inode.c 26 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928
  1. /*
  2. * linux/fs/ufs/inode.c
  3. *
  4. * Copyright (C) 1998
  5. * Daniel Pirkl <daniel.pirkl@email.cz>
  6. * Charles University, Faculty of Mathematics and Physics
  7. *
  8. * from
  9. *
  10. * linux/fs/ext2/inode.c
  11. *
  12. * Copyright (C) 1992, 1993, 1994, 1995
  13. * Remy Card (card@masi.ibp.fr)
  14. * Laboratoire MASI - Institut Blaise Pascal
  15. * Universite Pierre et Marie Curie (Paris VI)
  16. *
  17. * from
  18. *
  19. * linux/fs/minix/inode.c
  20. *
  21. * Copyright (C) 1991, 1992 Linus Torvalds
  22. *
  23. * Goal-directed block allocation by Stephen Tweedie (sct@dcs.ed.ac.uk), 1993
  24. * Big-endian to little-endian byte-swapping/bitmaps by
  25. * David S. Miller (davem@caip.rutgers.edu), 1995
  26. */
  27. #include <asm/uaccess.h>
  28. #include <asm/system.h>
  29. #include <linux/errno.h>
  30. #include <linux/fs.h>
  31. #include <linux/time.h>
  32. #include <linux/stat.h>
  33. #include <linux/string.h>
  34. #include <linux/mm.h>
  35. #include <linux/smp_lock.h>
  36. #include <linux/buffer_head.h>
  37. #include <linux/writeback.h>
  38. #include "ufs_fs.h"
  39. #include "ufs.h"
  40. #include "swab.h"
  41. #include "util.h"
  42. static u64 ufs_frag_map(struct inode *inode, sector_t frag);
  43. static int ufs_block_to_path(struct inode *inode, sector_t i_block, sector_t offsets[4])
  44. {
  45. struct ufs_sb_private_info *uspi = UFS_SB(inode->i_sb)->s_uspi;
  46. int ptrs = uspi->s_apb;
  47. int ptrs_bits = uspi->s_apbshift;
  48. const long direct_blocks = UFS_NDADDR,
  49. indirect_blocks = ptrs,
  50. double_blocks = (1 << (ptrs_bits * 2));
  51. int n = 0;
  52. UFSD("ptrs=uspi->s_apb = %d,double_blocks=%ld \n",ptrs,double_blocks);
  53. if (i_block < direct_blocks) {
  54. offsets[n++] = i_block;
  55. } else if ((i_block -= direct_blocks) < indirect_blocks) {
  56. offsets[n++] = UFS_IND_BLOCK;
  57. offsets[n++] = i_block;
  58. } else if ((i_block -= indirect_blocks) < double_blocks) {
  59. offsets[n++] = UFS_DIND_BLOCK;
  60. offsets[n++] = i_block >> ptrs_bits;
  61. offsets[n++] = i_block & (ptrs - 1);
  62. } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
  63. offsets[n++] = UFS_TIND_BLOCK;
  64. offsets[n++] = i_block >> (ptrs_bits * 2);
  65. offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
  66. offsets[n++] = i_block & (ptrs - 1);
  67. } else {
  68. ufs_warning(inode->i_sb, "ufs_block_to_path", "block > big");
  69. }
  70. return n;
  71. }
  72. /*
  73. * Returns the location of the fragment from
  74. * the begining of the filesystem.
  75. */
  76. static u64 ufs_frag_map(struct inode *inode, sector_t frag)
  77. {
  78. struct ufs_inode_info *ufsi = UFS_I(inode);
  79. struct super_block *sb = inode->i_sb;
  80. struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi;
  81. u64 mask = (u64) uspi->s_apbmask>>uspi->s_fpbshift;
  82. int shift = uspi->s_apbshift-uspi->s_fpbshift;
  83. sector_t offsets[4], *p;
  84. int depth = ufs_block_to_path(inode, frag >> uspi->s_fpbshift, offsets);
  85. u64 ret = 0L;
  86. __fs32 block;
  87. __fs64 u2_block = 0L;
  88. unsigned flags = UFS_SB(sb)->s_flags;
  89. u64 temp = 0L;
  90. UFSD(": frag = %llu depth = %d\n", (unsigned long long)frag, depth);
  91. UFSD(": uspi->s_fpbshift = %d ,uspi->s_apbmask = %x, mask=%llx\n",
  92. uspi->s_fpbshift, uspi->s_apbmask,
  93. (unsigned long long)mask);
  94. if (depth == 0)
  95. return 0;
  96. p = offsets;
  97. lock_kernel();
  98. if ((flags & UFS_TYPE_MASK) == UFS_TYPE_UFS2)
  99. goto ufs2;
  100. block = ufsi->i_u1.i_data[*p++];
  101. if (!block)
  102. goto out;
  103. while (--depth) {
  104. struct buffer_head *bh;
  105. sector_t n = *p++;
  106. bh = sb_bread(sb, uspi->s_sbbase + fs32_to_cpu(sb, block)+(n>>shift));
  107. if (!bh)
  108. goto out;
