kexec.c 39 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566
  1. /*
  2. * kexec.c - kexec system call
  3. * Copyright (C) 2002-2004 Eric Biederman <ebiederm@xmission.com>
  4. *
  5. * This source code is licensed under the GNU General Public License,
  6. * Version 2. See the file COPYING for more details.
  7. */
  8. #include <linux/capability.h>
  9. #include <linux/mm.h>
  10. #include <linux/file.h>
  11. #include <linux/slab.h>
  12. #include <linux/fs.h>
  13. #include <linux/kexec.h>
  14. #include <linux/mutex.h>
  15. #include <linux/list.h>
  16. #include <linux/highmem.h>
  17. #include <linux/syscalls.h>
  18. #include <linux/reboot.h>
  19. #include <linux/ioport.h>
  20. #include <linux/hardirq.h>
  21. #include <linux/elf.h>
  22. #include <linux/elfcore.h>
  23. #include <generated/utsrelease.h>
  24. #include <linux/utsname.h>
  25. #include <linux/numa.h>
  26. #include <linux/suspend.h>
  27. #include <linux/device.h>
  28. #include <linux/freezer.h>
  29. #include <linux/pm.h>
  30. #include <linux/cpu.h>
  31. #include <linux/console.h>
  32. #include <linux/vmalloc.h>
  33. #include <linux/swap.h>
  34. #include <linux/kmsg_dump.h>
  35. #include <asm/page.h>
  36. #include <asm/uaccess.h>
  37. #include <asm/io.h>
  38. #include <asm/system.h>
  39. #include <asm/sections.h>
  40. /* Per cpu memory for storing cpu states in case of system crash. */
  41. note_buf_t __percpu *crash_notes;
  42. /* vmcoreinfo stuff */
  43. static unsigned char vmcoreinfo_data[VMCOREINFO_BYTES];
  44. u32 vmcoreinfo_note[VMCOREINFO_NOTE_SIZE/4];
  45. size_t vmcoreinfo_size;
  46. size_t vmcoreinfo_max_size = sizeof(vmcoreinfo_data);
  47. /* Location of the reserved area for the crash kernel */
  48. struct resource crashk_res = {
  49. .name = "Crash kernel",
  50. .start = 0,
  51. .end = 0,
  52. .flags = IORESOURCE_BUSY | IORESOURCE_MEM
  53. };
  54. int kexec_should_crash(struct task_struct *p)
  55. {
  56. if (in_interrupt() || !p->pid || is_global_init(p) || panic_on_oops)
  57. return 1;
  58. return 0;
  59. }
  60. /*
  61. * When kexec transitions to the new kernel there is a one-to-one
  62. * mapping between physical and virtual addresses. On processors
  63. * where you can disable the MMU this is trivial, and easy. For
  64. * others it is still a simple predictable page table to setup.
  65. *
  66. * In that environment kexec copies the new kernel to its final
  67. * resting place. This means I can only support memory whose
  68. * physical address can fit in an unsigned long. In particular
  69. * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled.
  70. * If the assembly stub has more restrictive requirements
  71. * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be
  72. * defined more restrictively in <asm/kexec.h>.
  73. *
  74. * The code for the transition from the current kernel to the
  75. * the new kernel is placed in the control_code_buffer, whose size
  76. * is given by KEXEC_CONTROL_PAGE_SIZE. In the best case only a single
  77. * page of memory is necessary, but some architectures require more.
  78. * Because this memory must be identity mapped in the transition from
  79. * virtual to physical addresses it must live in the range
  80. * 0 - TASK_SIZE, as only the user space mappings are arbitrarily
  81. * modifiable.
  82. *
  83. * The assembly stub in the control code buffer is passed a linked list
  84. * of descriptor pages detailing the source pages of the new kernel,
  85. * and the destination addresses of those source pages. As this data
  86. * structure is not used in the context of the current OS, it must
  87. * be self-contained.
  88. *
  89. * The code has been made to work with highmem pages and will use a
  90. * destination page in its final resting place (if it happens
  91. * to allocate it). The end product of this is that most of the
  92. * physical address space, and most of RAM can be used.
  93. *
  94. * Future directions include:
  95. * - allocating a page table with the control code buffer identity
  96. * mapped, to simplify machine_kexec and make kexec_on_panic more
  97. * reliable.
  98. */
  99. /*
  100. * KIMAGE_NO_DEST is an impossible destination address..., for
  101. * allocating pages whose destination address we do not care about.
  102. */
  103. #define KIMAGE_NO_DEST (-1UL)
  104. static int kimage_is_destination_range(struct kimage *image,
  105. unsigned long start, unsigned long end);
  106. static struct page *kimage_alloc_page(struct kimage *image,
  107. gfp_t gfp_mask,
  108. unsigned long dest);
  109. static int do_kimage_alloc(struct kimage **rimage, unsigned long entry,
  110. unsigned long nr_segments,
  111. struct kexec_segment __user *segments)
  112. {
  113. size_t segment_bytes;
  114. struct kimage *image;
  115. unsigned long i;
  116. int result;
  117. /* Allocate a controlling structure */
  118. result = -ENOMEM;
  119. image = kzalloc(sizeof(*image), GFP_KERNEL);
  120. if (!image)
  121. goto out;
  122. image->head = 0;
  123. image->entry = &image->head;
  124. image->last_entry = &image->head;
  125. image->control_page = ~0; /* By default this does not apply */
  126. image->start = entry;
  127. image->type = KEXEC_TYPE_DEFAULT;
  128. /* Initialize the list of control pages */
  129. INIT_LIST_HEAD(&image->control_pages);
  130. /* Initialize the list of destination pages */
  131. INIT_LIST_HEAD(&image->dest_pages);
  132. /* Initialize the list of unuseable pages */
  133. INIT_LIST_HEAD(&image->unuseable_pages);
  134. /* Read in the segments */
  135. image->nr_segments = nr_segments;
  136. segment_bytes = nr_segments * sizeof(*segments);
  137. result = copy_from_user(image->segment, segments, segment_bytes);
  138. if (result)
  139. goto out;
  140. /*
  141. * Verify we have good destination addresses. The caller is
  142. * responsible for making certain we don't attempt to load
  143. * the new image into invalid or reserved areas of RAM. This
  144. * just verifies it is an address we can use.
  145. *
  146. * Since the kernel does everything in page size chunks ensure
  147. * the destination addreses are page aligned. Too many
  148. * special cases crop of when we don't do this. The most
  149. * insidious is getting overlapping destination addresses
  150. * simply because addresses are changed to page size
  151. * granularity.
