namespace.c 58 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353
  1. /*
  2. * linux/fs/namespace.c
  3. *
  4. * (C) Copyright Al Viro 2000, 2001
  5. * Released under GPL v2.
  6. *
  7. * Based on code from fs/super.c, copyright Linus Torvalds and others.
  8. * Heavily rewritten.
  9. */
  10. #include <linux/syscalls.h>
  11. #include <linux/slab.h>
  12. #include <linux/sched.h>
  13. #include <linux/smp_lock.h>
  14. #include <linux/init.h>
  15. #include <linux/kernel.h>
  16. #include <linux/acct.h>
  17. #include <linux/capability.h>
  18. #include <linux/cpumask.h>
  19. #include <linux/module.h>
  20. #include <linux/sysfs.h>
  21. #include <linux/seq_file.h>
  22. #include <linux/mnt_namespace.h>
  23. #include <linux/namei.h>
  24. #include <linux/nsproxy.h>
  25. #include <linux/security.h>
  26. #include <linux/mount.h>
  27. #include <linux/ramfs.h>
  28. #include <linux/log2.h>
  29. #include <linux/idr.h>
  30. #include <linux/fs_struct.h>
  31. #include <asm/uaccess.h>
  32. #include <asm/unistd.h>
  33. #include "pnode.h"
  34. #include "internal.h"
  35. #define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
  36. #define HASH_SIZE (1UL << HASH_SHIFT)
  37. /* spinlock for vfsmount related operations, inplace of dcache_lock */
  38. __cacheline_aligned_in_smp DEFINE_SPINLOCK(vfsmount_lock);
  39. static int event;
  40. static DEFINE_IDA(mnt_id_ida);
  41. static DEFINE_IDA(mnt_group_ida);
  42. static int mnt_id_start = 0;
  43. static int mnt_group_start = 1;
  44. static struct list_head *mount_hashtable __read_mostly;
  45. static struct kmem_cache *mnt_cache __read_mostly;
  46. static struct rw_semaphore namespace_sem;
  47. /* /sys/fs */
  48. struct kobject *fs_kobj;
  49. EXPORT_SYMBOL_GPL(fs_kobj);
  50. static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
  51. {
  52. unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
  53. tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
  54. tmp = tmp + (tmp >> HASH_SHIFT);
  55. return tmp & (HASH_SIZE - 1);
  56. }
  57. #define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16)
  58. /* allocation is serialized by namespace_sem */
  59. static int mnt_alloc_id(struct vfsmount *mnt)
  60. {
  61. int res;
  62. retry:
  63. ida_pre_get(&mnt_id_ida, GFP_KERNEL);
  64. spin_lock(&vfsmount_lock);
  65. res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
  66. if (!res)
  67. mnt_id_start = mnt->mnt_id + 1;
  68. spin_unlock(&vfsmount_lock);
  69. if (res == -EAGAIN)
  70. goto retry;
  71. return res;
  72. }
  73. static void mnt_free_id(struct vfsmount *mnt)
  74. {
  75. int id = mnt->mnt_id;
  76. spin_lock(&vfsmount_lock);
  77. ida_remove(&mnt_id_ida, id);
  78. if (mnt_id_start > id)
  79. mnt_id_start = id;
  80. spin_unlock(&vfsmount_lock);
  81. }
  82. /*
  83. * Allocate a new peer group ID
  84. *
  85. * mnt_group_ida is protected by namespace_sem
  86. */
  87. static int mnt_alloc_group_id(struct vfsmount *mnt)
  88. {
  89. int res;
  90. if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
  91. return -ENOMEM;
  92. res = ida_get_new_above(&mnt_group_ida,
  93. mnt_group_start,
  94. &mnt->mnt_group_id);
  95. if (!res)
  96. mnt_group_start = mnt->mnt_group_id + 1;
  97. return res;
  98. }
  99. /*
  100. * Release a peer group ID
  101. */
  102. void mnt_release_group_id(struct vfsmount *mnt)
  103. {
  104. int id = mnt->mnt_group_id;
  105. ida_remove(&mnt_group_ida, id);
  106. if (mnt_group_start > id)
  107. mnt_group_start = id;
  108. mnt->mnt_group_id = 0;
  109. }
  110. struct vfsmount *alloc_vfsmnt(const char *name)
  111. {
  112. struct vfsmount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
  113. if (mnt) {
  114. int err;
  115. err = mnt_alloc_id(mnt);
  116. if (err)
  117. goto out_free_cache;
  118. if (name) {
  119. mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
  120. if (!mnt->mnt_devname)
  121. goto out_free_id;
  122. }
  123. atomic_set(&mnt->mnt_count, 1);
  124. INIT_LIST_HEAD(&mnt->mnt_hash);
  125. INIT_LIST_HEAD(&mnt->mnt_child);
  126. INIT_LIST_HEAD(&mnt->mnt_mounts);
  127. INIT_LIST_HEAD(&mnt->mnt_list);
  128. INIT_LIST_HEAD(&mnt->mnt_expire);
  129. INIT_LIST_HEAD(&mnt->mnt_share);
  130. INIT_LIST_HEAD(&mnt->mnt_slave_list);
  131. INIT_LIST_HEAD(&mnt->mnt_slave);
  132. #ifdef CONFIG_SMP
  133. mnt->mnt_writers = alloc_percpu(int);
  134. if (!mnt->mnt_writers)
  135. goto out_free_devname;
  136. #else
  137. mnt->mnt_writers = 0;
  138. #endif
  139. }
  140. return mnt;
  141. #ifdef CONFIG_SMP
  142. out_free_devname:
  143. kfree(mnt->mnt_devname);
  144. #endif
  145. out_free_id:
  146. mnt_free_id(mnt);
  147. out_free_cache:
  148. kmem_cache_free(mnt_cache, mnt);
  149. return NULL;
  150. }
  151. /*
  152. * Most r/o checks on a fs are for operations that take
  153. * discrete amounts of time, like a write() or unlink().
  154. * We must keep track of when those operations start
  155. * (for permission checks) and when they end, so that
  156. * we can determine when writes are able to occur to
  157. * a filesystem.
  158. */
  159. /*
  160. * __mnt_is_readonly: check whether a mount is read-only
  161. * @mnt: the mount to check for its write status
  162. *
  163. * This shouldn't be used directly ouside of the VFS.
  164. * It does not guarantee that the filesystem will stay
  165. * r/w, just that it is right *now*. This can not and
  166. * should not be used in place of IS_RDONLY(inode).
  167. * mnt_want/drop_write() will _keep_ the filesystem
  168. * r/w.
  169. */
  170. int __mnt_is_readonly(struct vfsmount *mnt)
  171. {
  172. if (mnt->mnt_flags & MNT_READONLY)
  173. return 1;
  174. if (mnt->mnt_sb->s_flags & MS_RDONLY)
  175. return 1;
  176. return 0;
  177. }
  178. EXPORT_SYMBOL_GPL(__mnt_is_readonly);
  179. static inline void inc_mnt_writers(struct vfsmount *mnt)
  180. {
  181. #ifdef CONFIG_SMP
  182. (*per_cpu_ptr(mnt->mnt_writers, smp_processor_id()))++;
  183. #else
  184. mnt->mnt_writers++;
  185. #endif
  186. }
  187. static inline void dec_mnt_writers(struct vfsmount *mnt)
  188. {
  189. #ifdef CONFIG_SMP
  190. (*per_cpu_ptr(mnt->mnt_writers, smp_processor_id()))--;
  191. #else
  192. mnt->mnt_writers--;
  193. #endif
  194. }
  195. static unsigned int count_mnt_writers(struct vfsmount *mnt)
  196. {
  197. #ifdef CONFIG_SMP
  198. unsigned int count = 0;
  199. int cpu;
  200. for_each_possible_cpu(cpu) {
  201. count += *per_cpu_ptr(mnt->mnt_writers, cpu);
  202. }
  203. return count;
  204. #else
  205. return mnt->mnt_writers;
  206. #endif
  207. }
  208. /*
  209. * Most r/o checks on a fs are for operations that take
  210. * discrete amounts of time, like a write() or unlink().
  211. * We must keep track of when those operations start
  212. * (for permission checks) and when they end, so that
  213. * we can determine when writes are able to occur to
  214. * a filesystem.
  215. */
  216. /**
  217. * mnt_want_write - get write access to a mount
  218. * @mnt: the mount on which to take a write
  219. *
  220. * This tells the low-level filesystem that a write is
  221. * about to be performed to it, and makes sure that
  222. * writes are allowed before returning success. When
  223. * the write operation is finished, mnt_drop_write()
  224. * must be called. This is effectively a refcount.
  225. */
  226. int mnt_want_write(struct vfsmount *mnt)
  227. {
  228. int ret = 0;
  229. preempt_disable();
  230. inc_mnt_writers(mnt);
  231. /*
  232. * The store to inc_mnt_writers must be visible before we pass
  233. * MNT_WRITE_HOLD loop below, so that the slowpath can see our
  234. * incremented count after it has set MNT_WRITE_HOLD.
  235. */
  236. smp_mb();
  237. while (mnt->mnt_flags & MNT_WRITE_HOLD)
  238. cpu_relax();
  239. /*
  240. * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
  241. * be set to match its requirements. So we must not load that until
  242. * MNT_WRITE_HOLD is cleared.
  243. */
  244. smp_rmb();
  245. if (__mnt_is_readonly(mnt)) {
  246. dec_mnt_writers(mnt);
  247. ret = -EROFS;
  248. goto out;
  249. }
  250. out:
  251. preempt_enable();
  252. return ret;
  253. }
  254. EXPORT_SYMBOL_GPL(mnt_want_write);
  255. /**
  256. * mnt_clone_write - get write access to a mount
  257. * @mnt: the mount on which to take a write
  258. *
  259. * This is effectively like mnt_want_write, except
  260. * it must only be used to take an extra write reference
  261. * on a mountpoint that we already know has a write reference
  262. * on it. This allows some optimisation.
  263. *
  264. * After finished, mnt_drop_write must be called as usual to
  265. * drop the reference.
