dispc.c 71 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181
  1. /*
  2. * linux/drivers/video/omap2/dss/dispc.c
  3. *
  4. * Copyright (C) 2009 Nokia Corporation
  5. * Author: Tomi Valkeinen <tomi.valkeinen@nokia.com>
  6. *
  7. * Some code and ideas taken from drivers/video/omap/ driver
  8. * by Imre Deak.
  9. *
  10. * This program is free software; you can redistribute it and/or modify it
  11. * under the terms of the GNU General Public License version 2 as published by
  12. * the Free Software Foundation.
  13. *
  14. * This program is distributed in the hope that it will be useful, but WITHOUT
  15. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  16. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  17. * more details.
  18. *
  19. * You should have received a copy of the GNU General Public License along with
  20. * this program. If not, see <http://www.gnu.org/licenses/>.
  21. */
  22. #define DSS_SUBSYS_NAME "DISPC"
  23. #include <linux/kernel.h>
  24. #include <linux/dma-mapping.h>
  25. #include <linux/vmalloc.h>
  26. #include <linux/clk.h>
  27. #include <linux/io.h>
  28. #include <linux/jiffies.h>
  29. #include <linux/seq_file.h>
  30. #include <linux/delay.h>
  31. #include <linux/workqueue.h>
  32. #include <plat/sram.h>
  33. #include <plat/clock.h>
  34. #include <plat/display.h>
  35. #include "dss.h"
  36. /* DISPC */
  37. #define DISPC_BASE 0x48050400
  38. #define DISPC_SZ_REGS SZ_1K
  39. struct dispc_reg { u16 idx; };
  40. #define DISPC_REG(idx) ((const struct dispc_reg) { idx })
  41. /* DISPC common */
  42. #define DISPC_REVISION DISPC_REG(0x0000)
  43. #define DISPC_SYSCONFIG DISPC_REG(0x0010)
  44. #define DISPC_SYSSTATUS DISPC_REG(0x0014)
  45. #define DISPC_IRQSTATUS DISPC_REG(0x0018)
  46. #define DISPC_IRQENABLE DISPC_REG(0x001C)
  47. #define DISPC_CONTROL DISPC_REG(0x0040)
  48. #define DISPC_CONFIG DISPC_REG(0x0044)
  49. #define DISPC_CAPABLE DISPC_REG(0x0048)
  50. #define DISPC_DEFAULT_COLOR0 DISPC_REG(0x004C)
  51. #define DISPC_DEFAULT_COLOR1 DISPC_REG(0x0050)
  52. #define DISPC_TRANS_COLOR0 DISPC_REG(0x0054)
  53. #define DISPC_TRANS_COLOR1 DISPC_REG(0x0058)
  54. #define DISPC_LINE_STATUS DISPC_REG(0x005C)
  55. #define DISPC_LINE_NUMBER DISPC_REG(0x0060)
  56. #define DISPC_TIMING_H DISPC_REG(0x0064)
  57. #define DISPC_TIMING_V DISPC_REG(0x0068)
  58. #define DISPC_POL_FREQ DISPC_REG(0x006C)
  59. #define DISPC_DIVISOR DISPC_REG(0x0070)
  60. #define DISPC_GLOBAL_ALPHA DISPC_REG(0x0074)
  61. #define DISPC_SIZE_DIG DISPC_REG(0x0078)
  62. #define DISPC_SIZE_LCD DISPC_REG(0x007C)
  63. /* DISPC GFX plane */
  64. #define DISPC_GFX_BA0 DISPC_REG(0x0080)
  65. #define DISPC_GFX_BA1 DISPC_REG(0x0084)
  66. #define DISPC_GFX_POSITION DISPC_REG(0x0088)
  67. #define DISPC_GFX_SIZE DISPC_REG(0x008C)
  68. #define DISPC_GFX_ATTRIBUTES DISPC_REG(0x00A0)
  69. #define DISPC_GFX_FIFO_THRESHOLD DISPC_REG(0x00A4)
  70. #define DISPC_GFX_FIFO_SIZE_STATUS DISPC_REG(0x00A8)
  71. #define DISPC_GFX_ROW_INC DISPC_REG(0x00AC)
  72. #define DISPC_GFX_PIXEL_INC DISPC_REG(0x00B0)
  73. #define DISPC_GFX_WINDOW_SKIP DISPC_REG(0x00B4)
  74. #define DISPC_GFX_TABLE_BA DISPC_REG(0x00B8)
  75. #define DISPC_DATA_CYCLE1 DISPC_REG(0x01D4)
  76. #define DISPC_DATA_CYCLE2 DISPC_REG(0x01D8)
  77. #define DISPC_DATA_CYCLE3 DISPC_REG(0x01DC)
  78. #define DISPC_CPR_COEF_R DISPC_REG(0x0220)
  79. #define DISPC_CPR_COEF_G DISPC_REG(0x0224)
  80. #define DISPC_CPR_COEF_B DISPC_REG(0x0228)
  81. #define DISPC_GFX_PRELOAD DISPC_REG(0x022C)
  82. /* DISPC Video plane, n = 0 for VID1 and n = 1 for VID2 */
  83. #define DISPC_VID_REG(n, idx) DISPC_REG(0x00BC + (n)*0x90 + idx)
  84. #define DISPC_VID_BA0(n) DISPC_VID_REG(n, 0x0000)
  85. #define DISPC_VID_BA1(n) DISPC_VID_REG(n, 0x0004)
  86. #define DISPC_VID_POSITION(n) DISPC_VID_REG(n, 0x0008)
  87. #define DISPC_VID_SIZE(n) DISPC_VID_REG(n, 0x000C)
  88. #define DISPC_VID_ATTRIBUTES(n) DISPC_VID_REG(n, 0x0010)
  89. #define DISPC_VID_FIFO_THRESHOLD(n) DISPC_VID_REG(n, 0x0014)
  90. #define DISPC_VID_FIFO_SIZE_STATUS(n) DISPC_VID_REG(n, 0x0018)
  91. #define DISPC_VID_ROW_INC(n) DISPC_VID_REG(n, 0x001C)
  92. #define DISPC_VID_PIXEL_INC(n) DISPC_VID_REG(n, 0x0020)