  152. */
  153. result = -EADDRNOTAVAIL;
  154. for (i = 0; i < nr_segments; i++) {
  155. unsigned long mstart, mend;
  156. mstart = image->segment[i].mem;
  157. mend = mstart + image->segment[i].memsz;
  158. if ((mstart & ~PAGE_MASK) || (mend & ~PAGE_MASK))
  159. goto out;
  160. if (mend >= KEXEC_DESTINATION_MEMORY_LIMIT)
  161. goto out;
  162. }
  163. /* Verify our destination addresses do not overlap.
  164. * If we alloed overlapping destination addresses
  165. * through very weird things can happen with no
  166. * easy explanation as one segment stops on another.
  167. */
  168. result = -EINVAL;
  169. for (i = 0; i < nr_segments; i++) {
  170. unsigned long mstart, mend;
  171. unsigned long j;
  172. mstart = image->segment[i].mem;
  173. mend = mstart + image->segment[i].memsz;
  174. for (j = 0; j < i; j++) {
  175. unsigned long pstart, pend;
  176. pstart = image->segment[j].mem;
  177. pend = pstart + image->segment[j].memsz;
  178. /* Do the segments overlap ? */
  179. if ((mend > pstart) && (mstart < pend))
  180. goto out;
  181. }
  182. }
  183. /* Ensure our buffer sizes are strictly less than
  184. * our memory sizes. This should always be the case,
  185. * and it is easier to check up front than to be surprised
  186. * later on.
  187. */
  188. result = -EINVAL;
  189. for (i = 0; i < nr_segments; i++) {
  190. if (image->segment[i].bufsz > image->segment[i].memsz)
  191. goto out;
  192. }
  193. result = 0;
  194. out:
  195. if (result == 0)
  196. *rimage = image;
  197. else
  198. kfree(image);
  199. return result;
  200. }
  201. static int kimage_normal_alloc(struct kimage **rimage, unsigned long entry,
  202. unsigned long nr_segments,
  203. struct kexec_segment __user *segments)
  204. {
  205. int result;
  206. struct kimage *image;
  207. /* Allocate and initialize a controlling structure */
  208. image = NULL;
  209. result = do_kimage_alloc(&image, entry, nr_segments, segments);
  210. if (result)
  211. goto out;
  212. *rimage = image;
  213. /*
  214. * Find a location for the control code buffer, and add it
  215. * the vector of segments so that it's pages will also be
  216. * counted as destination pages.
  217. */
  218. result = -ENOMEM;
  219. image->control_code_page = kimage_alloc_control_pages(image,
  220. get_order(KEXEC_CONTROL_PAGE_SIZE));
  221. if (!image->control_code_page) {
  222. printk(KERN_ERR "Could not allocate control_code_buffer\n");
  223. goto out;
  224. }
  225. image->swap_page = kimage_alloc_control_pages(image, 0);
  226. if (!image->swap_page) {
  227. printk(KERN_ERR "Could not allocate swap buffer\n");
  228. goto out;
  229. }
  230. result = 0;
  231. out:
  232. if (result == 0)
  233. *rimage = image;
  234. else
  235. kfree(image);
  236. return result;
  237. }
  238. static int kimage_crash_alloc(struct kimage **rimage, unsigned long entry,
  239. unsigned long nr_segments,
  240. struct kexec_segment __user *segments)
  241. {
  242. int result;
  243. struct kimage *image;
  244. unsigned long i;
  245. image = NULL;
  246. /* Verify we have a valid entry point */
  247. if ((entry < crashk_res.start) || (entry > crashk_res.end)) {
  248. result = -EADDRNOTAVAIL;
  249. goto out;
  250. }
  251. /* Allocate and initialize a controlling structure */
  252. result = do_kimage_alloc(&image, entry, nr_segments, segments);
  253. if (result)
  254. goto out;
  255. /* Enable the special crash kernel control page
  256. * allocation policy.
  257. */
  258. image->control_page = crashk_res.start;
  259. image->type = KEXEC_TYPE_CRASH;
  260. /*
  261. * Verify we have good destination addresses. Normally
  262. * the caller is responsible for making certain we don't
  263. * attempt to load the new image into invalid or reserved
  264. * areas of RAM. But crash kernels are preloaded into a
  265. * reserved area of ram. We must ensure the addresses
  266. * are in the reserved area otherwise preloading the
  267. * kernel could corrupt things.
  268. */
  269. result = -EADDRNOTAVAIL;
  270. for (i = 0; i < nr_segments; i++) {
  271. unsigned long mstart, mend;
  272. mstart = image->segment[i].mem;
  273. mend = mstart + image->segment[i].memsz - 1;
  274. /* Ensure we are within the crash kernel limits */
  275. if ((mstart < crashk_res.start) || (mend > crashk_res.end))
  276. goto out;
  277. }
  278. /*
  279. * Find a location for the control code buffer, and add
  280. * the vector of segments so that it's pages will also be
  281. * counted as destination pages.
  282. */
  283. result = -ENOMEM;
  284. image->control_code_page = kimage_alloc_control_pages(image,
  285. get_order(KEXEC_CONTROL_PAGE_SIZE));
  286. if (!image->control_code_page) {
  287. printk(KERN_ERR "Could not allocate control_code_buffer\n");
  288. goto out;
  289. }
  290. result = 0;
  291. out:
  292. if (result == 0)
  293. *rimage = image;
  294. else
  295. kfree(image);
  296. return result;
  297. }
  298. static int kimage_is_destination_range(struct kimage *image,
  299. unsigned long start,
  300. unsigned long end)
  301. {
  302. unsigned long i;
  303. for (i = 0; i < image->nr_segments; i++) {
  304. unsigned long mstart, mend;
  305. mstart = image->segment[i].mem;
  306. mend = mstart + image->segment[i].memsz;
  307. if ((end > mstart) && (start < mend))
  308. return 1;
  309. }
  310. return 0;
  311. }
  312. static struct page *kimage_alloc_pages(gfp_t gfp_mask, unsigned int order)
  313. {
  314. struct page *pages;
  315. pages = alloc_pages(gfp_mask, order);
  316. if (pages) {
  317. unsigned int count, i;
  318. pages->mapping = NULL;
  319. set_page_private(pages, order);
  320. count = 1 << order;
  321. for (i = 0; i < count; i++)
  322. SetPageReserved(pages + i);
  323. }
  324. return pages;
  325. }
  326. static void kimage_free_pages(struct page *page)
  327. {
  328. unsigned int order, count, i;
  329. order = page_private(page);
  330. count = 1 << order;
  331. for (i = 0; i < count; i++)
  332. ClearPageReserved(page + i);
  333. __free_pages(page, order);
  334. }
  335. static void kimage_free_page_list(struct list_head *list)
  336. {
  337. struct list_head *pos, *next;
  338. list_for_each_safe(pos, next, list) {
  339. struct page *page;
  340. page = list_entry(pos, struct page, lru);
  341. list_del(&page->lru);
  342. kimage_free_pages(page);
  343. }
  344. }
  345. static struct page *kimage_alloc_normal_control_pages(struct kimage *image,
  346. unsigned int order)
  347. {
  348. /* Control pages are special, they are the intermediaries
  349. * that are needed while we copy the rest of the pages
  350. * to their final resting place. As such they must
  351. * not conflict with either the destination addresses
  352. * or memory the kernel is already using.