  266. */
  267. int mnt_clone_write(struct vfsmount *mnt)
  268. {
  269. /* superblock may be r/o */
  270. if (__mnt_is_readonly(mnt))
  271. return -EROFS;
  272. preempt_disable();
  273. inc_mnt_writers(mnt);
  274. preempt_enable();
  275. return 0;
  276. }
  277. EXPORT_SYMBOL_GPL(mnt_clone_write);
  278. /**
  279. * mnt_want_write_file - get write access to a file's mount
  280. * @file: the file who's mount on which to take a write
  281. *
  282. * This is like mnt_want_write, but it takes a file and can
  283. * do some optimisations if the file is open for write already
  284. */
  285. int mnt_want_write_file(struct file *file)
  286. {
  287. struct inode *inode = file->f_dentry->d_inode;
  288. if (!(file->f_mode & FMODE_WRITE) || special_file(inode->i_mode))
  289. return mnt_want_write(file->f_path.mnt);
  290. else
  291. return mnt_clone_write(file->f_path.mnt);
  292. }
  293. EXPORT_SYMBOL_GPL(mnt_want_write_file);
  294. /**
  295. * mnt_drop_write - give up write access to a mount
  296. * @mnt: the mount on which to give up write access
  297. *
  298. * Tells the low-level filesystem that we are done
  299. * performing writes to it. Must be matched with
  300. * mnt_want_write() call above.
  301. */
  302. void mnt_drop_write(struct vfsmount *mnt)
  303. {
  304. preempt_disable();
  305. dec_mnt_writers(mnt);
  306. preempt_enable();
  307. }
  308. EXPORT_SYMBOL_GPL(mnt_drop_write);
  309. static int mnt_make_readonly(struct vfsmount *mnt)
  310. {
  311. int ret = 0;
  312. spin_lock(&vfsmount_lock);
  313. mnt->mnt_flags |= MNT_WRITE_HOLD;
  314. /*
  315. * After storing MNT_WRITE_HOLD, we'll read the counters. This store
  316. * should be visible before we do.
  317. */
  318. smp_mb();
  319. /*
  320. * With writers on hold, if this value is zero, then there are
  321. * definitely no active writers (although held writers may subsequently
  322. * increment the count, they'll have to wait, and decrement it after
  323. * seeing MNT_READONLY).
  324. *
  325. * It is OK to have counter incremented on one CPU and decremented on
  326. * another: the sum will add up correctly. The danger would be when we
  327. * sum up each counter, if we read a counter before it is incremented,
  328. * but then read another CPU's count which it has been subsequently
  329. * decremented from -- we would see more decrements than we should.
  330. * MNT_WRITE_HOLD protects against this scenario, because
  331. * mnt_want_write first increments count, then smp_mb, then spins on
  332. * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
  333. * we're counting up here.
  334. */
  335. if (count_mnt_writers(mnt) > 0)
  336. ret = -EBUSY;
  337. else
  338. mnt->mnt_flags |= MNT_READONLY;
  339. /*
  340. * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
  341. * that become unheld will see MNT_READONLY.
  342. */
  343. smp_wmb();
  344. mnt->mnt_flags &= ~MNT_WRITE_HOLD;
  345. spin_unlock(&vfsmount_lock);
  346. return ret;
  347. }
  348. static void __mnt_unmake_readonly(struct vfsmount *mnt)
  349. {
  350. spin_lock(&vfsmount_lock);
  351. mnt->mnt_flags &= ~MNT_READONLY;
  352. spin_unlock(&vfsmount_lock);
  353. }
  354. void simple_set_mnt(struct vfsmount *mnt, struct super_block *sb)
  355. {
  356. mnt->mnt_sb = sb;
  357. mnt->mnt_root = dget(sb->s_root);
  358. }
  359. EXPORT_SYMBOL(simple_set_mnt);
  360. void free_vfsmnt(struct vfsmount *mnt)
  361. {
  362. kfree(mnt->mnt_devname);
  363. mnt_free_id(mnt);
  364. #ifdef CONFIG_SMP
  365. free_percpu(mnt->mnt_writers);
  366. #endif
  367. kmem_cache_free(mnt_cache, mnt);
  368. }
  369. /*
  370. * find the first or last mount at @dentry on vfsmount @mnt depending on
  371. * @dir. If @dir is set return the first mount else return the last mount.
  372. */
  373. struct vfsmount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
  374. int dir)
  375. {
  376. struct list_head *head = mount_hashtable + hash(mnt, dentry);
  377. struct list_head *tmp = head;
  378. struct vfsmount *p, *found = NULL;
  379. for (;;) {
  380. tmp = dir ? tmp->next : tmp->prev;
  381. p = NULL;
  382. if (tmp == head)
  383. break;
  384. p = list_entry(tmp, struct vfsmount, mnt_hash);
  385. if (p->mnt_parent == mnt && p->mnt_mountpoint == dentry) {
  386. found = p;
  387. break;
  388. }
  389. }
  390. return found;
  391. }
  392. /*
  393. * lookup_mnt increments the ref count before returning
  394. * the vfsmount struct.
  395. */
  396. struct vfsmount *lookup_mnt(struct path *path)
  397. {
  398. struct vfsmount *child_mnt;
  399. spin_lock(&vfsmount_lock);
  400. if ((child_mnt = __lookup_mnt(path->mnt, path->dentry, 1)))
  401. mntget(child_mnt);
  402. spin_unlock(&vfsmount_lock);
  403. return child_mnt;
  404. }
  405. static inline int check_mnt(struct vfsmount *mnt)
  406. {
  407. return mnt->mnt_ns == current->nsproxy->mnt_ns;
  408. }
  409. static void touch_mnt_namespace(struct mnt_namespace *ns)
  410. {
  411. if (ns) {
  412. ns->event = ++event;
  413. wake_up_interruptible(&ns->poll);
  414. }
  415. }
  416. static void __touch_mnt_namespace(struct mnt_namespace *ns)
  417. {
  418. if (ns && ns->event != event) {
  419. ns->event = event;
  420. wake_up_interruptible(&ns->poll);
  421. }
  422. }
  423. static void detach_mnt(struct vfsmount *mnt, struct path *old_path)
  424. {
  425. old_path->dentry = mnt->mnt_mountpoint;
  426. old_path->mnt = mnt->mnt_parent;
  427. mnt->mnt_parent = mnt;
  428. mnt->mnt_mountpoint = mnt->mnt_root;
  429. list_del_init(&mnt->mnt_child);
  430. list_del_init(&mnt->mnt_hash);
  431. old_path->dentry->d_mounted--;
  432. }
  433. void mnt_set_mountpoint(struct vfsmount *mnt, struct dentry *dentry,
  434. struct vfsmount *child_mnt)
  435. {
  436. child_mnt->mnt_parent = mntget(mnt);
  437. child_mnt->mnt_mountpoint = dget(dentry);
  438. dentry->d_mounted++;
  439. }
  440. static void attach_mnt(struct vfsmount *mnt, struct path *path)
  441. {
  442. mnt_set_mountpoint(path->mnt, path->dentry, mnt);
  443. list_add_tail(&mnt->mnt_hash, mount_hashtable +
  444. hash(path->mnt, path->dentry));
  445. list_add_tail(&mnt->mnt_child, &path->mnt->mnt_mounts);
  446. }
  447. /*
  448. * the caller must hold vfsmount_lock
  449. */
  450. static void commit_tree(struct vfsmount *mnt)
  451. {
  452. struct vfsmount *parent = mnt->mnt_parent;
  453. struct vfsmount *m;
  454. LIST_HEAD(head);
  455. struct mnt_namespace *n = parent->mnt_ns;
  456. BUG_ON(parent == mnt);
  457. list_add_tail(&head, &mnt->mnt_list);
  458. list_for_each_entry(m, &head, mnt_list)
  459. m->mnt_ns = n;
  460. list_splice(&head, n->list.prev);
  461. list_add_tail(&mnt->mnt_hash, mount_hashtable +
  462. hash(parent, mnt->mnt_mountpoint));
  463. list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
  464. touch_mnt_namespace(n);
  465. }
  466. static struct vfsmount *next_mnt(struct vfsmount *p, struct vfsmount *root)
  467. {
  468. struct list_head *next = p->mnt_mounts.next;
  469. if (next == &p->mnt_mounts) {
  470. while (1) {
  471. if (p == root)
  472. return NULL;
  473. next = p->mnt_child.next;
  474. if (next != &p->mnt_parent->mnt_mounts)
  475. break;
  476. p = p->mnt_parent;
  477. }
  478. }
  479. return list_entry(next, struct vfsmount, mnt_child);
  480. }
  481. static struct vfsmount *skip_mnt_tree(struct vfsmount *p)
  482. {
  483. struct list_head *prev = p->mnt_mounts.prev;
  484. while (prev != &p->mnt_mounts) {
  485. p = list_entry(prev, struct vfsmount, mnt_child);
  486. prev = p->mnt_mounts.prev;
  487. }
  488. return p;
  489. }
  490. static struct vfsmount *clone_mnt(struct vfsmount *old, struct dentry *root,
  491. int flag)
  492. {
  493. struct super_block *sb = old->mnt_sb;
  494. struct vfsmount *mnt = alloc_vfsmnt(old->mnt_devname);
  495. if (mnt) {
  496. if (flag & (CL_SLAVE | CL_PRIVATE))
  497. mnt->mnt_group_id = 0; /* not a peer of original */
  498. else
  499. mnt->mnt_group_id = old->mnt_group_id;
  500. if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
  501. int err = mnt_alloc_group_id(mnt);
  502. if (err)
  503. goto out_free;
  504. }
  505. mnt->mnt_flags = old->mnt_flags;
  506. atomic_inc(&sb->s_active);
  507. mnt->mnt_sb = sb;
  508. mnt->mnt_root = dget(root);
  509. mnt->mnt_mountpoint = mnt->mnt_root;
  510. mnt->mnt_parent = mnt;
  511. if (flag & CL_SLAVE) {
  512. list_add(&mnt->mnt_slave, &old->mnt_slave_list);
  513. mnt->mnt_master = old;
  514. CLEAR_MNT_SHARED(mnt);
  515. } else if (!(flag & CL_PRIVATE)) {
  516. if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
  517. list_add(&mnt->mnt_share, &old->mnt_share);
  518. if (IS_MNT_SLAVE(old))
  519. list_add(&mnt->mnt_slave, &old->mnt_slave);
  520. mnt->mnt_master = old->mnt_master;
  521. }
  522. if (flag & CL_MAKE_SHARED)
  523. set_mnt_shared(mnt);
  524. /* stick the duplicate mount on the same expiry list
  525. * as the original if that was on one */
  526. if (flag & CL_EXPIRE) {
  527. if (!list_empty(&old->mnt_expire))
  528. list_add(&mnt->mnt_expire, &old->mnt_expire);
  529. }
  530. }
  531. return mnt;
  532. out_free:
  533. free_vfsmnt(mnt);
  534. return NULL;
  535. }
  536. static inline void __mntput(struct vfsmount *mnt)
  537. {
  538. struct super_block *sb = mnt->mnt_sb;
  539. /*
  540. * This probably indicates that somebody messed
  541. * up a mnt_want/drop_write() pair. If this
  542. * happens, the filesystem was probably unable
  543. * to make r/w->r/o transitions.
