets accounted to
  2663. * @cputime: the cpu time spent in user space since the last update
  2664. * @cputime_scaled: cputime scaled by cpu frequency
  2665. */
  2666. void account_user_time(struct task_struct *p, cputime_t cputime,
  2667. cputime_t cputime_scaled)
  2668. {
  2669. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2670. cputime64_t tmp;
  2671. /* Add user time to process. */
  2672. p->utime = cputime_add(p->utime, cputime);
  2673. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  2674. account_group_user_time(p, cputime);
  2675. /* Add user time to cpustat. */
  2676. tmp = cputime_to_cputime64(cputime);
  2677. if (TASK_NICE(p) > 0)
  2678. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  2679. else
  2680. cpustat->user = cputime64_add(cpustat->user, tmp);
  2681. cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
  2682. /* Account for user time used */
  2683. acct_update_integrals(p);
  2684. }
  2685. /*
  2686. * Account guest cpu time to a process.
  2687. * @p: the process that the cpu time gets accounted to
  2688. * @cputime: the cpu time spent in virtual machine since the last update
  2689. * @cputime_scaled: cputime scaled by cpu frequency
  2690. */
  2691. static void account_guest_time(struct task_struct *p, cputime_t cputime,
  2692. cputime_t cputime_scaled)
  2693. {
  2694. cputime64_t tmp;
  2695. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2696. tmp = cputime_to_cputime64(cputime);
  2697. /* Add guest time to process. */
  2698. p->utime = cputime_add(p->utime, cputime);
  2699. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  2700. account_group_user_time(p, cputime);
  2701. p->gtime = cputime_add(p->gtime, cputime);
  2702. /* Add guest time to cpustat. */
  2703. if (TASK_NICE(p) > 0) {
  2704. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  2705. cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
  2706. } else {
  2707. cpustat->user = cputime64_add(cpustat->user, tmp);
  2708. cpustat->guest = cputime64_add(cpustat->guest, tmp);
  2709. }
  2710. }
  2711. /*
  2712. * Account system cpu time to a process.
  2713. * @p: the process that the cpu time gets accounted to
  2714. * @hardirq_offset: the offset to subtract from hardirq_count()
  2715. * @cputime: the cpu time spent in kernel space since the last update
  2716. * @cputime_scaled: cputime scaled by cpu frequency
  2717. */
  2718. void account_system_time(struct task_struct *p, int hardirq_offset,
  2719. cputime_t cputime, cputime_t cputime_scaled)
  2720. {
  2721. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2722. cputime64_t tmp;
  2723. if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
  2724. account_guest_time(p, cputime, cputime_scaled);
  2725. return;
  2726. }
  2727. /* Add system time to process. */
  2728. p->stime = cputime_add(p->stime, cputime);
  2729. p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
  2730. account_group_system_time(p, cputime);
  2731. /* Add system time to cpustat. */
  2732. tmp = cputime_to_cputime64(cputime);
  2733. if (hardirq_count() - hardirq_offset)
  2734. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  2735. else if (softirq_count())
  2736. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  2737. else
  2738. cpustat->system = cputime64_add(cpustat->system, tmp);
  2739. cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
  2740. /* Account for system time used */
  2741. acct_update_integrals(p);
  2742. }
  2743. /*
  2744. * Account for involuntary wait time.
  2745. * @steal: the cpu time spent in involuntary wait
  2746. */
  2747. void account_steal_time(cputime_t cputime)
  2748. {
  2749. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2750. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  2751. cpustat->steal = cputime64_add(cpustat->steal, cputime64);
  2752. }
  2753. /*
  2754. * Account for idle time.
  2755. * @cputime: the cpu time spent in idle wait
  2756. */
  2757. void account_idle_time(cputime_t cputime)
  2758. {
  2759. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2760. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  2761. struct rq *rq = this_rq();
  2762. if (atomic_read(&rq->nr_iowait) > 0)
  2763. cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
  2764. else
  2765. cpustat->idle = cputime64_add(cpustat->idle, cputime64);
  2766. }
  2767. #ifndef CONFIG_VIRT_CPU_ACCOUNTING
  2768. /*
  2769. * Account a single tick of cpu time.
  2770. * @p: the process that the cpu time gets accounted to
  2771. * @user_tick: indicates if the tick is a user or a system tick
  2772. */
  2773. void account_process_tick(struct task_struct *p, int user_tick)
  2774. {
  2775. cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
  2776. struct rq *rq = this_rq();
  2777. if (user_tick)
  2778. account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
  2779. else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
  2780. account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
  2781. one_jiffy_scaled);
  2782. else
  2783. account_idle_time(cputime_one_jiffy);
  2784. }
  2785. /*
  2786. * Account multiple ticks of steal time.
  2787. * @p: the process from which the cpu time has been stolen
  2788. * @ticks: number of stolen ticks
  2789. */
  2790. void account_steal_ticks(unsigned long ticks)
  2791. {
  2792. account_steal_time(jiffies_to_cputime(ticks));
  2793. }
  2794. /*
  2795. * Account multiple ticks of idle time.
  2796. * @ticks: number of stolen ticks
  2797. */
  2798. void account_idle_ticks(unsigned long ticks)
  2799. {
  2800. account_idle_time(jiffies_to_cputime(ticks));
  2801. }
  2802. #endif
  2803. /*
  2804. * Use precise platform statistics if available:
  2805. */
  2806. #ifdef CONFIG_VIRT_CPU_ACCOUNTING
  2807. void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  2808. {
  2809. *ut = p->utime;
  2810. *st = p->stime;
  2811. }
  2812. void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  2813. {
  2814. struct task_cputime cputime;
  2815. thread_group_cputime(p, &cputime);
  2816. *ut = cputime.utime;
  2817. *st = cputime.stime;
  2818. }
  2819. #else
  2820. #ifndef nsecs_to_cputime
  2821. # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
  2822. #endif
  2823. void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  2824. {
  2825. cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
  2826. /*
  2827. * Use CFS's precise accounting:
  2828. */
  2829. rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
  2830. if (total) {
  2831. u64 temp;
  2832. temp = (u64)(rtime * utime);
  2833. do_div(temp, total);
  2834. utime = (cputime_t)temp;
  2835. } else
  2836. utime = rtime;
  2837. /*
  2838. * Compare with previous values, to keep monotonicity:
  2839. */
  2840. p->prev_utime = max(p->prev_utime, utime);
  2841. p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
  2842. *ut = p->prev_utime;
  2843. *st = p->prev_stime;
  2844. }
  2845. /*
  2846. * Must be called with siglock held.
  2847. */
  2848. void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  2849. {
  2850. struct signal_struct *sig = p->signal;
  2851. struct task_cputime cputime;
  2852. cputime_t rtime, utime, total;
  2853. thread_group_cputime(p, &cputime);
  2854. total = cputime_add(cputime.utime, cputime.stime);
  2855. rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
  2856. if (total) {
  2857. u64 temp;
  2858. temp = (u64)(rtime * cputime.utime);
  2859. do_div(temp, total);
  2860. utime = (cputime_t)temp;
  2861. } else
  2862. utime = rtime;
  2863. sig->prev_utime = max(sig->prev_utime, utime);
  2864. sig->prev_stime = max(sig->prev_stime,
  2865. cputime_sub(rtime, sig->prev_utime));
  2866. *ut = sig->prev_utime;
  2867. *st = sig->prev_stime;
  2868. }
  2869. #endif
  2870. /*
  2871. * This function gets called by the timer code, with HZ frequency.
  2872. * We call it with interrupts disabled.
  2873. *
  2874. * It also gets called by the fork code, when changing the parent's
  2875. * timeslices.
  2876. */
  2877. void scheduler_tick(void)
  2878. {
  2879. int cpu = smp_processor_id();
  2880. struct rq *rq = cpu_rq(cpu);
  2881. struct task_struct *curr = rq->curr;
  2882. sched_clock_tick();
  2883. raw_spin_lock(&rq->lock);
  2884. update_rq_clock(rq);
  2885. update_cpu_load(rq);
  2886. curr->sched_class->task_tick(rq, curr, 0);
  2887. raw_spin_unlock(&rq->lock);
  2888. perf_event_task_tick(curr);
  2889. #ifdef CONFIG_SMP
  2890. rq->idle_at_tick = idle_cpu(cpu);
  2891. trigger_load_balance(rq, cpu);
  2892. #endif
  2893. }
  2894. notrace unsigned long get_parent_ip(unsigned long addr)
  2895. {
  2896. if (in_lock_functions(addr)) {
  2897. addr = CALLER_ADDR2;
  2898. if (in_lock_functions(addr))
  2899. addr = CALLER_ADDR3;
  2900. }
  2901. return addr;
  2902. }
  2903. #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
  2904. defined(CONFIG_PREEMPT_TRACER))
  2905. void __kprobes add_preempt_count(int val)
  2906. {
  2907. #ifdef CONFIG_DEBUG_PREEMPT
  2908. /*
  2909. * Underflow?
  2910. */
  2911. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  2912. return;
  2913. #endif
  2914. preempt_count() += val;
  2915. #ifdef CONFIG_DEBUG_PREEMPT
  2916. /*
  2917. * Spinlock count overflowing soon?
  2918. */
  2919. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  2920. PREEMPT_MASK - 10);
  2921. #endif
  2922. if (preempt_count() == val)
  2923. trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  2924. }
  2925. EXPORT_SYMBOL(add_preempt_count);
  2926. void __kprobes sub_preempt_count(int val)
  2927. {
  2928. #ifdef CONFIG_DEBUG_PREEMPT
  2929. /*
  2930. * Underflow?
  2931. */
  2932. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  2933. return;
  2934. /*
  2935. * Is the spinlock portion underflowing?
  2936. */
  2937. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  2938. !(preempt_count() & PREEMPT_MASK)))
  2939. return;
  2940. #endif
  2941. if (preempt_count() == val)
  2942. trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  2943. preempt_count() -= val;
  2944. }
  2945. EXPORT_SYMBOL(sub_preempt_count);
  2946. #endif
  2947. /*
  2948. * Print scheduling while atomic bug:
  2949. */
  2950. static noinline void __schedule_bug(struct task_struct *prev)
  2951. {
  2952. struct pt_regs *regs = get_irq_regs();
  2953. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  2954. prev->comm, prev->pid, preempt_count());
  2955. debug_show_held_locks(prev);
  2956. print_modules();
  2957. if (irqs_disabled())
  2958. print_irqtrace_events(prev);
  2959. if (regs)
  2960. show_regs(regs);
  2961. else
  2962. dump_stack();
  2963. }
  2964. /*
  2965. * Various schedule()-time debugging checks and statistics:
  2966. */
  2967. static inline void schedule_debug(struct task_struct *prev)
  2968. {
  2969. /*
  2970. * Test if we are atomic. Since do_exit() needs to call into
  2971. * schedule() atomically, we ignore that path for now.
  2972. * Otherwise, whine if we are scheduling when we should not be.
  2973. */
  2974. if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
  2975. __schedule_bug(prev);
  2976. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  2977. schedstat_inc(this_rq(), sched_count);
  2978. #ifdef CONFIG_SCHEDSTATS
  2979. if (unlikely(prev->lock_depth >= 0)) {
  2980. schedstat_inc(this_rq(), bkl_count);
  2981. schedstat_inc(prev, sched_info.bkl_count);
  2982. }
  2983. #endif
  2984. }
  2985. static void put_prev_task(struct rq *rq, struct task_struct *prev)
  2986. {
  2987. if (prev->se.on_rq)
  2988. update_rq_clock(rq);
  2989. rq->skip_clock_update = 0;
  2990. prev->sched_class->put_prev_task(rq, prev);
  2991. }
  2992. /*
  2993. * Pick up the highest-prio task:
  2994. */
  2995. static inline struct task_struct *
  2996. pick_next_task(struct rq *rq)
  2997. {
  2998. const struct sched_class *class;
  2999. struct task_struct *p;
  3000. /*
  3001. * Optimization: we know that if all tasks are in
  3002. * the fair class we can call that function directly:
  3003. */
  3004. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  3005. p = fair_sched_class.pick_next_task(rq);
  3006. if (likely(p))
  3007. return p;
  3008. }
  3009. class = sched_class_highest;
  3010. for ( ; ; ) {
  3011. p = class->pick_next_task(rq);
  3012. if (p)
  3013. return p;
  3014. /*
  3015. * Will never be NULL as the idle class always
  3016. * returns a non-NULL p:
  3017. */
  3018. class = class->next;
  3019. }
  3020. }
  3021. /*
  3022. * schedule() is the main scheduler function.
  3023. */
  3024. asmlinkage void __sched schedule(void)
  3025. {
  3026. struct task_struct *prev, *next;
  3027. unsigned long *switch_count;
  3028. struct rq *rq;
  3029. int cpu;
  3030. need_resched:
  3031. preempt_disable();
  3032. cpu = smp_processor_id();
  3033. rq = cpu_rq(cpu);
  3034. rcu_note_context_switch(cpu);
  3035. prev = rq->curr;
  3036. switch_count = &prev->nivcsw;
  3037. release_kernel_lock(prev);
  3038. need_resched_nonpreemptible:
  3039. schedule_debug(prev);
  3040. if (sched_feat(HRTICK))
  3041. hrtick_clear(rq);
  3042. raw_spin_lock_irq(&rq->lock);
  3043. clear_tsk_need_resched(prev);
  3044. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  3045. if (unlikely(signal_pending_state(prev->state, prev)))
  3046. prev->state = TASK_RUNNING;
  3047. else
  3048. deactivate_task(rq, prev, DEQUEUE_SLEEP);
  3049. switch_count = &prev->nvcsw;
  3050. }
  3051. pre_schedule(rq, prev);
  3052. if (unlikely(!rq->nr_running))
  3053. idle_balance(cpu, rq);
  3054. put_prev_task(rq, prev);
  3055. next = pick_next_task(rq);
  3056. if (likely(prev != next)) {
  3057. sched_info_switch(prev, next);
  3058. perf_event_task_sched_out(prev, next);
  3059. rq->nr_switches++;
  3060. rq->curr = next;
  3061. ++*switch_count;
  3062. context_switch(rq, prev, next); /* unlocks the rq */
  3063. /*
  3064. * the context switch might have flipped the stack from under
  3065. * us, hence refresh the local variables.
  3066. */
  3067. cpu = smp_processor_id();
  3068. rq = cpu_rq(cpu);
  3069. } else
  3070. raw_spin_unlock_irq(&rq->lock);
  3071. post_schedule(rq);
  3072. if (unlikely(reacquire_kernel_lock(current) < 0)) {
  3073. prev = rq->curr;
  3074. switch_count = &prev->nivcsw;
  3075. goto need_resched_nonpreemptible;
  3076. }
  3077. preempt_enable_no_resched();
  3078. if (need_resched())
  3079. goto need_resched;
  3080. }
  3081. EXPORT_SYMBOL(schedule);
  3082. #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
  3083. /*
  3084. * Look out! "owner" is an entirely speculative pointer
  3085. * access and not reliable.
  3086. */
  3087. int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
  3088. {
  3089. unsigned int cpu;
  3090. struct rq *rq;
  3091. if (!sched_feat(OWNER_SPIN))
  3092. return 0;
  3093. #ifdef CONFIG_DEBUG_PAGEALLOC
  3094. /*
  3095. * Need to access the cpu field knowing that
  3096. * DEBUG_PAGEALLOC could have unmapped it if
  3097. * the mutex owner just released it and exited.
  3098. */
  3099. if (probe_kernel_address(&owner->cpu, cpu))
  3100. return 0;
  3101. #else
  3102. cpu = owner->cpu;
  3103. #endif
  3104. /*
  3105. * Even if the access succeeded (likely case),
  3106. * the cpu field may no longer be valid.
  3107. */
  3108. if (cpu >= nr_cpumask_bits)
  3109. return 0;
  3110. /*
  3111. * We need to validate that we can do a
  3112. * get_cpu() and that we have the percpu area.
  3113. */
  3114. if (!cpu_online(cpu))
  3115. return 0;
  3116. rq = cpu_rq(cpu);
  3117. for (;;) {
  3118. /*
  3119. * Owner changed, break to re-assess state.
  3120. */
  3121. if (lock->owner != owner)
  3122. break;
  3123. /*
  3124. * Is that owner really running on that cpu?
  3125. */
  3126. if (task_thread_info(rq->curr) != owner || need_resched())
  3127. return 0;
  3128. cpu_relax();
  3129. }
  3130. return 1;
  3131. }
  3132. #endif
  3133. #ifdef CONFIG_PREEMPT
  3134. /*
  3135. * this is the entry point to schedule() from in-kernel preemption
  3136. * off of preempt_enable. Kernel preemptions off return from interrupt
  3137. * occur there and call schedule directly.
  3138. */
  3139. asmlinkage void __sched preempt_schedule(void)
  3140. {
  3141. struct thread_info *ti = current_thread_info();
  3142. /*
  3143. * If there is a non-zero preempt_count or interrupts are disabled,
  3144. * we do not want to preempt the current task. Just return..
  3145. */
  3146. if (likely(ti->preempt_count || irqs_disabled()))
  3147. return;
  3148. do {
  3149. add_preempt_count(PREEMPT_ACTIVE);
  3150. schedule();
  3151. sub_preempt_count(PREEMPT_ACTIVE);
  3152. /*
  3153. * Check again in case we missed a preemption opportunity
  3154. * between schedule and now.
  3155. */
  3156. barrier();
  3157. } while (need_resched());
  3158. }
  3159. EXPORT_SYMBOL(preempt_schedule);
  3160. /*
  3161. * this is the entry point to schedule() from kernel preemption
  3162. * off of irq context.
  3163. * Note, that this is called and return with irqs disabled. This will
  3164. * protect us against recursive calling from irq.
  3165. */
  3166. asmlinkage void __sched preempt_schedule_irq(void)
  3167. {
  3168. struct thread_info *ti = current_thread_info();
  3169. /* Catch callers which need to be fixed */
  3170. BUG_ON(ti->preempt_count || !irqs_disabled());
  3171. do {
  3172. add_preempt_count(PREEMPT_ACTIVE);
  3173. local_irq_enable();
  3174. schedule();
  3175. local_irq_disable();
  3176. sub_preempt_count(PREEMPT_ACTIVE);
  3177. /*
  3178. * Check again in case we missed a preemption opportunity
  3179. * between schedule and now.
  3180. */
  3181. barrier();
  3182. } while (need_resched());
  3183. }
  3184. #endif /* CONFIG_PREEMPT */
  3185. int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
  3186. void *key)
  3187. {
  3188. return try_to_wake_up(curr->private, mode, wake_flags);
  3189. }
  3190. EXPORT_SYMBOL(default_wake_function);
  3191. /*
  3192. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  3193. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  3194. * number) then we wake all the non-exclusive tasks and one exclusive task.
  3195. *
  3196. * There are circumstances in which we can try to wake a task which has already
  3197. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  3198. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  3199. */
  3200. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  3201. int nr_exclusive, int wake_flags, void *key)
  3202. {
  3203. wait_queue_t *curr, *next;
  3204. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  3205. unsigned flags = curr->flags;
  3206. if (curr->func(curr, mode, wake_flags, key) &&
  3207. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  3208. break;
  3209. }
  3210. }
  3211. /**
  3212. * __wake_up - wake up threads blocked on a waitqueue.
  3213. * @q: the waitqueue
  3214. * @mode: which threads
  3215. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3216. * @key: is directly passed to the wakeup function
  3217. *
  3218. * It may be assumed that this function implies a write memory barrier before
  3219. * changing the task state if and only if any tasks are woken up.
  3220. */
  3221. void __wake_up(wait_queue_head_t *q, unsigned int mode,
  3222. int nr_exclusive, void *key)
  3223. {
  3224. unsigned long flags;
  3225. spin_lock_irqsave(&q->lock, flags);
  3226. __wake_up_common(q, mode, nr_exclusive, 0, key);
  3227. spin_unlock_irqrestore(&q->lock, flags);
  3228. }
  3229. EXPORT_SYMBOL(__wake_up);
  3230. /*
  3231. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  3232. */
  3233. void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  3234. {
  3235. __wake_up_common(q, mode, 1, 0, NULL);
  3236. }
  3237. EXPORT_SYMBOL_GPL(__wake_up_locked);
  3238. void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
  3239. {
  3240. __wake_up_common(q, mode, 1, 0, key);
  3241. }
  3242. /**
  3243. * __wake_up_sync_key - wake up threads blocked on a waitqueue.
  3244. * @q: the waitqueue
  3245. * @mode: which threads
  3246. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3247. * @key: opaque value to be passed to wakeup targets
  3248. *
  3249. * The sync wakeup differs that the waker knows that it will schedule
  3250. * away soon, so while the target thread will be woken up, it will not
  3251. * be migrated to another CPU - ie. the two threads are 'synchronized'
  3252. * with each other. This can prevent needless bouncing between CPUs.
  3253. *
  3254. * On UP it can prevent extra preemption.
  3255. *
  3256. * It may be assumed that this function implies a write memory barrier before
  3257. * changing the task state if and only if any tasks are woken up.
  3258. */
  3259. void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
  3260. int nr_exclusive, void *key)
  3261. {
  3262. unsigned long flags;
  3263. int wake_flags = WF_SYNC;
  3264. if (unlikely(!q))
  3265. return;
  3266. if (unlikely(!nr_exclusive))
  3267. wake_flags = 0;
  3268. spin_lock_irqsave(&q->lock, flags);
  3269. __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
  3270. spin_unlock_irqrestore(&q->lock, flags);
  3271. }
  3272. EXPORT_SYMBOL_GPL(__wake_up_sync_key);
  3273. /*
  3274. * __wake_up_sync - see __wake_up_sync_key()
  3275. */
  3276. void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  3277. {
  3278. __wake_up_sync_key(q, mode, nr_exclusive, NULL);
  3279. }
  3280. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  3281. /**
  3282. * complete: - signals a single thread waiting on this completion
  3283. * @x: holds the state of this particular completion
  3284. *
  3285. * This will wake up a single thread waiting on this completion. Threads will be
  3286. * awakened in the same order in which they were queued.
  3287. *
  3288. * See also complete_all(), wait_for_completion() and related routines.
  3289. *
  3290. * It may be assumed that this function implies a write memory barrier before
  3291. * changing the task state if and only if any tasks are woken up.