  353. *
  354. * The only case where we really need more than one of
  355. * these are for architectures where we cannot disable
  356. * the MMU and must instead generate an identity mapped
  357. * page table for all of the memory.
  358. *
  359. * At worst this runs in O(N) of the image size.
  360. */
  361. struct list_head extra_pages;
  362. struct page *pages;
  363. unsigned int count;
  364. count = 1 << order;
  365. INIT_LIST_HEAD(&extra_pages);
  366. /* Loop while I can allocate a page and the page allocated
  367. * is a destination page.
  368. */
  369. do {
  370. unsigned long pfn, epfn, addr, eaddr;
  371. pages = kimage_alloc_pages(GFP_KERNEL, order);
  372. if (!pages)
  373. break;
  374. pfn = page_to_pfn(pages);
  375. epfn = pfn + count;
  376. addr = pfn << PAGE_SHIFT;
  377. eaddr = epfn << PAGE_SHIFT;
  378. if ((epfn >= (KEXEC_CONTROL_MEMORY_LIMIT >> PAGE_SHIFT)) ||
  379. kimage_is_destination_range(image, addr, eaddr)) {
  380. list_add(&pages->lru, &extra_pages);
  381. pages = NULL;
  382. }
  383. } while (!pages);
  384. if (pages) {
  385. /* Remember the allocated page... */
  386. list_add(&pages->lru, &image->control_pages);
  387. /* Because the page is already in it's destination
  388. * location we will never allocate another page at
  389. * that address. Therefore kimage_alloc_pages
  390. * will not return it (again) and we don't need
  391. * to give it an entry in image->segment[].
  392. */
  393. }
  394. /* Deal with the destination pages I have inadvertently allocated.
  395. *
  396. * Ideally I would convert multi-page allocations into single
  397. * page allocations, and add everyting to image->dest_pages.
  398. *
  399. * For now it is simpler to just free the pages.
  400. */
  401. kimage_free_page_list(&extra_pages);
  402. return pages;
  403. }
  404. static struct page *kimage_alloc_crash_control_pages(struct kimage *image,
  405. unsigned int order)
  406. {
  407. /* Control pages are special, they are the intermediaries
  408. * that are needed while we copy the rest of the pages
  409. * to their final resting place. As such they must
  410. * not conflict with either the destination addresses
  411. * or memory the kernel is already using.
  412. *
  413. * Control pages are also the only pags we must allocate
  414. * when loading a crash kernel. All of the other pages
  415. * are specified by the segments and we just memcpy
  416. * into them directly.
  417. *
  418. * The only case where we really need more than one of
  419. * these are for architectures where we cannot disable
  420. * the MMU and must instead generate an identity mapped
  421. * page table for all of the memory.
  422. *
  423. * Given the low demand this implements a very simple
  424. * allocator that finds the first hole of the appropriate
  425. * size in the reserved memory region, and allocates all
  426. * of the memory up to and including the hole.
  427. */
  428. unsigned long hole_start, hole_end, size;
  429. struct page *pages;
  430. pages = NULL;
  431. size = (1 << order) << PAGE_SHIFT;
  432. hole_start = (image->control_page + (size - 1)) & ~(size - 1);
  433. hole_end = hole_start + size - 1;
  434. while (hole_end <= crashk_res.end) {
  435. unsigned long i;
  436. if (hole_end > KEXEC_CONTROL_MEMORY_LIMIT)
  437. break;
  438. if (hole_end > crashk_res.end)
  439. break;
  440. /* See if I overlap any of the segments */
  441. for (i = 0; i < image->nr_segments; i++) {
  442. unsigned long mstart, mend;
  443. mstart = image->segment[i].mem;
  444. mend = mstart + image->segment[i].memsz - 1;
  445. if ((hole_end >= mstart) && (hole_start <= mend)) {
  446. /* Advance the hole to the end of the segment */
  447. hole_start = (mend + (size - 1)) & ~(size - 1);
  448. hole_end = hole_start + size - 1;
  449. break;
  450. }
  451. }
  452. /* If I don't overlap any segments I have found my hole! */
  453. if (i == image->nr_segments) {
  454. pages = pfn_to_page(hole_start >> PAGE_SHIFT);
  455. break;
  456. }
  457. }
  458. if (pages)
  459. image->control_page = hole_end;
  460. return pages;
  461. }
  462. struct page *kimage_alloc_control_pages(struct kimage *image,
  463. unsigned int order)
  464. {
  465. struct page *pages = NULL;
  466. switch (image->type) {
  467. case KEXEC_TYPE_DEFAULT:
  468. pages = kimage_alloc_normal_control_pages(image, order);
  469. break;
  470. case KEXEC_TYPE_CRASH:
  471. pages = kimage_alloc_crash_control_pages(image, order);
  472. break;
  473. }
  474. return pages;
  475. }
  476. static int kimage_add_entry(struct kimage *image, kimage_entry_t entry)
  477. {
  478. if (*image->entry != 0)
  479. image->entry++;
  480. if (image->entry == image->last_entry) {
  481. kimage_entry_t *ind_page;
  482. struct page *page;
  483. page = kimage_alloc_page(image, GFP_KERNEL, KIMAGE_NO_DEST);
  484. if (!page)
  485. return -ENOMEM;
  486. ind_page = page_address(page);
  487. *image->entry = virt_to_phys(ind_page) | IND_INDIRECTION;
  488. image->entry = ind_page;
  489. image->last_entry = ind_page +
  490. ((PAGE_SIZE/sizeof(kimage_entry_t)) - 1);
  491. }
  492. *image->entry = entry;
  493. image->entry++;
  494. *image->entry = 0;
  495. return 0;
  496. }
  497. static int kimage_set_destination(struct kimage *image,
  498. unsigned long destination)
  499. {
  500. int result;
  501. destination &= PAGE_MASK;
  502. result = kimage_add_entry(image, destination | IND_DESTINATION);
  503. if (result == 0)
  504. image->destination = destination;
  505. return result;
  506. }
  507. static int kimage_add_page(struct kimage *image, unsigned long page)
  508. {
  509. int result;
  510. page &= PAGE_MASK;
  511. result = kimage_add_entry(image, page | IND_SOURCE);
  512. if (result == 0)
  513. image->destination += PAGE_SIZE;
  514. return result;
  515. }
  516. static void kimage_free_extra_pages(struct kimage *image)
  517. {
  518. /* Walk through and free any extra destination pages I may have */
  519. kimage_free_page_list(&image->dest_pages);
  520. /* Walk through and free any unuseable pages I have cached */
  521. kimage_free_page_list(&image->unuseable_pages);
  522. }
  523. static void kimage_terminate(struct kimage *image)
  524. {
  525. if (*image->entry != 0)
  526. image->entry++;
  527. *image->entry = IND_DONE;
  528. }
  529. #define for_each_kimage_entry(image, ptr, entry) \
  530. for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \
  531. ptr = (entry & IND_INDIRECTION)? \
  532. phys_to_virt((entry & PAGE_MASK)): ptr +1)
  533. static void kimage_free_entry(kimage_entry_t entry)
  534. {
  535. struct page *page;
  536. page = pfn_to_page(entry >> PAGE_SHIFT);
  537. kimage_free_pages(page);
  538. }
  539. static void kimage_free(struct kimage *image)
  540. {
  541. kimage_entry_t *ptr, entry;
  542. kimage_entry_t ind = 0;
  543. if (!image)
  544. return;
  545. kimage_free_extra_pages(image);
  546. for_each_kimage_entry(image, ptr, entry) {
  547. if (entry & IND_INDIRECTION) {
  548. /* Free the previous indirection page */
  549. if (ind & IND_INDIRECTION)
  550. kimage_free_entry(ind);
  551. /* Save this indirection page until we are
  552. * done with it.