  544. */
  545. /*
  546. * atomic_dec_and_lock() used to deal with ->mnt_count decrements
  547. * provides barriers, so count_mnt_writers() below is safe. AV
  548. */
  549. WARN_ON(count_mnt_writers(mnt));
  550. dput(mnt->mnt_root);
  551. free_vfsmnt(mnt);
  552. deactivate_super(sb);
  553. }
  554. void mntput_no_expire(struct vfsmount *mnt)
  555. {
  556. repeat:
  557. if (atomic_dec_and_lock(&mnt->mnt_count, &vfsmount_lock)) {
  558. if (likely(!mnt->mnt_pinned)) {
  559. spin_unlock(&vfsmount_lock);
  560. __mntput(mnt);
  561. return;
  562. }
  563. atomic_add(mnt->mnt_pinned + 1, &mnt->mnt_count);
  564. mnt->mnt_pinned = 0;
  565. spin_unlock(&vfsmount_lock);
  566. acct_auto_close_mnt(mnt);
  567. goto repeat;
  568. }
  569. }
  570. EXPORT_SYMBOL(mntput_no_expire);
  571. void mnt_pin(struct vfsmount *mnt)
  572. {
  573. spin_lock(&vfsmount_lock);
  574. mnt->mnt_pinned++;
  575. spin_unlock(&vfsmount_lock);
  576. }
  577. EXPORT_SYMBOL(mnt_pin);
  578. void mnt_unpin(struct vfsmount *mnt)
  579. {
  580. spin_lock(&vfsmount_lock);
  581. if (mnt->mnt_pinned) {
  582. atomic_inc(&mnt->mnt_count);
  583. mnt->mnt_pinned--;
  584. }
  585. spin_unlock(&vfsmount_lock);
  586. }
  587. EXPORT_SYMBOL(mnt_unpin);
  588. static inline void mangle(struct seq_file *m, const char *s)
  589. {
  590. seq_escape(m, s, " \t\n\\");
  591. }
  592. /*
  593. * Simple .show_options callback for filesystems which don't want to
  594. * implement more complex mount option showing.
  595. *
  596. * See also save_mount_options().
  597. */
  598. int generic_show_options(struct seq_file *m, struct vfsmount *mnt)
  599. {
  600. const char *options;
  601. rcu_read_lock();
  602. options = rcu_dereference(mnt->mnt_sb->s_options);
  603. if (options != NULL && options[0]) {
  604. seq_putc(m, ',');
  605. mangle(m, options);
  606. }
  607. rcu_read_unlock();
  608. return 0;
  609. }
  610. EXPORT_SYMBOL(generic_show_options);
  611. /*
  612. * If filesystem uses generic_show_options(), this function should be
  613. * called from the fill_super() callback.
  614. *
  615. * The .remount_fs callback usually needs to be handled in a special
  616. * way, to make sure, that previous options are not overwritten if the
  617. * remount fails.
  618. *
  619. * Also note, that if the filesystem's .remount_fs function doesn't
  620. * reset all options to their default value, but changes only newly
  621. * given options, then the displayed options will not reflect reality
  622. * any more.
  623. */
  624. void save_mount_options(struct super_block *sb, char *options)
  625. {
  626. BUG_ON(sb->s_options);
  627. rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
  628. }
  629. EXPORT_SYMBOL(save_mount_options);
  630. void replace_mount_options(struct super_block *sb, char *options)
  631. {
  632. char *old = sb->s_options;
  633. rcu_assign_pointer(sb->s_options, options);
  634. if (old) {
  635. synchronize_rcu();
  636. kfree(old);
  637. }
  638. }
  639. EXPORT_SYMBOL(replace_mount_options);
  640. #ifdef CONFIG_PROC_FS
  641. /* iterator */
  642. static void *m_start(struct seq_file *m, loff_t *pos)
  643. {
  644. struct proc_mounts *p = m->private;
  645. down_read(&namespace_sem);
  646. return seq_list_start(&p->ns->list, *pos);
  647. }
  648. static void *m_next(struct seq_file *m, void *v, loff_t *pos)
  649. {
  650. struct proc_mounts *p = m->private;
  651. return seq_list_next(v, &p->ns->list, pos);
  652. }
  653. static void m_stop(struct seq_file *m, void *v)
  654. {
  655. up_read(&namespace_sem);
  656. }
  657. int mnt_had_events(struct proc_mounts *p)
  658. {
  659. struct mnt_namespace *ns = p->ns;
  660. int res = 0;
  661. spin_lock(&vfsmount_lock);
  662. if (p->event != ns->event) {
  663. p->event = ns->event;
  664. res = 1;
  665. }
  666. spin_unlock(&vfsmount_lock);
  667. return res;
  668. }
  669. struct proc_fs_info {
  670. int flag;
  671. const char *str;
  672. };
  673. static int show_sb_opts(struct seq_file *m, struct super_block *sb)
  674. {
  675. static const struct proc_fs_info fs_info[] = {
  676. { MS_SYNCHRONOUS, ",sync" },
  677. { MS_DIRSYNC, ",dirsync" },
  678. { MS_MANDLOCK, ",mand" },
  679. { 0, NULL }
  680. };
  681. const struct proc_fs_info *fs_infop;
  682. for (fs_infop = fs_info; fs_infop->flag; fs_infop++) {
  683. if (sb->s_flags & fs_infop->flag)
  684. seq_puts(m, fs_infop->str);
  685. }
  686. return security_sb_show_options(m, sb);
  687. }
  688. static void show_mnt_opts(struct seq_file *m, struct vfsmount *mnt)
  689. {
  690. static const struct proc_fs_info mnt_info[] = {
  691. { MNT_NOSUID, ",nosuid" },
  692. { MNT_NODEV, ",nodev" },
  693. { MNT_NOEXEC, ",noexec" },
  694. { MNT_NOATIME, ",noatime" },
  695. { MNT_NODIRATIME, ",nodiratime" },
  696. { MNT_RELATIME, ",relatime" },
  697. { MNT_STRICTATIME, ",strictatime" },
  698. { 0, NULL }
  699. };
  700. const struct proc_fs_info *fs_infop;
  701. for (fs_infop = mnt_info; fs_infop->flag; fs_infop++) {
  702. if (mnt->mnt_flags & fs_infop->flag)
  703. seq_puts(m, fs_infop->str);
  704. }
  705. }
  706. static void show_type(struct seq_file *m, struct super_block *sb)
  707. {
  708. mangle(m, sb->s_type->name);
  709. if (sb->s_subtype && sb->s_subtype[0]) {
  710. seq_putc(m, '.');
  711. mangle(m, sb->s_subtype);
  712. }
  713. }
  714. static int show_vfsmnt(struct seq_file *m, void *v)
  715. {
  716. struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
  717. int err = 0;
  718. struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
  719. mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
  720. seq_putc(m, ' ');
  721. seq_path(m, &mnt_path, " \t\n\\");
  722. seq_putc(m, ' ');
  723. show_type(m, mnt->mnt_sb);
  724. seq_puts(m, __mnt_is_readonly(mnt) ? " ro" : " rw");
  725. err = show_sb_opts(m, mnt->mnt_sb);
  726. if (err)
  727. goto out;
  728. show_mnt_opts(m, mnt);
  729. if (mnt->mnt_sb->s_op->show_options)
  730. err = mnt->mnt_sb->s_op->show_options(m, mnt);
  731. seq_puts(m, " 0 0\n");
  732. out:
  733. return err;
  734. }
  735. const struct seq_operations mounts_op = {
  736. .start = m_start,
  737. .next = m_next,
  738. .stop = m_stop,
  739. .show = show_vfsmnt
  740. };
  741. static int show_mountinfo(struct seq_file *m, void *v)
  742. {
  743. struct proc_mounts *p = m->private;
  744. struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
  745. struct super_block *sb = mnt->mnt_sb;
  746. struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
  747. struct path root = p->root;
  748. int err = 0;
  749. seq_printf(m, "%i %i %u:%u ", mnt->mnt_id, mnt->mnt_parent->mnt_id,
  750. MAJOR(sb->s_dev), MINOR(sb->s_dev));
  751. seq_dentry(m, mnt->mnt_root, " \t\n\\");
  752. seq_putc(m, ' ');
  753. seq_path_root(m, &mnt_path, &root, " \t\n\\");
  754. if (root.mnt != p->root.mnt || root.dentry != p->root.dentry) {
  755. /*
  756. * Mountpoint is outside root, discard that one. Ugly,
  757. * but less so than trying to do that in iterator in a
  758. * race-free way (due to renames).