  3292. */
  3293. void complete(struct completion *x)
  3294. {
  3295. unsigned long flags;
  3296. spin_lock_irqsave(&x->wait.lock, flags);
  3297. x->done++;
  3298. __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
  3299. spin_unlock_irqrestore(&x->wait.lock, flags);
  3300. }
  3301. EXPORT_SYMBOL(complete);
  3302. /**
  3303. * complete_all: - signals all threads waiting on this completion
  3304. * @x: holds the state of this particular completion
  3305. *
  3306. * This will wake up all threads waiting on this particular completion event.
  3307. *
  3308. * It may be assumed that this function implies a write memory barrier before
  3309. * changing the task state if and only if any tasks are woken up.
  3310. */
  3311. void complete_all(struct completion *x)
  3312. {
  3313. unsigned long flags;
  3314. spin_lock_irqsave(&x->wait.lock, flags);
  3315. x->done += UINT_MAX/2;
  3316. __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
  3317. spin_unlock_irqrestore(&x->wait.lock, flags);
  3318. }
  3319. EXPORT_SYMBOL(complete_all);
  3320. static inline long __sched
  3321. do_wait_for_common(struct completion *x, long timeout, int state)
  3322. {
  3323. if (!x->done) {
  3324. DECLARE_WAITQUEUE(wait, current);
  3325. __add_wait_queue_tail_exclusive(&x->wait, &wait);
  3326. do {
  3327. if (signal_pending_state(state, current)) {
  3328. timeout = -ERESTARTSYS;
  3329. break;
  3330. }
  3331. __set_current_state(state);
  3332. spin_unlock_irq(&x->wait.lock);
  3333. timeout = schedule_timeout(timeout);
  3334. spin_lock_irq(&x->wait.lock);
  3335. } while (!x->done && timeout);
  3336. __remove_wait_queue(&x->wait, &wait);
  3337. if (!x->done)
  3338. return timeout;
  3339. }
  3340. x->done--;
  3341. return timeout ?: 1;
  3342. }
  3343. static long __sched
  3344. wait_for_common(struct completion *x, long timeout, int state)
  3345. {
  3346. might_sleep();
  3347. spin_lock_irq(&x->wait.lock);
  3348. timeout = do_wait_for_common(x, timeout, state);
  3349. spin_unlock_irq(&x->wait.lock);
  3350. return timeout;
  3351. }
  3352. /**
  3353. * wait_for_completion: - waits for completion of a task
  3354. * @x: holds the state of this particular completion
  3355. *
  3356. * This waits to be signaled for completion of a specific task. It is NOT
  3357. * interruptible and there is no timeout.
  3358. *
  3359. * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
  3360. * and interrupt capability. Also see complete().
  3361. */
  3362. void __sched wait_for_completion(struct completion *x)
  3363. {
  3364. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  3365. }
  3366. EXPORT_SYMBOL(wait_for_completion);
  3367. /**
  3368. * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
  3369. * @x: holds the state of this particular completion
  3370. * @timeout: timeout value in jiffies
  3371. *
  3372. * This waits for either a completion of a specific task to be signaled or for a
  3373. * specified timeout to expire. The timeout is in jiffies. It is not
  3374. * interruptible.
  3375. */
  3376. unsigned long __sched
  3377. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  3378. {
  3379. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  3380. }
  3381. EXPORT_SYMBOL(wait_for_completion_timeout);
  3382. /**
  3383. * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
  3384. * @x: holds the state of this particular completion
  3385. *
  3386. * This waits for completion of a specific task to be signaled. It is
  3387. * interruptible.
  3388. */
  3389. int __sched wait_for_completion_interruptible(struct completion *x)
  3390. {
  3391. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  3392. if (t == -ERESTARTSYS)
  3393. return t;
  3394. return 0;
  3395. }
  3396. EXPORT_SYMBOL(wait_for_completion_interruptible);
  3397. /**
  3398. * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
  3399. * @x: holds the state of this particular completion
  3400. * @timeout: timeout value in jiffies
  3401. *
  3402. * This waits for either a completion of a specific task to be signaled or for a
  3403. * specified timeout to expire. It is interruptible. The timeout is in jiffies.
  3404. */
  3405. unsigned long __sched
  3406. wait_for_completion_interruptible_timeout(struct completion *x,
  3407. unsigned long timeout)
  3408. {
  3409. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  3410. }
  3411. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  3412. /**
  3413. * wait_for_completion_killable: - waits for completion of a task (killable)
  3414. * @x: holds the state of this particular completion
  3415. *
  3416. * This waits to be signaled for completion of a specific task. It can be
  3417. * interrupted by a kill signal.
  3418. */
  3419. int __sched wait_for_completion_killable(struct completion *x)
  3420. {
  3421. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
  3422. if (t == -ERESTARTSYS)
  3423. return t;
  3424. return 0;
  3425. }
  3426. EXPORT_SYMBOL(wait_for_completion_killable);
  3427. /**
  3428. * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
  3429. * @x: holds the state of this particular completion
  3430. * @timeout: timeout value in jiffies
  3431. *
  3432. * This waits for either a completion of a specific task to be
  3433. * signaled or for a specified timeout to expire. It can be
  3434. * interrupted by a kill signal. The timeout is in jiffies.
  3435. */
  3436. unsigned long __sched
  3437. wait_for_completion_killable_timeout(struct completion *x,
  3438. unsigned long timeout)
  3439. {
  3440. return wait_for_common(x, timeout, TASK_KILLABLE);
  3441. }
  3442. EXPORT_SYMBOL(wait_for_completion_killable_timeout);
  3443. /**
  3444. * try_wait_for_completion - try to decrement a completion without blocking
  3445. * @x: completion structure
  3446. *
  3447. * Returns: 0 if a decrement cannot be done without blocking
  3448. * 1 if a decrement succeeded.
  3449. *
  3450. * If a completion is being used as a counting completion,
  3451. * attempt to decrement the counter without blocking. This
  3452. * enables us to avoid waiting if the resource the completion
  3453. * is protecting is not available.
  3454. */
  3455. bool try_wait_for_completion(struct completion *x)
  3456. {
  3457. unsigned long flags;
  3458. int ret = 1;
  3459. spin_lock_irqsave(&x->wait.lock, flags);
  3460. if (!x->done)
  3461. ret = 0;
  3462. else
  3463. x->done--;
  3464. spin_unlock_irqrestore(&x->wait.lock, flags);
  3465. return ret;
  3466. }
  3467. EXPORT_SYMBOL(try_wait_for_completion);
  3468. /**
  3469. * completion_done - Test to see if a completion has any waiters
  3470. * @x: completion structure
  3471. *
  3472. * Returns: 0 if there are waiters (wait_for_completion() in progress)
  3473. * 1 if there are no waiters.
  3474. *
  3475. */
  3476. bool completion_done(struct completion *x)
  3477. {
  3478. unsigned long flags;
  3479. int ret = 1;
  3480. spin_lock_irqsave(&x->wait.lock, flags);
  3481. if (!x->done)
  3482. ret = 0;
  3483. spin_unlock_irqrestore(&x->wait.lock, flags);
  3484. return ret;
  3485. }
  3486. EXPORT_SYMBOL(completion_done);
  3487. static long __sched
  3488. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  3489. {
  3490. unsigned long flags;
  3491. wait_queue_t wait;
  3492. init_waitqueue_entry(&wait, current);
  3493. __set_current_state(state);
  3494. spin_lock_irqsave(&q->lock, flags);
  3495. __add_wait_queue(q, &wait);
  3496. spin_unlock(&q->lock);
  3497. timeout = schedule_timeout(timeout);
  3498. spin_lock_irq(&q->lock);
  3499. __remove_wait_queue(q, &wait);
  3500. spin_unlock_irqrestore(&q->lock, flags);
  3501. return timeout;
  3502. }
  3503. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  3504. {
  3505. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3506. }
  3507. EXPORT_SYMBOL(interruptible_sleep_on);
  3508. long __sched
  3509. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3510. {
  3511. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  3512. }
  3513. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  3514. void __sched sleep_on(wait_queue_head_t *q)
  3515. {
  3516. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3517. }
  3518. EXPORT_SYMBOL(sleep_on);
  3519. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3520. {
  3521. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  3522. }
  3523. EXPORT_SYMBOL(sleep_on_timeout);
  3524. #ifdef CONFIG_RT_MUTEXES
  3525. /*
  3526. * rt_mutex_setprio - set the current priority of a task
  3527. * @p: task
  3528. * @prio: prio value (kernel-internal form)
  3529. *
  3530. * This function changes the 'effective' priority of a task. It does
  3531. * not touch ->normal_prio like __setscheduler().
  3532. *
  3533. * Used by the rt_mutex code to implement priority inheritance logic.
  3534. */
  3535. void rt_mutex_setprio(struct task_struct *p, int prio)
  3536. {
  3537. unsigned long flags;
  3538. int oldprio, on_rq, running;
  3539. struct rq *rq;
  3540. const struct sched_class *prev_class;
  3541. BUG_ON(prio < 0 || prio > MAX_PRIO);
  3542. rq = task_rq_lock(p, &flags);
  3543. oldprio = p->prio;
  3544. prev_class = p->sched_class;
  3545. on_rq = p->se.on_rq;
  3546. running = task_current(rq, p);
  3547. if (on_rq)
  3548. dequeue_task(rq, p, 0);
  3549. if (running)
  3550. p->sched_class->put_prev_task(rq, p);
  3551. if (rt_prio(prio))
  3552. p->sched_class = &rt_sched_class;
  3553. else
  3554. p->sched_class = &fair_sched_class;
  3555. p->prio = prio;
  3556. if (running)
  3557. p->sched_class->set_curr_task(rq);
  3558. if (on_rq) {
  3559. enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
  3560. check_class_changed(rq, p, prev_class, oldprio, running);
  3561. }
  3562. task_rq_unlock(rq, &flags);
  3563. }
  3564. #endif
  3565. void set_user_nice(struct task_struct *p, long nice)
  3566. {
  3567. int old_prio, delta, on_rq;
  3568. unsigned long flags;
  3569. struct rq *rq;
  3570. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  3571. return;
  3572. /*
  3573. * We have to be careful, if called from sys_setpriority(),
  3574. * the task might be in the middle of scheduling on another CPU.
  3575. */
  3576. rq = task_rq_lock(p, &flags);
  3577. /*
  3578. * The RT priorities are set via sched_setscheduler(), but we still
  3579. * allow the 'normal' nice value to be set - but as expected
  3580. * it wont have any effect on scheduling until the task is
  3581. * SCHED_FIFO/SCHED_RR:
  3582. */
  3583. if (task_has_rt_policy(p)) {
  3584. p->static_prio = NICE_TO_PRIO(nice);
  3585. goto out_unlock;
  3586. }
  3587. on_rq = p->se.on_rq;
  3588. if (on_rq)
  3589. dequeue_task(rq, p, 0);
  3590. p->static_prio = NICE_TO_PRIO(nice);
  3591. set_load_weight(p);
  3592. old_prio = p->prio;
  3593. p->prio = effective_prio(p);
  3594. delta = p->prio - old_prio;
  3595. if (on_rq) {
  3596. enqueue_task(rq, p, 0);
  3597. /*
  3598. * If the task increased its priority or is running and
  3599. * lowered its priority, then reschedule its CPU:
  3600. */
  3601. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  3602. resched_task(rq->curr);
  3603. }
  3604. out_unlock:
  3605. task_rq_unlock(rq, &flags);
  3606. }
  3607. EXPORT_SYMBOL(set_user_nice);
  3608. /*
  3609. * can_nice - check if a task can reduce its nice value
  3610. * @p: task
  3611. * @nice: nice value
  3612. */
  3613. int can_nice(const struct task_struct *p, const int nice)
  3614. {
  3615. /* convert nice value [19,-20] to rlimit style value [1,40] */
  3616. int nice_rlim = 20 - nice;
  3617. return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
  3618. capable(CAP_SYS_NICE));
  3619. }
  3620. #ifdef __ARCH_WANT_SYS_NICE
  3621. /*
  3622. * sys_nice - change the priority of the current process.
  3623. * @increment: priority increment
  3624. *
  3625. * sys_setpriority is a more generic, but much slower function that
  3626. * does similar things.
  3627. */
  3628. SYSCALL_DEFINE1(nice, int, increment)
  3629. {
  3630. long nice, retval;
  3631. /*
  3632. * Setpriority might change our priority at the same moment.
  3633. * We don't have to worry. Conceptually one call occurs first
  3634. * and we have a single winner.
  3635. */
  3636. if (increment < -40)
  3637. increment = -40;
  3638. if (increment > 40)
  3639. increment = 40;
  3640. nice = TASK_NICE(current) + increment;
  3641. if (nice < -20)
  3642. nice = -20;
  3643. if (nice > 19)
  3644. nice = 19;
  3645. if (increment < 0 && !can_nice(current, nice))
  3646. return -EPERM;
  3647. retval = security_task_setnice(current, nice);
  3648. if (retval)
  3649. return retval;
  3650. set_user_nice(current, nice);
  3651. return 0;
  3652. }
  3653. #endif
  3654. /**
  3655. * task_prio - return the priority value of a given task.
  3656. * @p: the task in question.
  3657. *
  3658. * This is the priority value as seen by users in /proc.
  3659. * RT tasks are offset by -200. Normal tasks are centered
  3660. * around 0, value goes from -16 to +15.
  3661. */
  3662. int task_prio(const struct task_struct *p)
  3663. {
  3664. return p->prio - MAX_RT_PRIO;
  3665. }
  3666. /**
  3667. * task_nice - return the nice value of a given task.
  3668. * @p: the task in question.
  3669. */
  3670. int task_nice(const struct task_struct *p)
  3671. {
  3672. return TASK_NICE(p);
  3673. }
  3674. EXPORT_SYMBOL(task_nice);
  3675. /**
  3676. * idle_cpu - is a given cpu idle currently?
  3677. * @cpu: the processor in question.
  3678. */
  3679. int idle_cpu(int cpu)
  3680. {
  3681. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  3682. }
  3683. /**
  3684. * idle_task - return the idle task for a given cpu.
  3685. * @cpu: the processor in question.
  3686. */
  3687. struct task_struct *idle_task(int cpu)
  3688. {
  3689. return cpu_rq(cpu)->idle;
  3690. }
  3691. /**
  3692. * find_process_by_pid - find a process with a matching PID value.
  3693. * @pid: the pid in question.
  3694. */
  3695. static struct task_struct *find_process_by_pid(pid_t pid)
  3696. {
  3697. return pid ? find_task_by_vpid(pid) : current;
  3698. }
  3699. /* Actually do priority change: must hold rq lock. */
  3700. static void
  3701. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  3702. {
  3703. BUG_ON(p->se.on_rq);
  3704. p->policy = policy;
  3705. p->rt_priority = prio;
  3706. p->normal_prio = normal_prio(p);
  3707. /* we are holding p->pi_lock already */
  3708. p->prio = rt_mutex_getprio(p);
  3709. if (rt_prio(p->prio))
  3710. p->sched_class = &rt_sched_class;
  3711. else
  3712. p->sched_class = &fair_sched_class;
  3713. set_load_weight(p);
  3714. }
  3715. /*
  3716. * check the target process has a UID that matches the current process's
  3717. */
  3718. static bool check_same_owner(struct task_struct *p)
  3719. {
  3720. const struct cred *cred = current_cred(), *pcred;
  3721. bool match;
  3722. rcu_read_lock();
  3723. pcred = __task_cred(p);
  3724. match = (cred->euid == pcred->euid ||
  3725. cred->euid == pcred->uid);
  3726. rcu_read_unlock();
  3727. return match;
  3728. }
  3729. static int __sched_setscheduler(struct task_struct *p, int policy,
  3730. struct sched_param *param, bool user)
  3731. {
  3732. int retval, oldprio, oldpolicy = -1, on_rq, running;
  3733. unsigned long flags;
  3734. const struct sched_class *prev_class;
  3735. struct rq *rq;
  3736. int reset_on_fork;
  3737. /* may grab non-irq protected spin_locks */
  3738. BUG_ON(in_interrupt());
  3739. recheck:
  3740. /* double check policy once rq lock held */
  3741. if (policy < 0) {
  3742. reset_on_fork = p->sched_reset_on_fork;
  3743. policy = oldpolicy = p->policy;
  3744. } else {
  3745. reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
  3746. policy &= ~SCHED_RESET_ON_FORK;
  3747. if (policy != SCHED_FIFO && policy != SCHED_RR &&
  3748. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  3749. policy != SCHED_IDLE)
  3750. return -EINVAL;
  3751. }
  3752. /*
  3753. * Valid priorities for SCHED_FIFO and SCHED_RR are
  3754. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  3755. * SCHED_BATCH and SCHED_IDLE is 0.
  3756. */
  3757. if (param->sched_priority < 0 ||
  3758. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  3759. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  3760. return -EINVAL;
  3761. if (rt_policy(policy) != (param->sched_priority != 0))
  3762. return -EINVAL;
  3763. /*
  3764. * Allow unprivileged RT tasks to decrease priority:
  3765. */
  3766. if (user && !capable(CAP_SYS_NICE)) {
  3767. if (rt_policy(policy)) {
  3768. unsigned long rlim_rtprio;
  3769. if (!lock_task_sighand(p, &flags))
  3770. return -ESRCH;
  3771. rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO);
  3772. unlock_task_sighand(p, &flags);
  3773. /* can't set/change the rt policy */
  3774. if (policy != p->policy && !rlim_rtprio)
  3775. return -EPERM;
  3776. /* can't increase priority */
  3777. if (param->sched_priority > p->rt_priority &&
  3778. param->sched_priority > rlim_rtprio)
  3779. return -EPERM;
  3780. }
  3781. /*
  3782. * Like positive nice levels, dont allow tasks to
  3783. * move out of SCHED_IDLE either:
  3784. */
  3785. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
  3786. return -EPERM;
  3787. /* can't change other user's priorities */
  3788. if (!check_same_owner(p))
  3789. return -EPERM;
  3790. /* Normal users shall not reset the sched_reset_on_fork flag */
  3791. if (p->sched_reset_on_fork && !reset_on_fork)
  3792. return -EPERM;
  3793. }
  3794. if (user) {
  3795. retval = security_task_setscheduler(p, policy, param);
  3796. if (retval)
  3797. return retval;
  3798. }
  3799. /*
  3800. * make sure no PI-waiters arrive (or leave) while we are
  3801. * changing the priority of the task:
  3802. */
  3803. raw_spin_lock_irqsave(&p->pi_lock, flags);
  3804. /*
  3805. * To be able to change p->policy safely, the apropriate
  3806. * runqueue lock must be held.
  3807. */
  3808. rq = __task_rq_lock(p);
  3809. #ifdef CONFIG_RT_GROUP_SCHED
  3810. if (user) {
  3811. /*
  3812. * Do not allow realtime tasks into groups that have no runtime
  3813. * assigned.
  3814. */
  3815. if (rt_bandwidth_enabled() && rt_policy(policy) &&
  3816. task_group(p)->rt_bandwidth.rt_runtime == 0) {
  3817. __task_rq_unlock(rq);
  3818. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  3819. return -EPERM;
  3820. }
  3821. }
  3822. #endif
  3823. /* recheck policy now with rq lock held */
  3824. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  3825. policy = oldpolicy = -1;
  3826. __task_rq_unlock(rq);
  3827. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  3828. goto recheck;
  3829. }
  3830. on_rq = p->se.on_rq;
  3831. running = task_current(rq, p);
  3832. if (on_rq)
  3833. deactivate_task(rq, p, 0);
  3834. if (running)
  3835. p->sched_class->put_prev_task(rq, p);
  3836. p->sched_reset_on_fork = reset_on_fork;
  3837. oldprio = p->prio;
  3838. prev_class = p->sched_class;
  3839. __setscheduler(rq, p, policy, param->sched_priority);
  3840. if (running)
  3841. p->sched_class->set_curr_task(rq);
  3842. if (on_rq) {
  3843. activate_task(rq, p, 0);
  3844. check_class_changed(rq, p, prev_class, oldprio, running);
  3845. }
  3846. __task_rq_unlock(rq);
  3847. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  3848. rt_mutex_adjust_pi(p);
  3849. return 0;
  3850. }
  3851. /**
  3852. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  3853. * @p: the task in question.
  3854. * @policy: new policy.
  3855. * @param: structure containing the new RT priority.
  3856. *
  3857. * NOTE that the task may be already dead.
  3858. */
  3859. int sched_setscheduler(struct task_struct *p, int policy,
  3860. struct sched_param *param)
  3861. {
  3862. return __sched_setscheduler(p, policy, param, true);
  3863. }
  3864. EXPORT_SYMBOL_GPL(sched_setscheduler);
  3865. /**
  3866. * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
  3867. * @p: the task in question.
  3868. * @policy: new policy.
  3869. * @param: structure containing the new RT priority.
  3870. *
  3871. * Just like sched_setscheduler, only don't bother checking if the
  3872. * current context has permission. For example, this is needed in
  3873. * stop_machine(): we create temporary high priority worker threads,
  3874. * but our caller might not have that capability.
  3875. */
  3876. int sched_setscheduler_nocheck(struct task_struct *p, int policy,
  3877. struct sched_param *param)
  3878. {
  3879. return __sched_setscheduler(p, policy, param, false);
  3880. }
  3881. static int
  3882. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  3883. {
  3884. struct sched_param lparam;
  3885. struct task_struct *p;
  3886. int retval;
  3887. if (!param || pid < 0)
  3888. return -EINVAL;
  3889. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  3890. return -EFAULT;
  3891. rcu_read_lock();
  3892. retval = -ESRCH;
  3893. p = find_process_by_pid(pid);
  3894. if (p != NULL)
  3895. retval = sched_setscheduler(p, policy, &lparam);
  3896. rcu_read_unlock();
  3897. return retval;
  3898. }
  3899. /**
  3900. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  3901. * @pid: the pid in question.
  3902. * @policy: new policy.
  3903. * @param: structure containing the new RT priority.
  3904. */
  3905. SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
  3906. struct sched_param __user *, param)
  3907. {
  3908. /* negative values for policy are not valid */
  3909. if (policy < 0)
  3910. return -EINVAL;
  3911. return do_sched_setscheduler(pid, policy, param);
  3912. }
  3913. /**
  3914. * sys_sched_setparam - set/change the RT priority of a thread
  3915. * @pid: the pid in question.
  3916. * @param: structure containing the new RT priority.
  3917. */
  3918. SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
  3919. {
  3920. return do_sched_setscheduler(pid, -1, param);
  3921. }
  3922. /**
  3923. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  3924. * @pid: the pid in question.