  553. */
  554. ind = entry;
  555. }
  556. else if (entry & IND_SOURCE)
  557. kimage_free_entry(entry);
  558. }
  559. /* Free the final indirection page */
  560. if (ind & IND_INDIRECTION)
  561. kimage_free_entry(ind);
  562. /* Handle any machine specific cleanup */
  563. machine_kexec_cleanup(image);
  564. /* Free the kexec control pages... */
  565. kimage_free_page_list(&image->control_pages);
  566. kfree(image);
  567. }
  568. static kimage_entry_t *kimage_dst_used(struct kimage *image,
  569. unsigned long page)
  570. {
  571. kimage_entry_t *ptr, entry;
  572. unsigned long destination = 0;
  573. for_each_kimage_entry(image, ptr, entry) {
  574. if (entry & IND_DESTINATION)
  575. destination = entry & PAGE_MASK;
  576. else if (entry & IND_SOURCE) {
  577. if (page == destination)
  578. return ptr;
  579. destination += PAGE_SIZE;
  580. }
  581. }
  582. return NULL;
  583. }
  584. static struct page *kimage_alloc_page(struct kimage *image,
  585. gfp_t gfp_mask,
  586. unsigned long destination)
  587. {
  588. /*
  589. * Here we implement safeguards to ensure that a source page
  590. * is not copied to its destination page before the data on
  591. * the destination page is no longer useful.
  592. *
  593. * To do this we maintain the invariant that a source page is
  594. * either its own destination page, or it is not a
  595. * destination page at all.
  596. *
  597. * That is slightly stronger than required, but the proof
  598. * that no problems will not occur is trivial, and the
  599. * implementation is simply to verify.
  600. *
  601. * When allocating all pages normally this algorithm will run
  602. * in O(N) time, but in the worst case it will run in O(N^2)
  603. * time. If the runtime is a problem the data structures can
  604. * be fixed.
  605. */
  606. struct page *page;
  607. unsigned long addr;
  608. /*
  609. * Walk through the list of destination pages, and see if I
  610. * have a match.
  611. */
  612. list_for_each_entry(page, &image->dest_pages, lru) {
  613. addr = page_to_pfn(page) << PAGE_SHIFT;
  614. if (addr == destination) {
  615. list_del(&page->lru);
  616. return page;
  617. }
  618. }
  619. page = NULL;
  620. while (1) {
  621. kimage_entry_t *old;
  622. /* Allocate a page, if we run out of memory give up */
  623. page = kimage_alloc_pages(gfp_mask, 0);
  624. if (!page)
  625. return NULL;
  626. /* If the page cannot be used file it away */
  627. if (page_to_pfn(page) >
  628. (KEXEC_SOURCE_MEMORY_LIMIT >> PAGE_SHIFT)) {
  629. list_add(&page->lru, &image->unuseable_pages);
  630. continue;
  631. }
  632. addr = page_to_pfn(page) << PAGE_SHIFT;
  633. /* If it is the destination page we want use it */
  634. if (addr == destination)
  635. break;
  636. /* If the page is not a destination page use it */
  637. if (!kimage_is_destination_range(image, addr,
  638. addr + PAGE_SIZE))
  639. break;
  640. /*
  641. * I know that the page is someones destination page.
  642. * See if there is already a source page for this
  643. * destination page. And if so swap the source pages.
  644. */
  645. old = kimage_dst_used(image, addr);
  646. if (old) {
  647. /* If so move it */
  648. unsigned long old_addr;
  649. struct page *old_page;
  650. old_addr = *old & PAGE_MASK;
  651. old_page = pfn_to_page(old_addr >> PAGE_SHIFT);
  652. copy_highpage(page, old_page);
  653. *old = addr | (*old & ~PAGE_MASK);
  654. /* The old page I have found cannot be a
  655. * destination page, so return it if it's
  656. * gfp_flags honor the ones passed in.
  657. */
  658. if (!(gfp_mask & __GFP_HIGHMEM) &&
  659. PageHighMem(old_page)) {
  660. kimage_free_pages(old_page);
  661. continue;
  662. }
  663. addr = old_addr;
  664. page = old_page;
  665. break;
  666. }
  667. else {
  668. /* Place the page on the destination list I
  669. * will use it later.