  759. */
  760. return SEQ_SKIP;
  761. }
  762. seq_puts(m, mnt->mnt_flags & MNT_READONLY ? " ro" : " rw");
  763. show_mnt_opts(m, mnt);
  764. /* Tagged fields ("foo:X" or "bar") */
  765. if (IS_MNT_SHARED(mnt))
  766. seq_printf(m, " shared:%i", mnt->mnt_group_id);
  767. if (IS_MNT_SLAVE(mnt)) {
  768. int master = mnt->mnt_master->mnt_group_id;
  769. int dom = get_dominating_id(mnt, &p->root);
  770. seq_printf(m, " master:%i", master);
  771. if (dom && dom != master)
  772. seq_printf(m, " propagate_from:%i", dom);
  773. }
  774. if (IS_MNT_UNBINDABLE(mnt))
  775. seq_puts(m, " unbindable");
  776. /* Filesystem specific data */
  777. seq_puts(m, " - ");
  778. show_type(m, sb);
  779. seq_putc(m, ' ');
  780. mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
  781. seq_puts(m, sb->s_flags & MS_RDONLY ? " ro" : " rw");
  782. err = show_sb_opts(m, sb);
  783. if (err)
  784. goto out;
  785. if (sb->s_op->show_options)
  786. err = sb->s_op->show_options(m, mnt);
  787. seq_putc(m, '\n');
  788. out:
  789. return err;
  790. }
  791. const struct seq_operations mountinfo_op = {
  792. .start = m_start,
  793. .next = m_next,
  794. .stop = m_stop,
  795. .show = show_mountinfo,
  796. };
  797. static int show_vfsstat(struct seq_file *m, void *v)
  798. {
  799. struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
  800. struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
  801. int err = 0;
  802. /* device */
  803. if (mnt->mnt_devname) {
  804. seq_puts(m, "device ");
  805. mangle(m, mnt->mnt_devname);
  806. } else
  807. seq_puts(m, "no device");
  808. /* mount point */
  809. seq_puts(m, " mounted on ");
  810. seq_path(m, &mnt_path, " \t\n\\");
  811. seq_putc(m, ' ');
  812. /* file system type */
  813. seq_puts(m, "with fstype ");
  814. show_type(m, mnt->mnt_sb);
  815. /* optional statistics */
  816. if (mnt->mnt_sb->s_op->show_stats) {
  817. seq_putc(m, ' ');
  818. err = mnt->mnt_sb->s_op->show_stats(m, mnt);
  819. }
  820. seq_putc(m, '\n');
  821. return err;
  822. }
  823. const struct seq_operations mountstats_op = {
  824. .start = m_start,
  825. .next = m_next,
  826. .stop = m_stop,
  827. .show = show_vfsstat,
  828. };
  829. #endif /* CONFIG_PROC_FS */
  830. /**
  831. * may_umount_tree - check if a mount tree is busy
  832. * @mnt: root of mount tree
  833. *
  834. * This is called to check if a tree of mounts has any
  835. * open files, pwds, chroots or sub mounts that are
  836. * busy.
  837. */
  838. int may_umount_tree(struct vfsmount *mnt)
  839. {
  840. int actual_refs = 0;
  841. int minimum_refs = 0;
  842. struct vfsmount *p;
  843. spin_lock(&vfsmount_lock);
  844. for (p = mnt; p; p = next_mnt(p, mnt)) {
  845. actual_refs += atomic_read(&p->mnt_count);
  846. minimum_refs += 2;
  847. }
  848. spin_unlock(&vfsmount_lock);
  849. if (actual_refs > minimum_refs)
  850. return 0;
  851. return 1;
  852. }
  853. EXPORT_SYMBOL(may_umount_tree);
  854. /**
  855. * may_umount - check if a mount point is busy
  856. * @mnt: root of mount
  857. *
  858. * This is called to check if a mount point has any
  859. * open files, pwds, chroots or sub mounts. If the
  860. * mount has sub mounts this will return busy
  861. * regardless of whether the sub mounts are busy.
  862. *
  863. * Doesn't take quota and stuff into account. IOW, in some cases it will
  864. * give false negatives. The main reason why it's here is that we need
  865. * a non-destructive way to look for easily umountable filesystems.
  866. */
  867. int may_umount(struct vfsmount *mnt)
  868. {
  869. int ret = 1;
  870. down_read(&namespace_sem);
  871. spin_lock(&vfsmount_lock);
  872. if (propagate_mount_busy(mnt, 2))
  873. ret = 0;
  874. spin_unlock(&vfsmount_lock);
  875. up_read(&namespace_sem);
  876. return ret;
  877. }
  878. EXPORT_SYMBOL(may_umount);
  879. void release_mounts(struct list_head *head)
  880. {
  881. struct vfsmount *mnt;
  882. while (!list_empty(head)) {
  883. mnt = list_first_entry(head, struct vfsmount, mnt_hash);
  884. list_del_init(&mnt->mnt_hash);
  885. if (mnt->mnt_parent != mnt) {
  886. struct dentry *dentry;
  887. struct vfsmount *m;
  888. spin_lock(&vfsmount_lock);
  889. dentry = mnt->mnt_mountpoint;
  890. m = mnt->mnt_parent;
  891. mnt->mnt_mountpoint = mnt->mnt_root;
  892. mnt->mnt_parent = mnt;
  893. m->mnt_ghosts--;
  894. spin_unlock(&vfsmount_lock);
  895. dput(dentry);
  896. mntput(m);
  897. }
  898. mntput(mnt);
  899. }
  900. }
  901. void umount_tree(struct vfsmount *mnt, int propagate, struct list_head *kill)
  902. {
  903. struct vfsmount *p;
  904. for (p = mnt; p; p = next_mnt(p, mnt))
  905. list_move(&p->mnt_hash, kill);
  906. if (propagate)
  907. propagate_umount(kill);
  908. list_for_each_entry(p, kill, mnt_hash) {
  909. list_del_init(&p->mnt_expire);
  910. list_del_init(&p->mnt_list);
  911. __touch_mnt_namespace(p->mnt_ns);
  912. p->mnt_ns = NULL;
  913. list_del_init(&p->mnt_child);
  914. if (p->mnt_parent != p) {
  915. p->mnt_parent->mnt_ghosts++;
  916. p->mnt_mountpoint->d_mounted--;
  917. }
  918. change_mnt_propagation(p, MS_PRIVATE);
  919. }
  920. }
  921. static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts);
  922. static int do_umount(struct vfsmount *mnt, int flags)
  923. {
  924. struct super_block *sb = mnt->mnt_sb;
  925. int retval;
  926. LIST_HEAD(umount_list);
  927. retval = security_sb_umount(mnt, flags);
  928. if (retval)
  929. return retval;
  930. /*
  931. * Allow userspace to request a mountpoint be expired rather than
  932. * unmounting unconditionally. Unmount only happens if:
  933. * (1) the mark is already set (the mark is cleared by mntput())
  934. * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
  935. */
  936. if (flags & MNT_EXPIRE) {
  937. if (mnt == current->fs->root.mnt ||
  938. flags & (MNT_FORCE | MNT_DETACH))
  939. return -EINVAL;
  940. if (atomic_read(&mnt->mnt_count) != 2)
  941. return -EBUSY;
  942. if (!xchg(&mnt->mnt_expiry_mark, 1))
  943. return -EAGAIN;
  944. }
  945. /*
  946. * If we may have to abort operations to get out of this
  947. * mount, and they will themselves hold resources we must
  948. * allow the fs to do things. In the Unix tradition of
  949. * 'Gee thats tricky lets do it in userspace' the umount_begin
  950. * might fail to complete on the first run through as other tasks
  951. * must return, and the like. Thats for the mount program to worry
  952. * about for the moment.
  953. */
  954. if (flags & MNT_FORCE && sb->s_op->umount_begin) {
  955. sb->s_op->umount_begin(sb);
  956. }
  957. /*
  958. * No sense to grab the lock for this test, but test itself looks
  959. * somewhat bogus. Suggestions for better replacement?
  960. * Ho-hum... In principle, we might treat that as umount + switch
  961. * to rootfs. GC would eventually take care of the old vfsmount.
  962. * Actually it makes sense, especially if rootfs would contain a
  963. * /reboot - static binary that would close all descriptors and
  964. * call reboot(9). Then init(8) could umount root and exec /reboot.
  965. */
  966. if (mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
  967. /*
  968. * Special case for "unmounting" root ...
  969. * we just try to remount it readonly.
  970. */
  971. down_write(&sb->s_umount);
  972. if (!(sb->s_flags & MS_RDONLY))
  973. retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
  974. up_write(&sb->s_umount);
  975. return retval;
  976. }
  977. down_write(&namespace_sem);
  978. spin_lock(&vfsmount_lock);
  979. event++;
  980. if (!(flags & MNT_DETACH))
  981. shrink_submounts(mnt, &umount_list);
  982. retval = -EBUSY;
  983. if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
  984. if (!list_empty(&mnt->mnt_list))
  985. umount_tree(mnt, 1, &umount_list);
  986. retval = 0;
  987. }
  988. spin_unlock(&vfsmount_lock);
  989. up_write(&namespace_sem);
  990. release_mounts(&umount_list);
  991. return retval;
  992. }
  993. /*
  994. * Now umount can handle mount points as well as block devices.
  995. * This is important for filesystems which use unnamed block devices.
  996. *
  997. * We now support a flag for forced unmount like the other 'big iron'
  998. * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
  999. */
  1000. SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
  1001. {
  1002. struct path path;
  1003. int retval;
  1004. int lookup_flags = 0;
  1005. if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
  1006. return -EINVAL;
  1007. if (!(flags & UMOUNT_NOFOLLOW))
  1008. lookup_flags |= LOOKUP_FOLLOW;
  1009. retval = user_path_at(AT_FDCWD, name, lookup_flags, &path);
  1010. if (retval)
  1011. goto out;
  1012. retval = -EINVAL;
  1013. if (path.dentry != path.mnt->mnt_root)
  1014. goto dput_and_out;
  1015. if (!check_mnt(path.mnt))
  1016. goto dput_and_out;
  1017. retval = -EPERM;
  1018. if (!capable(CAP_SYS_ADMIN))
  1019. goto dput_and_out;
  1020. retval = do_umount(path.mnt, flags);
  1021. dput_and_out:
  1022. /* we mustn't call path_put() as that would clear mnt_expiry_mark */
  1023. dput(path.dentry);
  1024. mntput_no_expire(path.mnt);
  1025. out:
  1026. return retval;
  1027. }
  1028. #ifdef __ARCH_WANT_SYS_OLDUMOUNT
  1029. /*
  1030. * The 2.0 compatible umount. No flags.