  3925. */
  3926. SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
  3927. {
  3928. struct task_struct *p;
  3929. int retval;
  3930. if (pid < 0)
  3931. return -EINVAL;
  3932. retval = -ESRCH;
  3933. rcu_read_lock();
  3934. p = find_process_by_pid(pid);
  3935. if (p) {
  3936. retval = security_task_getscheduler(p);
  3937. if (!retval)
  3938. retval = p->policy
  3939. | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
  3940. }
  3941. rcu_read_unlock();
  3942. return retval;
  3943. }
  3944. /**
  3945. * sys_sched_getparam - get the RT priority of a thread
  3946. * @pid: the pid in question.
  3947. * @param: structure containing the RT priority.
  3948. */
  3949. SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
  3950. {
  3951. struct sched_param lp;
  3952. struct task_struct *p;
  3953. int retval;
  3954. if (!param || pid < 0)
  3955. return -EINVAL;
  3956. rcu_read_lock();
  3957. p = find_process_by_pid(pid);
  3958. retval = -ESRCH;
  3959. if (!p)
  3960. goto out_unlock;
  3961. retval = security_task_getscheduler(p);
  3962. if (retval)
  3963. goto out_unlock;
  3964. lp.sched_priority = p->rt_priority;
  3965. rcu_read_unlock();
  3966. /*
  3967. * This one might sleep, we cannot do it with a spinlock held ...
  3968. */
  3969. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  3970. return retval;
  3971. out_unlock:
  3972. rcu_read_unlock();
  3973. return retval;
  3974. }
  3975. long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
  3976. {
  3977. cpumask_var_t cpus_allowed, new_mask;
  3978. struct task_struct *p;
  3979. int retval;
  3980. get_online_cpus();
  3981. rcu_read_lock();
  3982. p = find_process_by_pid(pid);
  3983. if (!p) {
  3984. rcu_read_unlock();
  3985. put_online_cpus();
  3986. return -ESRCH;
  3987. }
  3988. /* Prevent p going away */
  3989. get_task_struct(p);
  3990. rcu_read_unlock();
  3991. if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
  3992. retval = -ENOMEM;
  3993. goto out_put_task;
  3994. }
  3995. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
  3996. retval = -ENOMEM;
  3997. goto out_free_cpus_allowed;
  3998. }
  3999. retval = -EPERM;
  4000. if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
  4001. goto out_unlock;
  4002. retval = security_task_setscheduler(p, 0, NULL);
  4003. if (retval)
  4004. goto out_unlock;
  4005. cpuset_cpus_allowed(p, cpus_allowed);
  4006. cpumask_and(new_mask, in_mask, cpus_allowed);
  4007. again:
  4008. retval = set_cpus_allowed_ptr(p, new_mask);
  4009. if (!retval) {
  4010. cpuset_cpus_allowed(p, cpus_allowed);
  4011. if (!cpumask_subset(new_mask, cpus_allowed)) {
  4012. /*
  4013. * We must have raced with a concurrent cpuset
  4014. * update. Just reset the cpus_allowed to the
  4015. * cpuset's cpus_allowed
  4016. */
  4017. cpumask_copy(new_mask, cpus_allowed);
  4018. goto again;
  4019. }
  4020. }
  4021. out_unlock:
  4022. free_cpumask_var(new_mask);
  4023. out_free_cpus_allowed:
  4024. free_cpumask_var(cpus_allowed);
  4025. out_put_task:
  4026. put_task_struct(p);
  4027. put_online_cpus();
  4028. return retval;
  4029. }
  4030. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  4031. struct cpumask *new_mask)
  4032. {
  4033. if (len < cpumask_size())
  4034. cpumask_clear(new_mask);
  4035. else if (len > cpumask_size())
  4036. len = cpumask_size();
  4037. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  4038. }
  4039. /**
  4040. * sys_sched_setaffinity - set the cpu affinity of a process
  4041. * @pid: pid of the process
  4042. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4043. * @user_mask_ptr: user-space pointer to the new cpu mask
  4044. */
  4045. SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
  4046. unsigned long __user *, user_mask_ptr)
  4047. {
  4048. cpumask_var_t new_mask;
  4049. int retval;
  4050. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
  4051. return -ENOMEM;
  4052. retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
  4053. if (retval == 0)
  4054. retval = sched_setaffinity(pid, new_mask);
  4055. free_cpumask_var(new_mask);
  4056. return retval;
  4057. }
  4058. long sched_getaffinity(pid_t pid, struct cpumask *mask)
  4059. {
  4060. struct task_struct *p;
  4061. unsigned long flags;
  4062. struct rq *rq;
  4063. int retval;
  4064. get_online_cpus();
  4065. rcu_read_lock();
  4066. retval = -ESRCH;
  4067. p = find_process_by_pid(pid);
  4068. if (!p)
  4069. goto out_unlock;
  4070. retval = security_task_getscheduler(p);
  4071. if (retval)
  4072. goto out_unlock;
  4073. rq = task_rq_lock(p, &flags);
  4074. cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
  4075. task_rq_unlock(rq, &flags);
  4076. out_unlock:
  4077. rcu_read_unlock();
  4078. put_online_cpus();
  4079. return retval;
  4080. }
  4081. /**
  4082. * sys_sched_getaffinity - get the cpu affinity of a process
  4083. * @pid: pid of the process
  4084. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4085. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  4086. */
  4087. SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
  4088. unsigned long __user *, user_mask_ptr)
  4089. {
  4090. int ret;
  4091. cpumask_var_t mask;
  4092. if ((len * BITS_PER_BYTE) < nr_cpu_ids)
  4093. return -EINVAL;
  4094. if (len & (sizeof(unsigned long)-1))
  4095. return -EINVAL;
  4096. if (!alloc_cpumask_var(&mask, GFP_KERNEL))
  4097. return -ENOMEM;
  4098. ret = sched_getaffinity(pid, mask);
  4099. if (ret == 0) {
  4100. size_t retlen = min_t(size_t, len, cpumask_size());
  4101. if (copy_to_user(user_mask_ptr, mask, retlen))
  4102. ret = -EFAULT;
  4103. else
  4104. ret = retlen;
  4105. }
  4106. free_cpumask_var(mask);
  4107. return ret;
  4108. }
  4109. /**
  4110. * sys_sched_yield - yield the current processor to other threads.
  4111. *
  4112. * This function yields the current CPU to other tasks. If there are no
  4113. * other threads running on this CPU then this function will return.
  4114. */
  4115. SYSCALL_DEFINE0(sched_yield)
  4116. {
  4117. struct rq *rq = this_rq_lock();
  4118. schedstat_inc(rq, yld_count);
  4119. current->sched_class->yield_task(rq);
  4120. /*
  4121. * Since we are going to call schedule() anyway, there's
  4122. * no need to preempt or enable interrupts:
  4123. */
  4124. __release(rq->lock);
  4125. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  4126. do_raw_spin_unlock(&rq->lock);
  4127. preempt_enable_no_resched();
  4128. schedule();
  4129. return 0;
  4130. }
  4131. static inline int should_resched(void)
  4132. {
  4133. return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
  4134. }
  4135. static void __cond_resched(void)
  4136. {
  4137. add_preempt_count(PREEMPT_ACTIVE);
  4138. schedule();
  4139. sub_preempt_count(PREEMPT_ACTIVE);
  4140. }
  4141. int __sched _cond_resched(void)
  4142. {
  4143. if (should_resched()) {
  4144. __cond_resched();
  4145. return 1;
  4146. }
  4147. return 0;
  4148. }
  4149. EXPORT_SYMBOL(_cond_resched);
  4150. /*
  4151. * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
  4152. * call schedule, and on return reacquire the lock.
  4153. *
  4154. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  4155. * operations here to prevent schedule() from being called twice (once via
  4156. * spin_unlock(), once by hand).
  4157. */
  4158. int __cond_resched_lock(spinlock_t *lock)
  4159. {
  4160. int resched = should_resched();
  4161. int ret = 0;
  4162. lockdep_assert_held(lock);
  4163. if (spin_needbreak(lock) || resched) {
  4164. spin_unlock(lock);
  4165. if (resched)
  4166. __cond_resched();
  4167. else
  4168. cpu_relax();
  4169. ret = 1;
  4170. spin_lock(lock);
  4171. }
  4172. return ret;
  4173. }
  4174. EXPORT_SYMBOL(__cond_resched_lock);
  4175. int __sched __cond_resched_softirq(void)
  4176. {
  4177. BUG_ON(!in_softirq());
  4178. if (should_resched()) {
  4179. local_bh_enable();
  4180. __cond_resched();
  4181. local_bh_disable();
  4182. return 1;
  4183. }
  4184. return 0;
  4185. }
  4186. EXPORT_SYMBOL(__cond_resched_softirq);
  4187. /**
  4188. * yield - yield the current processor to other threads.
  4189. *
  4190. * This is a shortcut for kernel-space yielding - it marks the
  4191. * thread runnable and calls sys_sched_yield().
  4192. */
  4193. void __sched yield(void)
  4194. {
  4195. set_current_state(TASK_RUNNING);
  4196. sys_sched_yield();
  4197. }
  4198. EXPORT_SYMBOL(yield);
  4199. /*
  4200. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  4201. * that process accounting knows that this is a task in IO wait state.
  4202. */
  4203. void __sched io_schedule(void)
  4204. {
  4205. struct rq *rq = raw_rq();
  4206. delayacct_blkio_start();
  4207. atomic_inc(&rq->nr_iowait);
  4208. current->in_iowait = 1;
  4209. schedule();
  4210. current->in_iowait = 0;
  4211. atomic_dec(&rq->nr_iowait);
  4212. delayacct_blkio_end();
  4213. }
  4214. EXPORT_SYMBOL(io_schedule);
  4215. long __sched io_schedule_timeout(long timeout)
  4216. {
  4217. struct rq *rq = raw_rq();
  4218. long ret;
  4219. delayacct_blkio_start();
  4220. atomic_inc(&rq->nr_iowait);
  4221. current->in_iowait = 1;
  4222. ret = schedule_timeout(timeout);
  4223. current->in_iowait = 0;
  4224. atomic_dec(&rq->nr_iowait);
  4225. delayacct_blkio_end();
  4226. return ret;
  4227. }
  4228. /**
  4229. * sys_sched_get_priority_max - return maximum RT priority.
  4230. * @policy: scheduling class.
  4231. *
  4232. * this syscall returns the maximum rt_priority that can be used
  4233. * by a given scheduling class.
  4234. */
  4235. SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
  4236. {
  4237. int ret = -EINVAL;
  4238. switch (policy) {
  4239. case SCHED_FIFO:
  4240. case SCHED_RR:
  4241. ret = MAX_USER_RT_PRIO-1;
  4242. break;
  4243. case SCHED_NORMAL:
  4244. case SCHED_BATCH:
  4245. case SCHED_IDLE:
  4246. ret = 0;
  4247. break;
  4248. }
  4249. return ret;
  4250. }
  4251. /**
  4252. * sys_sched_get_priority_min - return minimum RT priority.
  4253. * @policy: scheduling class.
  4254. *
  4255. * this syscall returns the minimum rt_priority that can be used
  4256. * by a given scheduling class.
  4257. */
  4258. SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
  4259. {
  4260. int ret = -EINVAL;
  4261. switch (policy) {
  4262. case SCHED_FIFO:
  4263. case SCHED_RR:
  4264. ret = 1;
  4265. break;
  4266. case SCHED_NORMAL:
  4267. case SCHED_BATCH:
  4268. case SCHED_IDLE:
  4269. ret = 0;
  4270. }
  4271. return ret;
  4272. }
  4273. /**
  4274. * sys_sched_rr_get_interval - return the default timeslice of a process.
  4275. * @pid: pid of the process.
  4276. * @interval: userspace pointer to the timeslice value.
  4277. *
  4278. * this syscall writes the default timeslice value of a given process
  4279. * into the user-space timespec buffer. A value of '0' means infinity.
  4280. */
  4281. SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
  4282. struct timespec __user *, interval)
  4283. {
  4284. struct task_struct *p;
  4285. unsigned int time_slice;
  4286. unsigned long flags;
  4287. struct rq *rq;
  4288. int retval;
  4289. struct timespec t;
  4290. if (pid < 0)
  4291. return -EINVAL;
  4292. retval = -ESRCH;
  4293. rcu_read_lock();
  4294. p = find_process_by_pid(pid);
  4295. if (!p)
  4296. goto out_unlock;
  4297. retval = security_task_getscheduler(p);
  4298. if (retval)
  4299. goto out_unlock;
  4300. rq = task_rq_lock(p, &flags);
  4301. time_slice = p->sched_class->get_rr_interval(rq, p);
  4302. task_rq_unlock(rq, &flags);
  4303. rcu_read_unlock();
  4304. jiffies_to_timespec(time_slice, &t);
  4305. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  4306. return retval;
  4307. out_unlock:
  4308. rcu_read_unlock();
  4309. return retval;
  4310. }
  4311. static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
  4312. void sched_show_task(struct task_struct *p)
  4313. {
  4314. unsigned long free = 0;
  4315. unsigned state;
  4316. state = p->state ? __ffs(p->state) + 1 : 0;
  4317. printk(KERN_INFO "%-13.13s %c", p->comm,
  4318. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  4319. #if BITS_PER_LONG == 32
  4320. if (state == TASK_RUNNING)
  4321. printk(KERN_CONT " running ");
  4322. else
  4323. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  4324. #else
  4325. if (state == TASK_RUNNING)
  4326. printk(KERN_CONT " running task ");
  4327. else
  4328. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  4329. #endif
  4330. #ifdef CONFIG_DEBUG_STACK_USAGE
  4331. free = stack_not_used(p);
  4332. #endif
  4333. printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
  4334. task_pid_nr(p), task_pid_nr(p->real_parent),
  4335. (unsigned long)task_thread_info(p)->flags);
  4336. show_stack(p, NULL);
  4337. }
  4338. void show_state_filter(unsigned long state_filter)
  4339. {
  4340. struct task_struct *g, *p;
  4341. #if BITS_PER_LONG == 32
  4342. printk(KERN_INFO
  4343. " task PC stack pid father\n");
  4344. #else
  4345. printk(KERN_INFO
  4346. " task PC stack pid father\n");
  4347. #endif
  4348. read_lock(&tasklist_lock);
  4349. do_each_thread(g, p) {
  4350. /*
  4351. * reset the NMI-timeout, listing all files on a slow
  4352. * console might take alot of time:
  4353. */
  4354. touch_nmi_watchdog();
  4355. if (!state_filter || (p->state & state_filter))
  4356. sched_show_task(p);
  4357. } while_each_thread(g, p);
  4358. touch_all_softlockup_watchdogs();
  4359. #ifdef CONFIG_SCHED_DEBUG
  4360. sysrq_sched_debug_show();
  4361. #endif
  4362. read_unlock(&tasklist_lock);
  4363. /*
  4364. * Only show locks if all tasks are dumped:
  4365. */
  4366. if (!state_filter)
  4367. debug_show_all_locks();
  4368. }
  4369. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  4370. {
  4371. idle->sched_class = &idle_sched_class;
  4372. }
  4373. /**
  4374. * init_idle - set up an idle thread for a given CPU
  4375. * @idle: task in question
  4376. * @cpu: cpu the idle task belongs to
  4377. *
  4378. * NOTE: this function does not set the idle thread's NEED_RESCHED
  4379. * flag, to make booting more robust.
  4380. */
  4381. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  4382. {
  4383. struct rq *rq = cpu_rq(cpu);
  4384. unsigned long flags;
  4385. raw_spin_lock_irqsave(&rq->lock, flags);
  4386. __sched_fork(idle);
  4387. idle->state = TASK_RUNNING;
  4388. idle->se.exec_start = sched_clock();
  4389. cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
  4390. __set_task_cpu(idle, cpu);
  4391. rq->curr = rq->idle = idle;
  4392. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  4393. idle->oncpu = 1;
  4394. #endif
  4395. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4396. /* Set the preempt count _outside_ the spinlocks! */
  4397. #if defined(CONFIG_PREEMPT)
  4398. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  4399. #else
  4400. task_thread_info(idle)->preempt_count = 0;
  4401. #endif
  4402. /*
  4403. * The idle tasks have their own, simple scheduling class:
  4404. */
  4405. idle->sched_class = &idle_sched_class;
  4406. ftrace_graph_init_task(idle);
  4407. }
  4408. /*
  4409. * In a system that switches off the HZ timer nohz_cpu_mask
  4410. * indicates which cpus entered this state. This is used
  4411. * in the rcu update to wait only for active cpus. For system
  4412. * which do not switch off the HZ timer nohz_cpu_mask should
  4413. * always be CPU_BITS_NONE.
  4414. */
  4415. cpumask_var_t nohz_cpu_mask;
  4416. /*
  4417. * Increase the granularity value when there are more CPUs,
  4418. * because with more CPUs the 'effective latency' as visible
  4419. * to users decreases. But the relationship is not linear,
  4420. * so pick a second-best guess by going with the log2 of the
  4421. * number of CPUs.
  4422. *
  4423. * This idea comes from the SD scheduler of Con Kolivas:
  4424. */
  4425. static int get_update_sysctl_factor(void)
  4426. {
  4427. unsigned int cpus = min_t(int, num_online_cpus(), 8);
  4428. unsigned int factor;
  4429. switch (sysctl_sched_tunable_scaling) {
  4430. case SCHED_TUNABLESCALING_NONE:
  4431. factor = 1;
  4432. break;
  4433. case SCHED_TUNABLESCALING_LINEAR:
  4434. factor = cpus;
  4435. break;
  4436. case SCHED_TUNABLESCALING_LOG:
  4437. default:
  4438. factor = 1 + ilog2(cpus);
  4439. break;
  4440. }
  4441. return factor;
  4442. }
  4443. static void update_sysctl(void)
  4444. {
  4445. unsigned int factor = get_update_sysctl_factor();
  4446. #define SET_SYSCTL(name) \
  4447. (sysctl_##name = (factor) * normalized_sysctl_##name)
  4448. SET_SYSCTL(sched_min_granularity);
  4449. SET_SYSCTL(sched_latency);
  4450. SET_SYSCTL(sched_wakeup_granularity);
  4451. SET_SYSCTL(sched_shares_ratelimit);
  4452. #undef SET_SYSCTL
  4453. }
  4454. static inline void sched_init_granularity(void)
  4455. {
  4456. update_sysctl();
  4457. }
  4458. #ifdef CONFIG_SMP
  4459. /*
  4460. * This is how migration works:
  4461. *
  4462. * 1) we invoke migration_cpu_stop() on the target CPU using
  4463. * stop_one_cpu().
  4464. * 2) stopper starts to run (implicitly forcing the migrated thread
  4465. * off the CPU)
  4466. * 3) it checks whether the migrated task is still in the wrong runqueue.
  4467. * 4) if it's in the wrong runqueue then the migration thread removes
  4468. * it and puts it into the right queue.
  4469. * 5) stopper completes and stop_one_cpu() returns and the migration
  4470. * is done.
  4471. */
  4472. /*
  4473. * Change a given task's CPU affinity. Migrate the thread to a
  4474. * proper CPU and schedule it away if the CPU it's executing on
  4475. * is removed from the allowed bitmask.
  4476. *
  4477. * NOTE: the caller must have a valid reference to the task, the
  4478. * task must not exit() & deallocate itself prematurely. The
  4479. * call is not atomic; no spinlocks may be held.
  4480. */
  4481. int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
  4482. {
  4483. unsigned long flags;
  4484. struct rq *rq;
  4485. unsigned int dest_cpu;
  4486. int ret = 0;
  4487. /*
  4488. * Serialize against TASK_WAKING so that ttwu() and wunt() can
  4489. * drop the rq->lock and still rely on ->cpus_allowed.
  4490. */
  4491. again:
  4492. while (task_is_waking(p))
  4493. cpu_relax();
  4494. rq = task_rq_lock(p, &flags);
  4495. if (task_is_waking(p)) {
  4496. task_rq_unlock(rq, &flags);
  4497. goto again;
  4498. }
  4499. if (!cpumask_intersects(new_mask, cpu_active_mask)) {
  4500. ret = -EINVAL;
  4501. goto out;
  4502. }
  4503. if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
  4504. !cpumask_equal(&p->cpus_allowed, new_mask))) {
  4505. ret = -EINVAL;
  4506. goto out;
  4507. }
  4508. if (p->sched_class->set_cpus_allowed)
  4509. p->sched_class->set_cpus_allowed(p, new_mask);
  4510. else {
  4511. cpumask_copy(&p->cpus_allowed, new_mask);
  4512. p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
  4513. }
  4514. /* Can the task run on the task's current CPU? If so, we're done */
  4515. if (cpumask_test_cpu(task_cpu(p), new_mask))
  4516. goto out;
  4517. dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
  4518. if (migrate_task(p, dest_cpu)) {
  4519. struct migration_arg arg = { p, dest_cpu };
  4520. /* Need help from migration thread: drop lock and wait. */
  4521. task_rq_unlock(rq, &flags);
  4522. stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
  4523. tlb_migrate_finish(p->mm);
  4524. return 0;
  4525. }
  4526. out:
  4527. task_rq_unlock(rq, &flags);
  4528. return ret;
  4529. }
  4530. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  4531. /*
  4532. * Move (not current) task off this cpu, onto dest cpu. We're doing
  4533. * this because either it can't run here any more (set_cpus_allowed()
  4534. * away from this CPU, or CPU going down), or because we're
  4535. * attempting to rebalance this task on exec (sched_exec).
  4536. *
  4537. * So we race with normal scheduler movements, but that's OK, as long
  4538. * as the task is no longer on this CPU.
  4539. *
  4540. * Returns non-zero if task was successfully migrated.
  4541. */
  4542. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  4543. {
  4544. struct rq *rq_dest, *rq_src;
  4545. int ret = 0;
  4546. if (unlikely(!cpu_active(dest_cpu)))
  4547. return ret;
  4548. rq_src = cpu_rq(src_cpu);
  4549. rq_dest = cpu_rq(dest_cpu);
  4550. double_rq_lock(rq_src, rq_dest);
  4551. /* Already moved. */
  4552. if (task_cpu(p) != src_cpu)
  4553. goto done;
  4554. /* Affinity changed (again). */
  4555. if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  4556. goto fail;
  4557. /*
  4558. * If we're not on a rq, the next wake-up will ensure we're
  4559. * placed properly.
  4560. */
  4561. if (p->se.on_rq) {
  4562. deactivate_task(rq_src, p, 0);
  4563. set_task_cpu(p, dest_cpu);
  4564. activate_task(rq_dest, p, 0);
  4565. check_preempt_curr(rq_dest, p, 0);
  4566. }
  4567. done:
  4568. ret = 1;
  4569. fail:
  4570. double_rq_unlock(rq_src, rq_dest);
  4571. return ret;
  4572. }
  4573. /*
  4574. * migration_cpu_stop - this will be executed by a highprio stopper thread
  4575. * and performs thread migration by bumping thread off CPU then
  4576. * 'pushing' onto another runqueue.