  109. block = ((__fs32 *) bh->b_data)[n & mask];
  110. brelse (bh);
  111. if (!block)
  112. goto out;
  113. }
  114. ret = (u64) (uspi->s_sbbase + fs32_to_cpu(sb, block) + (frag & uspi->s_fpbmask));
  115. goto out;
  116. ufs2:
  117. u2_block = ufsi->i_u1.u2_i_data[*p++];
  118. if (!u2_block)
  119. goto out;
  120. while (--depth) {
  121. struct buffer_head *bh;
  122. sector_t n = *p++;
  123. temp = (u64)(uspi->s_sbbase) + fs64_to_cpu(sb, u2_block);
  124. bh = sb_bread(sb, temp +(u64) (n>>shift));
  125. if (!bh)
  126. goto out;
  127. u2_block = ((__fs64 *)bh->b_data)[n & mask];
  128. brelse(bh);
  129. if (!u2_block)
  130. goto out;
  131. }
  132. temp = (u64)uspi->s_sbbase + fs64_to_cpu(sb, u2_block);
  133. ret = temp + (u64) (frag & uspi->s_fpbmask);
  134. out:
  135. unlock_kernel();
  136. return ret;
  137. }
  138. /**
  139. * ufs_inode_getfrag() - allocate new fragment(s)
  140. * @inode - pointer to inode
  141. * @fragment - number of `fragment' which hold pointer
  142. * to new allocated fragment(s)
  143. * @new_fragment - number of new allocated fragment(s)
  144. * @required - how many fragment(s) we require
  145. * @err - we set it if something wrong
  146. * @phys - pointer to where we save physical number of new allocated fragments,
  147. * NULL if we allocate not data(indirect blocks for example).
  148. * @new - we set it if we allocate new block
  149. * @locked_page - for ufs_new_fragments()
  150. */
  151. static struct buffer_head *
  152. ufs_inode_getfrag(struct inode *inode, u64 fragment,
  153. sector_t new_fragment, unsigned int required, int *err,
  154. long *phys, int *new, struct page *locked_page)
  155. {
  156. struct ufs_inode_info *ufsi = UFS_I(inode);
  157. struct super_block *sb = inode->i_sb;
  158. struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi;
  159. struct buffer_head * result;
  160. unsigned blockoff, lastblockoff;
  161. u64 tmp, goal, lastfrag, block, lastblock;
  162. void *p, *p2;
  163. UFSD("ENTER, ino %lu, fragment %llu, new_fragment %llu, required %u, "
  164. "metadata %d\n", inode->i_ino, (unsigned long long)fragment,
  165. (unsigned long long)new_fragment, required, !phys);
  166. /* TODO : to be done for write support
  167. if ( (flags & UFS_TYPE_MASK) == UFS_TYPE_UFS2)
  168. goto ufs2;
  169. */
  170. block = ufs_fragstoblks (fragment);
  171. blockoff = ufs_fragnum (fragment);
  172. p = ufs_get_direct_data_ptr(uspi, ufsi, block);
  173. goal = 0;
  174. repeat:
  175. tmp = ufs_data_ptr_to_cpu(sb, p);
  176. lastfrag = ufsi->i_lastfrag;
  177. if (tmp && fragment < lastfrag) {
  178. if (!phys) {
  179. result = sb_getblk(sb, uspi->s_sbbase + tmp + blockoff);
  180. if (tmp == ufs_data_ptr_to_cpu(sb, p)) {
  181. UFSD("EXIT, result %llu\n",
  182. (unsigned long long)tmp + blockoff);
  183. return result;
  184. }
  185. brelse (result);
  186. goto repeat;
  187. } else {
  188. *phys = uspi->s_sbbase + tmp + blockoff;
  189. return NULL;
  190. }
  191. }
  192. lastblock = ufs_fragstoblks (lastfrag);
  193. lastblockoff = ufs_fragnum (lastfrag);
  194. /*
  195. * We will extend file into new block beyond last allocated block
  196. */
  197. if (lastblock < block) {
  198. /*
  199. * We must reallocate last allocated block
  200. */
  201. if (lastblockoff) {
  202. p2 = ufs_get_direct_data_ptr(uspi, ufsi, lastblock);
  203. tmp = ufs_new_fragments(inode, p2, lastfrag,
  204. ufs_data_ptr_to_cpu(sb, p2),
  205. uspi->s_fpb - lastblockoff,
  206. err, locked_page);
  207. if (!tmp) {
  208. if (lastfrag != ufsi->i_lastfrag)
  209. goto repeat;
  210. else
  211. return NULL;
  212. }
  213. lastfrag = ufsi->i_lastfrag;
  214. }
  215. tmp = ufs_data_ptr_to_cpu(sb,
  216. ufs_get_direct_data_ptr(uspi, ufsi,
  217. lastblock));
  218. if (tmp)
  219. goal = tmp + uspi->s_fpb;
  220. tmp = ufs_new_fragments (inode, p, fragment - blockoff,