  1031. */
  1032. SYSCALL_DEFINE1(oldumount, char __user *, name)
  1033. {
  1034. return sys_umount(name, 0);
  1035. }
  1036. #endif
  1037. static int mount_is_safe(struct path *path)
  1038. {
  1039. if (capable(CAP_SYS_ADMIN))
  1040. return 0;
  1041. return -EPERM;
  1042. #ifdef notyet
  1043. if (S_ISLNK(path->dentry->d_inode->i_mode))
  1044. return -EPERM;
  1045. if (path->dentry->d_inode->i_mode & S_ISVTX) {
  1046. if (current_uid() != path->dentry->d_inode->i_uid)
  1047. return -EPERM;
  1048. }
  1049. if (inode_permission(path->dentry->d_inode, MAY_WRITE))
  1050. return -EPERM;
  1051. return 0;
  1052. #endif
  1053. }
  1054. struct vfsmount *copy_tree(struct vfsmount *mnt, struct dentry *dentry,
  1055. int flag)
  1056. {
  1057. struct vfsmount *res, *p, *q, *r, *s;
  1058. struct path path;
  1059. if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt))
  1060. return NULL;
  1061. res = q = clone_mnt(mnt, dentry, flag);
  1062. if (!q)
  1063. goto Enomem;
  1064. q->mnt_mountpoint = mnt->mnt_mountpoint;
  1065. p = mnt;
  1066. list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
  1067. if (!is_subdir(r->mnt_mountpoint, dentry))
  1068. continue;
  1069. for (s = r; s; s = next_mnt(s, r)) {
  1070. if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) {
  1071. s = skip_mnt_tree(s);
  1072. continue;
  1073. }
  1074. while (p != s->mnt_parent) {
  1075. p = p->mnt_parent;
  1076. q = q->mnt_parent;
  1077. }
  1078. p = s;
  1079. path.mnt = q;
  1080. path.dentry = p->mnt_mountpoint;
  1081. q = clone_mnt(p, p->mnt_root, flag);
  1082. if (!q)
  1083. goto Enomem;
  1084. spin_lock(&vfsmount_lock);
  1085. list_add_tail(&q->mnt_list, &res->mnt_list);
  1086. attach_mnt(q, &path);
  1087. spin_unlock(&vfsmount_lock);
  1088. }
  1089. }
  1090. return res;
  1091. Enomem:
  1092. if (res) {
  1093. LIST_HEAD(umount_list);
  1094. spin_lock(&vfsmount_lock);
  1095. umount_tree(res, 0, &umount_list);
  1096. spin_unlock(&vfsmount_lock);
  1097. release_mounts(&umount_list);
  1098. }
  1099. return NULL;
  1100. }
  1101. struct vfsmount *collect_mounts(struct path *path)
  1102. {
  1103. struct vfsmount *tree;
  1104. down_write(&namespace_sem);
  1105. tree = copy_tree(path->mnt, path->dentry, CL_COPY_ALL | CL_PRIVATE);
  1106. up_write(&namespace_sem);
  1107. return tree;
  1108. }
  1109. void drop_collected_mounts(struct vfsmount *mnt)
  1110. {
  1111. LIST_HEAD(umount_list);
  1112. down_write(&namespace_sem);
  1113. spin_lock(&vfsmount_lock);
  1114. umount_tree(mnt, 0, &umount_list);
  1115. spin_unlock(&vfsmount_lock);
  1116. up_write(&namespace_sem);
  1117. release_mounts(&umount_list);
  1118. }
  1119. int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
  1120. struct vfsmount *root)
  1121. {
  1122. struct vfsmount *mnt;
  1123. int res = f(root, arg);
  1124. if (res)
  1125. return res;
  1126. list_for_each_entry(mnt, &root->mnt_list, mnt_list) {
  1127. res = f(mnt, arg);
  1128. if (res)
  1129. return res;
  1130. }
  1131. return 0;
  1132. }
  1133. static void cleanup_group_ids(struct vfsmount *mnt, struct vfsmount *end)
  1134. {
  1135. struct vfsmount *p;
  1136. for (p = mnt; p != end; p = next_mnt(p, mnt)) {
  1137. if (p->mnt_group_id && !IS_MNT_SHARED(p))
  1138. mnt_release_group_id(p);
  1139. }
  1140. }
  1141. static int invent_group_ids(struct vfsmount *mnt, bool recurse)
  1142. {
  1143. struct vfsmount *p;
  1144. for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
  1145. if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
  1146. int err = mnt_alloc_group_id(p);
  1147. if (err) {
  1148. cleanup_group_ids(mnt, p);
  1149. return err;
  1150. }
  1151. }
  1152. }
  1153. return 0;
  1154. }
  1155. /*
  1156. * @source_mnt : mount tree to be attached
  1157. * @nd : place the mount tree @source_mnt is attached
  1158. * @parent_nd : if non-null, detach the source_mnt from its parent and
  1159. * store the parent mount and mountpoint dentry.
  1160. * (done when source_mnt is moved)
  1161. *
  1162. * NOTE: in the table below explains the semantics when a source mount
  1163. * of a given type is attached to a destination mount of a given type.
  1164. * ---------------------------------------------------------------------------
  1165. * | BIND MOUNT OPERATION |
  1166. * |**************************************************************************
  1167. * | source-->| shared | private | slave | unbindable |
  1168. * | dest | | | | |
  1169. * | | | | | | |
  1170. * | v | | | | |
  1171. * |**************************************************************************
  1172. * | shared | shared (++) | shared (+) | shared(+++)| invalid |
  1173. * | | | | | |
  1174. * |non-shared| shared (+) | private | slave (*) | invalid |
  1175. * ***************************************************************************
  1176. * A bind operation clones the source mount and mounts the clone on the
  1177. * destination mount.
  1178. *
  1179. * (++) the cloned mount is propagated to all the mounts in the propagation
  1180. * tree of the destination mount and the cloned mount is added to
  1181. * the peer group of the source mount.
  1182. * (+) the cloned mount is created under the destination mount and is marked
  1183. * as shared. The cloned mount is added to the peer group of the source
  1184. * mount.
  1185. * (+++) the mount is propagated to all the mounts in the propagation tree
  1186. * of the destination mount and the cloned mount is made slave
  1187. * of the same master as that of the source mount. The cloned mount
  1188. * is marked as 'shared and slave'.
  1189. * (*) the cloned mount is made a slave of the same master as that of the
  1190. * source mount.
  1191. *
  1192. * ---------------------------------------------------------------------------
  1193. * | MOVE MOUNT OPERATION |
  1194. * |**************************************************************************
  1195. * | source-->| shared | private | slave | unbindable |
  1196. * | dest | | | | |
  1197. * | | | | | | |
  1198. * | v | | | | |
  1199. * |**************************************************************************
  1200. * | shared | shared (+) | shared (+) | shared(+++) | invalid |
  1201. * | | | | | |
  1202. * |non-shared| shared (+*) | private | slave (*) | unbindable |
  1203. * ***************************************************************************
  1204. *
  1205. * (+) the mount is moved to the destination. And is then propagated to
  1206. * all the mounts in the propagation tree of the destination mount.
  1207. * (+*) the mount is moved to the destination.
  1208. * (+++) the mount is moved to the destination and is then propagated to
  1209. * all the mounts belonging to the destination mount's propagation tree.
  1210. * the mount is marked as 'shared and slave'.
  1211. * (*) the mount continues to be a slave at the new location.
  1212. *
  1213. * if the source mount is a tree, the operations explained above is
  1214. * applied to each mount in the tree.
  1215. * Must be called without spinlocks held, since this function can sleep
  1216. * in allocations.
  1217. */
  1218. static int attach_recursive_mnt(struct vfsmount *source_mnt,
  1219. struct path *path, struct path *parent_path)
  1220. {
  1221. LIST_HEAD(tree_list);
  1222. struct vfsmount *dest_mnt = path->mnt;
  1223. struct dentry *dest_dentry = path->dentry;
  1224. struct vfsmount *child, *p;
  1225. int err;
  1226. if (IS_MNT_SHARED(dest_mnt)) {
  1227. err = invent_group_ids(source_mnt, true);
  1228. if (err)
  1229. goto out;
  1230. }
  1231. err = propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list);
  1232. if (err)
  1233. goto out_cleanup_ids;
  1234. spin_lock(&vfsmount_lock);
  1235. if (IS_MNT_SHARED(dest_mnt)) {
  1236. for (p = source_mnt; p; p = next_mnt(p, source_mnt))
  1237. set_mnt_shared(p);
  1238. }
  1239. if (parent_path) {
  1240. detach_mnt(source_mnt, parent_path);
  1241. attach_mnt(source_mnt, path);
  1242. touch_mnt_namespace(parent_path->mnt->mnt_ns);
  1243. } else {
  1244. mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt);
  1245. commit_tree(source_mnt);
  1246. }
  1247. list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
  1248. list_del_init(&child->mnt_hash);
  1249. commit_tree(child);
  1250. }
  1251. spin_unlock(&vfsmount_lock);
  1252. return 0;
  1253. out_cleanup_ids:
  1254. if (IS_MNT_SHARED(dest_mnt))
  1255. cleanup_group_ids(source_mnt, NULL);
  1256. out:
  1257. return err;
  1258. }
  1259. static int graft_tree(struct vfsmount *mnt, struct path *path)
  1260. {
  1261. int err;
  1262. if (mnt->mnt_sb->s_flags & MS_NOUSER)
  1263. return -EINVAL;
  1264. if (S_ISDIR(path->dentry->d_inode->i_mode) !=
  1265. S_ISDIR(mnt->mnt_root->d_inode->i_mode))
  1266. return -ENOTDIR;
  1267. err = -ENOENT;
  1268. mutex_lock(&path->dentry->d_inode->i_mutex);
  1269. if (cant_mount(path->dentry))
  1270. goto out_unlock;
  1271. if (!d_unlinked(path->dentry))
  1272. err = attach_recursive_mnt(mnt, path, NULL);
  1273. out_unlock:
  1274. mutex_unlock(&path->dentry->d_inode->i_mutex);
  1275. return err;
  1276. }
  1277. /*
  1278. * recursively change the type of the mountpoint.
  1279. */
  1280. static int do_change_type(struct path *path, int flag)
  1281. {
  1282. struct vfsmount *m, *mnt = path->mnt;
  1283. int recurse = flag & MS_REC;
  1284. int type = flag & ~MS_REC;
  1285. int err = 0;
  1286. if (!capable(CAP_SYS_ADMIN))
  1287. return -EPERM;
  1288. if (path->dentry != path->mnt->mnt_root)
  1289. return -EINVAL;
  1290. down_write(&namespace_sem);
  1291. if (type == MS_SHARED) {
  1292. err = invent_group_ids(mnt, recurse);
  1293. if (err)
  1294. goto out_unlock;
  1295. }
  1296. spin_lock(&vfsmount_lock);
  1297. for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
  1298. change_mnt_propagation(m, type);
  1299. spin_unlock(&vfsmount_lock);
  1300. out_unlock:
  1301. up_write(&namespace_sem);
  1302. return err;
  1303. }
  1304. /*
  1305. * do loopback mount.