  670. */
  671. list_add(&page->lru, &image->dest_pages);
  672. }
  673. }
  674. return page;
  675. }
  676. static int kimage_load_normal_segment(struct kimage *image,
  677. struct kexec_segment *segment)
  678. {
  679. unsigned long maddr;
  680. unsigned long ubytes, mbytes;
  681. int result;
  682. unsigned char __user *buf;
  683. result = 0;
  684. buf = segment->buf;
  685. ubytes = segment->bufsz;
  686. mbytes = segment->memsz;
  687. maddr = segment->mem;
  688. result = kimage_set_destination(image, maddr);
  689. if (result < 0)
  690. goto out;
  691. while (mbytes) {
  692. struct page *page;
  693. char *ptr;
  694. size_t uchunk, mchunk;
  695. page = kimage_alloc_page(image, GFP_HIGHUSER, maddr);
  696. if (!page) {
  697. result = -ENOMEM;
  698. goto out;
  699. }
  700. result = kimage_add_page(image, page_to_pfn(page)
  701. << PAGE_SHIFT);
  702. if (result < 0)
  703. goto out;
  704. ptr = kmap(page);
  705. /* Start with a clear page */
  706. memset(ptr, 0, PAGE_SIZE);
  707. ptr += maddr & ~PAGE_MASK;
  708. mchunk = PAGE_SIZE - (maddr & ~PAGE_MASK);
  709. if (mchunk > mbytes)
  710. mchunk = mbytes;
  711. uchunk = mchunk;
  712. if (uchunk > ubytes)
  713. uchunk = ubytes;
  714. result = copy_from_user(ptr, buf, uchunk);
  715. kunmap(page);
  716. if (result) {
  717. result = (result < 0) ? result : -EIO;
  718. goto out;
  719. }
  720. ubytes -= uchunk;
  721. maddr += mchunk;
  722. buf += mchunk;
  723. mbytes -= mchunk;
  724. }
  725. out:
  726. return result;
  727. }
  728. static int kimage_load_crash_segment(struct kimage *image,
  729. struct kexec_segment *segment)
  730. {
  731. /* For crash dumps kernels we simply copy the data from
  732. * user space to it's destination.
  733. * We do things a page at a time for the sake of kmap.
  734. */
  735. unsigned long maddr;
  736. unsigned long ubytes, mbytes;
  737. int result;
  738. unsigned char __user *buf;
  739. result = 0;
  740. buf = segment->buf;
  741. ubytes = segment->bufsz;
  742. mbytes = segment->memsz;
  743. maddr = segment->mem;
  744. while (mbytes) {
  745. struct page *page;
  746. char *ptr;
  747. size_t uchunk, mchunk;
  748. page = pfn_to_page(maddr >> PAGE_SHIFT);
  749. if (!page) {
  750. result = -ENOMEM;
  751. goto out;
  752. }
  753. ptr = kmap(page);
  754. ptr += maddr & ~PAGE_MASK;
  755. mchunk = PAGE_SIZE - (maddr & ~PAGE_MASK);
  756. if (mchunk > mbytes)
  757. mchunk = mbytes;
  758. uchunk = mchunk;
  759. if (uchunk > ubytes) {
  760. uchunk = ubytes;
  761. /* Zero the trailing part of the page */
  762. memset(ptr + uchunk, 0, mchunk - uchunk);
  763. }
  764. result = copy_from_user(ptr, buf, uchunk);
  765. kexec_flush_icache_page(page);
  766. kunmap(page);
  767. if (result) {
  768. result = (result < 0) ? result : -EIO;
  769. goto out;
  770. }
  771. ubytes -= uchunk;
  772. maddr += mchunk;
  773. buf += mchunk;
  774. mbytes -= mchunk;
  775. }
  776. out:
  777. return result;
  778. }
  779. static int kimage_load_segment(struct kimage *image,
  780. struct kexec_segment *segment)
  781. {
  782. int result = -ENOMEM;
  783. switch (image->type) {
  784. case KEXEC_TYPE_DEFAULT:
  785. result = kimage_load_normal_segment(image, segment);
  786. break;
  787. case KEXEC_TYPE_CRASH:
  788. result = kimage_load_crash_segment(image, segment);
  789. break;
  790. }
  791. return result;
  792. }
  793. /*
  794. * Exec Kernel system call: for obvious reasons only root may call it.
  795. *
  796. * This call breaks up into three pieces.
  797. * - A generic part which loads the new kernel from the current
  798. * address space, and very carefully places the data in the
  799. * allocated pages.
  800. *
  801. * - A generic part that interacts with the kernel and tells all of
  802. * the devices to shut down. Preventing on-going dmas, and placing
  803. * the devices in a consistent state so a later kernel can
  804. * reinitialize them.
  805. *
  806. * - A machine specific part that includes the syscall number
  807. * and the copies the image to it's final destination. And
  808. * jumps into the image at entry.
  809. *
  810. * kexec does not sync, or unmount filesystems so if you need
  811. * that to happen you need to do that yourself.
  812. */
  813. struct kimage *kexec_image;
  814. struct kimage *kexec_crash_image;
  815. static DEFINE_MUTEX(kexec_mutex);
  816. SYSCALL_DEFINE4(kexec_load, unsigned long, entry, unsigned long, nr_segments,
  817. struct kexec_segment __user *, segments, unsigned long, flags)
  818. {
  819. struct kimage **dest_image, *image;
  820. int result;
  821. /* We only trust the superuser with rebooting the system. */
  822. if (!capable(CAP_SYS_BOOT))
  823. return -EPERM;
  824. /*
  825. * Verify we have a legal set of flags
  826. * This leaves us room for future extensions.
  827. */
  828. if ((flags & KEXEC_FLAGS) != (flags & ~KEXEC_ARCH_MASK))
  829. return -EINVAL;
  830. /* Verify we are on the appropriate architecture */
  831. if (((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH) &&
  832. ((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH_DEFAULT))
  833. return -EINVAL;
  834. /* Put an artificial cap on the number
  835. * of segments passed to kexec_load.
  836. */
  837. if (nr_segments > KEXEC_SEGMENT_MAX)
  838. return -EINVAL;
  839. image = NULL;
  840. result = 0;
  841. /* Because we write directly to the reserved memory
  842. * region when loading crash kernels we need a mutex here to
  843. * prevent multiple crash kernels from attempting to load
  844. * simultaneously, and to prevent a crash kernel from loading
  845. * over the top of a in use crash kernel.
  846. *
  847. * KISS: always take the mutex.
  848. */
  849. if (!mutex_trylock(&kexec_mutex))
  850. return -EBUSY;
  851. dest_image = &kexec_image;
  852. if (flags & KEXEC_ON_CRASH)
  853. dest_image = &kexec_crash_image;
  854. if (nr_segments > 0) {
  855. unsigned long i;
  856. /* Loading another kernel to reboot into */
  857. if ((flags & KEXEC_ON_CRASH) == 0)
  858. result = kimage_normal_alloc(&image, entry,
  859. nr_segments, segments);
  860. /* Loading another kernel to switch to if this one crashes */
  861. else if (flags & KEXEC_ON_CRASH) {
  862. /* Free any current crash dump kernel before
  863. * we corrupt it.