  221. goal, required + blockoff,
  222. err,
  223. phys != NULL ? locked_page : NULL);
  224. } else if (lastblock == block) {
  225. /*
  226. * We will extend last allocated block
  227. */
  228. tmp = ufs_new_fragments(inode, p, fragment -
  229. (blockoff - lastblockoff),
  230. ufs_data_ptr_to_cpu(sb, p),
  231. required + (blockoff - lastblockoff),
  232. err, phys != NULL ? locked_page : NULL);
  233. } else /* (lastblock > block) */ {
  234. /*
  235. * We will allocate new block before last allocated block
  236. */
  237. if (block) {
  238. tmp = ufs_data_ptr_to_cpu(sb,
  239. ufs_get_direct_data_ptr(uspi, ufsi, block - 1));
  240. if (tmp)
  241. goal = tmp + uspi->s_fpb;
  242. }
  243. tmp = ufs_new_fragments(inode, p, fragment - blockoff,
  244. goal, uspi->s_fpb, err,
  245. phys != NULL ? locked_page : NULL);
  246. }
  247. if (!tmp) {
  248. if ((!blockoff && ufs_data_ptr_to_cpu(sb, p)) ||
  249. (blockoff && lastfrag != ufsi->i_lastfrag))
  250. goto repeat;
  251. *err = -ENOSPC;
  252. return NULL;
  253. }
  254. if (!phys) {
  255. result = sb_getblk(sb, uspi->s_sbbase + tmp + blockoff);
  256. } else {
  257. *phys = uspi->s_sbbase + tmp + blockoff;
  258. result = NULL;
  259. *err = 0;
  260. *new = 1;
  261. }
  262. inode->i_ctime = CURRENT_TIME_SEC;
  263. if (IS_SYNC(inode))
  264. ufs_sync_inode (inode);
  265. mark_inode_dirty(inode);
  266. UFSD("EXIT, result %llu\n", (unsigned long long)tmp + blockoff);
  267. return result;
  268. /* This part : To be implemented ....
  269. Required only for writing, not required for READ-ONLY.
  270. ufs2:
  271. u2_block = ufs_fragstoblks(fragment);
  272. u2_blockoff = ufs_fragnum(fragment);
  273. p = ufsi->i_u1.u2_i_data + block;
  274. goal = 0;
  275. repeat2:
  276. tmp = fs32_to_cpu(sb, *p);
  277. lastfrag = ufsi->i_lastfrag;
  278. */
  279. }
  280. /**
  281. * ufs_inode_getblock() - allocate new block
  282. * @inode - pointer to inode
  283. * @bh - pointer to block which hold "pointer" to new allocated block
  284. * @fragment - number of `fragment' which hold pointer
  285. * to new allocated block
  286. * @new_fragment - number of new allocated fragment
  287. * (block will hold this fragment and also uspi->s_fpb-1)
  288. * @err - see ufs_inode_getfrag()
  289. * @phys - see ufs_inode_getfrag()
  290. * @new - see ufs_inode_getfrag()
  291. * @locked_page - see ufs_inode_getfrag()
  292. */
  293. static struct buffer_head *
  294. ufs_inode_getblock(struct inode *inode, struct buffer_head *bh,
  295. u64 fragment, sector_t new_fragment, int *err,
  296. long *phys, int *new, struct page *locked_page)
  297. {
  298. struct super_block *sb = inode->i_sb;
  299. struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi;
  300. struct buffer_head * result;
  301. unsigned blockoff;
  302. u64 tmp, goal, block;
  303. void *p;
  304. block = ufs_fragstoblks (fragment);
  305. blockoff = ufs_fragnum (fragment);
  306. UFSD("ENTER, ino %lu, fragment %llu, new_fragment %llu, metadata %d\n",
  307. inode->i_ino, (unsigned long long)fragment,
  308. (unsigned long long)new_fragment, !phys);
  309. result = NULL;
  310. if (!bh)
  311. goto out;
  312. if (!buffer_uptodate(bh)) {
  313. ll_rw_block (READ, 1, &bh);
  314. wait_on_buffer (bh);
  315. if (!buffer_uptodate(bh))
  316. goto out;
  317. }
  318. if (uspi->fs_magic == UFS2_MAGIC)
  319. p = (__fs64 *)bh->b_data + block;
  320. else
  321. p = (__fs32 *)bh->b_data + block;
  322. repeat:
  323. tmp = ufs_data_ptr_to_cpu(sb, p);
  324. if (tmp) {
  325. if (!phys) {
  326. result = sb_getblk(sb, uspi->s_sbbase + tmp + blockoff);
  327. if (tmp == ufs_data_ptr_to_cpu(sb, p))
  328. goto out;
  329. brelse (result);
  330. goto repeat;
  331. } else {
  332. *phys = uspi->s_sbbase + tmp + blockoff;
  333. goto out;
  334. }
  335. }
  336. if (block && (uspi->fs_magic == UFS2_MAGIC ?