  1306. */
  1307. static int do_loopback(struct path *path, char *old_name,
  1308. int recurse)
  1309. {
  1310. struct path old_path;
  1311. struct vfsmount *mnt = NULL;
  1312. int err = mount_is_safe(path);
  1313. if (err)
  1314. return err;
  1315. if (!old_name || !*old_name)
  1316. return -EINVAL;
  1317. err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
  1318. if (err)
  1319. return err;
  1320. down_write(&namespace_sem);
  1321. err = -EINVAL;
  1322. if (IS_MNT_UNBINDABLE(old_path.mnt))
  1323. goto out;
  1324. if (!check_mnt(path->mnt) || !check_mnt(old_path.mnt))
  1325. goto out;
  1326. err = -ENOMEM;
  1327. if (recurse)
  1328. mnt = copy_tree(old_path.mnt, old_path.dentry, 0);
  1329. else
  1330. mnt = clone_mnt(old_path.mnt, old_path.dentry, 0);
  1331. if (!mnt)
  1332. goto out;
  1333. err = graft_tree(mnt, path);
  1334. if (err) {
  1335. LIST_HEAD(umount_list);
  1336. spin_lock(&vfsmount_lock);
  1337. umount_tree(mnt, 0, &umount_list);
  1338. spin_unlock(&vfsmount_lock);
  1339. release_mounts(&umount_list);
  1340. }
  1341. out:
  1342. up_write(&namespace_sem);
  1343. path_put(&old_path);
  1344. return err;
  1345. }
  1346. static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
  1347. {
  1348. int error = 0;
  1349. int readonly_request = 0;
  1350. if (ms_flags & MS_RDONLY)
  1351. readonly_request = 1;
  1352. if (readonly_request == __mnt_is_readonly(mnt))
  1353. return 0;
  1354. if (readonly_request)
  1355. error = mnt_make_readonly(mnt);
  1356. else
  1357. __mnt_unmake_readonly(mnt);
  1358. return error;
  1359. }
  1360. /*
  1361. * change filesystem flags. dir should be a physical root of filesystem.
  1362. * If you've mounted a non-root directory somewhere and want to do remount
  1363. * on it - tough luck.
  1364. */
  1365. static int do_remount(struct path *path, int flags, int mnt_flags,
  1366. void *data)
  1367. {
  1368. int err;
  1369. struct super_block *sb = path->mnt->mnt_sb;
  1370. if (!capable(CAP_SYS_ADMIN))
  1371. return -EPERM;
  1372. if (!check_mnt(path->mnt))
  1373. return -EINVAL;
  1374. if (path->dentry != path->mnt->mnt_root)
  1375. return -EINVAL;
  1376. down_write(&sb->s_umount);
  1377. if (flags & MS_BIND)
  1378. err = change_mount_flags(path->mnt, flags);
  1379. else
  1380. err = do_remount_sb(sb, flags, data, 0);
  1381. if (!err) {
  1382. spin_lock(&vfsmount_lock);
  1383. mnt_flags |= path->mnt->mnt_flags & MNT_PROPAGATION_MASK;
  1384. path->mnt->mnt_flags = mnt_flags;
  1385. spin_unlock(&vfsmount_lock);
  1386. }
  1387. up_write(&sb->s_umount);
  1388. if (!err) {
  1389. spin_lock(&vfsmount_lock);
  1390. touch_mnt_namespace(path->mnt->mnt_ns);
  1391. spin_unlock(&vfsmount_lock);
  1392. }
  1393. return err;
  1394. }
  1395. static inline int tree_contains_unbindable(struct vfsmount *mnt)
  1396. {
  1397. struct vfsmount *p;
  1398. for (p = mnt; p; p = next_mnt(p, mnt)) {
  1399. if (IS_MNT_UNBINDABLE(p))
  1400. return 1;
  1401. }
  1402. return 0;
  1403. }
  1404. static int do_move_mount(struct path *path, char *old_name)
  1405. {
  1406. struct path old_path, parent_path;
  1407. struct vfsmount *p;
  1408. int err = 0;
  1409. if (!capable(CAP_SYS_ADMIN))
  1410. return -EPERM;
  1411. if (!old_name || !*old_name)
  1412. return -EINVAL;
  1413. err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
  1414. if (err)
  1415. return err;
  1416. down_write(&namespace_sem);
  1417. while (d_mountpoint(path->dentry) &&
  1418. follow_down(path))
  1419. ;
  1420. err = -EINVAL;
  1421. if (!check_mnt(path->mnt) || !check_mnt(old_path.mnt))
  1422. goto out;
  1423. err = -ENOENT;
  1424. mutex_lock(&path->dentry->d_inode->i_mutex);
  1425. if (cant_mount(path->dentry))
  1426. goto out1;
  1427. if (d_unlinked(path->dentry))
  1428. goto out1;
  1429. err = -EINVAL;
  1430. if (old_path.dentry != old_path.mnt->mnt_root)
  1431. goto out1;
  1432. if (old_path.mnt == old_path.mnt->mnt_parent)
  1433. goto out1;
  1434. if (S_ISDIR(path->dentry->d_inode->i_mode) !=
  1435. S_ISDIR(old_path.dentry->d_inode->i_mode))
  1436. goto out1;
  1437. /*
  1438. * Don't move a mount residing in a shared parent.
  1439. */
  1440. if (old_path.mnt->mnt_parent &&
  1441. IS_MNT_SHARED(old_path.mnt->mnt_parent))
  1442. goto out1;
  1443. /*
  1444. * Don't move a mount tree containing unbindable mounts to a destination
  1445. * mount which is shared.
  1446. */
  1447. if (IS_MNT_SHARED(path->mnt) &&
  1448. tree_contains_unbindable(old_path.mnt))
  1449. goto out1;
  1450. err = -ELOOP;
  1451. for (p = path->mnt; p->mnt_parent != p; p = p->mnt_parent)
  1452. if (p == old_path.mnt)
  1453. goto out1;
  1454. err = attach_recursive_mnt(old_path.mnt, path, &parent_path);
  1455. if (err)
  1456. goto out1;
  1457. /* if the mount is moved, it should no longer be expire
  1458. * automatically */
  1459. list_del_init(&old_path.mnt->mnt_expire);
  1460. out1:
  1461. mutex_unlock(&path->dentry->d_inode->i_mutex);
  1462. out:
  1463. up_write(&namespace_sem);
  1464. if (!err)
  1465. path_put(&parent_path);
  1466. path_put(&old_path);
  1467. return err;
  1468. }
  1469. /*
  1470. * create a new mount for userspace and request it to be added into the
  1471. * namespace's tree
  1472. */
  1473. static int do_new_mount(struct path *path, char *type, int flags,
  1474. int mnt_flags, char *name, void *data)
  1475. {
  1476. struct vfsmount *mnt;
  1477. if (!type)
  1478. return -EINVAL;
  1479. /* we need capabilities... */
  1480. if (!capable(CAP_SYS_ADMIN))
  1481. return -EPERM;
  1482. lock_kernel();
  1483. mnt = do_kern_mount(type, flags, name, data);
  1484. unlock_kernel();
  1485. if (IS_ERR(mnt))
  1486. return PTR_ERR(mnt);
  1487. return do_add_mount(mnt, path, mnt_flags, NULL);
  1488. }
  1489. /*
  1490. * add a mount into a namespace's mount tree
  1491. * - provide the option of adding the new mount to an expiration list
  1492. */
  1493. int do_add_mount(struct vfsmount *newmnt, struct path *path,
  1494. int mnt_flags, struct list_head *fslist)
  1495. {
  1496. int err;
  1497. mnt_flags &= ~(MNT_SHARED | MNT_WRITE_HOLD | MNT_INTERNAL);
  1498. down_write(&namespace_sem);
  1499. /* Something was mounted here while we slept */
  1500. while (d_mountpoint(path->dentry) &&
  1501. follow_down(path))
  1502. ;
  1503. err = -EINVAL;
  1504. if (!(mnt_flags & MNT_SHRINKABLE) && !check_mnt(path->mnt))
  1505. goto unlock;
  1506. /* Refuse the same filesystem on the same mount point */
  1507. err = -EBUSY;
  1508. if (path->mnt->mnt_sb == newmnt->mnt_sb &&
  1509. path->mnt->mnt_root == path->dentry)
  1510. goto unlock;
  1511. err = -EINVAL;
  1512. if (S_ISLNK(newmnt->mnt_root->d_inode->i_mode))
  1513. goto unlock;
  1514. newmnt->mnt_flags = mnt_flags;
  1515. if ((err = graft_tree(newmnt, path)))
  1516. goto unlock;
  1517. if (fslist) /* add to the specified expiration list */
  1518. list_add_tail(&newmnt->mnt_expire, fslist);
  1519. up_write(&namespace_sem);
  1520. return 0;
  1521. unlock:
  1522. up_write(&namespace_sem);
  1523. mntput(newmnt);
  1524. return err;
  1525. }
  1526. EXPORT_SYMBOL_GPL(do_add_mount);
  1527. /*
  1528. * process a list of expirable mountpoints with the intent of discarding any
  1529. * mountpoints that aren't in use and haven't been touched since last we came
  1530. * here
  1531. */
  1532. void mark_mounts_for_expiry(struct list_head *mounts)
  1533. {
  1534. struct vfsmount *mnt, *next;
  1535. LIST_HEAD(graveyard);
  1536. LIST_HEAD(umounts);
  1537. if (list_empty(mounts))
  1538. return;
  1539. down_write(&namespace_sem);
  1540. spin_lock(&vfsmount_lock);
  1541. /* extract from the expiration list every vfsmount that matches the
  1542. * following criteria:
  1543. * - only referenced by its parent vfsmount
  1544. * - still marked for expiry (marked on the last call here; marks are
  1545. * cleared by mntput())
  1546. */
  1547. list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
  1548. if (!xchg(&mnt->mnt_expiry_mark, 1) ||
  1549. propagate_mount_busy(mnt, 1))
  1550. continue;
  1551. list_move(&mnt->mnt_expire, &graveyard);
  1552. }
  1553. while (!list_empty(&graveyard)) {
  1554. mnt = list_first_entry(&graveyard, struct vfsmount, mnt_expire);
  1555. touch_mnt_namespace(mnt->mnt_ns);
  1556. umount_tree(mnt, 1, &umounts);
  1557. }
  1558. spin_unlock(&vfsmount_lock);
  1559. up_write(&namespace_sem);
  1560. release_mounts(&umounts);
  1561. }
  1562. EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
  1563. /*
  1564. * Ripoff of 'select_parent()'
  1565. *
  1566. * search the list of submounts for a given mountpoint, and move any
  1567. * shrinkable submounts to the 'graveyard' list.