  864. */
  865. kimage_free(xchg(&kexec_crash_image, NULL));
  866. result = kimage_crash_alloc(&image, entry,
  867. nr_segments, segments);
  868. }
  869. if (result)
  870. goto out;
  871. if (flags & KEXEC_PRESERVE_CONTEXT)
  872. image->preserve_context = 1;
  873. result = machine_kexec_prepare(image);
  874. if (result)
  875. goto out;
  876. for (i = 0; i < nr_segments; i++) {
  877. result = kimage_load_segment(image, &image->segment[i]);
  878. if (result)
  879. goto out;
  880. }
  881. kimage_terminate(image);
  882. }
  883. /* Install the new kernel, and Uninstall the old */
  884. image = xchg(dest_image, image);
  885. out:
  886. mutex_unlock(&kexec_mutex);
  887. kimage_free(image);
  888. return result;
  889. }
  890. #ifdef CONFIG_COMPAT
  891. asmlinkage long compat_sys_kexec_load(unsigned long entry,
  892. unsigned long nr_segments,
  893. struct compat_kexec_segment __user *segments,
  894. unsigned long flags)
  895. {
  896. struct compat_kexec_segment in;
  897. struct kexec_segment out, __user *ksegments;
  898. unsigned long i, result;
  899. /* Don't allow clients that don't understand the native
  900. * architecture to do anything.
  901. */
  902. if ((flags & KEXEC_ARCH_MASK) == KEXEC_ARCH_DEFAULT)
  903. return -EINVAL;
  904. if (nr_segments > KEXEC_SEGMENT_MAX)
  905. return -EINVAL;
  906. ksegments = compat_alloc_user_space(nr_segments * sizeof(out));
  907. for (i=0; i < nr_segments; i++) {
  908. result = copy_from_user(&in, &segments[i], sizeof(in));
  909. if (result)
  910. return -EFAULT;
  911. out.buf = compat_ptr(in.buf);
  912. out.bufsz = in.bufsz;
  913. out.mem = in.mem;
  914. out.memsz = in.memsz;
  915. result = copy_to_user(&ksegments[i], &out, sizeof(out));
  916. if (result)
  917. return -EFAULT;
  918. }
  919. return sys_kexec_load(entry, nr_segments, ksegments, flags);
  920. }
  921. #endif
  922. void crash_kexec(struct pt_regs *regs)
  923. {
  924. /* Take the kexec_mutex here to prevent sys_kexec_load
  925. * running on one cpu from replacing the crash kernel
  926. * we are using after a panic on a different cpu.
  927. *
  928. * If the crash kernel was not located in a fixed area
  929. * of memory the xchg(&kexec_crash_image) would be
  930. * sufficient. But since I reuse the memory...
  931. */
  932. if (mutex_trylock(&kexec_mutex)) {
  933. if (kexec_crash_image) {
  934. struct pt_regs fixed_regs;
  935. kmsg_dump(KMSG_DUMP_KEXEC);
  936. crash_setup_regs(&fixed_regs, regs);
  937. crash_save_vmcoreinfo();
  938. machine_crash_shutdown(&fixed_regs);
  939. machine_kexec(kexec_crash_image);
  940. }
  941. mutex_unlock(&kexec_mutex);
  942. }
  943. }
  944. size_t crash_get_memory_size(void)
  945. {
  946. size_t size = 0;
  947. mutex_lock(&kexec_mutex);
  948. if (crashk_res.end != crashk_res.start)
  949. size = crashk_res.end - crashk_res.start + 1;
  950. mutex_unlock(&kexec_mutex);
  951. return size;
  952. }
  953. static void free_reserved_phys_range(unsigned long begin, unsigned long end)
  954. {
  955. unsigned long addr;
  956. for (addr = begin; addr < end; addr += PAGE_SIZE) {
  957. ClearPageReserved(pfn_to_page(addr >> PAGE_SHIFT));
  958. init_page_count(pfn_to_page(addr >> PAGE_SHIFT));
  959. free_page((unsigned long)__va(addr));
  960. totalram_pages++;
  961. }
  962. }
  963. int crash_shrink_memory(unsigned long new_size)
  964. {
  965. int ret = 0;
  966. unsigned long start, end;
  967. mutex_lock(&kexec_mutex);
  968. if (kexec_crash_image) {
  969. ret = -ENOENT;
  970. goto unlock;
  971. }
  972. start = crashk_res.start;
  973. end = crashk_res.end;
  974. if (new_size >= end - start + 1) {
  975. ret = -EINVAL;
  976. if (new_size == end - start + 1)
  977. ret = 0;
  978. goto unlock;
  979. }
  980. start = roundup(start, PAGE_SIZE);
  981. end = roundup(start + new_size, PAGE_SIZE);
  982. free_reserved_phys_range(end, crashk_res.end);
  983. if ((start == end) && (crashk_res.parent != NULL))
  984. release_resource(&crashk_res);
  985. crashk_res.end = end - 1;
  986. unlock:
  987. mutex_unlock(&kexec_mutex);
  988. return ret;
  989. }
  990. static u32 *append_elf_note(u32 *buf, char *name, unsigned type, void *data,
  991. size_t data_len)
  992. {
  993. struct elf_note note;
  994. note.n_namesz = strlen(name) + 1;
  995. note.n_descsz = data_len;
  996. note.n_type = type;
  997. memcpy(buf, &note, sizeof(note));
  998. buf += (sizeof(note) + 3)/4;
  999. memcpy(buf, name, note.n_namesz);
  1000. buf += (note.n_namesz + 3)/4;
  1001. memcpy(buf, data, note.n_descsz);
  1002. buf += (note.n_descsz + 3)/4;
  1003. return buf;
  1004. }
  1005. static void final_note(u32 *buf)
  1006. {
  1007. struct elf_note note;
  1008. note.n_namesz = 0;
  1009. note.n_descsz = 0;
  1010. note.n_type = 0;
  1011. memcpy(buf, &note, sizeof(note));
  1012. }
  1013. void crash_save_cpu(struct pt_regs *regs, int cpu)
  1014. {
  1015. struct elf_prstatus prstatus;
  1016. u32 *buf;
  1017. if ((cpu < 0) || (cpu >= nr_cpu_ids))
  1018. return;
  1019. /* Using ELF notes here is opportunistic.
  1020. * I need a well defined structure format
  1021. * for the data I pass, and I need tags
  1022. * on the data to indicate what information I have
  1023. * squirrelled away. ELF notes happen to provide
  1024. * all of that, so there is no need to invent something new.
  1025. */
  1026. buf = (u32*)per_cpu_ptr(crash_notes, cpu);
  1027. if (!buf)
  1028. return;
  1029. memset(&prstatus, 0, sizeof(prstatus));
  1030. prstatus.pr_pid = current->pid;
  1031. elf_core_copy_kernel_regs(&prstatus.pr_reg, regs);
  1032. buf = append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS,
  1033. &prstatus, sizeof(prstatus));
  1034. final_note(buf);
  1035. }
  1036. static int __init crash_notes_memory_init(void)
  1037. {
  1038. /* Allocate memory for saving cpu registers. */
  1039. crash_notes = alloc_percpu(note_buf_t);
  1040. if (!crash_notes) {
  1041. printk("Kexec: Memory allocation for saving cpu register"
  1042. " states failed\n");
  1043. return -ENOMEM;
  1044. }
  1045. return 0;
  1046. }
  1047. module_init(crash_notes_memory_init)
  1048. /*
  1049. * parsing the "crashkernel" commandline
  1050. *
  1051. * this code is intended to be called from architecture specific code
  1052. */
  1053. /*
  1054. * This function parses command lines in the format
  1055. *
  1056. * crashkernel=ramsize-range:size[,...][@offset]
  1057. *
  1058. * The function returns 0 on success and -EINVAL on failure.