  337. (tmp = fs64_to_cpu(sb, ((__fs64 *)bh->b_data)[block-1])) :
  338. (tmp = fs32_to_cpu(sb, ((__fs32 *)bh->b_data)[block-1]))))
  339. goal = tmp + uspi->s_fpb;
  340. else
  341. goal = bh->b_blocknr + uspi->s_fpb;
  342. tmp = ufs_new_fragments(inode, p, ufs_blknum(new_fragment), goal,
  343. uspi->s_fpb, err, locked_page);
  344. if (!tmp) {
  345. if (ufs_data_ptr_to_cpu(sb, p))
  346. goto repeat;
  347. goto out;
  348. }
  349. if (!phys) {
  350. result = sb_getblk(sb, uspi->s_sbbase + tmp + blockoff);
  351. } else {
  352. *phys = uspi->s_sbbase + tmp + blockoff;
  353. *new = 1;
  354. }
  355. mark_buffer_dirty(bh);
  356. if (IS_SYNC(inode))
  357. sync_dirty_buffer(bh);
  358. inode->i_ctime = CURRENT_TIME_SEC;
  359. mark_inode_dirty(inode);
  360. UFSD("result %llu\n", (unsigned long long)tmp + blockoff);
  361. out:
  362. brelse (bh);
  363. UFSD("EXIT\n");
  364. return result;
  365. }
  366. /**
  367. * ufs_getfrag_bloc() - `get_block_t' function, interface between UFS and
  368. * readpage, writepage and so on
  369. */
  370. int ufs_getfrag_block(struct inode *inode, sector_t fragment, struct buffer_head *bh_result, int create)
  371. {
  372. struct super_block * sb = inode->i_sb;
  373. struct ufs_sb_private_info * uspi = UFS_SB(sb)->s_uspi;
  374. struct buffer_head * bh;
  375. int ret, err, new;
  376. unsigned long ptr,phys;
  377. u64 phys64 = 0;
  378. if (!create) {
  379. phys64 = ufs_frag_map(inode, fragment);
  380. UFSD("phys64 = %llu\n", (unsigned long long)phys64);
  381. if (phys64)
  382. map_bh(bh_result, sb, phys64);
  383. return 0;
  384. }
  385. /* This code entered only while writing ....? */
  386. err = -EIO;
  387. new = 0;
  388. ret = 0;
  389. bh = NULL;
  390. lock_kernel();
  391. UFSD("ENTER, ino %lu, fragment %llu\n", inode->i_ino, (unsigned long long)fragment);
  392. if (fragment >
  393. ((UFS_NDADDR + uspi->s_apb + uspi->s_2apb + uspi->s_3apb)
  394. << uspi->s_fpbshift))
  395. goto abort_too_big;
  396. err = 0;
  397. ptr = fragment;
  398. /*
  399. * ok, these macros clean the logic up a bit and make
  400. * it much more readable:
  401. */
  402. #define GET_INODE_DATABLOCK(x) \
  403. ufs_inode_getfrag(inode, x, fragment, 1, &err, &phys, &new,\
  404. bh_result->b_page)
  405. #define GET_INODE_PTR(x) \
  406. ufs_inode_getfrag(inode, x, fragment, uspi->s_fpb, &err, NULL, NULL,\
  407. bh_result->b_page)
  408. #define GET_INDIRECT_DATABLOCK(x) \
  409. ufs_inode_getblock(inode, bh, x, fragment, \
  410. &err, &phys, &new, bh_result->b_page)
  411. #define GET_INDIRECT_PTR(x) \
  412. ufs_inode_getblock(inode, bh, x, fragment, \
  413. &err, NULL, NULL, NULL)
  414. if (ptr < UFS_NDIR_FRAGMENT) {
  415. bh = GET_INODE_DATABLOCK(ptr);
  416. goto out;
  417. }
  418. ptr -= UFS_NDIR_FRAGMENT;
  419. if (ptr < (1 << (uspi->s_apbshift + uspi->s_fpbshift))) {
  420. bh = GET_INODE_PTR(UFS_IND_FRAGMENT + (ptr >> uspi->s_apbshift));
  421. goto get_indirect;
  422. }
  423. ptr -= 1 << (uspi->s_apbshift + uspi->s_fpbshift);
  424. if (ptr < (1 << (uspi->s_2apbshift + uspi->s_fpbshift))) {
  425. bh = GET_INODE_PTR(UFS_DIND_FRAGMENT + (ptr >> uspi->s_2apbshift));
  426. goto get_double;
  427. }
  428. ptr -= 1 << (uspi->s_2apbshift + uspi->s_fpbshift);
  429. bh = GET_INODE_PTR(UFS_TIND_FRAGMENT + (ptr >> uspi->s_3apbshift));
  430. bh = GET_INDIRECT_PTR((ptr >> uspi->s_2apbshift) & uspi->s_apbmask);
  431. get_double:
  432. bh = GET_INDIRECT_PTR((ptr >> uspi->s_apbshift) & uspi->s_apbmask);
  433. get_indirect:
  434. bh = GET_INDIRECT_DATABLOCK(ptr & uspi->s_apbmask);
  435. #undef GET_INODE_DATABLOCK
  436. #undef GET_INODE_PTR
  437. #undef GET_INDIRECT_DATABLOCK
  438. #undef GET_INDIRECT_PTR
  439. out:
  440. if (err)
  441. goto abort;
  442. if (new)
  443. set_buffer_new(bh_result);
  444. map_bh(bh_result, sb, phys);
  445. abort:
  446. unlock_kernel();
  447. return err;
  448. abort_too_big:
  449. ufs_warning(sb, "ufs_get_block", "block > big");