  93. #define DISPC_VID_FIR(n) DISPC_VID_REG(n, 0x0024)
  94. #define DISPC_VID_PICTURE_SIZE(n) DISPC_VID_REG(n, 0x0028)
  95. #define DISPC_VID_ACCU0(n) DISPC_VID_REG(n, 0x002C)
  96. #define DISPC_VID_ACCU1(n) DISPC_VID_REG(n, 0x0030)
  97. /* coef index i = {0, 1, 2, 3, 4, 5, 6, 7} */
  98. #define DISPC_VID_FIR_COEF_H(n, i) DISPC_REG(0x00F0 + (n)*0x90 + (i)*0x8)
  99. /* coef index i = {0, 1, 2, 3, 4, 5, 6, 7} */
  100. #define DISPC_VID_FIR_COEF_HV(n, i) DISPC_REG(0x00F4 + (n)*0x90 + (i)*0x8)
  101. /* coef index i = {0, 1, 2, 3, 4} */
  102. #define DISPC_VID_CONV_COEF(n, i) DISPC_REG(0x0130 + (n)*0x90 + (i)*0x4)
  103. /* coef index i = {0, 1, 2, 3, 4, 5, 6, 7} */
  104. #define DISPC_VID_FIR_COEF_V(n, i) DISPC_REG(0x01E0 + (n)*0x20 + (i)*0x4)
  105. #define DISPC_VID_PRELOAD(n) DISPC_REG(0x230 + (n)*0x04)
  106. #define DISPC_IRQ_MASK_ERROR (DISPC_IRQ_GFX_FIFO_UNDERFLOW | \
  107. DISPC_IRQ_OCP_ERR | \
  108. DISPC_IRQ_VID1_FIFO_UNDERFLOW | \
  109. DISPC_IRQ_VID2_FIFO_UNDERFLOW | \
  110. DISPC_IRQ_SYNC_LOST | \
  111. DISPC_IRQ_SYNC_LOST_DIGIT)
  112. #define DISPC_MAX_NR_ISRS 8
  113. struct omap_dispc_isr_data {
  114. omap_dispc_isr_t isr;
  115. void *arg;
  116. u32 mask;
  117. };
  118. #define REG_GET(idx, start, end) \
  119. FLD_GET(dispc_read_reg(idx), start, end)
  120. #define REG_FLD_MOD(idx, val, start, end) \
  121. dispc_write_reg(idx, FLD_MOD(dispc_read_reg(idx), val, start, end))
  122. static const struct dispc_reg dispc_reg_att[] = { DISPC_GFX_ATTRIBUTES,
  123. DISPC_VID_ATTRIBUTES(0),
  124. DISPC_VID_ATTRIBUTES(1) };
  125. struct dispc_irq_stats {
  126. unsigned long last_reset;
  127. unsigned irq_count;
  128. unsigned irqs[32];
  129. };
  130. static struct {
  131. void __iomem *base;
  132. u32 fifo_size[3];
  133. spinlock_t irq_lock;
  134. u32 irq_error_mask;
  135. struct omap_dispc_isr_data registered_isr[DISPC_MAX_NR_ISRS];
  136. u32 error_irqs;
  137. struct work_struct error_work;
  138. u32 ctx[DISPC_SZ_REGS / sizeof(u32)];
  139. #ifdef CONFIG_OMAP2_DSS_COLLECT_IRQ_STATS
  140. spinlock_t irq_stats_lock;
  141. struct dispc_irq_stats irq_stats;
  142. #endif
  143. } dispc;
  144. static void _omap_dispc_set_irqs(void);
  145. static inline void dispc_write_reg(const struct dispc_reg idx, u32 val)
  146. {
  147. __raw_writel(val, dispc.base + idx.idx);
  148. }
  149. static inline u32 dispc_read_reg(const struct dispc_reg idx)
  150. {
  151. return __raw_readl(dispc.base + idx.idx);
  152. }
  153. #define SR(reg) \
  154. dispc.ctx[(DISPC_##reg).idx / sizeof(u32)] = dispc_read_reg(DISPC_##reg)
  155. #define RR(reg) \
  156. dispc_write_reg(DISPC_##reg, dispc.ctx[(DISPC_##reg).idx / sizeof(u32)])
  157. void dispc_save_context(void)
  158. {
  159. if (cpu_is_omap24xx())
  160. return;
  161. SR(SYSCONFIG);
  162. SR(IRQENABLE);
  163. SR(CONTROL);
  164. SR(CONFIG);
  165. SR(DEFAULT_COLOR0);
  166. SR(DEFAULT_COLOR1);
  167. SR(TRANS_COLOR0);
  168. SR(TRANS_COLOR1);
  169. SR(LINE_NUMBER);
  170. SR(TIMING_H);
  171. SR(TIMING_V);
  172. SR(POL_FREQ);
  173. SR(DIVISOR);
  174. SR(GLOBAL_ALPHA);
  175. SR(SIZE_DIG);
  176. SR(SIZE_LCD);
  177. SR(GFX_BA0);
  178. SR(GFX_BA1);
  179. SR(GFX_POSITION);
  180. SR(GFX_SIZE);
  181. SR(GFX_ATTRIBUTES);
  182. SR(GFX_FIFO_THRESHOLD);
  183. SR(GFX_ROW_INC);
  184. SR(GFX_PIXEL_INC);
  185. SR(GFX_WINDOW_SKIP);
  186. SR(GFX_TABLE_BA);
  187. SR(DATA_CYCLE1);
  188. SR(DATA_CYCLE2);
  189. SR(DATA_CYCLE3);
  190. SR(CPR_COEF_R);
  191. SR(CPR_COEF_G);
  192. SR(CPR_COEF_B);
  193. SR(GFX_PRELOAD);
  194. /* VID1 */
  195. SR(VID_BA0(0));
  196. SR(VID_BA1(0));
  197. SR(VID_POSITION(0));
  198. SR(VID_SIZE(0));
  199. SR(VID_ATTRIBUTES(0));
  200. SR(VID_FIFO_THRESHOLD(0));
  201. SR(VID_ROW_INC(0));
  202. SR(VID_PIXEL_INC(0));
  203. SR(VID_FIR(0));
  204. SR(VID_PICTURE_SIZE(0));
  205. SR(VID_ACCU0(0));
  206. SR(VID_ACCU1(0));
  207. SR(VID_FIR_COEF_H(0, 0));
  208. SR(VID_FIR_COEF_H(0, 1));
  209. SR(VID_FIR_COEF_H(0, 2));
  210. SR(VID_FIR_COEF_H(0, 3));
  211. SR(VID_FIR_COEF_H(0, 4));
  212. SR(VID_FIR_COEF_H(0, 5));
  213. SR(VID_FIR_COEF_H(0, 6));
  214. SR(VID_FIR_COEF_H(0, 7));
  215. SR(VID_FIR_COEF_HV(0, 0));
  216. SR(VID_FIR_COEF_HV(0, 1));