  4577. */
  4578. static int migration_cpu_stop(void *data)
  4579. {
  4580. struct migration_arg *arg = data;
  4581. /*
  4582. * The original target cpu might have gone down and we might
  4583. * be on another cpu but it doesn't matter.
  4584. */
  4585. local_irq_disable();
  4586. __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
  4587. local_irq_enable();
  4588. return 0;
  4589. }
  4590. #ifdef CONFIG_HOTPLUG_CPU
  4591. /*
  4592. * Figure out where task on dead CPU should go, use force if necessary.
  4593. */
  4594. void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
  4595. {
  4596. struct rq *rq = cpu_rq(dead_cpu);
  4597. int needs_cpu, uninitialized_var(dest_cpu);
  4598. unsigned long flags;
  4599. local_irq_save(flags);
  4600. raw_spin_lock(&rq->lock);
  4601. needs_cpu = (task_cpu(p) == dead_cpu) && (p->state != TASK_WAKING);
  4602. if (needs_cpu)
  4603. dest_cpu = select_fallback_rq(dead_cpu, p);
  4604. raw_spin_unlock(&rq->lock);
  4605. /*
  4606. * It can only fail if we race with set_cpus_allowed(),
  4607. * in the racer should migrate the task anyway.
  4608. */
  4609. if (needs_cpu)
  4610. __migrate_task(p, dead_cpu, dest_cpu);
  4611. local_irq_restore(flags);
  4612. }
  4613. /*
  4614. * While a dead CPU has no uninterruptible tasks queued at this point,
  4615. * it might still have a nonzero ->nr_uninterruptible counter, because
  4616. * for performance reasons the counter is not stricly tracking tasks to
  4617. * their home CPUs. So we just add the counter to another CPU's counter,
  4618. * to keep the global sum constant after CPU-down:
  4619. */
  4620. static void migrate_nr_uninterruptible(struct rq *rq_src)
  4621. {
  4622. struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
  4623. unsigned long flags;
  4624. local_irq_save(flags);
  4625. double_rq_lock(rq_src, rq_dest);
  4626. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  4627. rq_src->nr_uninterruptible = 0;
  4628. double_rq_unlock(rq_src, rq_dest);
  4629. local_irq_restore(flags);
  4630. }
  4631. /* Run through task list and migrate tasks from the dead cpu. */
  4632. static void migrate_live_tasks(int src_cpu)
  4633. {
  4634. struct task_struct *p, *t;
  4635. read_lock(&tasklist_lock);
  4636. do_each_thread(t, p) {
  4637. if (p == current)
  4638. continue;
  4639. if (task_cpu(p) == src_cpu)
  4640. move_task_off_dead_cpu(src_cpu, p);
  4641. } while_each_thread(t, p);
  4642. read_unlock(&tasklist_lock);
  4643. }
  4644. /*
  4645. * Schedules idle task to be the next runnable task on current CPU.
  4646. * It does so by boosting its priority to highest possible.
  4647. * Used by CPU offline code.
  4648. */
  4649. void sched_idle_next(void)
  4650. {
  4651. int this_cpu = smp_processor_id();
  4652. struct rq *rq = cpu_rq(this_cpu);
  4653. struct task_struct *p = rq->idle;
  4654. unsigned long flags;
  4655. /* cpu has to be offline */
  4656. BUG_ON(cpu_online(this_cpu));
  4657. /*
  4658. * Strictly not necessary since rest of the CPUs are stopped by now
  4659. * and interrupts disabled on the current cpu.
  4660. */
  4661. raw_spin_lock_irqsave(&rq->lock, flags);
  4662. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  4663. activate_task(rq, p, 0);
  4664. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4665. }
  4666. /*
  4667. * Ensures that the idle task is using init_mm right before its cpu goes
  4668. * offline.
  4669. */
  4670. void idle_task_exit(void)
  4671. {
  4672. struct mm_struct *mm = current->active_mm;
  4673. BUG_ON(cpu_online(smp_processor_id()));
  4674. if (mm != &init_mm)
  4675. switch_mm(mm, &init_mm, current);
  4676. mmdrop(mm);
  4677. }
  4678. /* called under rq->lock with disabled interrupts */
  4679. static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
  4680. {
  4681. struct rq *rq = cpu_rq(dead_cpu);
  4682. /* Must be exiting, otherwise would be on tasklist. */
  4683. BUG_ON(!p->exit_state);
  4684. /* Cannot have done final schedule yet: would have vanished. */
  4685. BUG_ON(p->state == TASK_DEAD);
  4686. get_task_struct(p);
  4687. /*
  4688. * Drop lock around migration; if someone else moves it,
  4689. * that's OK. No task can be added to this CPU, so iteration is
  4690. * fine.
  4691. */
  4692. raw_spin_unlock_irq(&rq->lock);
  4693. move_task_off_dead_cpu(dead_cpu, p);
  4694. raw_spin_lock_irq(&rq->lock);
  4695. put_task_struct(p);
  4696. }
  4697. /* release_task() removes task from tasklist, so we won't find dead tasks. */
  4698. static void migrate_dead_tasks(unsigned int dead_cpu)
  4699. {
  4700. struct rq *rq = cpu_rq(dead_cpu);
  4701. struct task_struct *next;
  4702. for ( ; ; ) {
  4703. if (!rq->nr_running)
  4704. break;
  4705. next = pick_next_task(rq);
  4706. if (!next)
  4707. break;
  4708. next->sched_class->put_prev_task(rq, next);
  4709. migrate_dead(dead_cpu, next);
  4710. }
  4711. }
  4712. /*
  4713. * remove the tasks which were accounted by rq from calc_load_tasks.
  4714. */
  4715. static void calc_global_load_remove(struct rq *rq)
  4716. {
  4717. atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
  4718. rq->calc_load_active = 0;
  4719. }
  4720. #endif /* CONFIG_HOTPLUG_CPU */
  4721. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  4722. static struct ctl_table sd_ctl_dir[] = {
  4723. {
  4724. .procname = "sched_domain",
  4725. .mode = 0555,
  4726. },
  4727. {}
  4728. };
  4729. static struct ctl_table sd_ctl_root[] = {
  4730. {
  4731. .procname = "kernel",
  4732. .mode = 0555,
  4733. .child = sd_ctl_dir,
  4734. },
  4735. {}
  4736. };
  4737. static struct ctl_table *sd_alloc_ctl_entry(int n)
  4738. {
  4739. struct ctl_table *entry =
  4740. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  4741. return entry;
  4742. }
  4743. static void sd_free_ctl_entry(struct ctl_table **tablep)
  4744. {
  4745. struct ctl_table *entry;
  4746. /*
  4747. * In the intermediate directories, both the child directory and
  4748. * procname are dynamically allocated and could fail but the mode
  4749. * will always be set. In the lowest directory the names are
  4750. * static strings and all have proc handlers.
  4751. */
  4752. for (entry = *tablep; entry->mode; entry++) {
  4753. if (entry->child)
  4754. sd_free_ctl_entry(&entry->child);
  4755. if (entry->proc_handler == NULL)
  4756. kfree(entry->procname);
  4757. }
  4758. kfree(*tablep);
  4759. *tablep = NULL;
  4760. }
  4761. static void
  4762. set_table_entry(struct ctl_table *entry,
  4763. const char *procname, void *data, int maxlen,
  4764. mode_t mode, proc_handler *proc_handler)
  4765. {
  4766. entry->procname = procname;
  4767. entry->data = data;
  4768. entry->maxlen = maxlen;
  4769. entry->mode = mode;
  4770. entry->proc_handler = proc_handler;
  4771. }
  4772. static struct ctl_table *
  4773. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  4774. {
  4775. struct ctl_table *table = sd_alloc_ctl_entry(13);
  4776. if (table == NULL)
  4777. return NULL;
  4778. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  4779. sizeof(long), 0644, proc_doulongvec_minmax);
  4780. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  4781. sizeof(long), 0644, proc_doulongvec_minmax);
  4782. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  4783. sizeof(int), 0644, proc_dointvec_minmax);
  4784. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  4785. sizeof(int), 0644, proc_dointvec_minmax);
  4786. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  4787. sizeof(int), 0644, proc_dointvec_minmax);
  4788. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  4789. sizeof(int), 0644, proc_dointvec_minmax);
  4790. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  4791. sizeof(int), 0644, proc_dointvec_minmax);
  4792. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  4793. sizeof(int), 0644, proc_dointvec_minmax);
  4794. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  4795. sizeof(int), 0644, proc_dointvec_minmax);
  4796. set_table_entry(&table[9], "cache_nice_tries",
  4797. &sd->cache_nice_tries,
  4798. sizeof(int), 0644, proc_dointvec_minmax);
  4799. set_table_entry(&table[10], "flags", &sd->flags,
  4800. sizeof(int), 0644, proc_dointvec_minmax);
  4801. set_table_entry(&table[11], "name", sd->name,
  4802. CORENAME_MAX_SIZE, 0444, proc_dostring);
  4803. /* &table[12] is terminator */
  4804. return table;
  4805. }
  4806. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  4807. {
  4808. struct ctl_table *entry, *table;
  4809. struct sched_domain *sd;
  4810. int domain_num = 0, i;
  4811. char buf[32];
  4812. for_each_domain(cpu, sd)
  4813. domain_num++;
  4814. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  4815. if (table == NULL)
  4816. return NULL;
  4817. i = 0;
  4818. for_each_domain(cpu, sd) {
  4819. snprintf(buf, 32, "domain%d", i);
  4820. entry->procname = kstrdup(buf, GFP_KERNEL);
  4821. entry->mode = 0555;
  4822. entry->child = sd_alloc_ctl_domain_table(sd);
  4823. entry++;
  4824. i++;
  4825. }
  4826. return table;
  4827. }
  4828. static struct ctl_table_header *sd_sysctl_header;
  4829. static void register_sched_domain_sysctl(void)
  4830. {
  4831. int i, cpu_num = num_possible_cpus();
  4832. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  4833. char buf[32];
  4834. WARN_ON(sd_ctl_dir[0].child);
  4835. sd_ctl_dir[0].child = entry;
  4836. if (entry == NULL)
  4837. return;
  4838. for_each_possible_cpu(i) {
  4839. snprintf(buf, 32, "cpu%d", i);
  4840. entry->procname = kstrdup(buf, GFP_KERNEL);
  4841. entry->mode = 0555;
  4842. entry->child = sd_alloc_ctl_cpu_table(i);
  4843. entry++;
  4844. }
  4845. WARN_ON(sd_sysctl_header);
  4846. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  4847. }
  4848. /* may be called multiple times per register */
  4849. static void unregister_sched_domain_sysctl(void)
  4850. {
  4851. if (sd_sysctl_header)
  4852. unregister_sysctl_table(sd_sysctl_header);
  4853. sd_sysctl_header = NULL;
  4854. if (sd_ctl_dir[0].child)
  4855. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  4856. }
  4857. #else
  4858. static void register_sched_domain_sysctl(void)
  4859. {
  4860. }
  4861. static void unregister_sched_domain_sysctl(void)
  4862. {
  4863. }
  4864. #endif
  4865. static void set_rq_online(struct rq *rq)
  4866. {
  4867. if (!rq->online) {
  4868. const struct sched_class *class;
  4869. cpumask_set_cpu(rq->cpu, rq->rd->online);
  4870. rq->online = 1;
  4871. for_each_class(class) {
  4872. if (class->rq_online)
  4873. class->rq_online(rq);
  4874. }
  4875. }
  4876. }
  4877. static void set_rq_offline(struct rq *rq)
  4878. {
  4879. if (rq->online) {
  4880. const struct sched_class *class;
  4881. for_each_class(class) {
  4882. if (class->rq_offline)
  4883. class->rq_offline(rq);
  4884. }
  4885. cpumask_clear_cpu(rq->cpu, rq->rd->online);
  4886. rq->online = 0;
  4887. }
  4888. }
  4889. /*
  4890. * migration_call - callback that gets triggered when a CPU is added.
  4891. * Here we can start up the necessary migration thread for the new CPU.
  4892. */
  4893. static int __cpuinit
  4894. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  4895. {
  4896. int cpu = (long)hcpu;
  4897. unsigned long flags;
  4898. struct rq *rq = cpu_rq(cpu);
  4899. switch (action) {
  4900. case CPU_UP_PREPARE:
  4901. case CPU_UP_PREPARE_FROZEN:
  4902. rq->calc_load_update = calc_load_update;
  4903. break;
  4904. case CPU_ONLINE:
  4905. case CPU_ONLINE_FROZEN:
  4906. /* Update our root-domain */
  4907. raw_spin_lock_irqsave(&rq->lock, flags);
  4908. if (rq->rd) {
  4909. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  4910. set_rq_online(rq);
  4911. }
  4912. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4913. break;
  4914. #ifdef CONFIG_HOTPLUG_CPU
  4915. case CPU_DEAD:
  4916. case CPU_DEAD_FROZEN:
  4917. migrate_live_tasks(cpu);
  4918. /* Idle task back to normal (off runqueue, low prio) */
  4919. raw_spin_lock_irq(&rq->lock);
  4920. deactivate_task(rq, rq->idle, 0);
  4921. __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
  4922. rq->idle->sched_class = &idle_sched_class;
  4923. migrate_dead_tasks(cpu);
  4924. raw_spin_unlock_irq(&rq->lock);
  4925. migrate_nr_uninterruptible(rq);
  4926. BUG_ON(rq->nr_running != 0);
  4927. calc_global_load_remove(rq);
  4928. break;
  4929. case CPU_DYING:
  4930. case CPU_DYING_FROZEN:
  4931. /* Update our root-domain */
  4932. raw_spin_lock_irqsave(&rq->lock, flags);
  4933. if (rq->rd) {
  4934. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  4935. set_rq_offline(rq);
  4936. }
  4937. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4938. break;
  4939. #endif
  4940. }
  4941. return NOTIFY_OK;
  4942. }
  4943. /*
  4944. * Register at high priority so that task migration (migrate_all_tasks)
  4945. * happens before everything else. This has to be lower priority than
  4946. * the notifier in the perf_event subsystem, though.
  4947. */
  4948. static struct notifier_block __cpuinitdata migration_notifier = {
  4949. .notifier_call = migration_call,
  4950. .priority = 10
  4951. };
  4952. static int __init migration_init(void)
  4953. {
  4954. void *cpu = (void *)(long)smp_processor_id();
  4955. int err;
  4956. /* Start one for the boot CPU: */
  4957. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  4958. BUG_ON(err == NOTIFY_BAD);
  4959. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  4960. register_cpu_notifier(&migration_notifier);
  4961. return 0;
  4962. }
  4963. early_initcall(migration_init);
  4964. #endif
  4965. #ifdef CONFIG_SMP
  4966. #ifdef CONFIG_SCHED_DEBUG
  4967. static __read_mostly int sched_domain_debug_enabled;
  4968. static int __init sched_domain_debug_setup(char *str)
  4969. {
  4970. sched_domain_debug_enabled = 1;
  4971. return 0;
  4972. }
  4973. early_param("sched_debug", sched_domain_debug_setup);
  4974. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  4975. struct cpumask *groupmask)
  4976. {
  4977. struct sched_group *group = sd->groups;
  4978. char str[256];
  4979. cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
  4980. cpumask_clear(groupmask);
  4981. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  4982. if (!(sd->flags & SD_LOAD_BALANCE)) {
  4983. printk("does not load-balance\n");
  4984. if (sd->parent)
  4985. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  4986. " has parent");
  4987. return -1;
  4988. }
  4989. printk(KERN_CONT "span %s level %s\n", str, sd->name);
  4990. if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  4991. printk(KERN_ERR "ERROR: domain->span does not contain "
  4992. "CPU%d\n", cpu);
  4993. }
  4994. if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
  4995. printk(KERN_ERR "ERROR: domain->groups does not contain"
  4996. " CPU%d\n", cpu);
  4997. }
  4998. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  4999. do {
  5000. if (!group) {
  5001. printk("\n");
  5002. printk(KERN_ERR "ERROR: group is NULL\n");
  5003. break;
  5004. }
  5005. if (!group->cpu_power) {
  5006. printk(KERN_CONT "\n");
  5007. printk(KERN_ERR "ERROR: domain->cpu_power not "
  5008. "set\n");
  5009. break;
  5010. }
  5011. if (!cpumask_weight(sched_group_cpus(group))) {
  5012. printk(KERN_CONT "\n");
  5013. printk(KERN_ERR "ERROR: empty group\n");
  5014. break;
  5015. }
  5016. if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
  5017. printk(KERN_CONT "\n");
  5018. printk(KERN_ERR "ERROR: repeated CPUs\n");
  5019. break;
  5020. }
  5021. cpumask_or(groupmask, groupmask, sched_group_cpus(group));
  5022. cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
  5023. printk(KERN_CONT " %s", str);
  5024. if (group->cpu_power != SCHED_LOAD_SCALE) {
  5025. printk(KERN_CONT " (cpu_power = %d)",
  5026. group->cpu_power);
  5027. }
  5028. group = group->next;
  5029. } while (group != sd->groups);
  5030. printk(KERN_CONT "\n");
  5031. if (!cpumask_equal(sched_domain_span(sd), groupmask))
  5032. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  5033. if (sd->parent &&
  5034. !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
  5035. printk(KERN_ERR "ERROR: parent span is not a superset "
  5036. "of domain->span\n");
  5037. return 0;
  5038. }
  5039. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  5040. {
  5041. cpumask_var_t groupmask;
  5042. int level = 0;
  5043. if (!sched_domain_debug_enabled)
  5044. return;
  5045. if (!sd) {
  5046. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  5047. return;
  5048. }
  5049. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  5050. if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
  5051. printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
  5052. return;
  5053. }
  5054. for (;;) {
  5055. if (sched_domain_debug_one(sd, cpu, level, groupmask))
  5056. break;
  5057. level++;
  5058. sd = sd->parent;
  5059. if (!sd)
  5060. break;
  5061. }
  5062. free_cpumask_var(groupmask);
  5063. }
  5064. #else /* !CONFIG_SCHED_DEBUG */
  5065. # define sched_domain_debug(sd, cpu) do { } while (0)
  5066. #endif /* CONFIG_SCHED_DEBUG */
  5067. static int sd_degenerate(struct sched_domain *sd)
  5068. {
  5069. if (cpumask_weight(sched_domain_span(sd)) == 1)
  5070. return 1;
  5071. /* Following flags need at least 2 groups */
  5072. if (sd->flags & (SD_LOAD_BALANCE |
  5073. SD_BALANCE_NEWIDLE |
  5074. SD_BALANCE_FORK |
  5075. SD_BALANCE_EXEC |
  5076. SD_SHARE_CPUPOWER |
  5077. SD_SHARE_PKG_RESOURCES)) {
  5078. if (sd->groups != sd->groups->next)
  5079. return 0;
  5080. }
  5081. /* Following flags don't use groups */
  5082. if (sd->flags & (SD_WAKE_AFFINE))
  5083. return 0;
  5084. return 1;
  5085. }
  5086. static int
  5087. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  5088. {
  5089. unsigned long cflags = sd->flags, pflags = parent->flags;
  5090. if (sd_degenerate(parent))
  5091. return 1;
  5092. if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
  5093. return 0;
  5094. /* Flags needing groups don't count if only 1 group in parent */
  5095. if (parent->groups == parent->groups->next) {
  5096. pflags &= ~(SD_LOAD_BALANCE |
  5097. SD_BALANCE_NEWIDLE |
  5098. SD_BALANCE_FORK |
  5099. SD_BALANCE_EXEC |
  5100. SD_SHARE_CPUPOWER |
  5101. SD_SHARE_PKG_RESOURCES);
  5102. if (nr_node_ids == 1)
  5103. pflags &= ~SD_SERIALIZE;
  5104. }
  5105. if (~cflags & pflags)
  5106. return 0;
  5107. return 1;
  5108. }
  5109. static void free_rootdomain(struct root_domain *rd)
  5110. {
  5111. synchronize_sched();
  5112. cpupri_cleanup(&rd->cpupri);
  5113. free_cpumask_var(rd->rto_mask);
  5114. free_cpumask_var(rd->online);
  5115. free_cpumask_var(rd->span);
  5116. kfree(rd);
  5117. }
  5118. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  5119. {
  5120. struct root_domain *old_rd = NULL;
  5121. unsigned long flags;
  5122. raw_spin_lock_irqsave(&rq->lock, flags);
  5123. if (rq->rd) {
  5124. old_rd = rq->rd;
  5125. if (cpumask_test_cpu(rq->cpu, old_rd->online))
  5126. set_rq_offline(rq);
  5127. cpumask_clear_cpu(rq->cpu, old_rd->span);
  5128. /*
  5129. * If we dont want to free the old_rt yet then
  5130. * set old_rd to NULL to skip the freeing later
  5131. * in this function:
  5132. */
  5133. if (!atomic_dec_and_test(&old_rd->refcount))
  5134. old_rd = NULL;
  5135. }
  5136. atomic_inc(&rd->refcount);
  5137. rq->rd = rd;
  5138. cpumask_set_cpu(rq->cpu, rd->span);
  5139. if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
  5140. set_rq_online(rq);
  5141. raw_spin_unlock_irqrestore(&rq->lock, flags);
  5142. if (old_rd)
  5143. free_rootdomain(old_rd);
  5144. }
  5145. static int init_rootdomain(struct root_domain *rd, bool bootmem)
  5146. {
  5147. gfp_t gfp = GFP_KERNEL;
  5148. memset(rd, 0, sizeof(*rd));
  5149. if (bootmem)
  5150. gfp = GFP_NOWAIT;
  5151. if (!alloc_cpumask_var(&rd->span, gfp))
  5152. goto out;
  5153. if (!alloc_cpumask_var(&rd->online, gfp))
  5154. goto free_span;
  5155. if (!alloc_cpumask_var(&rd->rto_mask, gfp))
  5156. goto free_online;
  5157. if (cpupri_init(&rd->cpupri, bootmem) != 0)
  5158. goto free_rto_mask;
  5159. return 0;
  5160. free_rto_mask:
  5161. free_cpumask_var(rd->rto_mask);
  5162. free_online:
  5163. free_cpumask_var(rd->online);
  5164. free_span:
  5165. free_cpumask_var(rd->span);
  5166. out:
  5167. return -ENOMEM;
  5168. }
  5169. static void init_defrootdomain(void)
  5170. {
  5171. init_rootdomain(&def_root_domain, true);
  5172. atomic_set(&def_root_domain.refcount, 1);
  5173. }
  5174. static struct root_domain *alloc_rootdomain(void)
  5175. {
  5176. struct root_domain *rd;
  5177. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  5178. if (!rd)
  5179. return NULL;
  5180. if (init_rootdomain(rd, false) != 0) {
  5181. kfree(rd);
  5182. return NULL;
  5183. }
  5184. return rd;
  5185. }
  5186. /*
  5187. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  5188. * hold the hotplug lock.