  1568. */
  1569. static int select_submounts(struct vfsmount *parent, struct list_head *graveyard)
  1570. {
  1571. struct vfsmount *this_parent = parent;
  1572. struct list_head *next;
  1573. int found = 0;
  1574. repeat:
  1575. next = this_parent->mnt_mounts.next;
  1576. resume:
  1577. while (next != &this_parent->mnt_mounts) {
  1578. struct list_head *tmp = next;
  1579. struct vfsmount *mnt = list_entry(tmp, struct vfsmount, mnt_child);
  1580. next = tmp->next;
  1581. if (!(mnt->mnt_flags & MNT_SHRINKABLE))
  1582. continue;
  1583. /*
  1584. * Descend a level if the d_mounts list is non-empty.
  1585. */
  1586. if (!list_empty(&mnt->mnt_mounts)) {
  1587. this_parent = mnt;
  1588. goto repeat;
  1589. }
  1590. if (!propagate_mount_busy(mnt, 1)) {
  1591. list_move_tail(&mnt->mnt_expire, graveyard);
  1592. found++;
  1593. }
  1594. }
  1595. /*
  1596. * All done at this level ... ascend and resume the search
  1597. */
  1598. if (this_parent != parent) {
  1599. next = this_parent->mnt_child.next;
  1600. this_parent = this_parent->mnt_parent;
  1601. goto resume;
  1602. }
  1603. return found;
  1604. }
  1605. /*
  1606. * process a list of expirable mountpoints with the intent of discarding any
  1607. * submounts of a specific parent mountpoint
  1608. */
  1609. static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts)
  1610. {
  1611. LIST_HEAD(graveyard);
  1612. struct vfsmount *m;
  1613. /* extract submounts of 'mountpoint' from the expiration list */
  1614. while (select_submounts(mnt, &graveyard)) {
  1615. while (!list_empty(&graveyard)) {
  1616. m = list_first_entry(&graveyard, struct vfsmount,
  1617. mnt_expire);
  1618. touch_mnt_namespace(m->mnt_ns);
  1619. umount_tree(m, 1, umounts);
  1620. }
  1621. }
  1622. }
  1623. /*
  1624. * Some copy_from_user() implementations do not return the exact number of
  1625. * bytes remaining to copy on a fault. But copy_mount_options() requires that.
  1626. * Note that this function differs from copy_from_user() in that it will oops
  1627. * on bad values of `to', rather than returning a short copy.
  1628. */
  1629. static long exact_copy_from_user(void *to, const void __user * from,
  1630. unsigned long n)
  1631. {
  1632. char *t = to;
  1633. const char __user *f = from;
  1634. char c;
  1635. if (!access_ok(VERIFY_READ, from, n))
  1636. return n;
  1637. while (n) {
  1638. if (__get_user(c, f)) {
  1639. memset(t, 0, n);
  1640. break;
  1641. }
  1642. *t++ = c;
  1643. f++;
  1644. n--;
  1645. }
  1646. return n;
  1647. }
  1648. int copy_mount_options(const void __user * data, unsigned long *where)
  1649. {
  1650. int i;
  1651. unsigned long page;
  1652. unsigned long size;
  1653. *where = 0;
  1654. if (!data)
  1655. return 0;
  1656. if (!(page = __get_free_page(GFP_KERNEL)))
  1657. return -ENOMEM;
  1658. /* We only care that *some* data at the address the user
  1659. * gave us is valid. Just in case, we'll zero
  1660. * the remainder of the page.
  1661. */
  1662. /* copy_from_user cannot cross TASK_SIZE ! */
  1663. size = TASK_SIZE - (unsigned long)data;
  1664. if (size > PAGE_SIZE)
  1665. size = PAGE_SIZE;
  1666. i = size - exact_copy_from_user((void *)page, data, size);
  1667. if (!i) {
  1668. free_page(page);
  1669. return -EFAULT;
  1670. }
  1671. if (i != PAGE_SIZE)
  1672. memset((char *)page + i, 0, PAGE_SIZE - i);
  1673. *where = page;
  1674. return 0;
  1675. }
  1676. int copy_mount_string(const void __user *data, char **where)
  1677. {
  1678. char *tmp;
  1679. if (!data) {
  1680. *where = NULL;
  1681. return 0;
  1682. }
  1683. tmp = strndup_user(data, PAGE_SIZE);
  1684. if (IS_ERR(tmp))
  1685. return PTR_ERR(tmp);
  1686. *where = tmp;
  1687. return 0;
  1688. }
  1689. /*
  1690. * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
  1691. * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
  1692. *
  1693. * data is a (void *) that can point to any structure up to
  1694. * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
  1695. * information (or be NULL).
  1696. *
  1697. * Pre-0.97 versions of mount() didn't have a flags word.
  1698. * When the flags word was introduced its top half was required
  1699. * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
  1700. * Therefore, if this magic number is present, it carries no information
  1701. * and must be discarded.
  1702. */
  1703. long do_mount(char *dev_name, char *dir_name, char *type_page,
  1704. unsigned long flags, void *data_page)
  1705. {
  1706. struct path path;
  1707. int retval = 0;
  1708. int mnt_flags = 0;
  1709. /* Discard magic */
  1710. if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
  1711. flags &= ~MS_MGC_MSK;
  1712. /* Basic sanity checks */
  1713. if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
  1714. return -EINVAL;
  1715. if (data_page)
  1716. ((char *)data_page)[PAGE_SIZE - 1] = 0;
  1717. /* ... and get the mountpoint */
  1718. retval = kern_path(dir_name, LOOKUP_FOLLOW, &path);
  1719. if (retval)
  1720. return retval;
  1721. retval = security_sb_mount(dev_name, &path,
  1722. type_page, flags, data_page);
  1723. if (retval)
  1724. goto dput_out;
  1725. /* Default to relatime unless overriden */
  1726. if (!(flags & MS_NOATIME))
  1727. mnt_flags |= MNT_RELATIME;
  1728. /* Separate the per-mountpoint flags */
  1729. if (flags & MS_NOSUID)
  1730. mnt_flags |= MNT_NOSUID;
  1731. if (flags & MS_NODEV)
  1732. mnt_flags |= MNT_NODEV;
  1733. if (flags & MS_NOEXEC)
  1734. mnt_flags |= MNT_NOEXEC;
  1735. if (flags & MS_NOATIME)
  1736. mnt_flags |= MNT_NOATIME;
  1737. if (flags & MS_NODIRATIME)
  1738. mnt_flags |= MNT_NODIRATIME;
  1739. if (flags & MS_STRICTATIME)
  1740. mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
  1741. if (flags & MS_RDONLY)
  1742. mnt_flags |= MNT_READONLY;
  1743. flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE |
  1744. MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
  1745. MS_STRICTATIME);
  1746. if (flags & MS_REMOUNT)
  1747. retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
  1748. data_page);
  1749. else if (flags & MS_BIND)
  1750. retval = do_loopback(&path, dev_name, flags & MS_REC);
  1751. else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
  1752. retval = do_change_type(&path, flags);
  1753. else if (flags & MS_MOVE)
  1754. retval = do_move_mount(&path, dev_name);
  1755. else
  1756. retval = do_new_mount(&path, type_page, flags, mnt_flags,
  1757. dev_name, data_page);
  1758. dput_out:
  1759. path_put(&path);
  1760. return retval;
  1761. }
  1762. static struct mnt_namespace *alloc_mnt_ns(void)
  1763. {
  1764. struct mnt_namespace *new_ns;
  1765. new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
  1766. if (!new_ns)
  1767. return ERR_PTR(-ENOMEM);
  1768. atomic_set(&new_ns->count, 1);
  1769. new_ns->root = NULL;
  1770. INIT_LIST_HEAD(&new_ns->list);
  1771. init_waitqueue_head(&new_ns->poll);
  1772. new_ns->event = 0;
  1773. return new_ns;
  1774. }
  1775. /*
  1776. * Allocate a new namespace structure and populate it with contents
  1777. * copied from the namespace of the passed in task structure.
  1778. */
  1779. static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns,
  1780. struct fs_struct *fs)
  1781. {
  1782. struct mnt_namespace *new_ns;
  1783. struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
  1784. struct vfsmount *p, *q;
  1785. new_ns = alloc_mnt_ns();
  1786. if (IS_ERR(new_ns))
  1787. return new_ns;
  1788. down_write(&namespace_sem);
  1789. /* First pass: copy the tree topology */
  1790. new_ns->root = copy_tree(mnt_ns->root, mnt_ns->root->mnt_root,
  1791. CL_COPY_ALL | CL_EXPIRE);
  1792. if (!new_ns->root) {
  1793. up_write(&namespace_sem);
  1794. kfree(new_ns);
  1795. return ERR_PTR(-ENOMEM);
  1796. }
  1797. spin_lock(&vfsmount_lock);
  1798. list_add_tail(&new_ns->list, &new_ns->root->mnt_list);
  1799. spin_unlock(&vfsmount_lock);
  1800. /*
  1801. * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
  1802. * as belonging to new namespace. We have already acquired a private
  1803. * fs_struct, so tsk->fs->lock is not needed.