  217. SR(VID_FIR_COEF_HV(0, 2));
  218. SR(VID_FIR_COEF_HV(0, 3));
  219. SR(VID_FIR_COEF_HV(0, 4));
  220. SR(VID_FIR_COEF_HV(0, 5));
  221. SR(VID_FIR_COEF_HV(0, 6));
  222. SR(VID_FIR_COEF_HV(0, 7));
  223. SR(VID_CONV_COEF(0, 0));
  224. SR(VID_CONV_COEF(0, 1));
  225. SR(VID_CONV_COEF(0, 2));
  226. SR(VID_CONV_COEF(0, 3));
  227. SR(VID_CONV_COEF(0, 4));
  228. SR(VID_FIR_COEF_V(0, 0));
  229. SR(VID_FIR_COEF_V(0, 1));
  230. SR(VID_FIR_COEF_V(0, 2));
  231. SR(VID_FIR_COEF_V(0, 3));
  232. SR(VID_FIR_COEF_V(0, 4));
  233. SR(VID_FIR_COEF_V(0, 5));
  234. SR(VID_FIR_COEF_V(0, 6));
  235. SR(VID_FIR_COEF_V(0, 7));
  236. SR(VID_PRELOAD(0));
  237. /* VID2 */
  238. SR(VID_BA0(1));
  239. SR(VID_BA1(1));
  240. SR(VID_POSITION(1));
  241. SR(VID_SIZE(1));
  242. SR(VID_ATTRIBUTES(1));
  243. SR(VID_FIFO_THRESHOLD(1));
  244. SR(VID_ROW_INC(1));
  245. SR(VID_PIXEL_INC(1));
  246. SR(VID_FIR(1));
  247. SR(VID_PICTURE_SIZE(1));
  248. SR(VID_ACCU0(1));
  249. SR(VID_ACCU1(1));
  250. SR(VID_FIR_COEF_H(1, 0));
  251. SR(VID_FIR_COEF_H(1, 1));
  252. SR(VID_FIR_COEF_H(1, 2));
  253. SR(VID_FIR_COEF_H(1, 3));
  254. SR(VID_FIR_COEF_H(1, 4));
  255. SR(VID_FIR_COEF_H(1, 5));
  256. SR(VID_FIR_COEF_H(1, 6));
  257. SR(VID_FIR_COEF_H(1, 7));
  258. SR(VID_FIR_COEF_HV(1, 0));
  259. SR(VID_FIR_COEF_HV(1, 1));
  260. SR(VID_FIR_COEF_HV(1, 2));
  261. SR(VID_FIR_COEF_HV(1, 3));
  262. SR(VID_FIR_COEF_HV(1, 4));
  263. SR(VID_FIR_COEF_HV(1, 5));
  264. SR(VID_FIR_COEF_HV(1, 6));
  265. SR(VID_FIR_COEF_HV(1, 7));
  266. SR(VID_CONV_COEF(1, 0));
  267. SR(VID_CONV_COEF(1, 1));
  268. SR(VID_CONV_COEF(1, 2));
  269. SR(VID_CONV_COEF(1, 3));
  270. SR(VID_CONV_COEF(1, 4));
  271. SR(VID_FIR_COEF_V(1, 0));
  272. SR(VID_FIR_COEF_V(1, 1));
  273. SR(VID_FIR_COEF_V(1, 2));
  274. SR(VID_FIR_COEF_V(1, 3));
  275. SR(VID_FIR_COEF_V(1, 4));
  276. SR(VID_FIR_COEF_V(1, 5));
  277. SR(VID_FIR_COEF_V(1, 6));
  278. SR(VID_FIR_COEF_V(1, 7));
  279. SR(VID_PRELOAD(1));
  280. }
  281. void dispc_restore_context(void)
  282. {
  283. RR(SYSCONFIG);
  284. RR(IRQENABLE);
  285. /*RR(CONTROL);*/
  286. RR(CONFIG);
  287. RR(DEFAULT_COLOR0);
  288. RR(DEFAULT_COLOR1);
  289. RR(TRANS_COLOR0);
  290. RR(TRANS_COLOR1);
  291. RR(LINE_NUMBER);
  292. RR(TIMING_H);
  293. RR(TIMING_V);
  294. RR(POL_FREQ);
  295. RR(DIVISOR);
  296. RR(GLOBAL_ALPHA);
  297. RR(SIZE_DIG);
  298. RR(SIZE_LCD);
  299. RR(GFX_BA0);
  300. RR(GFX_BA1);
  301. RR(GFX_POSITION);
  302. RR(GFX_SIZE);
  303. RR(GFX_ATTRIBUTES);
  304. RR(GFX_FIFO_THRESHOLD);
  305. RR(GFX_ROW_INC);
  306. RR(GFX_PIXEL_INC);
  307. RR(GFX_WINDOW_SKIP);
  308. RR(GFX_TABLE_BA);
  309. RR(DATA_CYCLE1);
  310. RR(DATA_CYCLE2);
  311. RR(DATA_CYCLE3);
  312. RR(CPR_COEF_R);
  313. RR(CPR_COEF_G);
  314. RR(CPR_COEF_B);
  315. RR(GFX_PRELOAD);
  316. /* VID1 */
  317. RR(VID_BA0(0));
  318. RR(VID_BA1(0));
  319. RR(VID_POSITION(0));
  320. RR(VID_SIZE(0));
  321. RR(VID_ATTRIBUTES(0));
  322. RR(VID_FIFO_THRESHOLD(0));
  323. RR(VID_ROW_INC(0));
  324. RR(VID_PIXEL_INC(0));
  325. RR(VID_FIR(0));
  326. RR(VID_PICTURE_SIZE(0));
  327. RR(VID_ACCU0(0));
  328. RR(VID_ACCU1(0));
  329. RR(VID_FIR_COEF_H(0, 0));
  330. RR(VID_FIR_COEF_H(0, 1));
  331. RR(VID_FIR_COEF_H(0, 2));
  332. RR(VID_FIR_COEF_H(0, 3));
  333. RR(VID_FIR_COEF_H(0, 4));
  334. RR(VID_FIR_COEF_H(0, 5));
  335. RR(VID_FIR_COEF_H(0, 6));
  336. RR(VID_FIR_COEF_H(0, 7));
  337. RR(VID_FIR_COEF_HV(0, 0));
  338. RR(VID_FIR_COEF_HV(0, 1));
  339. RR(VID_FIR_COEF_HV(0, 2));
  340. RR(VID_FIR_COEF_HV(0, 3));
  341. RR(VID_FIR_COEF_HV(0, 4));
  342. RR(VID_FIR_COEF_HV(0, 5));
  343. RR(VID_FIR_COEF_HV(0, 6));
  344. RR(VID_FIR_COEF_HV(0, 7));
  345. RR(VID_CONV_COEF(0, 0));
  346. RR(VID_CONV_COEF(0, 1));
  347. RR(VID_CONV_COEF(0, 2));
  348. RR(VID_CONV_COEF(0, 3));
  349. RR(VID_CONV_COEF(0, 4));
  350. RR(VID_FIR_COEF_V(0, 0));
  351. RR(VID_FIR_COEF_V(0, 1));
  352. RR(VID_FIR_COEF_V(0, 2));
  353. RR(VID_FIR_COEF_V(0, 3));
  354. RR(VID_FIR_COEF_V(0, 4));
  355. RR(VID_FIR_COEF_V(0, 5));
  356. RR(VID_FIR_COEF_V(0, 6));
  357. RR(VID_FIR_COEF_V(0, 7));
  358. RR(VID_PRELOAD(0));
  359. /* VID2 */
  360. RR(VID_BA0(1));
  361. RR(VID_BA1(1));
  362. RR(VID_POSITION(1));