  5189. */
  5190. static void
  5191. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  5192. {
  5193. struct rq *rq = cpu_rq(cpu);
  5194. struct sched_domain *tmp;
  5195. for (tmp = sd; tmp; tmp = tmp->parent)
  5196. tmp->span_weight = cpumask_weight(sched_domain_span(tmp));
  5197. /* Remove the sched domains which do not contribute to scheduling. */
  5198. for (tmp = sd; tmp; ) {
  5199. struct sched_domain *parent = tmp->parent;
  5200. if (!parent)
  5201. break;
  5202. if (sd_parent_degenerate(tmp, parent)) {
  5203. tmp->parent = parent->parent;
  5204. if (parent->parent)
  5205. parent->parent->child = tmp;
  5206. } else
  5207. tmp = tmp->parent;
  5208. }
  5209. if (sd && sd_degenerate(sd)) {
  5210. sd = sd->parent;
  5211. if (sd)
  5212. sd->child = NULL;
  5213. }
  5214. sched_domain_debug(sd, cpu);
  5215. rq_attach_root(rq, rd);
  5216. rcu_assign_pointer(rq->sd, sd);
  5217. }
  5218. /* cpus with isolated domains */
  5219. static cpumask_var_t cpu_isolated_map;
  5220. /* Setup the mask of cpus configured for isolated domains */
  5221. static int __init isolated_cpu_setup(char *str)
  5222. {
  5223. alloc_bootmem_cpumask_var(&cpu_isolated_map);
  5224. cpulist_parse(str, cpu_isolated_map);
  5225. return 1;
  5226. }
  5227. __setup("isolcpus=", isolated_cpu_setup);
  5228. /*
  5229. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  5230. * to a function which identifies what group(along with sched group) a CPU
  5231. * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
  5232. * (due to the fact that we keep track of groups covered with a struct cpumask).
  5233. *
  5234. * init_sched_build_groups will build a circular linked list of the groups
  5235. * covered by the given span, and will set each group's ->cpumask correctly,
  5236. * and ->cpu_power to 0.
  5237. */
  5238. static void
  5239. init_sched_build_groups(const struct cpumask *span,
  5240. const struct cpumask *cpu_map,
  5241. int (*group_fn)(int cpu, const struct cpumask *cpu_map,
  5242. struct sched_group **sg,
  5243. struct cpumask *tmpmask),
  5244. struct cpumask *covered, struct cpumask *tmpmask)
  5245. {
  5246. struct sched_group *first = NULL, *last = NULL;
  5247. int i;
  5248. cpumask_clear(covered);
  5249. for_each_cpu(i, span) {
  5250. struct sched_group *sg;
  5251. int group = group_fn(i, cpu_map, &sg, tmpmask);
  5252. int j;
  5253. if (cpumask_test_cpu(i, covered))
  5254. continue;
  5255. cpumask_clear(sched_group_cpus(sg));
  5256. sg->cpu_power = 0;
  5257. for_each_cpu(j, span) {
  5258. if (group_fn(j, cpu_map, NULL, tmpmask) != group)
  5259. continue;
  5260. cpumask_set_cpu(j, covered);
  5261. cpumask_set_cpu(j, sched_group_cpus(sg));
  5262. }
  5263. if (!first)
  5264. first = sg;
  5265. if (last)
  5266. last->next = sg;
  5267. last = sg;
  5268. }
  5269. last->next = first;
  5270. }
  5271. #define SD_NODES_PER_DOMAIN 16
  5272. #ifdef CONFIG_NUMA
  5273. /**
  5274. * find_next_best_node - find the next node to include in a sched_domain
  5275. * @node: node whose sched_domain we're building
  5276. * @used_nodes: nodes already in the sched_domain
  5277. *
  5278. * Find the next node to include in a given scheduling domain. Simply
  5279. * finds the closest node not already in the @used_nodes map.
  5280. *
  5281. * Should use nodemask_t.
  5282. */
  5283. static int find_next_best_node(int node, nodemask_t *used_nodes)
  5284. {
  5285. int i, n, val, min_val, best_node = 0;
  5286. min_val = INT_MAX;
  5287. for (i = 0; i < nr_node_ids; i++) {
  5288. /* Start at @node */
  5289. n = (node + i) % nr_node_ids;
  5290. if (!nr_cpus_node(n))
  5291. continue;
  5292. /* Skip already used nodes */
  5293. if (node_isset(n, *used_nodes))
  5294. continue;
  5295. /* Simple min distance search */
  5296. val = node_distance(node, n);
  5297. if (val < min_val) {
  5298. min_val = val;
  5299. best_node = n;
  5300. }
  5301. }
  5302. node_set(best_node, *used_nodes);
  5303. return best_node;
  5304. }
  5305. /**
  5306. * sched_domain_node_span - get a cpumask for a node's sched_domain
  5307. * @node: node whose cpumask we're constructing
  5308. * @span: resulting cpumask
  5309. *
  5310. * Given a node, construct a good cpumask for its sched_domain to span. It
  5311. * should be one that prevents unnecessary balancing, but also spreads tasks
  5312. * out optimally.
  5313. */
  5314. static void sched_domain_node_span(int node, struct cpumask *span)
  5315. {
  5316. nodemask_t used_nodes;
  5317. int i;
  5318. cpumask_clear(span);
  5319. nodes_clear(used_nodes);
  5320. cpumask_or(span, span, cpumask_of_node(node));
  5321. node_set(node, used_nodes);
  5322. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  5323. int next_node = find_next_best_node(node, &used_nodes);
  5324. cpumask_or(span, span, cpumask_of_node(next_node));
  5325. }
  5326. }
  5327. #endif /* CONFIG_NUMA */
  5328. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  5329. /*
  5330. * The cpus mask in sched_group and sched_domain hangs off the end.
  5331. *
  5332. * ( See the the comments in include/linux/sched.h:struct sched_group
  5333. * and struct sched_domain. )
  5334. */
  5335. struct static_sched_group {
  5336. struct sched_group sg;
  5337. DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
  5338. };
  5339. struct static_sched_domain {
  5340. struct sched_domain sd;
  5341. DECLARE_BITMAP(span, CONFIG_NR_CPUS);
  5342. };
  5343. struct s_data {
  5344. #ifdef CONFIG_NUMA
  5345. int sd_allnodes;
  5346. cpumask_var_t domainspan;
  5347. cpumask_var_t covered;
  5348. cpumask_var_t notcovered;
  5349. #endif
  5350. cpumask_var_t nodemask;
  5351. cpumask_var_t this_sibling_map;
  5352. cpumask_var_t this_core_map;
  5353. cpumask_var_t send_covered;
  5354. cpumask_var_t tmpmask;
  5355. struct sched_group **sched_group_nodes;
  5356. struct root_domain *rd;
  5357. };
  5358. enum s_alloc {
  5359. sa_sched_groups = 0,
  5360. sa_rootdomain,
  5361. sa_tmpmask,
  5362. sa_send_covered,
  5363. sa_this_core_map,
  5364. sa_this_sibling_map,
  5365. sa_nodemask,
  5366. sa_sched_group_nodes,
  5367. #ifdef CONFIG_NUMA
  5368. sa_notcovered,
  5369. sa_covered,
  5370. sa_domainspan,
  5371. #endif
  5372. sa_none,
  5373. };
  5374. /*
  5375. * SMT sched-domains:
  5376. */
  5377. #ifdef CONFIG_SCHED_SMT
  5378. static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
  5379. static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
  5380. static int
  5381. cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
  5382. struct sched_group **sg, struct cpumask *unused)
  5383. {
  5384. if (sg)
  5385. *sg = &per_cpu(sched_groups, cpu).sg;
  5386. return cpu;
  5387. }
  5388. #endif /* CONFIG_SCHED_SMT */
  5389. /*
  5390. * multi-core sched-domains:
  5391. */
  5392. #ifdef CONFIG_SCHED_MC
  5393. static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
  5394. static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
  5395. #endif /* CONFIG_SCHED_MC */
  5396. #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
  5397. static int
  5398. cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
  5399. struct sched_group **sg, struct cpumask *mask)
  5400. {
  5401. int group;
  5402. cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
  5403. group = cpumask_first(mask);
  5404. if (sg)
  5405. *sg = &per_cpu(sched_group_core, group).sg;
  5406. return group;
  5407. }
  5408. #elif defined(CONFIG_SCHED_MC)
  5409. static int
  5410. cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
  5411. struct sched_group **sg, struct cpumask *unused)
  5412. {
  5413. if (sg)
  5414. *sg = &per_cpu(sched_group_core, cpu).sg;
  5415. return cpu;
  5416. }
  5417. #endif
  5418. static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
  5419. static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
  5420. static int
  5421. cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
  5422. struct sched_group **sg, struct cpumask *mask)
  5423. {
  5424. int group;
  5425. #ifdef CONFIG_SCHED_MC
  5426. cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
  5427. group = cpumask_first(mask);
  5428. #elif defined(CONFIG_SCHED_SMT)
  5429. cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
  5430. group = cpumask_first(mask);
  5431. #else
  5432. group = cpu;
  5433. #endif
  5434. if (sg)
  5435. *sg = &per_cpu(sched_group_phys, group).sg;
  5436. return group;
  5437. }
  5438. #ifdef CONFIG_NUMA
  5439. /*
  5440. * The init_sched_build_groups can't handle what we want to do with node
  5441. * groups, so roll our own. Now each node has its own list of groups which
  5442. * gets dynamically allocated.
  5443. */
  5444. static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
  5445. static struct sched_group ***sched_group_nodes_bycpu;
  5446. static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
  5447. static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
  5448. static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
  5449. struct sched_group **sg,
  5450. struct cpumask *nodemask)
  5451. {
  5452. int group;
  5453. cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
  5454. group = cpumask_first(nodemask);
  5455. if (sg)
  5456. *sg = &per_cpu(sched_group_allnodes, group).sg;
  5457. return group;
  5458. }
  5459. static void init_numa_sched_groups_power(struct sched_group *group_head)
  5460. {
  5461. struct sched_group *sg = group_head;
  5462. int j;
  5463. if (!sg)
  5464. return;
  5465. do {
  5466. for_each_cpu(j, sched_group_cpus(sg)) {
  5467. struct sched_domain *sd;
  5468. sd = &per_cpu(phys_domains, j).sd;
  5469. if (j != group_first_cpu(sd->groups)) {
  5470. /*
  5471. * Only add "power" once for each
  5472. * physical package.
  5473. */
  5474. continue;
  5475. }
  5476. sg->cpu_power += sd->groups->cpu_power;
  5477. }
  5478. sg = sg->next;
  5479. } while (sg != group_head);
  5480. }
  5481. static int build_numa_sched_groups(struct s_data *d,
  5482. const struct cpumask *cpu_map, int num)
  5483. {
  5484. struct sched_domain *sd;
  5485. struct sched_group *sg, *prev;
  5486. int n, j;
  5487. cpumask_clear(d->covered);
  5488. cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
  5489. if (cpumask_empty(d->nodemask)) {
  5490. d->sched_group_nodes[num] = NULL;
  5491. goto out;
  5492. }
  5493. sched_domain_node_span(num, d->domainspan);
  5494. cpumask_and(d->domainspan, d->domainspan, cpu_map);
  5495. sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
  5496. GFP_KERNEL, num);
  5497. if (!sg) {
  5498. printk(KERN_WARNING "Can not alloc domain group for node %d\n",
  5499. num);
  5500. return -ENOMEM;
  5501. }
  5502. d->sched_group_nodes[num] = sg;
  5503. for_each_cpu(j, d->nodemask) {
  5504. sd = &per_cpu(node_domains, j).sd;
  5505. sd->groups = sg;
  5506. }
  5507. sg->cpu_power = 0;
  5508. cpumask_copy(sched_group_cpus(sg), d->nodemask);
  5509. sg->next = sg;
  5510. cpumask_or(d->covered, d->covered, d->nodemask);
  5511. prev = sg;
  5512. for (j = 0; j < nr_node_ids; j++) {
  5513. n = (num + j) % nr_node_ids;
  5514. cpumask_complement(d->notcovered, d->covered);
  5515. cpumask_and(d->tmpmask, d->notcovered, cpu_map);
  5516. cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
  5517. if (cpumask_empty(d->tmpmask))
  5518. break;
  5519. cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
  5520. if (cpumask_empty(d->tmpmask))
  5521. continue;
  5522. sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
  5523. GFP_KERNEL, num);
  5524. if (!sg) {
  5525. printk(KERN_WARNING
  5526. "Can not alloc domain group for node %d\n", j);
  5527. return -ENOMEM;
  5528. }
  5529. sg->cpu_power = 0;
  5530. cpumask_copy(sched_group_cpus(sg), d->tmpmask);
  5531. sg->next = prev->next;
  5532. cpumask_or(d->covered, d->covered, d->tmpmask);
  5533. prev->next = sg;
  5534. prev = sg;
  5535. }
  5536. out:
  5537. return 0;
  5538. }
  5539. #endif /* CONFIG_NUMA */
  5540. #ifdef CONFIG_NUMA
  5541. /* Free memory allocated for various sched_group structures */
  5542. static void free_sched_groups(const struct cpumask *cpu_map,
  5543. struct cpumask *nodemask)
  5544. {
  5545. int cpu, i;
  5546. for_each_cpu(cpu, cpu_map) {
  5547. struct sched_group **sched_group_nodes
  5548. = sched_group_nodes_bycpu[cpu];
  5549. if (!sched_group_nodes)
  5550. continue;
  5551. for (i = 0; i < nr_node_ids; i++) {
  5552. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  5553. cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
  5554. if (cpumask_empty(nodemask))
  5555. continue;
  5556. if (sg == NULL)
  5557. continue;
  5558. sg = sg->next;
  5559. next_sg:
  5560. oldsg = sg;
  5561. sg = sg->next;
  5562. kfree(oldsg);
  5563. if (oldsg != sched_group_nodes[i])
  5564. goto next_sg;
  5565. }
  5566. kfree(sched_group_nodes);
  5567. sched_group_nodes_bycpu[cpu] = NULL;
  5568. }
  5569. }
  5570. #else /* !CONFIG_NUMA */
  5571. static void free_sched_groups(const struct cpumask *cpu_map,
  5572. struct cpumask *nodemask)
  5573. {
  5574. }
  5575. #endif /* CONFIG_NUMA */
  5576. /*
  5577. * Initialize sched groups cpu_power.
  5578. *
  5579. * cpu_power indicates the capacity of sched group, which is used while
  5580. * distributing the load between different sched groups in a sched domain.
  5581. * Typically cpu_power for all the groups in a sched domain will be same unless
  5582. * there are asymmetries in the topology. If there are asymmetries, group
  5583. * having more cpu_power will pickup more load compared to the group having
  5584. * less cpu_power.
  5585. */
  5586. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  5587. {
  5588. struct sched_domain *child;
  5589. struct sched_group *group;
  5590. long power;
  5591. int weight;
  5592. WARN_ON(!sd || !sd->groups);
  5593. if (cpu != group_first_cpu(sd->groups))
  5594. return;
  5595. child = sd->child;
  5596. sd->groups->cpu_power = 0;
  5597. if (!child) {
  5598. power = SCHED_LOAD_SCALE;
  5599. weight = cpumask_weight(sched_domain_span(sd));
  5600. /*
  5601. * SMT siblings share the power of a single core.
  5602. * Usually multiple threads get a better yield out of
  5603. * that one core than a single thread would have,
  5604. * reflect that in sd->smt_gain.
  5605. */
  5606. if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
  5607. power *= sd->smt_gain;
  5608. power /= weight;
  5609. power >>= SCHED_LOAD_SHIFT;
  5610. }
  5611. sd->groups->cpu_power += power;
  5612. return;
  5613. }
  5614. /*
  5615. * Add cpu_power of each child group to this groups cpu_power.
  5616. */
  5617. group = child->groups;
  5618. do {
  5619. sd->groups->cpu_power += group->cpu_power;
  5620. group = group->next;
  5621. } while (group != child->groups);
  5622. }
  5623. /*
  5624. * Initializers for schedule domains
  5625. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  5626. */
  5627. #ifdef CONFIG_SCHED_DEBUG
  5628. # define SD_INIT_NAME(sd, type) sd->name = #type
  5629. #else
  5630. # define SD_INIT_NAME(sd, type) do { } while (0)
  5631. #endif
  5632. #define SD_INIT(sd, type) sd_init_##type(sd)
  5633. #define SD_INIT_FUNC(type) \
  5634. static noinline void sd_init_##type(struct sched_domain *sd) \
  5635. { \
  5636. memset(sd, 0, sizeof(*sd)); \
  5637. *sd = SD_##type##_INIT; \
  5638. sd->level = SD_LV_##type; \
  5639. SD_INIT_NAME(sd, type); \
  5640. }
  5641. SD_INIT_FUNC(CPU)
  5642. #ifdef CONFIG_NUMA
  5643. SD_INIT_FUNC(ALLNODES)
  5644. SD_INIT_FUNC(NODE)
  5645. #endif
  5646. #ifdef CONFIG_SCHED_SMT
  5647. SD_INIT_FUNC(SIBLING)
  5648. #endif
  5649. #ifdef CONFIG_SCHED_MC
  5650. SD_INIT_FUNC(MC)
  5651. #endif
  5652. static int default_relax_domain_level = -1;
  5653. static int __init setup_relax_domain_level(char *str)
  5654. {
  5655. unsigned long val;
  5656. val = simple_strtoul(str, NULL, 0);
  5657. if (val < SD_LV_MAX)
  5658. default_relax_domain_level = val;
  5659. return 1;
  5660. }
  5661. __setup("relax_domain_level=", setup_relax_domain_level);
  5662. static void set_domain_attribute(struct sched_domain *sd,
  5663. struct sched_domain_attr *attr)
  5664. {
  5665. int request;
  5666. if (!attr || attr->relax_domain_level < 0) {
  5667. if (default_relax_domain_level < 0)
  5668. return;
  5669. else
  5670. request = default_relax_domain_level;
  5671. } else
  5672. request = attr->relax_domain_level;
  5673. if (request < sd->level) {
  5674. /* turn off idle balance on this domain */
  5675. sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  5676. } else {
  5677. /* turn on idle balance on this domain */
  5678. sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  5679. }
  5680. }
  5681. static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
  5682. const struct cpumask *cpu_map)
  5683. {
  5684. switch (what) {
  5685. case sa_sched_groups:
  5686. free_sched_groups(cpu_map, d->tmpmask); /* fall through */
  5687. d->sched_group_nodes = NULL;
  5688. case sa_rootdomain:
  5689. free_rootdomain(d->rd); /* fall through */
  5690. case sa_tmpmask:
  5691. free_cpumask_var(d->tmpmask); /* fall through */
  5692. case sa_send_covered:
  5693. free_cpumask_var(d->send_covered); /* fall through */
  5694. case sa_this_core_map:
  5695. free_cpumask_var(d->this_core_map); /* fall through */
  5696. case sa_this_sibling_map:
  5697. free_cpumask_var(d->this_sibling_map); /* fall through */
  5698. case sa_nodemask:
  5699. free_cpumask_var(d->nodemask); /* fall through */
  5700. case sa_sched_group_nodes:
  5701. #ifdef CONFIG_NUMA
  5702. kfree(d->sched_group_nodes); /* fall through */
  5703. case sa_notcovered:
  5704. free_cpumask_var(d->notcovered); /* fall through */
  5705. case sa_covered:
  5706. free_cpumask_var(d->covered); /* fall through */
  5707. case sa_domainspan:
  5708. free_cpumask_var(d->domainspan); /* fall through */
  5709. #endif
  5710. case sa_none:
  5711. break;
  5712. }
  5713. }
  5714. static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
  5715. const struct cpumask *cpu_map)
  5716. {
  5717. #ifdef CONFIG_NUMA
  5718. if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
  5719. return sa_none;
  5720. if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
  5721. return sa_domainspan;
  5722. if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
  5723. return sa_covered;
  5724. /* Allocate the per-node list of sched groups */
  5725. d->sched_group_nodes = kcalloc(nr_node_ids,
  5726. sizeof(struct sched_group *), GFP_KERNEL);
  5727. if (!d->sched_group_nodes) {
  5728. printk(KERN_WARNING "Can not alloc sched group node list\n");
  5729. return sa_notcovered;
  5730. }
  5731. sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
  5732. #endif
  5733. if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
  5734. return sa_sched_group_nodes;
  5735. if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
  5736. return sa_nodemask;
  5737. if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
  5738. return sa_this_sibling_map;
  5739. if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
  5740. return sa_this_core_map;
  5741. if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
  5742. return sa_send_covered;
  5743. d->rd = alloc_rootdomain();
  5744. if (!d->rd) {
  5745. printk(KERN_WARNING "Cannot alloc root domain\n");
  5746. return sa_tmpmask;
  5747. }
  5748. return sa_rootdomain;
  5749. }
  5750. static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
  5751. const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
  5752. {
  5753. struct sched_domain *sd = NULL;
  5754. #ifdef CONFIG_NUMA
  5755. struct sched_domain *parent;
  5756. d->sd_allnodes = 0;
  5757. if (cpumask_weight(cpu_map) >
  5758. SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
  5759. sd = &per_cpu(allnodes_domains, i).sd;
  5760. SD_INIT(sd, ALLNODES);
  5761. set_domain_attribute(sd, attr);
  5762. cpumask_copy(sched_domain_span(sd), cpu_map);
  5763. cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
  5764. d->sd_allnodes = 1;
  5765. }
  5766. parent = sd;
  5767. sd = &per_cpu(node_domains, i).sd;
  5768. SD_INIT(sd, NODE);
  5769. set_domain_attribute(sd, attr);
  5770. sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
  5771. sd->parent = parent;
  5772. if (parent)
  5773. parent->child = sd;
  5774. cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
  5775. #endif
  5776. return sd;
  5777. }
  5778. static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
  5779. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  5780. struct sched_domain *parent, int i)
  5781. {
  5782. struct sched_domain *sd;
  5783. sd = &per_cpu(phys_domains, i).sd;
  5784. SD_INIT(sd, CPU);
  5785. set_domain_attribute(sd, attr);
  5786. cpumask_copy(sched_domain_span(sd), d->nodemask);
  5787. sd->parent = parent;
  5788. if (parent)
  5789. parent->child = sd;
  5790. cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
  5791. return sd;
  5792. }
  5793. static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
  5794. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  5795. struct sched_domain *parent, int i)
  5796. {
  5797. struct sched_domain *sd = parent;
  5798. #ifdef CONFIG_SCHED_MC
  5799. sd = &per_cpu(core_domains, i).sd;
  5800. SD_INIT(sd, MC);
  5801. set_domain_attribute(sd, attr);
  5802. cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
  5803. sd->parent = parent;
  5804. parent->child = sd;
  5805. cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
  5806. #endif
  5807. return sd;
  5808. }
  5809. static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
  5810. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  5811. struct sched_domain *parent, int i)
  5812. {
  5813. struct sched_domain *sd = parent;
  5814. #ifdef CONFIG_SCHED_SMT
  5815. sd = &per_cpu(cpu_domains, i).sd;
  5816. SD_INIT(sd, SIBLING);
  5817. set_domain_attribute(sd, attr);
  5818. cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
  5819. sd->parent = parent;
  5820. parent->child = sd;
  5821. cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
  5822. #endif
  5823. return sd;
  5824. }
  5825. static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
  5826. const struct cpumask *cpu_map, int cpu)
  5827. {
  5828. switch (l) {
  5829. #ifdef CONFIG_SCHED_SMT
  5830. case SD_LV_SIBLING: /* set up CPU (sibling) groups */
  5831. cpumask_and(d->this_sibling_map, cpu_map,
  5832. topology_thread_cpumask(cpu));
  5833. if (cpu == cpumask_first(d->this_sibling_map))
  5834. init_sched_build_groups(d->this_sibling_map, cpu_map,
  5835. &cpu_to_cpu_group,
  5836. d->send_covered, d->tmpmask);
  5837. break;
  5838. #endif
  5839. #ifdef CONFIG_SCHED_MC
  5840. case SD_LV_MC: /* set up multi-core groups */
  5841. cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
  5842. if (cpu == cpumask_first(d->this_core_map))
  5843. init_sched_build_groups(d->this_core_map, cpu_map,
  5844. &cpu_to_core_group,
  5845. d->send_covered, d->tmpmask);
  5846. break;
  5847. #endif
  5848. case SD_LV_CPU: /* set up physical groups */
  5849. cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
  5850. if (!cpumask_empty(d->nodemask))
  5851. init_sched_build_groups(d->nodemask, cpu_map,
  5852. &cpu_to_phys_group,
  5853. d->send_covered, d->tmpmask);
  5854. break;
  5855. #ifdef CONFIG_NUMA
  5856. case SD_LV_ALLNODES:
  5857. init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
  5858. d->send_covered, d->tmpmask);
  5859. break;
  5860. #endif
  5861. default:
  5862. break;
  5863. }
  5864. }
  5865. /*
  5866. * Build sched domains for a given set of cpus and attach the sched domains
  5867. * to the individual cpus
  5868. */
  5869. static int __build_sched_domains(const struct cpumask *cpu_map,
  5870. struct sched_domain_attr *attr)
  5871. {
  5872. enum s_alloc alloc_state = sa_none;
  5873. struct s_data d;
  5874. struct sched_domain *sd;
  5875. int i;
  5876. #ifdef CONFIG_NUMA
  5877. d.sd_allnodes = 0;
  5878. #endif
  5879. alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
  5880. if (alloc_state != sa_rootdomain)
  5881. goto error;
  5882. alloc_state = sa_sched_groups;
  5883. /*
  5884. * Set up domains for cpus specified by the cpu_map.