  1059. */
  1060. static int __init parse_crashkernel_mem(char *cmdline,
  1061. unsigned long long system_ram,
  1062. unsigned long long *crash_size,
  1063. unsigned long long *crash_base)
  1064. {
  1065. char *cur = cmdline, *tmp;
  1066. /* for each entry of the comma-separated list */
  1067. do {
  1068. unsigned long long start, end = ULLONG_MAX, size;
  1069. /* get the start of the range */
  1070. start = memparse(cur, &tmp);
  1071. if (cur == tmp) {
  1072. pr_warning("crashkernel: Memory value expected\n");
  1073. return -EINVAL;
  1074. }
  1075. cur = tmp;
  1076. if (*cur != '-') {
  1077. pr_warning("crashkernel: '-' expected\n");
  1078. return -EINVAL;
  1079. }
  1080. cur++;
  1081. /* if no ':' is here, than we read the end */
  1082. if (*cur != ':') {
  1083. end = memparse(cur, &tmp);
  1084. if (cur == tmp) {
  1085. pr_warning("crashkernel: Memory "
  1086. "value expected\n");
  1087. return -EINVAL;
  1088. }
  1089. cur = tmp;
  1090. if (end <= start) {
  1091. pr_warning("crashkernel: end <= start\n");
  1092. return -EINVAL;
  1093. }
  1094. }
  1095. if (*cur != ':') {
  1096. pr_warning("crashkernel: ':' expected\n");
  1097. return -EINVAL;
  1098. }
  1099. cur++;
  1100. size = memparse(cur, &tmp);
  1101. if (cur == tmp) {
  1102. pr_warning("Memory value expected\n");
  1103. return -EINVAL;
  1104. }
  1105. cur = tmp;
  1106. if (size >= system_ram) {
  1107. pr_warning("crashkernel: invalid size\n");
  1108. return -EINVAL;
  1109. }
  1110. /* match ? */
  1111. if (system_ram >= start && system_ram < end) {
  1112. *crash_size = size;
  1113. break;
  1114. }
  1115. } while (*cur++ == ',');
  1116. if (*crash_size > 0) {
  1117. while (*cur && *cur != ' ' && *cur != '@')
  1118. cur++;
  1119. if (*cur == '@') {
  1120. cur++;
  1121. *crash_base = memparse(cur, &tmp);
  1122. if (cur == tmp) {
  1123. pr_warning("Memory value expected "
  1124. "after '@'\n");
  1125. return -EINVAL;
  1126. }
  1127. }
  1128. }
  1129. return 0;
  1130. }
  1131. /*
  1132. * That function parses "simple" (old) crashkernel command lines like
  1133. *
  1134. * crashkernel=size[@offset]
  1135. *
  1136. * It returns 0 on success and -EINVAL on failure.
  1137. */
  1138. static int __init parse_crashkernel_simple(char *cmdline,
  1139. unsigned long long *crash_size,
  1140. unsigned long long *crash_base)
  1141. {
  1142. char *cur = cmdline;
  1143. *crash_size = memparse(cmdline, &cur);
  1144. if (cmdline == cur) {
  1145. pr_warning("crashkernel: memory value expected\n");
  1146. return -EINVAL;
  1147. }
  1148. if (*cur == '@')
  1149. *crash_base = memparse(cur+1, &cur);
  1150. return 0;
  1151. }
  1152. /*
  1153. * That function is the entry point for command line parsing and should be
  1154. * called from the arch-specific code.
  1155. */
  1156. int __init parse_crashkernel(char *cmdline,
  1157. unsigned long long system_ram,
  1158. unsigned long long *crash_size,
  1159. unsigned long long *crash_base)
  1160. {
  1161. char *p = cmdline, *ck_cmdline = NULL;
  1162. char *first_colon, *first_space;
  1163. BUG_ON(!crash_size || !crash_base);
  1164. *crash_size = 0;
  1165. *crash_base = 0;
  1166. /* find crashkernel and use the last one if there are more */
  1167. p = strstr(p, "crashkernel=");
  1168. while (p) {
  1169. ck_cmdline = p;
  1170. p = strstr(p+1, "crashkernel=");
  1171. }
  1172. if (!ck_cmdline)
  1173. return -EINVAL;
  1174. ck_cmdline += 12; /* strlen("crashkernel=") */
  1175. /*
  1176. * if the commandline contains a ':', then that's the extended
  1177. * syntax -- if not, it must be the classic syntax
  1178. */
  1179. first_colon = strchr(ck_cmdline, ':');
  1180. first_space = strchr(ck_cmdline, ' ');
  1181. if (first_colon && (!first_space || first_colon < first_space))
  1182. return parse_crashkernel_mem(ck_cmdline, system_ram,
  1183. crash_size, crash_base);
  1184. else
  1185. return parse_crashkernel_simple(ck_cmdline, crash_size,
  1186. crash_base);
  1187. return 0;
  1188. }
  1189. void crash_save_vmcoreinfo(void)
  1190. {
  1191. u32 *buf;
  1192. if (!vmcoreinfo_size)
  1193. return;
  1194. vmcoreinfo_append_str("CRASHTIME=%ld", get_seconds());
  1195. buf = (u32 *)vmcoreinfo_note;
  1196. buf = append_elf_note(buf, VMCOREINFO_NOTE_NAME, 0, vmcoreinfo_data,
  1197. vmcoreinfo_size);
  1198. final_note(buf);
  1199. }
  1200. void vmcoreinfo_append_str(const char *fmt, ...)