  363. RR(VID_SIZE(1));
  364. RR(VID_ATTRIBUTES(1));
  365. RR(VID_FIFO_THRESHOLD(1));
  366. RR(VID_ROW_INC(1));
  367. RR(VID_PIXEL_INC(1));
  368. RR(VID_FIR(1));
  369. RR(VID_PICTURE_SIZE(1));
  370. RR(VID_ACCU0(1));
  371. RR(VID_ACCU1(1));
  372. RR(VID_FIR_COEF_H(1, 0));
  373. RR(VID_FIR_COEF_H(1, 1));
  374. RR(VID_FIR_COEF_H(1, 2));
  375. RR(VID_FIR_COEF_H(1, 3));
  376. RR(VID_FIR_COEF_H(1, 4));
  377. RR(VID_FIR_COEF_H(1, 5));
  378. RR(VID_FIR_COEF_H(1, 6));
  379. RR(VID_FIR_COEF_H(1, 7));
  380. RR(VID_FIR_COEF_HV(1, 0));
  381. RR(VID_FIR_COEF_HV(1, 1));
  382. RR(VID_FIR_COEF_HV(1, 2));
  383. RR(VID_FIR_COEF_HV(1, 3));
  384. RR(VID_FIR_COEF_HV(1, 4));
  385. RR(VID_FIR_COEF_HV(1, 5));
  386. RR(VID_FIR_COEF_HV(1, 6));
  387. RR(VID_FIR_COEF_HV(1, 7));
  388. RR(VID_CONV_COEF(1, 0));
  389. RR(VID_CONV_COEF(1, 1));
  390. RR(VID_CONV_COEF(1, 2));
  391. RR(VID_CONV_COEF(1, 3));
  392. RR(VID_CONV_COEF(1, 4));
  393. RR(VID_FIR_COEF_V(1, 0));
  394. RR(VID_FIR_COEF_V(1, 1));
  395. RR(VID_FIR_COEF_V(1, 2));
  396. RR(VID_FIR_COEF_V(1, 3));
  397. RR(VID_FIR_COEF_V(1, 4));
  398. RR(VID_FIR_COEF_V(1, 5));
  399. RR(VID_FIR_COEF_V(1, 6));
  400. RR(VID_FIR_COEF_V(1, 7));
  401. RR(VID_PRELOAD(1));
  402. /* enable last, because LCD & DIGIT enable are here */
  403. RR(CONTROL);
  404. }
  405. #undef SR
  406. #undef RR
  407. static inline void enable_clocks(bool enable)
  408. {
  409. if (enable)
  410. dss_clk_enable(DSS_CLK_ICK | DSS_CLK_FCK1);
  411. else
  412. dss_clk_disable(DSS_CLK_ICK | DSS_CLK_FCK1);
  413. }
  414. bool dispc_go_busy(enum omap_channel channel)
  415. {
  416. int bit;
  417. if (channel == OMAP_DSS_CHANNEL_LCD)
  418. bit = 5; /* GOLCD */
  419. else
  420. bit = 6; /* GODIGIT */
  421. return REG_GET(DISPC_CONTROL, bit, bit) == 1;
  422. }
  423. void dispc_go(enum omap_channel channel)
  424. {
  425. int bit;
  426. enable_clocks(1);
  427. if (channel == OMAP_DSS_CHANNEL_LCD)
  428. bit = 0; /* LCDENABLE */
  429. else
  430. bit = 1; /* DIGITALENABLE */
  431. /* if the channel is not enabled, we don't need GO */
  432. if (REG_GET(DISPC_CONTROL, bit, bit) == 0)
  433. goto end;
  434. if (channel == OMAP_DSS_CHANNEL_LCD)
  435. bit = 5; /* GOLCD */
  436. else
  437. bit = 6; /* GODIGIT */
  438. if (REG_GET(DISPC_CONTROL, bit, bit) == 1) {
  439. DSSERR("GO bit not down for channel %d\n", channel);
  440. goto end;
  441. }
  442. DSSDBG("GO %s\n", channel == OMAP_DSS_CHANNEL_LCD ? "LCD" : "DIGIT");
  443. REG_FLD_MOD(DISPC_CONTROL, 1, bit, bit);
  444. end:
  445. enable_clocks(0);
  446. }
  447. static void _dispc_write_firh_reg(enum omap_plane plane, int reg, u32 value)
  448. {
  449. BUG_ON(plane == OMAP_DSS_GFX);
  450. dispc_write_reg(DISPC_VID_FIR_COEF_H(plane-1, reg), value);
  451. }
  452. static void _dispc_write_firhv_reg(enum omap_plane plane, int reg, u32 value)
  453. {
  454. BUG_ON(plane == OMAP_DSS_GFX);
  455. dispc_write_reg(DISPC_VID_FIR_COEF_HV(plane-1, reg), value);
  456. }
  457. static void _dispc_write_firv_reg(enum omap_plane plane, int reg, u32 value)
  458. {
  459. BUG_ON(plane == OMAP_DSS_GFX);
  460. dispc_write_reg(DISPC_VID_FIR_COEF_V(plane-1, reg), value);
  461. }
  462. static void _dispc_set_scale_coef(enum omap_plane plane, int hscaleup,
  463. int vscaleup, int five_taps)
  464. {
  465. /* Coefficients for horizontal up-sampling */
  466. static const u32 coef_hup[8] = {
  467. 0x00800000,
  468. 0x0D7CF800,
  469. 0x1E70F5FF,
  470. 0x335FF5FE,
  471. 0xF74949F7,
  472. 0xF55F33FB,
  473. 0xF5701EFE,
  474. 0xF87C0DFF,
  475. };
  476. /* Coefficients for horizontal down-sampling */
  477. static const u32 coef_hdown[8] = {
  478. 0x24382400,
  479. 0x28371FFE,
  480. 0x2C361BFB,
  481. 0x303516F9,
  482. 0x11343311,
  483. 0x1635300C,
  484. 0x1B362C08,
  485. 0x1F372804,
  486. };
  487. /* Coefficients for horizontal and vertical up-sampling */
  488. static const u32 coef_hvup[2][8] = {
  489. {
  490. 0x00800000,
  491. 0x037B02FF,
  492. 0x0C6F05FE,
  493. 0x205907FB,
  494. 0x00404000,
  495. 0x075920FE,
  496. 0x056F0CFF,
  497. 0x027B0300,
  498. },
  499. {
  500. 0x00800000,
  501. 0x0D7CF8FF,
  502. 0x1E70F5FE,
  503. 0x335FF5FB,
  504. 0xF7404000,
  505. 0xF55F33FE,