  5885. */
  5886. for_each_cpu(i, cpu_map) {
  5887. cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
  5888. cpu_map);
  5889. sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
  5890. sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
  5891. sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
  5892. sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
  5893. }
  5894. for_each_cpu(i, cpu_map) {
  5895. build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
  5896. build_sched_groups(&d, SD_LV_MC, cpu_map, i);
  5897. }
  5898. /* Set up physical groups */
  5899. for (i = 0; i < nr_node_ids; i++)
  5900. build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
  5901. #ifdef CONFIG_NUMA
  5902. /* Set up node groups */
  5903. if (d.sd_allnodes)
  5904. build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
  5905. for (i = 0; i < nr_node_ids; i++)
  5906. if (build_numa_sched_groups(&d, cpu_map, i))
  5907. goto error;
  5908. #endif
  5909. /* Calculate CPU power for physical packages and nodes */
  5910. #ifdef CONFIG_SCHED_SMT
  5911. for_each_cpu(i, cpu_map) {
  5912. sd = &per_cpu(cpu_domains, i).sd;
  5913. init_sched_groups_power(i, sd);
  5914. }
  5915. #endif
  5916. #ifdef CONFIG_SCHED_MC
  5917. for_each_cpu(i, cpu_map) {
  5918. sd = &per_cpu(core_domains, i).sd;
  5919. init_sched_groups_power(i, sd);
  5920. }
  5921. #endif
  5922. for_each_cpu(i, cpu_map) {
  5923. sd = &per_cpu(phys_domains, i).sd;
  5924. init_sched_groups_power(i, sd);
  5925. }
  5926. #ifdef CONFIG_NUMA
  5927. for (i = 0; i < nr_node_ids; i++)
  5928. init_numa_sched_groups_power(d.sched_group_nodes[i]);
  5929. if (d.sd_allnodes) {
  5930. struct sched_group *sg;
  5931. cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
  5932. d.tmpmask);
  5933. init_numa_sched_groups_power(sg);
  5934. }
  5935. #endif
  5936. /* Attach the domains */
  5937. for_each_cpu(i, cpu_map) {
  5938. #ifdef CONFIG_SCHED_SMT
  5939. sd = &per_cpu(cpu_domains, i).sd;
  5940. #elif defined(CONFIG_SCHED_MC)
  5941. sd = &per_cpu(core_domains, i).sd;
  5942. #else
  5943. sd = &per_cpu(phys_domains, i).sd;
  5944. #endif
  5945. cpu_attach_domain(sd, d.rd, i);
  5946. }
  5947. d.sched_group_nodes = NULL; /* don't free this we still need it */
  5948. __free_domain_allocs(&d, sa_tmpmask, cpu_map);
  5949. return 0;
  5950. error:
  5951. __free_domain_allocs(&d, alloc_state, cpu_map);
  5952. return -ENOMEM;
  5953. }
  5954. static int build_sched_domains(const struct cpumask *cpu_map)
  5955. {
  5956. return __build_sched_domains(cpu_map, NULL);
  5957. }
  5958. static cpumask_var_t *doms_cur; /* current sched domains */
  5959. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  5960. static struct sched_domain_attr *dattr_cur;
  5961. /* attribues of custom domains in 'doms_cur' */
  5962. /*
  5963. * Special case: If a kmalloc of a doms_cur partition (array of
  5964. * cpumask) fails, then fallback to a single sched domain,
  5965. * as determined by the single cpumask fallback_doms.
  5966. */
  5967. static cpumask_var_t fallback_doms;
  5968. /*
  5969. * arch_update_cpu_topology lets virtualized architectures update the
  5970. * cpu core maps. It is supposed to return 1 if the topology changed
  5971. * or 0 if it stayed the same.
  5972. */
  5973. int __attribute__((weak)) arch_update_cpu_topology(void)
  5974. {
  5975. return 0;
  5976. }
  5977. cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
  5978. {
  5979. int i;
  5980. cpumask_var_t *doms;
  5981. doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
  5982. if (!doms)
  5983. return NULL;
  5984. for (i = 0; i < ndoms; i++) {
  5985. if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
  5986. free_sched_domains(doms, i);
  5987. return NULL;
  5988. }
  5989. }
  5990. return doms;
  5991. }
  5992. void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
  5993. {
  5994. unsigned int i;
  5995. for (i = 0; i < ndoms; i++)
  5996. free_cpumask_var(doms[i]);
  5997. kfree(doms);
  5998. }
  5999. /*
  6000. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  6001. * For now this just excludes isolated cpus, but could be used to
  6002. * exclude other special cases in the future.
  6003. */
  6004. static int arch_init_sched_domains(const struct cpumask *cpu_map)
  6005. {
  6006. int err;
  6007. arch_update_cpu_topology();
  6008. ndoms_cur = 1;
  6009. doms_cur = alloc_sched_domains(ndoms_cur);
  6010. if (!doms_cur)
  6011. doms_cur = &fallback_doms;
  6012. cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
  6013. dattr_cur = NULL;
  6014. err = build_sched_domains(doms_cur[0]);
  6015. register_sched_domain_sysctl();
  6016. return err;
  6017. }
  6018. static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
  6019. struct cpumask *tmpmask)
  6020. {
  6021. free_sched_groups(cpu_map, tmpmask);
  6022. }
  6023. /*
  6024. * Detach sched domains from a group of cpus specified in cpu_map
  6025. * These cpus will now be attached to the NULL domain
  6026. */
  6027. static void detach_destroy_domains(const struct cpumask *cpu_map)
  6028. {
  6029. /* Save because hotplug lock held. */
  6030. static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
  6031. int i;
  6032. for_each_cpu(i, cpu_map)
  6033. cpu_attach_domain(NULL, &def_root_domain, i);
  6034. synchronize_sched();
  6035. arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
  6036. }
  6037. /* handle null as "default" */
  6038. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  6039. struct sched_domain_attr *new, int idx_new)
  6040. {
  6041. struct sched_domain_attr tmp;
  6042. /* fast path */
  6043. if (!new && !cur)
  6044. return 1;
  6045. tmp = SD_ATTR_INIT;
  6046. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  6047. new ? (new + idx_new) : &tmp,
  6048. sizeof(struct sched_domain_attr));
  6049. }
  6050. /*
  6051. * Partition sched domains as specified by the 'ndoms_new'
  6052. * cpumasks in the array doms_new[] of cpumasks. This compares
  6053. * doms_new[] to the current sched domain partitioning, doms_cur[].
  6054. * It destroys each deleted domain and builds each new domain.
  6055. *
  6056. * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
  6057. * The masks don't intersect (don't overlap.) We should setup one
  6058. * sched domain for each mask. CPUs not in any of the cpumasks will
  6059. * not be load balanced. If the same cpumask appears both in the
  6060. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  6061. * it as it is.
  6062. *
  6063. * The passed in 'doms_new' should be allocated using
  6064. * alloc_sched_domains. This routine takes ownership of it and will
  6065. * free_sched_domains it when done with it. If the caller failed the
  6066. * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
  6067. * and partition_sched_domains() will fallback to the single partition
  6068. * 'fallback_doms', it also forces the domains to be rebuilt.
  6069. *
  6070. * If doms_new == NULL it will be replaced with cpu_online_mask.
  6071. * ndoms_new == 0 is a special case for destroying existing domains,
  6072. * and it will not create the default domain.
  6073. *
  6074. * Call with hotplug lock held
  6075. */
  6076. void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
  6077. struct sched_domain_attr *dattr_new)
  6078. {
  6079. int i, j, n;
  6080. int new_topology;
  6081. mutex_lock(&sched_domains_mutex);
  6082. /* always unregister in case we don't destroy any domains */
  6083. unregister_sched_domain_sysctl();
  6084. /* Let architecture update cpu core mappings. */
  6085. new_topology = arch_update_cpu_topology();
  6086. n = doms_new ? ndoms_new : 0;
  6087. /* Destroy deleted domains */
  6088. for (i = 0; i < ndoms_cur; i++) {
  6089. for (j = 0; j < n && !new_topology; j++) {
  6090. if (cpumask_equal(doms_cur[i], doms_new[j])
  6091. && dattrs_equal(dattr_cur, i, dattr_new, j))
  6092. goto match1;
  6093. }
  6094. /* no match - a current sched domain not in new doms_new[] */
  6095. detach_destroy_domains(doms_cur[i]);
  6096. match1:
  6097. ;
  6098. }
  6099. if (doms_new == NULL) {
  6100. ndoms_cur = 0;
  6101. doms_new = &fallback_doms;
  6102. cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
  6103. WARN_ON_ONCE(dattr_new);
  6104. }
  6105. /* Build new domains */
  6106. for (i = 0; i < ndoms_new; i++) {
  6107. for (j = 0; j < ndoms_cur && !new_topology; j++) {
  6108. if (cpumask_equal(doms_new[i], doms_cur[j])
  6109. && dattrs_equal(dattr_new, i, dattr_cur, j))
  6110. goto match2;
  6111. }
  6112. /* no match - add a new doms_new */
  6113. __build_sched_domains(doms_new[i],
  6114. dattr_new ? dattr_new + i : NULL);
  6115. match2:
  6116. ;
  6117. }
  6118. /* Remember the new sched domains */
  6119. if (doms_cur != &fallback_doms)
  6120. free_sched_domains(doms_cur, ndoms_cur);
  6121. kfree(dattr_cur); /* kfree(NULL) is safe */
  6122. doms_cur = doms_new;
  6123. dattr_cur = dattr_new;
  6124. ndoms_cur = ndoms_new;
  6125. register_sched_domain_sysctl();
  6126. mutex_unlock(&sched_domains_mutex);
  6127. }
  6128. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  6129. static void arch_reinit_sched_domains(void)
  6130. {
  6131. get_online_cpus();
  6132. /* Destroy domains first to force the rebuild */
  6133. partition_sched_domains(0, NULL, NULL);
  6134. rebuild_sched_domains();
  6135. put_online_cpus();
  6136. }
  6137. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  6138. {
  6139. unsigned int level = 0;
  6140. if (sscanf(buf, "%u", &level) != 1)
  6141. return -EINVAL;
  6142. /*
  6143. * level is always be positive so don't check for
  6144. * level < POWERSAVINGS_BALANCE_NONE which is 0
  6145. * What happens on 0 or 1 byte write,
  6146. * need to check for count as well?
  6147. */
  6148. if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
  6149. return -EINVAL;
  6150. if (smt)
  6151. sched_smt_power_savings = level;
  6152. else
  6153. sched_mc_power_savings = level;
  6154. arch_reinit_sched_domains();
  6155. return count;
  6156. }
  6157. #ifdef CONFIG_SCHED_MC
  6158. static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
  6159. struct sysdev_class_attribute *attr,
  6160. char *page)
  6161. {
  6162. return sprintf(page, "%u\n", sched_mc_power_savings);
  6163. }
  6164. static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
  6165. struct sysdev_class_attribute *attr,
  6166. const char *buf, size_t count)
  6167. {
  6168. return sched_power_savings_store(buf, count, 0);
  6169. }
  6170. static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
  6171. sched_mc_power_savings_show,
  6172. sched_mc_power_savings_store);
  6173. #endif
  6174. #ifdef CONFIG_SCHED_SMT
  6175. static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
  6176. struct sysdev_class_attribute *attr,
  6177. char *page)
  6178. {
  6179. return sprintf(page, "%u\n", sched_smt_power_savings);
  6180. }
  6181. static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
  6182. struct sysdev_class_attribute *attr,
  6183. const char *buf, size_t count)
  6184. {
  6185. return sched_power_savings_store(buf, count, 1);
  6186. }
  6187. static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
  6188. sched_smt_power_savings_show,
  6189. sched_smt_power_savings_store);
  6190. #endif
  6191. int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  6192. {
  6193. int err = 0;
  6194. #ifdef CONFIG_SCHED_SMT
  6195. if (smt_capable())
  6196. err = sysfs_create_file(&cls->kset.kobj,
  6197. &attr_sched_smt_power_savings.attr);
  6198. #endif
  6199. #ifdef CONFIG_SCHED_MC
  6200. if (!err && mc_capable())
  6201. err = sysfs_create_file(&cls->kset.kobj,
  6202. &attr_sched_mc_power_savings.attr);
  6203. #endif
  6204. return err;
  6205. }
  6206. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  6207. #ifndef CONFIG_CPUSETS
  6208. /*
  6209. * Add online and remove offline CPUs from the scheduler domains.
  6210. * When cpusets are enabled they take over this function.
  6211. */
  6212. static int update_sched_domains(struct notifier_block *nfb,
  6213. unsigned long action, void *hcpu)
  6214. {
  6215. switch (action) {
  6216. case CPU_ONLINE:
  6217. case CPU_ONLINE_FROZEN:
  6218. case CPU_DOWN_PREPARE:
  6219. case CPU_DOWN_PREPARE_FROZEN:
  6220. case CPU_DOWN_FAILED:
  6221. case CPU_DOWN_FAILED_FROZEN:
  6222. partition_sched_domains(1, NULL, NULL);
  6223. return NOTIFY_OK;
  6224. default:
  6225. return NOTIFY_DONE;
  6226. }
  6227. }
  6228. #endif
  6229. static int update_runtime(struct notifier_block *nfb,
  6230. unsigned long action, void *hcpu)
  6231. {
  6232. int cpu = (int)(long)hcpu;
  6233. switch (action) {
  6234. case CPU_DOWN_PREPARE:
  6235. case CPU_DOWN_PREPARE_FROZEN:
  6236. disable_runtime(cpu_rq(cpu));
  6237. return NOTIFY_OK;
  6238. case CPU_DOWN_FAILED:
  6239. case CPU_DOWN_FAILED_FROZEN:
  6240. case CPU_ONLINE:
  6241. case CPU_ONLINE_FROZEN:
  6242. enable_runtime(cpu_rq(cpu));
  6243. return NOTIFY_OK;
  6244. default:
  6245. return NOTIFY_DONE;
  6246. }
  6247. }
  6248. void __init sched_init_smp(void)
  6249. {
  6250. cpumask_var_t non_isolated_cpus;
  6251. alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
  6252. alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
  6253. #if defined(CONFIG_NUMA)
  6254. sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
  6255. GFP_KERNEL);
  6256. BUG_ON(sched_group_nodes_bycpu == NULL);
  6257. #endif
  6258. get_online_cpus();
  6259. mutex_lock(&sched_domains_mutex);
  6260. arch_init_sched_domains(cpu_active_mask);
  6261. cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
  6262. if (cpumask_empty(non_isolated_cpus))
  6263. cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
  6264. mutex_unlock(&sched_domains_mutex);
  6265. put_online_cpus();
  6266. #ifndef CONFIG_CPUSETS
  6267. /* XXX: Theoretical race here - CPU may be hotplugged now */
  6268. hotcpu_notifier(update_sched_domains, 0);
  6269. #endif
  6270. /* RT runtime code needs to handle some hotplug events */
  6271. hotcpu_notifier(update_runtime, 0);
  6272. init_hrtick();
  6273. /* Move init over to a non-isolated CPU */
  6274. if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
  6275. BUG();
  6276. sched_init_granularity();
  6277. free_cpumask_var(non_isolated_cpus);
  6278. init_sched_rt_class();
  6279. }
  6280. #else
  6281. void __init sched_init_smp(void)
  6282. {
  6283. sched_init_granularity();
  6284. }
  6285. #endif /* CONFIG_SMP */
  6286. const_debug unsigned int sysctl_timer_migration = 1;
  6287. int in_sched_functions(unsigned long addr)
  6288. {
  6289. return in_lock_functions(addr) ||
  6290. (addr >= (unsigned long)__sched_text_start
  6291. && addr < (unsigned long)__sched_text_end);
  6292. }
  6293. static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  6294. {
  6295. cfs_rq->tasks_timeline = RB_ROOT;
  6296. INIT_LIST_HEAD(&cfs_rq->tasks);
  6297. #ifdef CONFIG_FAIR_GROUP_SCHED
  6298. cfs_rq->rq = rq;
  6299. #endif
  6300. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  6301. }
  6302. static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
  6303. {
  6304. struct rt_prio_array *array;
  6305. int i;
  6306. array = &rt_rq->active;
  6307. for (i = 0; i < MAX_RT_PRIO; i++) {
  6308. INIT_LIST_HEAD(array->queue + i);
  6309. __clear_bit(i, array->bitmap);
  6310. }
  6311. /* delimiter for bitsearch: */
  6312. __set_bit(MAX_RT_PRIO, array->bitmap);
  6313. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  6314. rt_rq->highest_prio.curr = MAX_RT_PRIO;
  6315. #ifdef CONFIG_SMP
  6316. rt_rq->highest_prio.next = MAX_RT_PRIO;
  6317. #endif
  6318. #endif
  6319. #ifdef CONFIG_SMP
  6320. rt_rq->rt_nr_migratory = 0;
  6321. rt_rq->overloaded = 0;
  6322. plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
  6323. #endif
  6324. rt_rq->rt_time = 0;
  6325. rt_rq->rt_throttled = 0;
  6326. rt_rq->rt_runtime = 0;
  6327. raw_spin_lock_init(&rt_rq->rt_runtime_lock);
  6328. #ifdef CONFIG_RT_GROUP_SCHED
  6329. rt_rq->rt_nr_boosted = 0;
  6330. rt_rq->rq = rq;
  6331. #endif
  6332. }
  6333. #ifdef CONFIG_FAIR_GROUP_SCHED
  6334. static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
  6335. struct sched_entity *se, int cpu, int add,
  6336. struct sched_entity *parent)
  6337. {
  6338. struct rq *rq = cpu_rq(cpu);
  6339. tg->cfs_rq[cpu] = cfs_rq;
  6340. init_cfs_rq(cfs_rq, rq);
  6341. cfs_rq->tg = tg;
  6342. if (add)
  6343. list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
  6344. tg->se[cpu] = se;
  6345. /* se could be NULL for init_task_group */
  6346. if (!se)
  6347. return;
  6348. if (!parent)
  6349. se->cfs_rq = &rq->cfs;
  6350. else
  6351. se->cfs_rq = parent->my_q;
  6352. se->my_q = cfs_rq;
  6353. se->load.weight = tg->shares;
  6354. se->load.inv_weight = 0;
  6355. se->parent = parent;
  6356. }
  6357. #endif
  6358. #ifdef CONFIG_RT_GROUP_SCHED
  6359. static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
  6360. struct sched_rt_entity *rt_se, int cpu, int add,
  6361. struct sched_rt_entity *parent)
  6362. {
  6363. struct rq *rq = cpu_rq(cpu);
  6364. tg->rt_rq[cpu] = rt_rq;
  6365. init_rt_rq(rt_rq, rq);
  6366. rt_rq->tg = tg;
  6367. rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
  6368. if (add)
  6369. list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
  6370. tg->rt_se[cpu] = rt_se;
  6371. if (!rt_se)
  6372. return;
  6373. if (!parent)
  6374. rt_se->rt_rq = &rq->rt;
  6375. else
  6376. rt_se->rt_rq = parent->my_q;
  6377. rt_se->my_q = rt_rq;
  6378. rt_se->parent = parent;
  6379. INIT_LIST_HEAD(&rt_se->run_list);
  6380. }
  6381. #endif
  6382. void __init sched_init(void)
  6383. {
  6384. int i, j;
  6385. unsigned long alloc_size = 0, ptr;
  6386. #ifdef CONFIG_FAIR_GROUP_SCHED
  6387. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6388. #endif
  6389. #ifdef CONFIG_RT_GROUP_SCHED
  6390. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6391. #endif
  6392. #ifdef CONFIG_CPUMASK_OFFSTACK
  6393. alloc_size += num_possible_cpus() * cpumask_size();
  6394. #endif
  6395. if (alloc_size) {
  6396. ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
  6397. #ifdef CONFIG_FAIR_GROUP_SCHED
  6398. init_task_group.se = (struct sched_entity **)ptr;
  6399. ptr += nr_cpu_ids * sizeof(void **);
  6400. init_task_group.cfs_rq = (struct cfs_rq **)ptr;
  6401. ptr += nr_cpu_ids * sizeof(void **);
  6402. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6403. #ifdef CONFIG_RT_GROUP_SCHED
  6404. init_task_group.rt_se = (struct sched_rt_entity **)ptr;
  6405. ptr += nr_cpu_ids * sizeof(void **);
  6406. init_task_group.rt_rq = (struct rt_rq **)ptr;
  6407. ptr += nr_cpu_ids * sizeof(void **);
  6408. #endif /* CONFIG_RT_GROUP_SCHED */
  6409. #ifdef CONFIG_CPUMASK_OFFSTACK
  6410. for_each_possible_cpu(i) {
  6411. per_cpu(load_balance_tmpmask, i) = (void *)ptr;
  6412. ptr += cpumask_size();
  6413. }
  6414. #endif /* CONFIG_CPUMASK_OFFSTACK */
  6415. }
  6416. #ifdef CONFIG_SMP
  6417. init_defrootdomain();
  6418. #endif
  6419. init_rt_bandwidth(&def_rt_bandwidth,
  6420. global_rt_period(), global_rt_runtime());
  6421. #ifdef CONFIG_RT_GROUP_SCHED
  6422. init_rt_bandwidth(&init_task_group.rt_bandwidth,
  6423. global_rt_period(), global_rt_runtime());
  6424. #endif /* CONFIG_RT_GROUP_SCHED */
  6425. #ifdef CONFIG_CGROUP_SCHED
  6426. list_add(&init_task_group.list, &task_groups);
  6427. INIT_LIST_HEAD(&init_task_group.children);
  6428. #endif /* CONFIG_CGROUP_SCHED */
  6429. #if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
  6430. update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
  6431. __alignof__(unsigned long));
  6432. #endif
  6433. for_each_possible_cpu(i) {
  6434. struct rq *rq;
  6435. rq = cpu_rq(i);
  6436. raw_spin_lock_init(&rq->lock);
  6437. rq->nr_running = 0;
  6438. rq->calc_load_active = 0;
  6439. rq->calc_load_update = jiffies + LOAD_FREQ;
  6440. init_cfs_rq(&rq->cfs, rq);
  6441. init_rt_rq(&rq->rt, rq);
  6442. #ifdef CONFIG_FAIR_GROUP_SCHED
  6443. init_task_group.shares = init_task_group_load;
  6444. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  6445. #ifdef CONFIG_CGROUP_SCHED
  6446. /*
  6447. * How much cpu bandwidth does init_task_group get?