  450. goto abort;
  451. }
  452. static struct buffer_head *ufs_getfrag(struct inode *inode,
  453. unsigned int fragment,
  454. int create, int *err)
  455. {
  456. struct buffer_head dummy;
  457. int error;
  458. dummy.b_state = 0;
  459. dummy.b_blocknr = -1000;
  460. error = ufs_getfrag_block(inode, fragment, &dummy, create);
  461. *err = error;
  462. if (!error && buffer_mapped(&dummy)) {
  463. struct buffer_head *bh;
  464. bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
  465. if (buffer_new(&dummy)) {
  466. memset(bh->b_data, 0, inode->i_sb->s_blocksize);
  467. set_buffer_uptodate(bh);
  468. mark_buffer_dirty(bh);
  469. }
  470. return bh;
  471. }
  472. return NULL;
  473. }
  474. struct buffer_head * ufs_bread (struct inode * inode, unsigned fragment,
  475. int create, int * err)
  476. {
  477. struct buffer_head * bh;
  478. UFSD("ENTER, ino %lu, fragment %u\n", inode->i_ino, fragment);
  479. bh = ufs_getfrag (inode, fragment, create, err);
  480. if (!bh || buffer_uptodate(bh))
  481. return bh;
  482. ll_rw_block (READ, 1, &bh);
  483. wait_on_buffer (bh);
  484. if (buffer_uptodate(bh))
  485. return bh;
  486. brelse (bh);
  487. *err = -EIO;
  488. return NULL;
  489. }
  490. static int ufs_writepage(struct page *page, struct writeback_control *wbc)
  491. {
  492. return block_write_full_page(page,ufs_getfrag_block,wbc);
  493. }
  494. static int ufs_readpage(struct file *file, struct page *page)
  495. {
  496. return block_read_full_page(page,ufs_getfrag_block);
  497. }
  498. int __ufs_write_begin(struct file *file, struct address_space *mapping,
  499. loff_t pos, unsigned len, unsigned flags,
  500. struct page **pagep, void **fsdata)
  501. {
  502. return block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
  503. ufs_getfrag_block);
  504. }
  505. static int ufs_write_begin(struct file *file, struct address_space *mapping,
  506. loff_t pos, unsigned len, unsigned flags,
  507. struct page **pagep, void **fsdata)
  508. {
  509. *pagep = NULL;
  510. return __ufs_write_begin(file, mapping, pos, len, flags, pagep, fsdata);
  511. }
  512. static sector_t ufs_bmap(struct address_space *mapping, sector_t block)
  513. {
  514. return generic_block_bmap(mapping,block,ufs_getfrag_block);
  515. }
  516. const struct address_space_operations ufs_aops = {
  517. .readpage = ufs_readpage,
  518. .writepage = ufs_writepage,
  519. .sync_page = block_sync_page,
  520. .write_begin = ufs_write_begin,
  521. .write_end = generic_write_end,
  522. .bmap = ufs_bmap
  523. };
  524. static void ufs_set_inode_ops(struct inode *inode)
  525. {
  526. if (S_ISREG(inode->i_mode)) {
  527. inode->i_op = &ufs_file_inode_operations;
  528. inode->i_fop = &ufs_file_operations;
  529. inode->i_mapping->a_ops = &ufs_aops;
  530. } else if (S_ISDIR(inode->i_mode)) {
  531. inode->i_op = &ufs_dir_inode_operations;
  532. inode->i_fop = &ufs_dir_operations;
  533. inode->i_mapping->a_ops = &ufs_aops;
  534. } else if (S_ISLNK(inode->i_mode)) {
  535. if (!inode->i_blocks)
  536. inode->i_op = &ufs_fast_symlink_inode_operations;
  537. else {
  538. inode->i_op = &ufs_symlink_inode_operations;
  539. inode->i_mapping->a_ops = &ufs_aops;
  540. }
  541. } else
  542. init_special_inode(inode, inode->i_mode,
  543. ufs_get_inode_dev(inode->i_sb, UFS_I(inode)));
  544. }
  545. static int ufs1_read_inode(struct inode *inode, struct ufs_inode *ufs_inode)
  546. {
  547. struct ufs_inode_info *ufsi = UFS_I(inode);
  548. struct super_block *sb = inode->i_sb;
  549. mode_t mode;
  550. /*
  551. * Copy data to the in-core inode.
  552. */
  553. inode->i_mode = mode = fs16_to_cpu(sb, ufs_inode->ui_mode);
  554. inode->i_nlink = fs16_to_cpu(sb, ufs_inode->ui_nlink);
  555. if (inode->i_nlink == 0) {
  556. ufs_error (sb, "ufs_read_inode", "inode %lu has zero nlink\n", inode->i_ino);
  557. return -1;
  558. }
  559. /*
  560. * Linux now has 32-bit uid and gid, so we can support EFT.