  1804. */
  1805. p = mnt_ns->root;
  1806. q = new_ns->root;
  1807. while (p) {
  1808. q->mnt_ns = new_ns;
  1809. if (fs) {
  1810. if (p == fs->root.mnt) {
  1811. rootmnt = p;
  1812. fs->root.mnt = mntget(q);
  1813. }
  1814. if (p == fs->pwd.mnt) {
  1815. pwdmnt = p;
  1816. fs->pwd.mnt = mntget(q);
  1817. }
  1818. }
  1819. p = next_mnt(p, mnt_ns->root);
  1820. q = next_mnt(q, new_ns->root);
  1821. }
  1822. up_write(&namespace_sem);
  1823. if (rootmnt)
  1824. mntput(rootmnt);
  1825. if (pwdmnt)
  1826. mntput(pwdmnt);
  1827. return new_ns;
  1828. }
  1829. struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
  1830. struct fs_struct *new_fs)
  1831. {
  1832. struct mnt_namespace *new_ns;
  1833. BUG_ON(!ns);
  1834. get_mnt_ns(ns);
  1835. if (!(flags & CLONE_NEWNS))
  1836. return ns;
  1837. new_ns = dup_mnt_ns(ns, new_fs);
  1838. put_mnt_ns(ns);
  1839. return new_ns;
  1840. }
  1841. /**
  1842. * create_mnt_ns - creates a private namespace and adds a root filesystem
  1843. * @mnt: pointer to the new root filesystem mountpoint
  1844. */
  1845. struct mnt_namespace *create_mnt_ns(struct vfsmount *mnt)
  1846. {
  1847. struct mnt_namespace *new_ns;
  1848. new_ns = alloc_mnt_ns();
  1849. if (!IS_ERR(new_ns)) {
  1850. mnt->mnt_ns = new_ns;
  1851. new_ns->root = mnt;
  1852. list_add(&new_ns->list, &new_ns->root->mnt_list);
  1853. }
  1854. return new_ns;
  1855. }
  1856. EXPORT_SYMBOL(create_mnt_ns);
  1857. SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
  1858. char __user *, type, unsigned long, flags, void __user *, data)
  1859. {
  1860. int ret;
  1861. char *kernel_type;
  1862. char *kernel_dir;
  1863. char *kernel_dev;
  1864. unsigned long data_page;
  1865. ret = copy_mount_string(type, &kernel_type);
  1866. if (ret < 0)
  1867. goto out_type;
  1868. kernel_dir = getname(dir_name);
  1869. if (IS_ERR(kernel_dir)) {
  1870. ret = PTR_ERR(kernel_dir);
  1871. goto out_dir;
  1872. }
  1873. ret = copy_mount_string(dev_name, &kernel_dev);
  1874. if (ret < 0)
  1875. goto out_dev;
  1876. ret = copy_mount_options(data, &data_page);
  1877. if (ret < 0)
  1878. goto out_data;
  1879. ret = do_mount(kernel_dev, kernel_dir, kernel_type, flags,
  1880. (void *) data_page);
  1881. free_page(data_page);
  1882. out_data:
  1883. kfree(kernel_dev);
  1884. out_dev:
  1885. putname(kernel_dir);
  1886. out_dir:
  1887. kfree(kernel_type);
  1888. out_type:
  1889. return ret;
  1890. }
  1891. /*
  1892. * pivot_root Semantics:
  1893. * Moves the root file system of the current process to the directory put_old,
  1894. * makes new_root as the new root file system of the current process, and sets
  1895. * root/cwd of all processes which had them on the current root to new_root.
  1896. *
  1897. * Restrictions:
  1898. * The new_root and put_old must be directories, and must not be on the
  1899. * same file system as the current process root. The put_old must be
  1900. * underneath new_root, i.e. adding a non-zero number of /.. to the string
  1901. * pointed to by put_old must yield the same directory as new_root. No other
  1902. * file system may be mounted on put_old. After all, new_root is a mountpoint.
  1903. *
  1904. * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
  1905. * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
  1906. * in this situation.
  1907. *
  1908. * Notes:
  1909. * - we don't move root/cwd if they are not at the root (reason: if something
  1910. * cared enough to change them, it's probably wrong to force them elsewhere)
  1911. * - it's okay to pick a root that isn't the root of a file system, e.g.
  1912. * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
  1913. * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
  1914. * first.
  1915. */
  1916. SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
  1917. const char __user *, put_old)
  1918. {
  1919. struct vfsmount *tmp;
  1920. struct path new, old, parent_path, root_parent, root;
  1921. int error;
  1922. if (!capable(CAP_SYS_ADMIN))
  1923. return -EPERM;
  1924. error = user_path_dir(new_root, &new);
  1925. if (error)
  1926. goto out0;
  1927. error = -EINVAL;
  1928. if (!check_mnt(new.mnt))
  1929. goto out1;
  1930. error = user_path_dir(put_old, &old);
  1931. if (error)
  1932. goto out1;
  1933. error = security_sb_pivotroot(&old, &new);
  1934. if (error) {
  1935. path_put(&old);
  1936. goto out1;
  1937. }
  1938. read_lock(&current->fs->lock);
  1939. root = current->fs->root;
  1940. path_get(&current->fs->root);
  1941. read_unlock(&current->fs->lock);
  1942. down_write(&namespace_sem);
  1943. mutex_lock(&old.dentry->d_inode->i_mutex);
  1944. error = -EINVAL;
  1945. if (IS_MNT_SHARED(old.mnt) ||
  1946. IS_MNT_SHARED(new.mnt->mnt_parent) ||
  1947. IS_MNT_SHARED(root.mnt->mnt_parent))
  1948. goto out2;
  1949. if (!check_mnt(root.mnt))
  1950. goto out2;
  1951. error = -ENOENT;
  1952. if (cant_mount(old.dentry))
  1953. goto out2;
  1954. if (d_unlinked(new.dentry))
  1955. goto out2;
  1956. if (d_unlinked(old.dentry))
  1957. goto out2;
  1958. error = -EBUSY;
  1959. if (new.mnt == root.mnt ||
  1960. old.mnt == root.mnt)
  1961. goto out2; /* loop, on the same file system */
  1962. error = -EINVAL;
  1963. if (root.mnt->mnt_root != root.dentry)
  1964. goto out2; /* not a mountpoint */
  1965. if (root.mnt->mnt_parent == root.mnt)
  1966. goto out2; /* not attached */
  1967. if (new.mnt->mnt_root != new.dentry)
  1968. goto out2; /* not a mountpoint */
  1969. if (new.mnt->mnt_parent == new.mnt)
  1970. goto out2; /* not attached */
  1971. /* make sure we can reach put_old from new_root */
  1972. tmp = old.mnt;
  1973. spin_lock(&vfsmount_lock);
  1974. if (tmp != new.mnt) {
  1975. for (;;) {
  1976. if (tmp->mnt_parent == tmp)
  1977. goto out3; /* already mounted on put_old */
  1978. if (tmp->mnt_parent == new.mnt)
  1979. break;
  1980. tmp = tmp->mnt_parent;
  1981. }
  1982. if (!is_subdir(tmp->mnt_mountpoint, new.dentry))
  1983. goto out3;
  1984. } else if (!is_subdir(old.dentry, new.dentry))
  1985. goto out3;
  1986. detach_mnt(new.mnt, &parent_path);
  1987. detach_mnt(root.mnt, &root_parent);
  1988. /* mount old root on put_old */
  1989. attach_mnt(root.mnt, &old);
  1990. /* mount new_root on / */
  1991. attach_mnt(new.mnt, &root_parent);
  1992. touch_mnt_namespace(current->nsproxy->mnt_ns);
  1993. spin_unlock(&vfsmount_lock);
  1994. chroot_fs_refs(&root, &new);
  1995. error = 0;
  1996. path_put(&root_parent);
  1997. path_put(&parent_path);
  1998. out2:
  1999. mutex_unlock(&old.dentry->d_inode->i_mutex);
  2000. up_write(&namespace_sem);
  2001. path_put(&root);
  2002. path_put(&old);
  2003. out1:
  2004. path_put(&new);
  2005. out0:
  2006. return error;
  2007. out3:
  2008. spin_unlock(&vfsmount_lock);
  2009. goto out2;
  2010. }
  2011. static void __init init_mount_tree(void)
  2012. {
  2013. struct vfsmount *mnt;
  2014. struct mnt_namespace *ns;
  2015. struct path root;
  2016. mnt = do_kern_mount("rootfs", 0, "rootfs", NULL);
  2017. if (IS_ERR(mnt))
  2018. panic("Can't create rootfs");
  2019. ns = create_mnt_ns(mnt);
  2020. if (IS_ERR(ns))
  2021. panic("Can't allocate initial namespace");
  2022. init_task.nsproxy->mnt_ns = ns;
  2023. get_mnt_ns(ns);
  2024. root.mnt = ns->root;
  2025. root.dentry = ns->root->mnt_root;
  2026. set_fs_pwd(current->fs, &root);
  2027. set_fs_root(current->fs, &root);
  2028. }
  2029. void __init mnt_init(void)
  2030. {
  2031. unsigned u;
  2032. int err;
  2033. init_rwsem(&namespace_sem);
  2034. mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct vfsmount),
  2035. 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
  2036. mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
  2037. if (!mount_hashtable)
  2038. panic("Failed to allocate mount hash table\n");
  2039. printk("Mount-cache hash table entries: %lu\n", HASH_SIZE);
  2040. for (u = 0; u < HASH_SIZE; u++)
  2041. INIT_LIST_HEAD(&mount_hashtable[u]);
  2042. err = sysfs_init();
  2043. if (err)
  2044. printk(KERN_WARNING "%s: sysfs_init error: %d\n",
  2045. __func__, err);
  2046. fs_kobj = kobject_create_and_add("fs", NULL);
  2047. if (!fs_kobj)
  2048. printk(KERN_WARNING "%s: kobj create error\n", __func__);
  2049. init_rootfs();
  2050. init_mount_tree();
  2051. }
  2052. void put_mnt_ns(struct mnt_namespace *ns)
  2053. {
  2054. LIST_HEAD(umount_list);
  2055. if (!atomic_dec_and_test(&ns->count))
  2056. return;
  2057. down_write(&namespace_sem);
  2058. spin_lock(&vfsmount_lock);
  2059. umount_tree(ns->root, 0, &umount_list);
  2060. spin_unlock(&vfsmount_lock);
  2061. up_write(&namespace_sem);
  2062. release_mounts(&umount_list);
  2063. kfree(ns);
  2064. }
  2065. EXPORT_SYMBOL(put_mnt_ns);