  6448. *
  6449. * In case of task-groups formed thr' the cgroup filesystem, it
  6450. * gets 100% of the cpu resources in the system. This overall
  6451. * system cpu resource is divided among the tasks of
  6452. * init_task_group and its child task-groups in a fair manner,
  6453. * based on each entity's (task or task-group's) weight
  6454. * (se->load.weight).
  6455. *
  6456. * In other words, if init_task_group has 10 tasks of weight
  6457. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  6458. * then A0's share of the cpu resource is:
  6459. *
  6460. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  6461. *
  6462. * We achieve this by letting init_task_group's tasks sit
  6463. * directly in rq->cfs (i.e init_task_group->se[] = NULL).
  6464. */
  6465. init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
  6466. #endif
  6467. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6468. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  6469. #ifdef CONFIG_RT_GROUP_SCHED
  6470. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  6471. #ifdef CONFIG_CGROUP_SCHED
  6472. init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
  6473. #endif
  6474. #endif
  6475. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  6476. rq->cpu_load[j] = 0;
  6477. #ifdef CONFIG_SMP
  6478. rq->sd = NULL;
  6479. rq->rd = NULL;
  6480. rq->cpu_power = SCHED_LOAD_SCALE;
  6481. rq->post_schedule = 0;
  6482. rq->active_balance = 0;
  6483. rq->next_balance = jiffies;
  6484. rq->push_cpu = 0;
  6485. rq->cpu = i;
  6486. rq->online = 0;
  6487. rq->idle_stamp = 0;
  6488. rq->avg_idle = 2*sysctl_sched_migration_cost;
  6489. rq_attach_root(rq, &def_root_domain);
  6490. #endif
  6491. init_rq_hrtick(rq);
  6492. atomic_set(&rq->nr_iowait, 0);
  6493. }
  6494. set_load_weight(&init_task);
  6495. #ifdef CONFIG_PREEMPT_NOTIFIERS
  6496. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  6497. #endif
  6498. #ifdef CONFIG_SMP
  6499. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
  6500. #endif
  6501. #ifdef CONFIG_RT_MUTEXES
  6502. plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
  6503. #endif
  6504. /*
  6505. * The boot idle thread does lazy MMU switching as well:
  6506. */
  6507. atomic_inc(&init_mm.mm_count);
  6508. enter_lazy_tlb(&init_mm, current);
  6509. /*
  6510. * Make us the idle thread. Technically, schedule() should not be
  6511. * called from this thread, however somewhere below it might be,
  6512. * but because we are the idle thread, we just pick up running again
  6513. * when this runqueue becomes "idle".
  6514. */
  6515. init_idle(current, smp_processor_id());
  6516. calc_load_update = jiffies + LOAD_FREQ;
  6517. /*
  6518. * During early bootup we pretend to be a normal task:
  6519. */
  6520. current->sched_class = &fair_sched_class;
  6521. /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
  6522. zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
  6523. #ifdef CONFIG_SMP
  6524. #ifdef CONFIG_NO_HZ
  6525. zalloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
  6526. alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
  6527. #endif
  6528. /* May be allocated at isolcpus cmdline parse time */
  6529. if (cpu_isolated_map == NULL)
  6530. zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
  6531. #endif /* SMP */
  6532. perf_event_init();
  6533. scheduler_running = 1;
  6534. }
  6535. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  6536. static inline int preempt_count_equals(int preempt_offset)
  6537. {
  6538. int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
  6539. return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
  6540. }
  6541. void __might_sleep(const char *file, int line, int preempt_offset)
  6542. {
  6543. #ifdef in_atomic
  6544. static unsigned long prev_jiffy; /* ratelimiting */
  6545. if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
  6546. system_state != SYSTEM_RUNNING || oops_in_progress)
  6547. return;
  6548. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  6549. return;
  6550. prev_jiffy = jiffies;
  6551. printk(KERN_ERR
  6552. "BUG: sleeping function called from invalid context at %s:%d\n",
  6553. file, line);
  6554. printk(KERN_ERR
  6555. "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
  6556. in_atomic(), irqs_disabled(),
  6557. current->pid, current->comm);
  6558. debug_show_held_locks(current);
  6559. if (irqs_disabled())
  6560. print_irqtrace_events(current);
  6561. dump_stack();
  6562. #endif
  6563. }
  6564. EXPORT_SYMBOL(__might_sleep);
  6565. #endif
  6566. #ifdef CONFIG_MAGIC_SYSRQ
  6567. static void normalize_task(struct rq *rq, struct task_struct *p)
  6568. {
  6569. int on_rq;
  6570. on_rq = p->se.on_rq;
  6571. if (on_rq)
  6572. deactivate_task(rq, p, 0);
  6573. __setscheduler(rq, p, SCHED_NORMAL, 0);
  6574. if (on_rq) {
  6575. activate_task(rq, p, 0);
  6576. resched_task(rq->curr);
  6577. }
  6578. }
  6579. void normalize_rt_tasks(void)
  6580. {
  6581. struct task_struct *g, *p;
  6582. unsigned long flags;
  6583. struct rq *rq;
  6584. read_lock_irqsave(&tasklist_lock, flags);
  6585. do_each_thread(g, p) {
  6586. /*
  6587. * Only normalize user tasks:
  6588. */
  6589. if (!p->mm)
  6590. continue;
  6591. p->se.exec_start = 0;
  6592. #ifdef CONFIG_SCHEDSTATS
  6593. p->se.statistics.wait_start = 0;
  6594. p->se.statistics.sleep_start = 0;
  6595. p->se.statistics.block_start = 0;
  6596. #endif
  6597. if (!rt_task(p)) {
  6598. /*
  6599. * Renice negative nice level userspace
  6600. * tasks back to 0:
  6601. */
  6602. if (TASK_NICE(p) < 0 && p->mm)
  6603. set_user_nice(p, 0);
  6604. continue;
  6605. }
  6606. raw_spin_lock(&p->pi_lock);
  6607. rq = __task_rq_lock(p);
  6608. normalize_task(rq, p);
  6609. __task_rq_unlock(rq);
  6610. raw_spin_unlock(&p->pi_lock);
  6611. } while_each_thread(g, p);
  6612. read_unlock_irqrestore(&tasklist_lock, flags);
  6613. }
  6614. #endif /* CONFIG_MAGIC_SYSRQ */
  6615. #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
  6616. /*
  6617. * These functions are only useful for the IA64 MCA handling, or kdb.
  6618. *
  6619. * They can only be called when the whole system has been
  6620. * stopped - every CPU needs to be quiescent, and no scheduling
  6621. * activity can take place. Using them for anything else would
  6622. * be a serious bug, and as a result, they aren't even visible
  6623. * under any other configuration.
  6624. */
  6625. /**
  6626. * curr_task - return the current task for a given cpu.
  6627. * @cpu: the processor in question.
  6628. *
  6629. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6630. */
  6631. struct task_struct *curr_task(int cpu)
  6632. {
  6633. return cpu_curr(cpu);
  6634. }
  6635. #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
  6636. #ifdef CONFIG_IA64
  6637. /**
  6638. * set_curr_task - set the current task for a given cpu.
  6639. * @cpu: the processor in question.
  6640. * @p: the task pointer to set.
  6641. *
  6642. * Description: This function must only be used when non-maskable interrupts
  6643. * are serviced on a separate stack. It allows the architecture to switch the
  6644. * notion of the current task on a cpu in a non-blocking manner. This function
  6645. * must be called with all CPU's synchronized, and interrupts disabled, the
  6646. * and caller must save the original value of the current task (see
  6647. * curr_task() above) and restore that value before reenabling interrupts and
  6648. * re-starting the system.
  6649. *
  6650. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6651. */
  6652. void set_curr_task(int cpu, struct task_struct *p)
  6653. {
  6654. cpu_curr(cpu) = p;
  6655. }
  6656. #endif
  6657. #ifdef CONFIG_FAIR_GROUP_SCHED
  6658. static void free_fair_sched_group(struct task_group *tg)
  6659. {
  6660. int i;
  6661. for_each_possible_cpu(i) {
  6662. if (tg->cfs_rq)
  6663. kfree(tg->cfs_rq[i]);
  6664. if (tg->se)
  6665. kfree(tg->se[i]);
  6666. }
  6667. kfree(tg->cfs_rq);
  6668. kfree(tg->se);
  6669. }
  6670. static
  6671. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  6672. {
  6673. struct cfs_rq *cfs_rq;
  6674. struct sched_entity *se;
  6675. struct rq *rq;
  6676. int i;
  6677. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
  6678. if (!tg->cfs_rq)
  6679. goto err;
  6680. tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
  6681. if (!tg->se)
  6682. goto err;
  6683. tg->shares = NICE_0_LOAD;
  6684. for_each_possible_cpu(i) {
  6685. rq = cpu_rq(i);
  6686. cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
  6687. GFP_KERNEL, cpu_to_node(i));
  6688. if (!cfs_rq)
  6689. goto err;
  6690. se = kzalloc_node(sizeof(struct sched_entity),
  6691. GFP_KERNEL, cpu_to_node(i));
  6692. if (!se)
  6693. goto err_free_rq;
  6694. init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
  6695. }
  6696. return 1;
  6697. err_free_rq:
  6698. kfree(cfs_rq);
  6699. err:
  6700. return 0;
  6701. }
  6702. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  6703. {
  6704. list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
  6705. &cpu_rq(cpu)->leaf_cfs_rq_list);
  6706. }
  6707. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  6708. {
  6709. list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
  6710. }
  6711. #else /* !CONFG_FAIR_GROUP_SCHED */
  6712. static inline void free_fair_sched_group(struct task_group *tg)
  6713. {
  6714. }
  6715. static inline
  6716. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  6717. {
  6718. return 1;
  6719. }
  6720. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  6721. {
  6722. }
  6723. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  6724. {
  6725. }
  6726. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6727. #ifdef CONFIG_RT_GROUP_SCHED
  6728. static void free_rt_sched_group(struct task_group *tg)
  6729. {
  6730. int i;
  6731. destroy_rt_bandwidth(&tg->rt_bandwidth);
  6732. for_each_possible_cpu(i) {
  6733. if (tg->rt_rq)
  6734. kfree(tg->rt_rq[i]);
  6735. if (tg->rt_se)
  6736. kfree(tg->rt_se[i]);
  6737. }
  6738. kfree(tg->rt_rq);
  6739. kfree(tg->rt_se);
  6740. }
  6741. static
  6742. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  6743. {
  6744. struct rt_rq *rt_rq;
  6745. struct sched_rt_entity *rt_se;
  6746. struct rq *rq;
  6747. int i;
  6748. tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
  6749. if (!tg->rt_rq)
  6750. goto err;
  6751. tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
  6752. if (!tg->rt_se)
  6753. goto err;
  6754. init_rt_bandwidth(&tg->rt_bandwidth,
  6755. ktime_to_ns(def_rt_bandwidth.rt_period), 0);
  6756. for_each_possible_cpu(i) {
  6757. rq = cpu_rq(i);
  6758. rt_rq = kzalloc_node(sizeof(struct rt_rq),
  6759. GFP_KERNEL, cpu_to_node(i));
  6760. if (!rt_rq)
  6761. goto err;
  6762. rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
  6763. GFP_KERNEL, cpu_to_node(i));
  6764. if (!rt_se)
  6765. goto err_free_rq;
  6766. init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
  6767. }
  6768. return 1;
  6769. err_free_rq:
  6770. kfree(rt_rq);
  6771. err:
  6772. return 0;
  6773. }
  6774. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  6775. {
  6776. list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
  6777. &cpu_rq(cpu)->leaf_rt_rq_list);
  6778. }
  6779. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  6780. {
  6781. list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
  6782. }
  6783. #else /* !CONFIG_RT_GROUP_SCHED */
  6784. static inline void free_rt_sched_group(struct task_group *tg)
  6785. {
  6786. }
  6787. static inline
  6788. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  6789. {
  6790. return 1;
  6791. }
  6792. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  6793. {
  6794. }
  6795. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  6796. {
  6797. }
  6798. #endif /* CONFIG_RT_GROUP_SCHED */
  6799. #ifdef CONFIG_CGROUP_SCHED
  6800. static void free_sched_group(struct task_group *tg)
  6801. {
  6802. free_fair_sched_group(tg);
  6803. free_rt_sched_group(tg);
  6804. kfree(tg);
  6805. }
  6806. /* allocate runqueue etc for a new task group */
  6807. struct task_group *sched_create_group(struct task_group *parent)
  6808. {
  6809. struct task_group *tg;
  6810. unsigned long flags;
  6811. int i;
  6812. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  6813. if (!tg)
  6814. return ERR_PTR(-ENOMEM);
  6815. if (!alloc_fair_sched_group(tg, parent))
  6816. goto err;
  6817. if (!alloc_rt_sched_group(tg, parent))
  6818. goto err;
  6819. spin_lock_irqsave(&task_group_lock, flags);
  6820. for_each_possible_cpu(i) {
  6821. register_fair_sched_group(tg, i);
  6822. register_rt_sched_group(tg, i);
  6823. }
  6824. list_add_rcu(&tg->list, &task_groups);
  6825. WARN_ON(!parent); /* root should already exist */
  6826. tg->parent = parent;
  6827. INIT_LIST_HEAD(&tg->children);
  6828. list_add_rcu(&tg->siblings, &parent->children);
  6829. spin_unlock_irqrestore(&task_group_lock, flags);
  6830. return tg;
  6831. err:
  6832. free_sched_group(tg);
  6833. return ERR_PTR(-ENOMEM);
  6834. }
  6835. /* rcu callback to free various structures associated with a task group */
  6836. static void free_sched_group_rcu(struct rcu_head *rhp)
  6837. {
  6838. /* now it should be safe to free those cfs_rqs */
  6839. free_sched_group(container_of(rhp, struct task_group, rcu));
  6840. }
  6841. /* Destroy runqueue etc associated with a task group */
  6842. void sched_destroy_group(struct task_group *tg)
  6843. {
  6844. unsigned long flags;
  6845. int i;
  6846. spin_lock_irqsave(&task_group_lock, flags);
  6847. for_each_possible_cpu(i) {
  6848. unregister_fair_sched_group(tg, i);
  6849. unregister_rt_sched_group(tg, i);
  6850. }
  6851. list_del_rcu(&tg->list);
  6852. list_del_rcu(&tg->siblings);
  6853. spin_unlock_irqrestore(&task_group_lock, flags);
  6854. /* wait for possible concurrent references to cfs_rqs complete */
  6855. call_rcu(&tg->rcu, free_sched_group_rcu);
  6856. }
  6857. /* change task's runqueue when it moves between groups.
  6858. * The caller of this function should have put the task in its new group
  6859. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  6860. * reflect its new group.
  6861. */
  6862. void sched_move_task(struct task_struct *tsk)
  6863. {
  6864. int on_rq, running;
  6865. unsigned long flags;
  6866. struct rq *rq;
  6867. rq = task_rq_lock(tsk, &flags);
  6868. running = task_current(rq, tsk);
  6869. on_rq = tsk->se.on_rq;
  6870. if (on_rq)
  6871. dequeue_task(rq, tsk, 0);
  6872. if (unlikely(running))
  6873. tsk->sched_class->put_prev_task(rq, tsk);
  6874. set_task_rq(tsk, task_cpu(tsk));
  6875. #ifdef CONFIG_FAIR_GROUP_SCHED
  6876. if (tsk->sched_class->moved_group)
  6877. tsk->sched_class->moved_group(tsk, on_rq);
  6878. #endif
  6879. if (unlikely(running))
  6880. tsk->sched_class->set_curr_task(rq);
  6881. if (on_rq)
  6882. enqueue_task(rq, tsk, 0);
  6883. task_rq_unlock(rq, &flags);
  6884. }
  6885. #endif /* CONFIG_CGROUP_SCHED */
  6886. #ifdef CONFIG_FAIR_GROUP_SCHED
  6887. static void __set_se_shares(struct sched_entity *se, unsigned long shares)
  6888. {
  6889. struct cfs_rq *cfs_rq = se->cfs_rq;
  6890. int on_rq;
  6891. on_rq = se->on_rq;
  6892. if (on_rq)
  6893. dequeue_entity(cfs_rq, se, 0);
  6894. se->load.weight = shares;
  6895. se->load.inv_weight = 0;
  6896. if (on_rq)
  6897. enqueue_entity(cfs_rq, se, 0);
  6898. }
  6899. static void set_se_shares(struct sched_entity *se, unsigned long shares)
  6900. {
  6901. struct cfs_rq *cfs_rq = se->cfs_rq;
  6902. struct rq *rq = cfs_rq->rq;
  6903. unsigned long flags;
  6904. raw_spin_lock_irqsave(&rq->lock, flags);
  6905. __set_se_shares(se, shares);
  6906. raw_spin_unlock_irqrestore(&rq->lock, flags);
  6907. }
  6908. static DEFINE_MUTEX(shares_mutex);
  6909. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  6910. {
  6911. int i;
  6912. unsigned long flags;
  6913. /*
  6914. * We can't change the weight of the root cgroup.
  6915. */
  6916. if (!tg->se[0])
  6917. return -EINVAL;
  6918. if (shares < MIN_SHARES)
  6919. shares = MIN_SHARES;
  6920. else if (shares > MAX_SHARES)
  6921. shares = MAX_SHARES;
  6922. mutex_lock(&shares_mutex);
  6923. if (tg->shares == shares)
  6924. goto done;
  6925. spin_lock_irqsave(&task_group_lock, flags);
  6926. for_each_possible_cpu(i)
  6927. unregister_fair_sched_group(tg, i);
  6928. list_del_rcu(&tg->siblings);
  6929. spin_unlock_irqrestore(&task_group_lock, flags);
  6930. /* wait for any ongoing reference to this group to finish */
  6931. synchronize_sched();
  6932. /*
  6933. * Now we are free to modify the group's share on each cpu
  6934. * w/o tripping rebalance_share or load_balance_fair.
  6935. */
  6936. tg->shares = shares;
  6937. for_each_possible_cpu(i) {
  6938. /*
  6939. * force a rebalance
  6940. */
  6941. cfs_rq_set_shares(tg->cfs_rq[i], 0);
  6942. set_se_shares(tg->se[i], shares);
  6943. }
  6944. /*
  6945. * Enable load balance activity on this group, by inserting it back on
  6946. * each cpu's rq->leaf_cfs_rq_list.
  6947. */
  6948. spin_lock_irqsave(&task_group_lock, flags);
  6949. for_each_possible_cpu(i)
  6950. register_fair_sched_group(tg, i);
  6951. list_add_rcu(&tg->siblings, &tg->parent->children);
  6952. spin_unlock_irqrestore(&task_group_lock, flags);
  6953. done:
  6954. mutex_unlock(&shares_mutex);
  6955. return 0;
  6956. }
  6957. unsigned long sched_group_shares(struct task_group *tg)
  6958. {
  6959. return tg->shares;
  6960. }
  6961. #endif
  6962. #ifdef CONFIG_RT_GROUP_SCHED
  6963. /*
  6964. * Ensure that the real time constraints are schedulable.