  561. */
  562. inode->i_uid = ufs_get_inode_uid(sb, ufs_inode);
  563. inode->i_gid = ufs_get_inode_gid(sb, ufs_inode);
  564. inode->i_size = fs64_to_cpu(sb, ufs_inode->ui_size);
  565. inode->i_atime.tv_sec = fs32_to_cpu(sb, ufs_inode->ui_atime.tv_sec);
  566. inode->i_ctime.tv_sec = fs32_to_cpu(sb, ufs_inode->ui_ctime.tv_sec);
  567. inode->i_mtime.tv_sec = fs32_to_cpu(sb, ufs_inode->ui_mtime.tv_sec);
  568. inode->i_mtime.tv_nsec = 0;
  569. inode->i_atime.tv_nsec = 0;
  570. inode->i_ctime.tv_nsec = 0;
  571. inode->i_blocks = fs32_to_cpu(sb, ufs_inode->ui_blocks);
  572. inode->i_generation = fs32_to_cpu(sb, ufs_inode->ui_gen);
  573. ufsi->i_flags = fs32_to_cpu(sb, ufs_inode->ui_flags);
  574. ufsi->i_shadow = fs32_to_cpu(sb, ufs_inode->ui_u3.ui_sun.ui_shadow);
  575. ufsi->i_oeftflag = fs32_to_cpu(sb, ufs_inode->ui_u3.ui_sun.ui_oeftflag);
  576. if (S_ISCHR(mode) || S_ISBLK(mode) || inode->i_blocks) {
  577. memcpy(ufsi->i_u1.i_data, &ufs_inode->ui_u2.ui_addr,
  578. sizeof(ufs_inode->ui_u2.ui_addr));
  579. } else {
  580. memcpy(ufsi->i_u1.i_symlink, ufs_inode->ui_u2.ui_symlink,
  581. sizeof(ufs_inode->ui_u2.ui_symlink) - 1);
  582. ufsi->i_u1.i_symlink[sizeof(ufs_inode->ui_u2.ui_symlink) - 1] = 0;
  583. }
  584. return 0;
  585. }
  586. static int ufs2_read_inode(struct inode *inode, struct ufs2_inode *ufs2_inode)
  587. {
  588. struct ufs_inode_info *ufsi = UFS_I(inode);
  589. struct super_block *sb = inode->i_sb;
  590. mode_t mode;
  591. UFSD("Reading ufs2 inode, ino %lu\n", inode->i_ino);
  592. /*
  593. * Copy data to the in-core inode.
  594. */
  595. inode->i_mode = mode = fs16_to_cpu(sb, ufs2_inode->ui_mode);
  596. inode->i_nlink = fs16_to_cpu(sb, ufs2_inode->ui_nlink);
  597. if (inode->i_nlink == 0) {
  598. ufs_error (sb, "ufs_read_inode", "inode %lu has zero nlink\n", inode->i_ino);
  599. return -1;
  600. }
  601. /*
  602. * Linux now has 32-bit uid and gid, so we can support EFT.
  603. */
  604. inode->i_uid = fs32_to_cpu(sb, ufs2_inode->ui_uid);
  605. inode->i_gid = fs32_to_cpu(sb, ufs2_inode->ui_gid);
  606. inode->i_size = fs64_to_cpu(sb, ufs2_inode->ui_size);
  607. inode->i_atime.tv_sec = fs64_to_cpu(sb, ufs2_inode->ui_atime);
  608. inode->i_ctime.tv_sec = fs64_to_cpu(sb, ufs2_inode->ui_ctime);
  609. inode->i_mtime.tv_sec = fs64_to_cpu(sb, ufs2_inode->ui_mtime);
  610. inode->i_atime.tv_nsec = fs32_to_cpu(sb, ufs2_inode->ui_atimensec);
  611. inode->i_ctime.tv_nsec = fs32_to_cpu(sb, ufs2_inode->ui_ctimensec);
  612. inode->i_mtime.tv_nsec = fs32_to_cpu(sb, ufs2_inode->ui_mtimensec);
  613. inode->i_blocks = fs64_to_cpu(sb, ufs2_inode->ui_blocks);
  614. inode->i_generation = fs32_to_cpu(sb, ufs2_inode->ui_gen);
  615. ufsi->i_flags = fs32_to_cpu(sb, ufs2_inode->ui_flags);
  616. /*
  617. ufsi->i_shadow = fs32_to_cpu(sb, ufs_inode->ui_u3.ui_sun.ui_shadow);
  618. ufsi->i_oeftflag = fs32_to_cpu(sb, ufs_inode->ui_u3.ui_sun.ui_oeftflag);
  619. */
  620. if (S_ISCHR(mode) || S_ISBLK(mode) || inode->i_blocks) {
  621. memcpy(ufsi->i_u1.u2_i_data, &ufs2_inode->ui_u2.ui_addr,
  622. sizeof(ufs2_inode->ui_u2.ui_addr));
  623. } else {
  624. memcpy(ufsi->i_u1.i_symlink, ufs2_inode->ui_u2.ui_symlink,
  625. sizeof(ufs2_inode->ui_u2.ui_symlink) - 1);
  626. ufsi->i_u1.i_symlink[sizeof(ufs2_inode->ui_u2.ui_symlink) - 1] = 0;
  627. }
  628. return 0;
  629. }
  630. struct inode *ufs_iget(struct super_block *sb, unsigned long ino)
  631. {
  632. struct ufs_inode_info *ufsi;
  633. struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi;
  634. struct buffer_head * bh;
  635. struct inode *inode;
  636. int err;