  506. 0xF5701EFF,
  507. 0xF87C0D00,
  508. },
  509. };
  510. /* Coefficients for horizontal and vertical down-sampling */
  511. static const u32 coef_hvdown[2][8] = {
  512. {
  513. 0x24382400,
  514. 0x28391F04,
  515. 0x2D381B08,
  516. 0x3237170C,
  517. 0x123737F7,
  518. 0x173732F9,
  519. 0x1B382DFB,
  520. 0x1F3928FE,
  521. },
  522. {
  523. 0x24382400,
  524. 0x28371F04,
  525. 0x2C361B08,
  526. 0x3035160C,
  527. 0x113433F7,
  528. 0x163530F9,
  529. 0x1B362CFB,
  530. 0x1F3728FE,
  531. },
  532. };
  533. /* Coefficients for vertical up-sampling */
  534. static const u32 coef_vup[8] = {
  535. 0x00000000,
  536. 0x0000FF00,
  537. 0x0000FEFF,
  538. 0x0000FBFE,
  539. 0x000000F7,
  540. 0x0000FEFB,
  541. 0x0000FFFE,
  542. 0x000000FF,
  543. };
  544. /* Coefficients for vertical down-sampling */
  545. static const u32 coef_vdown[8] = {
  546. 0x00000000,
  547. 0x000004FE,
  548. 0x000008FB,
  549. 0x00000CF9,
  550. 0x0000F711,
  551. 0x0000F90C,
  552. 0x0000FB08,
  553. 0x0000FE04,
  554. };
  555. const u32 *h_coef;
  556. const u32 *hv_coef;
  557. const u32 *hv_coef_mod;
  558. const u32 *v_coef;
  559. int i;
  560. if (hscaleup)
  561. h_coef = coef_hup;
  562. else
  563. h_coef = coef_hdown;
  564. if (vscaleup) {
  565. hv_coef = coef_hvup[five_taps];
  566. v_coef = coef_vup;
  567. if (hscaleup)
  568. hv_coef_mod = NULL;
  569. else
  570. hv_coef_mod = coef_hvdown[five_taps];
  571. } else {
  572. hv_coef = coef_hvdown[five_taps];
  573. v_coef = coef_vdown;
  574. if (hscaleup)
  575. hv_coef_mod = coef_hvup[five_taps];
  576. else
  577. hv_coef_mod = NULL;
  578. }
  579. for (i = 0; i < 8; i++) {
  580. u32 h, hv;
  581. h = h_coef[i];
  582. hv = hv_coef[i];
  583. if (hv_coef_mod) {
  584. hv &= 0xffffff00;
  585. hv |= (hv_coef_mod[i] & 0xff);
  586. }
  587. _dispc_write_firh_reg(plane, i, h);
  588. _dispc_write_firhv_reg(plane, i, hv);
  589. }
  590. if (!five_taps)
  591. return;
  592. for (i = 0; i < 8; i++) {
  593. u32 v;
  594. v = v_coef[i];
  595. _dispc_write_firv_reg(plane, i, v);
  596. }
  597. }
  598. static void _dispc_setup_color_conv_coef(void)
  599. {
  600. const struct color_conv_coef {
  601. int ry, rcr, rcb, gy, gcr, gcb, by, bcr, bcb;
  602. int full_range;
  603. } ctbl_bt601_5 = {
  604. 298, 409, 0, 298, -208, -100, 298, 0, 517, 0,
  605. };
  606. const struct color_conv_coef *ct;
  607. #define CVAL(x, y) (FLD_VAL(x, 26, 16) | FLD_VAL(y, 10, 0))
  608. ct = &ctbl_bt601_5;
  609. dispc_write_reg(DISPC_VID_CONV_COEF(0, 0), CVAL(ct->rcr, ct->ry));
  610. dispc_write_reg(DISPC_VID_CONV_COEF(0, 1), CVAL(ct->gy, ct->rcb));
  611. dispc_write_reg(DISPC_VID_CONV_COEF(0, 2), CVAL(ct->gcb, ct->gcr));
  612. dispc_write_reg(DISPC_VID_CONV_COEF(0, 3), CVAL(ct->bcr, ct->by));
  613. dispc_write_reg(DISPC_VID_CONV_COEF(0, 4), CVAL(0, ct->bcb));
  614. dispc_write_reg(DISPC_VID_CONV_COEF(1, 0), CVAL(ct->rcr, ct->ry));
  615. dispc_write_reg(DISPC_VID_CONV_COEF(1, 1), CVAL(ct->gy, ct->rcb));
  616. dispc_write_reg(DISPC_VID_CONV_COEF(1, 2), CVAL(ct->gcb, ct->gcr));
  617. dispc_write_reg(DISPC_VID_CONV_COEF(1, 3), CVAL(ct->bcr, ct->by));
  618. dispc_write_reg(DISPC_VID_CONV_COEF(1, 4), CVAL(0, ct->bcb));
  619. #undef CVAL
  620. REG_FLD_MOD(DISPC_VID_ATTRIBUTES(0), ct->full_range, 11, 11);
  621. REG_FLD_MOD(DISPC_VID_ATTRIBUTES(1), ct->full_range, 11, 11);
  622. }
  623. static void _dispc_set_plane_ba0(enum omap_plane plane, u32 paddr)
  624. {
  625. const struct dispc_reg ba0_reg[] = { DISPC_GFX_BA0,
  626. DISPC_VID_BA0(0),
  627. DISPC_VID_BA0(1) };
  628. dispc_write_reg(ba0_reg[plane], paddr);
  629. }
  630. static void _dispc_set_plane_ba1(enum omap_plane plane, u32 paddr)
  631. {
  632. const struct dispc_reg ba1_reg[] = { DISPC_GFX_BA1,
  633. DISPC_VID_BA1(0),
  634. DISPC_VID_BA1(1) };
  635. dispc_write_reg(ba1_reg[plane], paddr);
  636. }
  637. static void _dispc_set_plane_pos(enum omap_plane plane, int x, int y)
  638. {
  639. const struct dispc_reg pos_reg[] = { DISPC_GFX_POSITION,
  640. DISPC_VID_POSITION(0),
  641. DISPC_VID_POSITION(1) };
  642. u32 val = FLD_VAL(y, 26, 16) | FLD_VAL(x, 10, 0);
  643. dispc_write_reg(pos_reg[plane], val);
  644. }