  6965. */
  6966. static DEFINE_MUTEX(rt_constraints_mutex);
  6967. static unsigned long to_ratio(u64 period, u64 runtime)
  6968. {
  6969. if (runtime == RUNTIME_INF)
  6970. return 1ULL << 20;
  6971. return div64_u64(runtime << 20, period);
  6972. }
  6973. /* Must be called with tasklist_lock held */
  6974. static inline int tg_has_rt_tasks(struct task_group *tg)
  6975. {
  6976. struct task_struct *g, *p;
  6977. do_each_thread(g, p) {
  6978. if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
  6979. return 1;
  6980. } while_each_thread(g, p);
  6981. return 0;
  6982. }
  6983. struct rt_schedulable_data {
  6984. struct task_group *tg;
  6985. u64 rt_period;
  6986. u64 rt_runtime;
  6987. };
  6988. static int tg_schedulable(struct task_group *tg, void *data)
  6989. {
  6990. struct rt_schedulable_data *d = data;
  6991. struct task_group *child;
  6992. unsigned long total, sum = 0;
  6993. u64 period, runtime;
  6994. period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  6995. runtime = tg->rt_bandwidth.rt_runtime;
  6996. if (tg == d->tg) {
  6997. period = d->rt_period;
  6998. runtime = d->rt_runtime;
  6999. }
  7000. /*
  7001. * Cannot have more runtime than the period.
  7002. */
  7003. if (runtime > period && runtime != RUNTIME_INF)
  7004. return -EINVAL;
  7005. /*
  7006. * Ensure we don't starve existing RT tasks.
  7007. */
  7008. if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
  7009. return -EBUSY;
  7010. total = to_ratio(period, runtime);
  7011. /*
  7012. * Nobody can have more than the global setting allows.
  7013. */
  7014. if (total > to_ratio(global_rt_period(), global_rt_runtime()))
  7015. return -EINVAL;
  7016. /*
  7017. * The sum of our children's runtime should not exceed our own.
  7018. */
  7019. list_for_each_entry_rcu(child, &tg->children, siblings) {
  7020. period = ktime_to_ns(child->rt_bandwidth.rt_period);
  7021. runtime = child->rt_bandwidth.rt_runtime;
  7022. if (child == d->tg) {
  7023. period = d->rt_period;
  7024. runtime = d->rt_runtime;
  7025. }
  7026. sum += to_ratio(period, runtime);
  7027. }
  7028. if (sum > total)
  7029. return -EINVAL;
  7030. return 0;
  7031. }
  7032. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  7033. {
  7034. struct rt_schedulable_data data = {
  7035. .tg = tg,
  7036. .rt_period = period,
  7037. .rt_runtime = runtime,
  7038. };
  7039. return walk_tg_tree(tg_schedulable, tg_nop, &data);
  7040. }
  7041. static int tg_set_bandwidth(struct task_group *tg,
  7042. u64 rt_period, u64 rt_runtime)
  7043. {
  7044. int i, err = 0;
  7045. mutex_lock(&rt_constraints_mutex);
  7046. read_lock(&tasklist_lock);
  7047. err = __rt_schedulable(tg, rt_period, rt_runtime);
  7048. if (err)
  7049. goto unlock;
  7050. raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7051. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  7052. tg->rt_bandwidth.rt_runtime = rt_runtime;
  7053. for_each_possible_cpu(i) {
  7054. struct rt_rq *rt_rq = tg->rt_rq[i];
  7055. raw_spin_lock(&rt_rq->rt_runtime_lock);
  7056. rt_rq->rt_runtime = rt_runtime;
  7057. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  7058. }
  7059. raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7060. unlock:
  7061. read_unlock(&tasklist_lock);
  7062. mutex_unlock(&rt_constraints_mutex);
  7063. return err;
  7064. }
  7065. int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  7066. {
  7067. u64 rt_runtime, rt_period;
  7068. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7069. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  7070. if (rt_runtime_us < 0)
  7071. rt_runtime = RUNTIME_INF;
  7072. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7073. }
  7074. long sched_group_rt_runtime(struct task_group *tg)
  7075. {
  7076. u64 rt_runtime_us;
  7077. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  7078. return -1;
  7079. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  7080. do_div(rt_runtime_us, NSEC_PER_USEC);
  7081. return rt_runtime_us;
  7082. }
  7083. int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  7084. {
  7085. u64 rt_runtime, rt_period;
  7086. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  7087. rt_runtime = tg->rt_bandwidth.rt_runtime;
  7088. if (rt_period == 0)
  7089. return -EINVAL;
  7090. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7091. }
  7092. long sched_group_rt_period(struct task_group *tg)
  7093. {
  7094. u64 rt_period_us;
  7095. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7096. do_div(rt_period_us, NSEC_PER_USEC);
  7097. return rt_period_us;
  7098. }
  7099. static int sched_rt_global_constraints(void)
  7100. {
  7101. u64 runtime, period;
  7102. int ret = 0;
  7103. if (sysctl_sched_rt_period <= 0)
  7104. return -EINVAL;
  7105. runtime = global_rt_runtime();
  7106. period = global_rt_period();
  7107. /*
  7108. * Sanity check on the sysctl variables.
  7109. */
  7110. if (runtime > period && runtime != RUNTIME_INF)
  7111. return -EINVAL;
  7112. mutex_lock(&rt_constraints_mutex);
  7113. read_lock(&tasklist_lock);
  7114. ret = __rt_schedulable(NULL, 0, 0);
  7115. read_unlock(&tasklist_lock);
  7116. mutex_unlock(&rt_constraints_mutex);
  7117. return ret;
  7118. }
  7119. int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
  7120. {
  7121. /* Don't accept realtime tasks when there is no way for them to run */
  7122. if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
  7123. return 0;
  7124. return 1;
  7125. }
  7126. #else /* !CONFIG_RT_GROUP_SCHED */
  7127. static int sched_rt_global_constraints(void)
  7128. {
  7129. unsigned long flags;
  7130. int i;
  7131. if (sysctl_sched_rt_period <= 0)
  7132. return -EINVAL;
  7133. /*
  7134. * There's always some RT tasks in the root group
  7135. * -- migration, kstopmachine etc..
  7136. */
  7137. if (sysctl_sched_rt_runtime == 0)
  7138. return -EBUSY;
  7139. raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  7140. for_each_possible_cpu(i) {
  7141. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  7142. raw_spin_lock(&rt_rq->rt_runtime_lock);
  7143. rt_rq->rt_runtime = global_rt_runtime();
  7144. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  7145. }
  7146. raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  7147. return 0;
  7148. }
  7149. #endif /* CONFIG_RT_GROUP_SCHED */
  7150. int sched_rt_handler(struct ctl_table *table, int write,
  7151. void __user *buffer, size_t *lenp,
  7152. loff_t *ppos)
  7153. {
  7154. int ret;
  7155. int old_period, old_runtime;
  7156. static DEFINE_MUTEX(mutex);
  7157. mutex_lock(&mutex);
  7158. old_period = sysctl_sched_rt_period;
  7159. old_runtime = sysctl_sched_rt_runtime;
  7160. ret = proc_dointvec(table, write, buffer, lenp, ppos);
  7161. if (!ret && write) {
  7162. ret = sched_rt_global_constraints();
  7163. if (ret) {
  7164. sysctl_sched_rt_period = old_period;
  7165. sysctl_sched_rt_runtime = old_runtime;
  7166. } else {
  7167. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  7168. def_rt_bandwidth.rt_period =
  7169. ns_to_ktime(global_rt_period());
  7170. }
  7171. }
  7172. mutex_unlock(&mutex);
  7173. return ret;
  7174. }
  7175. #ifdef CONFIG_CGROUP_SCHED
  7176. /* return corresponding task_group object of a cgroup */
  7177. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  7178. {
  7179. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  7180. struct task_group, css);
  7181. }
  7182. static struct cgroup_subsys_state *
  7183. cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7184. {
  7185. struct task_group *tg, *parent;
  7186. if (!cgrp->parent) {
  7187. /* This is early initialization for the top cgroup */
  7188. return &init_task_group.css;
  7189. }
  7190. parent = cgroup_tg(cgrp->parent);
  7191. tg = sched_create_group(parent);
  7192. if (IS_ERR(tg))
  7193. return ERR_PTR(-ENOMEM);
  7194. return &tg->css;
  7195. }
  7196. static void
  7197. cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7198. {
  7199. struct task_group *tg = cgroup_tg(cgrp);
  7200. sched_destroy_group(tg);
  7201. }
  7202. static int
  7203. cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
  7204. {
  7205. #ifdef CONFIG_RT_GROUP_SCHED
  7206. if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
  7207. return -EINVAL;
  7208. #else
  7209. /* We don't support RT-tasks being in separate groups */
  7210. if (tsk->sched_class != &fair_sched_class)
  7211. return -EINVAL;
  7212. #endif
  7213. return 0;
  7214. }
  7215. static int
  7216. cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7217. struct task_struct *tsk, bool threadgroup)
  7218. {
  7219. int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
  7220. if (retval)
  7221. return retval;
  7222. if (threadgroup) {
  7223. struct task_struct *c;
  7224. rcu_read_lock();
  7225. list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
  7226. retval = cpu_cgroup_can_attach_task(cgrp, c);
  7227. if (retval) {
  7228. rcu_read_unlock();
  7229. return retval;
  7230. }
  7231. }
  7232. rcu_read_unlock();
  7233. }
  7234. return 0;
  7235. }
  7236. static void
  7237. cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7238. struct cgroup *old_cont, struct task_struct *tsk,
  7239. bool threadgroup)
  7240. {
  7241. sched_move_task(tsk);
  7242. if (threadgroup) {
  7243. struct task_struct *c;
  7244. rcu_read_lock();
  7245. list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
  7246. sched_move_task(c);
  7247. }
  7248. rcu_read_unlock();
  7249. }
  7250. }
  7251. #ifdef CONFIG_FAIR_GROUP_SCHED
  7252. static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  7253. u64 shareval)
  7254. {
  7255. return sched_group_set_shares(cgroup_tg(cgrp), shareval);
  7256. }
  7257. static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
  7258. {
  7259. struct task_group *tg = cgroup_tg(cgrp);
  7260. return (u64) tg->shares;
  7261. }
  7262. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7263. #ifdef CONFIG_RT_GROUP_SCHED
  7264. static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
  7265. s64 val)
  7266. {
  7267. return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
  7268. }
  7269. static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
  7270. {
  7271. return sched_group_rt_runtime(cgroup_tg(cgrp));
  7272. }
  7273. static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  7274. u64 rt_period_us)
  7275. {
  7276. return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
  7277. }
  7278. static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
  7279. {
  7280. return sched_group_rt_period(cgroup_tg(cgrp));
  7281. }
  7282. #endif /* CONFIG_RT_GROUP_SCHED */
  7283. static struct cftype cpu_files[] = {
  7284. #ifdef CONFIG_FAIR_GROUP_SCHED
  7285. {
  7286. .name = "shares",
  7287. .read_u64 = cpu_shares_read_u64,
  7288. .write_u64 = cpu_shares_write_u64,
  7289. },
  7290. #endif
  7291. #ifdef CONFIG_RT_GROUP_SCHED
  7292. {
  7293. .name = "rt_runtime_us",
  7294. .read_s64 = cpu_rt_runtime_read,
  7295. .write_s64 = cpu_rt_runtime_write,
  7296. },
  7297. {
  7298. .name = "rt_period_us",
  7299. .read_u64 = cpu_rt_period_read_uint,
  7300. .write_u64 = cpu_rt_period_write_uint,
  7301. },
  7302. #endif
  7303. };
  7304. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  7305. {
  7306. return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
  7307. }
  7308. struct cgroup_subsys cpu_cgroup_subsys = {
  7309. .name = "cpu",
  7310. .create = cpu_cgroup_create,
  7311. .destroy = cpu_cgroup_destroy,
  7312. .can_attach = cpu_cgroup_can_attach,
  7313. .attach = cpu_cgroup_attach,
  7314. .populate = cpu_cgroup_populate,
  7315. .subsys_id = cpu_cgroup_subsys_id,
  7316. .early_init = 1,
  7317. };
  7318. #endif /* CONFIG_CGROUP_SCHED */
  7319. #ifdef CONFIG_CGROUP_CPUACCT
  7320. /*
  7321. * CPU accounting code for task groups.
  7322. *
  7323. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  7324. * (balbir@in.ibm.com).
  7325. */
  7326. /* track cpu usage of a group of tasks and its child groups */
  7327. struct cpuacct {
  7328. struct cgroup_subsys_state css;
  7329. /* cpuusage holds pointer to a u64-type object on every cpu */
  7330. u64 __percpu *cpuusage;
  7331. struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
  7332. struct cpuacct *parent;
  7333. };
  7334. struct cgroup_subsys cpuacct_subsys;
  7335. /* return cpu accounting group corresponding to this container */
  7336. static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
  7337. {
  7338. return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
  7339. struct cpuacct, css);
  7340. }
  7341. /* return cpu accounting group to which this task belongs */
  7342. static inline struct cpuacct *task_ca(struct task_struct *tsk)
  7343. {
  7344. return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
  7345. struct cpuacct, css);
  7346. }
  7347. /* create a new cpu accounting group */
  7348. static struct cgroup_subsys_state *cpuacct_create(
  7349. struct cgroup_subsys *ss, struct cgroup *cgrp)
  7350. {
  7351. struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  7352. int i;
  7353. if (!ca)
  7354. goto out;
  7355. ca->cpuusage = alloc_percpu(u64);
  7356. if (!ca->cpuusage)
  7357. goto out_free_ca;
  7358. for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
  7359. if (percpu_counter_init(&ca->cpustat[i], 0))
  7360. goto out_free_counters;
  7361. if (cgrp->parent)
  7362. ca->parent = cgroup_ca(cgrp->parent);
  7363. return &ca->css;
  7364. out_free_counters:
  7365. while (--i >= 0)
  7366. percpu_counter_destroy(&ca->cpustat[i]);
  7367. free_percpu(ca->cpuusage);
  7368. out_free_ca:
  7369. kfree(ca);
  7370. out:
  7371. return ERR_PTR(-ENOMEM);
  7372. }
  7373. /* destroy an existing cpu accounting group */
  7374. static void
  7375. cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7376. {
  7377. struct cpuacct *ca = cgroup_ca(cgrp);
  7378. int i;
  7379. for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
  7380. percpu_counter_destroy(&ca->cpustat[i]);
  7381. free_percpu(ca->cpuusage);
  7382. kfree(ca);
  7383. }
  7384. static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
  7385. {
  7386. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  7387. u64 data;
  7388. #ifndef CONFIG_64BIT
  7389. /*
  7390. * Take rq->lock to make 64-bit read safe on 32-bit platforms.
  7391. */
  7392. raw_spin_lock_irq(&cpu_rq(cpu)->lock);
  7393. data = *cpuusage;
  7394. raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
  7395. #else
  7396. data = *cpuusage;
  7397. #endif
  7398. return data;
  7399. }
  7400. static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
  7401. {
  7402. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  7403. #ifndef CONFIG_64BIT
  7404. /*
  7405. * Take rq->lock to make 64-bit write safe on 32-bit platforms.
  7406. */
  7407. raw_spin_lock_irq(&cpu_rq(cpu)->lock);
  7408. *cpuusage = val;
  7409. raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
  7410. #else
  7411. *cpuusage = val;
  7412. #endif
  7413. }
  7414. /* return total cpu usage (in nanoseconds) of a group */
  7415. static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
  7416. {
  7417. struct cpuacct *ca = cgroup_ca(cgrp);
  7418. u64 totalcpuusage = 0;
  7419. int i;
  7420. for_each_present_cpu(i)
  7421. totalcpuusage += cpuacct_cpuusage_read(ca, i);
  7422. return totalcpuusage;
  7423. }
  7424. static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
  7425. u64 reset)
  7426. {
  7427. struct cpuacct *ca = cgroup_ca(cgrp);
  7428. int err = 0;
  7429. int i;
  7430. if (reset) {
  7431. err = -EINVAL;
  7432. goto out;
  7433. }
  7434. for_each_present_cpu(i)
  7435. cpuacct_cpuusage_write(ca, i, 0);
  7436. out:
  7437. return err;
  7438. }
  7439. static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
  7440. struct seq_file *m)
  7441. {
  7442. struct cpuacct *ca = cgroup_ca(cgroup);
  7443. u64 percpu;
  7444. int i;
  7445. for_each_present_cpu(i) {
  7446. percpu = cpuacct_cpuusage_read(ca, i);
  7447. seq_printf(m, "%llu ", (unsigned long long) percpu);
  7448. }
  7449. seq_printf(m, "\n");
  7450. return 0;
  7451. }
  7452. static const char *cpuacct_stat_desc[] = {
  7453. [CPUACCT_STAT_USER] = "user",
  7454. [CPUACCT_STAT_SYSTEM] = "system",
  7455. };
  7456. static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
  7457. struct cgroup_map_cb *cb)
  7458. {
  7459. struct cpuacct *ca = cgroup_ca(cgrp);
  7460. int i;
  7461. for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
  7462. s64 val = percpu_counter_read(&ca->cpustat[i]);
  7463. val = cputime64_to_clock_t(val);
  7464. cb->fill(cb, cpuacct_stat_desc[i], val);
  7465. }
  7466. return 0;
  7467. }
  7468. static struct cftype files[] = {
  7469. {
  7470. .name = "usage",
  7471. .read_u64 = cpuusage_read,
  7472. .write_u64 = cpuusage_write,
  7473. },
  7474. {
  7475. .name = "usage_percpu",
  7476. .read_seq_string = cpuacct_percpu_seq_read,
  7477. },
  7478. {
  7479. .name = "stat",
  7480. .read_map = cpuacct_stats_show,
  7481. },
  7482. };
  7483. static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7484. {
  7485. return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
  7486. }
  7487. /*
  7488. * charge this task's execution time to its accounting group.
  7489. *
  7490. * called with rq->lock held.
  7491. */
  7492. static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  7493. {
  7494. struct cpuacct *ca;
  7495. int cpu;
  7496. if (unlikely(!cpuacct_subsys.active))
  7497. return;
  7498. cpu = task_cpu(tsk);
  7499. rcu_read_lock();
  7500. ca = task_ca(tsk);
  7501. for (; ca; ca = ca->parent) {
  7502. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  7503. *cpuusage += cputime;
  7504. }
  7505. rcu_read_unlock();
  7506. }
  7507. /*
  7508. * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
  7509. * in cputime_t units. As a result, cpuacct_update_stats calls
  7510. * percpu_counter_add with values large enough to always overflow the
  7511. * per cpu batch limit causing bad SMP scalability.
  7512. *
  7513. * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
  7514. * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
  7515. * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
  7516. */
  7517. #ifdef CONFIG_SMP
  7518. #define CPUACCT_BATCH \
  7519. min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
  7520. #else
  7521. #define CPUACCT_BATCH 0
  7522. #endif
  7523. /*
  7524. * Charge the system/user time to the task's accounting group.
  7525. */
  7526. static void cpuacct_update_stats(struct task_struct *tsk,
  7527. enum cpuacct_stat_index idx, cputime_t val)
  7528. {
  7529. struct cpuacct *ca;
  7530. int batch = CPUACCT_BATCH;
  7531. if (unlikely(!cpuacct_subsys.active))
  7532. return;
  7533. rcu_read_lock();
  7534. ca = task_ca(tsk);
  7535. do {
  7536. __percpu_counter_add(&ca->cpustat[idx], val, batch);
  7537. ca = ca->parent;
  7538. } while (ca);
  7539. rcu_read_unlock();
  7540. }
  7541. struct cgroup_subsys cpuacct_subsys = {
  7542. .name = "cpuacct",
  7543. .create = cpuacct_create,
  7544. .destroy = cpuacct_destroy,
  7545. .populate = cpuacct_populate,
  7546. .subsys_id = cpuacct_subsys_id,
  7547. };
  7548. #endif /* CONFIG_CGROUP_CPUACCT */
  7549. #ifndef CONFIG_SMP
  7550. void synchronize_sched_expedited(void)
  7551. {
  7552. barrier();
  7553. }
  7554. EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
  7555. #else /* #ifndef CONFIG_SMP */
  7556. static atomic_t synchronize_sched_expedited_count = ATOMIC_INIT(0);
  7557. static int synchronize_sched_expedited_cpu_stop(void *data)
  7558. {
  7559. /*
  7560. * There must be a full memory barrier on each affected CPU
  7561. * between the time that try_stop_cpus() is called and the
  7562. * time that it returns.
  7563. *
  7564. * In the current initial implementation of cpu_stop, the
  7565. * above condition is already met when the control reaches
  7566. * this point and the following smp_mb() is not strictly
  7567. * necessary. Do smp_mb() anyway for documentation and
  7568. * robustness against future implementation changes.
  7569. */
  7570. smp_mb(); /* See above comment block. */
  7571. return 0;
  7572. }
  7573. /*
  7574. * Wait for an rcu-sched grace period to elapse, but use "big hammer"
  7575. * approach to force grace period to end quickly. This consumes
  7576. * significant time on all CPUs, and is thus not recommended for
  7577. * any sort of common-case code.
  7578. *
  7579. * Note that it is illegal to call this function while holding any
  7580. * lock that is acquired by a CPU-hotplug notifier. Failing to
  7581. * observe this restriction will result in deadlock.
  7582. */
  7583. void synchronize_sched_expedited(void)
  7584. {
  7585. int snap, trycount = 0;
  7586. smp_mb(); /* ensure prior mod happens before capturing snap. */
  7587. snap = atomic_read(&synchronize_sched_expedited_count) + 1;
  7588. get_online_cpus();
  7589. while (try_stop_cpus(cpu_online_mask,
  7590. synchronize_sched_expedited_cpu_stop,
  7591. NULL) == -EAGAIN) {
  7592. put_online_cpus();
  7593. if (trycount++ < 10)
  7594. udelay(trycount * num_online_cpus());
  7595. else {
  7596. synchronize_sched();
  7597. return;
  7598. }
  7599. if (atomic_read(&synchronize_sched_expedited_count) - snap > 0) {
  7600. smp_mb(); /* ensure test happens before caller kfree */
  7601. return;
  7602. }
  7603. get_online_cpus();
  7604. }
  7605. atomic_inc(&synchronize_sched_expedited_count);
  7606. smp_mb__after_atomic_inc(); /* ensure post-GP actions seen after GP. */
  7607. put_online_cpus();
  7608. }
  7609. EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
  7610. #endif /* #else #ifndef CONFIG_SMP */