  637. UFSD("ENTER, ino %lu\n", ino);
  638. if (ino < UFS_ROOTINO || ino > (uspi->s_ncg * uspi->s_ipg)) {
  639. ufs_warning(sb, "ufs_read_inode", "bad inode number (%lu)\n",
  640. ino);
  641. return ERR_PTR(-EIO);
  642. }
  643. inode = iget_locked(sb, ino);
  644. if (!inode)
  645. return ERR_PTR(-ENOMEM);
  646. if (!(inode->i_state & I_NEW))
  647. return inode;
  648. ufsi = UFS_I(inode);
  649. bh = sb_bread(sb, uspi->s_sbbase + ufs_inotofsba(inode->i_ino));
  650. if (!bh) {
  651. ufs_warning(sb, "ufs_read_inode", "unable to read inode %lu\n",
  652. inode->i_ino);
  653. goto bad_inode;
  654. }
  655. if ((UFS_SB(sb)->s_flags & UFS_TYPE_MASK) == UFS_TYPE_UFS2) {
  656. struct ufs2_inode *ufs2_inode = (struct ufs2_inode *)bh->b_data;
  657. err = ufs2_read_inode(inode,
  658. ufs2_inode + ufs_inotofsbo(inode->i_ino));
  659. } else {
  660. struct ufs_inode *ufs_inode = (struct ufs_inode *)bh->b_data;
  661. err = ufs1_read_inode(inode,
  662. ufs_inode + ufs_inotofsbo(inode->i_ino));
  663. }
  664. if (err)
  665. goto bad_inode;
  666. inode->i_version++;
  667. ufsi->i_lastfrag =
  668. (inode->i_size + uspi->s_fsize - 1) >> uspi->s_fshift;
  669. ufsi->i_dir_start_lookup = 0;
  670. ufsi->i_osync = 0;
  671. ufs_set_inode_ops(inode);
  672. brelse(bh);
  673. UFSD("EXIT\n");
  674. unlock_new_inode(inode);
  675. return inode;
  676. bad_inode:
  677. iget_failed(inode);
  678. return ERR_PTR(-EIO);
  679. }
  680. static void ufs1_update_inode(struct inode *inode, struct ufs_inode *ufs_inode)
  681. {
  682. struct super_block *sb = inode->i_sb;
  683. struct ufs_inode_info *ufsi = UFS_I(inode);
  684. ufs_inode->ui_mode = cpu_to_fs16(sb, inode->i_mode);
  685. ufs_inode->ui_nlink = cpu_to_fs16(sb, inode->i_nlink);
  686. ufs_set_inode_uid(sb, ufs_inode, inode->i_uid);
  687. ufs_set_inode_gid(sb, ufs_inode, inode->i_gid);
  688. ufs_inode->ui_size = cpu_to_fs64(sb, inode->i_size);
  689. ufs_inode->ui_atime.tv_sec = cpu_to_fs32(sb, inode->i_atime.tv_sec);
  690. ufs_inode->ui_atime.tv_usec = 0;
  691. ufs_inode->ui_ctime.tv_sec = cpu_to_fs32(sb, inode->i_ctime.tv_sec);
  692. ufs_inode->ui_ctime.tv_usec = 0;
  693. ufs_inode->ui_mtime.tv_sec = cpu_to_fs32(sb, inode->i_mtime.tv_sec);
  694. ufs_inode->ui_mtime.tv_usec = 0;
  695. ufs_inode->ui_blocks = cpu_to_fs32(sb, inode->i_blocks);
  696. ufs_inode->ui_flags = cpu_to_fs32(sb, ufsi->i_flags);
  697. ufs_inode->ui_gen = cpu_to_fs32(sb, inode->i_generation);
  698. if ((UFS_SB(sb)->s_flags & UFS_UID_MASK) == UFS_UID_EFT) {
  699. ufs_inode->ui_u3.ui_sun.ui_shadow = cpu_to_fs32(sb, ufsi->i_shadow);
  700. ufs_inode->ui_u3.ui_sun.ui_oeftflag = cpu_to_fs32(sb, ufsi->i_oeftflag);
  701. }
  702. if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
  703. /* ufs_inode->ui_u2.ui_addr.ui_db[0] = cpu_to_fs32(sb, inode->i_rdev); */
  704. ufs_inode->ui_u2.ui_addr.ui_db[0] = ufsi->i_u1.i_data[0];
  705. } else if (inode->i_blocks) {
  706. memcpy(&ufs_inode->ui_u2.ui_addr, ufsi->i_u1.i_data,
  707. sizeof(ufs_inode->ui_u2.ui_addr));
  708. }
  709. else {
  710. memcpy(&ufs_inode->ui_u2.ui_symlink, ufsi->i_u1.i_symlink,
  711. sizeof(ufs_inode->ui_u2.ui_symlink));
  712. }
  713. if (!inode->i_nlink)
  714. memset (ufs_inode, 0, sizeof(struct ufs_inode));
  715. }
  716. static void ufs2_update_inode(struct inode *inode, struct ufs2_inode *ufs_inode)
  717. {
  718. struct super_block *sb = inode->i_sb;
  719. struct ufs_inode_info *ufsi = UFS_I(inode);
  720. UFSD("ENTER\n");
  721. ufs_inode->ui_mode = cpu_to_fs16(sb, inode->i_mode);
  722. ufs_inode->ui_nlink = cpu_to_fs16(sb, inode->i_nlink);