  645. static void _dispc_set_pic_size(enum omap_plane plane, int width, int height)
  646. {
  647. const struct dispc_reg siz_reg[] = { DISPC_GFX_SIZE,
  648. DISPC_VID_PICTURE_SIZE(0),
  649. DISPC_VID_PICTURE_SIZE(1) };
  650. u32 val = FLD_VAL(height - 1, 26, 16) | FLD_VAL(width - 1, 10, 0);
  651. dispc_write_reg(siz_reg[plane], val);
  652. }
  653. static void _dispc_set_vid_size(enum omap_plane plane, int width, int height)
  654. {
  655. u32 val;
  656. const struct dispc_reg vsi_reg[] = { DISPC_VID_SIZE(0),
  657. DISPC_VID_SIZE(1) };
  658. BUG_ON(plane == OMAP_DSS_GFX);
  659. val = FLD_VAL(height - 1, 26, 16) | FLD_VAL(width - 1, 10, 0);
  660. dispc_write_reg(vsi_reg[plane-1], val);
  661. }
  662. static void _dispc_setup_global_alpha(enum omap_plane plane, u8 global_alpha)
  663. {
  664. BUG_ON(plane == OMAP_DSS_VIDEO1);
  665. if (cpu_is_omap24xx())
  666. return;
  667. if (plane == OMAP_DSS_GFX)
  668. REG_FLD_MOD(DISPC_GLOBAL_ALPHA, global_alpha, 7, 0);
  669. else if (plane == OMAP_DSS_VIDEO2)
  670. REG_FLD_MOD(DISPC_GLOBAL_ALPHA, global_alpha, 23, 16);
  671. }
  672. static void _dispc_set_pix_inc(enum omap_plane plane, s32 inc)
  673. {
  674. const struct dispc_reg ri_reg[] = { DISPC_GFX_PIXEL_INC,
  675. DISPC_VID_PIXEL_INC(0),
  676. DISPC_VID_PIXEL_INC(1) };
  677. dispc_write_reg(ri_reg[plane], inc);
  678. }
  679. static void _dispc_set_row_inc(enum omap_plane plane, s32 inc)
  680. {
  681. const struct dispc_reg ri_reg[] = { DISPC_GFX_ROW_INC,
  682. DISPC_VID_ROW_INC(0),
  683. DISPC_VID_ROW_INC(1) };
  684. dispc_write_reg(ri_reg[plane], inc);
  685. }
  686. static void _dispc_set_color_mode(enum omap_plane plane,
  687. enum omap_color_mode color_mode)
  688. {
  689. u32 m = 0;
  690. switch (color_mode) {
  691. case OMAP_DSS_COLOR_CLUT1:
  692. m = 0x0; break;
  693. case OMAP_DSS_COLOR_CLUT2:
  694. m = 0x1; break;
  695. case OMAP_DSS_COLOR_CLUT4:
  696. m = 0x2; break;
  697. case OMAP_DSS_COLOR_CLUT8:
  698. m = 0x3; break;
  699. case OMAP_DSS_COLOR_RGB12U:
  700. m = 0x4; break;
  701. case OMAP_DSS_COLOR_ARGB16:
  702. m = 0x5; break;
  703. case OMAP_DSS_COLOR_RGB16:
  704. m = 0x6; break;
  705. case OMAP_DSS_COLOR_RGB24U:
  706. m = 0x8; break;
  707. case OMAP_DSS_COLOR_RGB24P:
  708. m = 0x9; break;
  709. case OMAP_DSS_COLOR_YUV2:
  710. m = 0xa; break;
  711. case OMAP_DSS_COLOR_UYVY:
  712. m = 0xb; break;
  713. case OMAP_DSS_COLOR_ARGB32:
  714. m = 0xc; break;
  715. case OMAP_DSS_COLOR_RGBA32:
  716. m = 0xd; break;
  717. case OMAP_DSS_COLOR_RGBX32:
  718. m = 0xe; break;
  719. default:
  720. BUG(); break;
  721. }
  722. REG_FLD_MOD(dispc_reg_att[plane], m, 4, 1);
  723. }
  724. static void _dispc_set_channel_out(enum omap_plane plane,
  725. enum omap_channel channel)
  726. {
  727. int shift;
  728. u32 val;
  729. switch (plane) {
  730. case OMAP_DSS_GFX:
  731. shift = 8;
  732. break;
  733. case OMAP_DSS_VIDEO1:
  734. case OMAP_DSS_VIDEO2:
  735. shift = 16;
  736. break;
  737. default:
  738. BUG();
  739. return;
  740. }
  741. val = dispc_read_reg(dispc_reg_att[plane]);
  742. val = FLD_MOD(val, channel, shift, shift);
  743. dispc_write_reg(dispc_reg_att[plane], val);
  744. }
  745. void dispc_set_burst_size(enum omap_plane plane,
  746. enum omap_burst_size burst_size)
  747. {
  748. int shift;
  749. u32 val;
  750. enable_clocks(1);
  751. switch (plane) {
  752. case OMAP_DSS_GFX:
  753. shift = 6;
  754. break;
  755. case OMAP_DSS_VIDEO1:
  756. case OMAP_DSS_VIDEO2:
  757. shift = 14;
  758. break;
  759. default:
  760. BUG();
  761. return;
  762. }
  763. val = dispc_read_reg(dispc_reg_att[plane]);
  764. val = FLD_MOD(val, burst_size, shift+1, shift);
  765. dispc_write_reg(dispc_reg_att[plane], val);
  766. enable_clocks(0);
  767. }
  768. static void _dispc_set_vid_color_conv(enum omap_plane plane, bool enable)
  769. {
  770. u32 val;
  771. BUG_ON(plane == OMAP_DSS_GFX);
  772. val = dispc_read_reg(dispc_reg_att[plane]);
  773. val = FLD_MOD(val, enable, 9, 9);
  774. dispc_write_reg(dispc_reg_att[plane], val);
  775. }
  776. void dispc_enable_replication(enum omap_plane plane, bool enable)
  777. {
  778. int bit;
  779. if (plane == OMAP_DSS_GFX)
  780. bit = 5;
  781. else