  1201. {
  1202. va_list args;
  1203. char buf[0x50];
  1204. int r;
  1205. va_start(args, fmt);
  1206. r = vsnprintf(buf, sizeof(buf), fmt, args);
  1207. va_end(args);
  1208. if (r + vmcoreinfo_size > vmcoreinfo_max_size)
  1209. r = vmcoreinfo_max_size - vmcoreinfo_size;
  1210. memcpy(&vmcoreinfo_data[vmcoreinfo_size], buf, r);
  1211. vmcoreinfo_size += r;
  1212. }
  1213. /*
  1214. * provide an empty default implementation here -- architecture
  1215. * code may override this
  1216. */
  1217. void __attribute__ ((weak)) arch_crash_save_vmcoreinfo(void)
  1218. {}
  1219. unsigned long __attribute__ ((weak)) paddr_vmcoreinfo_note(void)
  1220. {
  1221. return __pa((unsigned long)(char *)&vmcoreinfo_note);
  1222. }
  1223. static int __init crash_save_vmcoreinfo_init(void)
  1224. {
  1225. VMCOREINFO_OSRELEASE(init_uts_ns.name.release);
  1226. VMCOREINFO_PAGESIZE(PAGE_SIZE);
  1227. VMCOREINFO_SYMBOL(init_uts_ns);
  1228. VMCOREINFO_SYMBOL(node_online_map);
  1229. VMCOREINFO_SYMBOL(swapper_pg_dir);
  1230. VMCOREINFO_SYMBOL(_stext);
  1231. VMCOREINFO_SYMBOL(vmlist);
  1232. #ifndef CONFIG_NEED_MULTIPLE_NODES
  1233. VMCOREINFO_SYMBOL(mem_map);
  1234. VMCOREINFO_SYMBOL(contig_page_data);
  1235. #endif
  1236. #ifdef CONFIG_SPARSEMEM
  1237. VMCOREINFO_SYMBOL(mem_section);
  1238. VMCOREINFO_LENGTH(mem_section, NR_SECTION_ROOTS);
  1239. VMCOREINFO_STRUCT_SIZE(mem_section);
  1240. VMCOREINFO_OFFSET(mem_section, section_mem_map);
  1241. #endif
  1242. VMCOREINFO_STRUCT_SIZE(page);
  1243. VMCOREINFO_STRUCT_SIZE(pglist_data);
  1244. VMCOREINFO_STRUCT_SIZE(zone);
  1245. VMCOREINFO_STRUCT_SIZE(free_area);
  1246. VMCOREINFO_STRUCT_SIZE(list_head);
  1247. VMCOREINFO_SIZE(nodemask_t);
  1248. VMCOREINFO_OFFSET(page, flags);
  1249. VMCOREINFO_OFFSET(page, _count);
  1250. VMCOREINFO_OFFSET(page, mapping);
  1251. VMCOREINFO_OFFSET(page, lru);
  1252. VMCOREINFO_OFFSET(pglist_data, node_zones);
  1253. VMCOREINFO_OFFSET(pglist_data, nr_zones);
  1254. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  1255. VMCOREINFO_OFFSET(pglist_data, node_mem_map);
  1256. #endif
  1257. VMCOREINFO_OFFSET(pglist_data, node_start_pfn);
  1258. VMCOREINFO_OFFSET(pglist_data, node_spanned_pages);
  1259. VMCOREINFO_OFFSET(pglist_data, node_id);
  1260. VMCOREINFO_OFFSET(zone, free_area);
  1261. VMCOREINFO_OFFSET(zone, vm_stat);
  1262. VMCOREINFO_OFFSET(zone, spanned_pages);
  1263. VMCOREINFO_OFFSET(free_area, free_list);
  1264. VMCOREINFO_OFFSET(list_head, next);
  1265. VMCOREINFO_OFFSET(list_head, prev);
  1266. VMCOREINFO_OFFSET(vm_struct, addr);
  1267. VMCOREINFO_LENGTH(zone.free_area, MAX_ORDER);
  1268. log_buf_kexec_setup();
  1269. VMCOREINFO_LENGTH(free_area.free_list, MIGRATE_TYPES);
  1270. VMCOREINFO_NUMBER(NR_FREE_PAGES);
  1271. VMCOREINFO_NUMBER(PG_lru);
  1272. VMCOREINFO_NUMBER(PG_private);
  1273. VMCOREINFO_NUMBER(PG_swapcache);
  1274. arch_crash_save_vmcoreinfo();
  1275. return 0;
  1276. }
  1277. module_init(crash_save_vmcoreinfo_init)
  1278. /*
  1279. * Move into place and start executing a preloaded standalone
  1280. * executable. If nothing was preloaded return an error.
  1281. */
  1282. int kernel_kexec(void)
  1283. {
  1284. int error = 0;
  1285. if (!mutex_trylock(&kexec_mutex))
  1286. return -EBUSY;
  1287. if (!kexec_image) {
  1288. error = -EINVAL;
  1289. goto Unlock;
  1290. }
  1291. #ifdef CONFIG_KEXEC_JUMP
  1292. if (kexec_image->preserve_context) {
  1293. mutex_lock(&pm_mutex);
  1294. pm_prepare_console();
  1295. error = freeze_processes();
  1296. if (error) {
  1297. error = -EBUSY;
  1298. goto Restore_console;
  1299. }
  1300. suspend_console();
  1301. error = dpm_suspend_start(PMSG_FREEZE);
  1302. if (error)
  1303. goto Resume_console;
  1304. /* At this point, dpm_suspend_start() has been called,
  1305. * but *not* dpm_suspend_noirq(). We *must* call
  1306. * dpm_suspend_noirq() now. Otherwise, drivers for
  1307. * some devices (e.g. interrupt controllers) become
  1308. * desynchronized with the actual state of the
  1309. * hardware at resume time, and evil weirdness ensues.
  1310. */
  1311. error = dpm_suspend_noirq(PMSG_FREEZE);
  1312. if (error)
  1313. goto Resume_devices;
  1314. error = disable_nonboot_cpus();
  1315. if (error)
  1316. goto Enable_cpus;
  1317. local_irq_disable();
  1318. /* Suspend system devices */
  1319. error = sysdev_suspend(PMSG_FREEZE);
  1320. if (error)
  1321. goto Enable_irqs;
  1322. } else
  1323. #endif
  1324. {
  1325. kernel_restart_prepare(NULL);
  1326. printk(KERN_EMERG "Starting new kernel\n");
  1327. machine_shutdown();
  1328. }
  1329. machine_kexec(kexec_image);
  1330. #ifdef CONFIG_KEXEC_JUMP
  1331. if (kexec_image->preserve_context) {
  1332. sysdev_resume();
  1333. Enable_irqs:
  1334. local_irq_enable();
  1335. Enable_cpus:
  1336. enable_nonboot_cpus();
  1337. dpm_resume_noirq(PMSG_RESTORE);
  1338. Resume_devices:
  1339. dpm_resume_end(PMSG_RESTORE);
  1340. Resume_console:
  1341. resume_console();
  1342. thaw_processes();
  1343. Restore_console:
  1344. pm_restore_console();
  1345. mutex_unlock(&pm_mutex);
  1346. }
  1347. #endif
  1348. Unlock:
  1349. mutex_unlock(&kexec_mutex);
  1350. return error;
  1351. }