  723. ufs_inode->ui_uid = cpu_to_fs32(sb, inode->i_uid);
  724. ufs_inode->ui_gid = cpu_to_fs32(sb, inode->i_gid);
  725. ufs_inode->ui_size = cpu_to_fs64(sb, inode->i_size);
  726. ufs_inode->ui_atime = cpu_to_fs64(sb, inode->i_atime.tv_sec);
  727. ufs_inode->ui_atimensec = cpu_to_fs32(sb, inode->i_atime.tv_nsec);
  728. ufs_inode->ui_ctime = cpu_to_fs64(sb, inode->i_ctime.tv_sec);
  729. ufs_inode->ui_ctimensec = cpu_to_fs32(sb, inode->i_ctime.tv_nsec);
  730. ufs_inode->ui_mtime = cpu_to_fs64(sb, inode->i_mtime.tv_sec);
  731. ufs_inode->ui_mtimensec = cpu_to_fs32(sb, inode->i_mtime.tv_nsec);
  732. ufs_inode->ui_blocks = cpu_to_fs64(sb, inode->i_blocks);
  733. ufs_inode->ui_flags = cpu_to_fs32(sb, ufsi->i_flags);
  734. ufs_inode->ui_gen = cpu_to_fs32(sb, inode->i_generation);
  735. if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
  736. /* ufs_inode->ui_u2.ui_addr.ui_db[0] = cpu_to_fs32(sb, inode->i_rdev); */
  737. ufs_inode->ui_u2.ui_addr.ui_db[0] = ufsi->i_u1.u2_i_data[0];
  738. } else if (inode->i_blocks) {
  739. memcpy(&ufs_inode->ui_u2.ui_addr, ufsi->i_u1.u2_i_data,
  740. sizeof(ufs_inode->ui_u2.ui_addr));
  741. } else {
  742. memcpy(&ufs_inode->ui_u2.ui_symlink, ufsi->i_u1.i_symlink,
  743. sizeof(ufs_inode->ui_u2.ui_symlink));
  744. }
  745. if (!inode->i_nlink)
  746. memset (ufs_inode, 0, sizeof(struct ufs2_inode));
  747. UFSD("EXIT\n");
  748. }
  749. static int ufs_update_inode(struct inode * inode, int do_sync)
  750. {
  751. struct super_block *sb = inode->i_sb;
  752. struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi;
  753. struct buffer_head * bh;
  754. UFSD("ENTER, ino %lu\n", inode->i_ino);
  755. if (inode->i_ino < UFS_ROOTINO ||
  756. inode->i_ino > (uspi->s_ncg * uspi->s_ipg)) {
  757. ufs_warning (sb, "ufs_read_inode", "bad inode number (%lu)\n", inode->i_ino);
  758. return -1;
  759. }
  760. bh = sb_bread(sb, ufs_inotofsba(inode->i_ino));
  761. if (!bh) {
  762. ufs_warning (sb, "ufs_read_inode", "unable to read inode %lu\n", inode->i_ino);
  763. return -1;
  764. }
  765. if (uspi->fs_magic == UFS2_MAGIC) {
  766. struct ufs2_inode *ufs2_inode = (struct ufs2_inode *)bh->b_data;
  767. ufs2_update_inode(inode,
  768. ufs2_inode + ufs_inotofsbo(inode->i_ino));
  769. } else {
  770. struct ufs_inode *ufs_inode = (struct ufs_inode *) bh->b_data;
  771. ufs1_update_inode(inode, ufs_inode + ufs_inotofsbo(inode->i_ino));
  772. }
  773. mark_buffer_dirty(bh);
  774. if (do_sync)
  775. sync_dirty_buffer(bh);
  776. brelse (bh);
  777. UFSD("EXIT\n");
  778. return 0;
  779. }
  780. int ufs_write_inode(struct inode *inode, struct writeback_control *wbc)
  781. {
  782. int ret;
  783. lock_kernel();
  784. ret = ufs_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
  785. unlock_kernel();
  786. return ret;
  787. }
  788. int ufs_sync_inode (struct inode *inode)
  789. {
  790. return ufs_update_inode (inode, 1);
  791. }
  792. void ufs_delete_inode (struct inode * inode)
  793. {
  794. loff_t old_i_size;
  795. truncate_inode_pages(&inode->i_data, 0);
  796. if (is_bad_inode(inode))
  797. goto no_delete;
  798. /*UFS_I(inode)->i_dtime = CURRENT_TIME;*/
  799. lock_kernel();
  800. mark_inode_dirty(inode);
  801. ufs_update_inode(inode, IS_SYNC(inode));
  802. old_i_size = inode->i_size;
  803. inode->i_size = 0;
  804. if (inode->i_blocks && ufs_truncate(inode, old_i_size))
  805. ufs_warning(inode->i_sb, __func__, "ufs_truncate failed\n");
  806. ufs_free_inode (inode);
  807. unlock_kernel();
  808. return;
  809. no_delete:
  810. clear_inode(inode); /* We must guarantee clearing of inode... */
  811. }