  782. bit = 10;
  783. enable_clocks(1);
  784. REG_FLD_MOD(dispc_reg_att[plane], enable, bit, bit);
  785. enable_clocks(0);
  786. }
  787. void dispc_set_lcd_size(u16 width, u16 height)
  788. {
  789. u32 val;
  790. BUG_ON((width > (1 << 11)) || (height > (1 << 11)));
  791. val = FLD_VAL(height - 1, 26, 16) | FLD_VAL(width - 1, 10, 0);
  792. enable_clocks(1);
  793. dispc_write_reg(DISPC_SIZE_LCD, val);
  794. enable_clocks(0);
  795. }
  796. void dispc_set_digit_size(u16 width, u16 height)
  797. {
  798. u32 val;
  799. BUG_ON((width > (1 << 11)) || (height > (1 << 11)));
  800. val = FLD_VAL(height - 1, 26, 16) | FLD_VAL(width - 1, 10, 0);
  801. enable_clocks(1);
  802. dispc_write_reg(DISPC_SIZE_DIG, val);
  803. enable_clocks(0);
  804. }
  805. static void dispc_read_plane_fifo_sizes(void)
  806. {
  807. const struct dispc_reg fsz_reg[] = { DISPC_GFX_FIFO_SIZE_STATUS,
  808. DISPC_VID_FIFO_SIZE_STATUS(0),
  809. DISPC_VID_FIFO_SIZE_STATUS(1) };
  810. u32 size;
  811. int plane;
  812. enable_clocks(1);
  813. for (plane = 0; plane < ARRAY_SIZE(dispc.fifo_size); ++plane) {
  814. if (cpu_is_omap24xx())
  815. size = FLD_GET(dispc_read_reg(fsz_reg[plane]), 8, 0);
  816. else if (cpu_is_omap34xx())
  817. size = FLD_GET(dispc_read_reg(fsz_reg[plane]), 10, 0);
  818. else
  819. BUG();
  820. dispc.fifo_size[plane] = size;
  821. }
  822. enable_clocks(0);
  823. }
  824. u32 dispc_get_plane_fifo_size(enum omap_plane plane)
  825. {
  826. return dispc.fifo_size[plane];
  827. }
  828. void dispc_setup_plane_fifo(enum omap_plane plane, u32 low, u32 high)
  829. {
  830. const struct dispc_reg ftrs_reg[] = { DISPC_GFX_FIFO_THRESHOLD,
  831. DISPC_VID_FIFO_THRESHOLD(0),
  832. DISPC_VID_FIFO_THRESHOLD(1) };
  833. enable_clocks(1);
  834. DSSDBG("fifo(%d) low/high old %u/%u, new %u/%u\n",
  835. plane,
  836. REG_GET(ftrs_reg[plane], 11, 0),
  837. REG_GET(ftrs_reg[plane], 27, 16),
  838. low, high);
  839. if (cpu_is_omap24xx())
  840. dispc_write_reg(ftrs_reg[plane],
  841. FLD_VAL(high, 24, 16) | FLD_VAL(low, 8, 0));
  842. else
  843. dispc_write_reg(ftrs_reg[plane],
  844. FLD_VAL(high, 27, 16) | FLD_VAL(low, 11, 0));
  845. enable_clocks(0);
  846. }
  847. void dispc_enable_fifomerge(bool enable)
  848. {
  849. enable_clocks(1);
  850. DSSDBG("FIFO merge %s\n", enable ? "enabled" : "disabled");
  851. REG_FLD_MOD(DISPC_CONFIG, enable ? 1 : 0, 14, 14);
  852. enable_clocks(0);
  853. }
  854. static void _dispc_set_fir(enum omap_plane plane, int hinc, int vinc)
  855. {
  856. u32 val;
  857. const struct dispc_reg fir_reg[] = { DISPC_VID_FIR(0),
  858. DISPC_VID_FIR(1) };
  859. BUG_ON(plane == OMAP_DSS_GFX);
  860. if (cpu_is_omap24xx())
  861. val = FLD_VAL(vinc, 27, 16) | FLD_VAL(hinc, 11, 0);
  862. else
  863. val = FLD_VAL(vinc, 28, 16) | FLD_VAL(hinc, 12, 0);
  864. dispc_write_reg(fir_reg[plane-1], val);
  865. }
  866. static void _dispc_set_vid_accu0(enum omap_plane plane, int haccu, int vaccu)
  867. {
  868. u32 val;
  869. const struct dispc_reg ac0_reg[] = { DISPC_VID_ACCU0(0),
  870. DISPC_VID_ACCU0(1) };
  871. BUG_ON(plane == OMAP_DSS_GFX);
  872. val = FLD_VAL(vaccu, 25, 16) | FLD_VAL(haccu, 9, 0);
  873. dispc_write_reg(ac0_reg[plane-1], val);
  874. }
  875. static void _dispc_set_vid_accu1(enum omap_plane plane, int haccu, int vaccu)
  876. {
  877. u32 val;
  878. const struct dispc_reg ac1_reg[] = { DISPC_VID_ACCU1(0),
  879. DISPC_VID_ACCU1(1) };
  880. BUG_ON(plane == OMAP_DSS_GFX);
  881. val = FLD_VAL(vaccu, 25, 16) | FLD_VAL(haccu, 9, 0);
  882. dispc_write_reg(ac1_reg[plane-1], val);
  883. }
  884. static void _dispc_set_scaling(enum omap_plane plane,
  885. u16 orig_width, u16 orig_height,
  886. u16 out_width, u16 out_height,
  887. bool ilace, bool five_taps,
  888. bool fieldmode)
  889. {
  890. int fir_hinc;
  891. int fir_vinc;
  892. int hscaleup, vscaleup;
  893. int accu0 = 0;
  894. int accu1 = 0;
  895. u32 l;
  896. BUG_ON(plane == OMAP_DSS_GFX);
  897. hscaleup = orig_width <= out_width;
  898. vscaleup = orig_height <= out_height;
  899. _dispc_set_scale_coef(plane, hscaleup, vscaleup, five_taps);
  900. if (!orig_width || orig_width == out_width)
  901. fir_hinc = 0;
  902. else
  903. fir_hinc = 1024 * orig_width / out_width;
  904. if (!orig_height || orig_height == out_height)
  905. fir_vinc = 0;
  906. else
  907. fir_vinc = 1024 * orig_height / out_height;
  908. _dispc_set_fir(plane, fir_hinc, fir_vinc);
  909. l = dispc_read_reg(dispc_reg_att[plane]);
  910. l &= ~((0x0f << 5) | (0x3 << 21));
  911. l |= fir_hinc ? (1 << 5) : 0;
  912. l |= fir_vinc ? (1 << 6) : 0;
  913. l |= hscaleup ? 0 : (1 << 7);
  914. l |= vscaleup ? 0 : (1 << 8);
  915. l |= five_taps ? (1 << 21) : 0;
  916. l |= five_taps ? (1 << 22) : 0;
  917. dispc_write_reg(dispc_reg_att[plane], l);
  918. /*
  919. * field 0 = even field = bottom field
  920. * field 1 = odd field = top field
  921. */
  922. if (ilace && !fieldmode) {
  923. accu1 = 0;
  924. accu0 = (fir_vinc / 2) & 0x3ff;
  925. if (accu0 >= 1024/2) {
  926. accu1 = 1024/2;
  927. accu0 -= accu1;
  928. }
  929. }
  930. _dispc_set_vid_accu0(plane, 0, accu0);
  931. _dispc_set_vid_accu1(plane, 0, accu1);
  932. }
  933. static void _dispc_set_rotation_attrs(enum omap_plane plane, u8 rotation,
  934. bool mirroring, enum omap_color_mode color_mode)
  935. {
  936. if (color_mode == OMAP_DSS_COLOR_YUV2 ||
  937. color_mode == OMAP_DSS_COLOR_UYVY) {
  938. int vidrot = 0;
  939. if (mirroring) {
  940. switch (rotation) {
  941. case OMAP_DSS_ROT_0:
  942. vidrot = 2;
  943. break;
  944. case OMAP_DSS_ROT_90:
  945. vidrot = 1;
  946. break;
  947. case OMAP_DSS_ROT_180:
  948. vidrot = 0;
  949. break;
  950. case OMAP_DSS_ROT_270:
  951. vidrot = 3;
  952. break;
  953. }
  954. } else {
  955. switch (rotation) {
  956. case OMAP_DSS_ROT_0:
  957. vidrot = 0;
  958. break;
  959. case OMAP_DSS_ROT_90:
  960. vidrot = 1;
  961. break;
  962. case OMAP_DSS_ROT_180:
  963. vidrot = 2;
  964. break;
  965. case OMAP_DSS_ROT_270:
  966. vidrot = 3;
  967. break;
  968. }
  969. }
  970. REG_FLD_MOD(dispc_reg_att[plane], vidrot, 13, 12);
  971. if (rotation == OMAP_DSS_ROT_90 || rotation == OMAP_DSS_ROT_270)
  972. REG_FLD_MOD(dispc_reg_att[plane], 0x1, 18, 18);
  973. else
  974. REG_FLD_MOD(dispc_reg_att[plane], 0x0, 18, 18);
  975. } else {
  976. REG_FLD_MOD(dispc_reg_att[plane], 0, 13, 12);
  977. REG_FLD_MOD(dispc_reg_att[plane], 0, 18, 18);
  978. }
  979. }
  980. static int color_mode_to_bpp(enum omap_color_mode color_mode)
  981. {
  982. switch (color_mode) {
  983. case OMAP_DSS_COLOR_CLUT1:
  984. return 1;
  985. case OMAP_DSS_COLOR_CLUT2:
  986. return 2;
  987. case OMAP_DSS_COLOR_CLUT4:
  988. return 4;
  989. case OMAP_DSS_COLOR_CLUT8:
  990. return 8;
  991. case OMAP_DSS_COLOR_RGB12U:
  992. case OMAP_DSS_COLOR_RGB16:
  993. case OMAP_DSS_COLOR_ARGB16:
  994. case OMAP_DSS_COLOR_YUV2:
  995. case OMAP_DSS_COLOR_UYVY:
  996. return 16;
  997. case OMAP_DSS_COLOR_RGB24P:
  998. return 24;
  999. case OMAP_DSS_COLOR_RGB24U:
  1000. case OMAP_DSS_COLOR_ARGB32:
  1001. case OMAP_DSS_COLOR_RGBA32:
  1002. case OMAP_DSS_COLOR_RGBX32:
  1003. return 32;
  1004. default:
  1005. BUG();
  1006. }
  1007. }
  1008. static s32 pixinc(int pixels, u8 ps)
  1009. {
  1010. if (pixels == 1)
  1011. return 1;
  1012. else if (pixels > 1)
  1013. return 1 + (pixels - 1) * ps;
  1014. else if (pixels < 0)
  1015. return 1 - (-pixels + 1) * ps;
  1016. else
  1017. BUG();
  1018. }
  1019. static void calc_vrfb_rotation_offset(u8 rotation, bool mirror,
  1020. u16 screen_width,
  1021. u16 width, u16 height,
  1022. enum omap_color_mode color_mode, bool fieldmode,
  1023. unsigned int field_offset,
  1024. unsigned *offset0, unsigned *offset1,
  1025. s32 *row_inc, s32 *pix_inc)
  1026. {
  1027. u8 ps;
  1028. /* FIXME CLUT formats */
  1029. switch (color_mode) {
  1030. case OMAP_DSS_COLOR_CLUT1:
  1031. case OMAP_DSS_COLOR_CLUT2:
  1032. case OMAP_DSS_COLOR_CLUT4:
  1033. case OMAP_DSS_COLOR_CLUT8:
  1034. BUG();
  1035. return;
  1036. case OMAP_DSS_COLOR_YUV2:
  1037. case OMAP_DSS_COLOR_UYVY:
  1038. ps = 4;
  1039. break;
  1040. default:
  1041. ps = color_mode_to_bpp(color_mode) / 8;
  1042. break;
  1043. }
  1044. DSSDBG("calc_rot(%d): scrw %d, %dx%d\n", rotation, screen_width,
  1045. width, height);
  1046. /*
  1047. * field 0 = even field = bottom field
  1048. * field 1 = odd field = top field
  1049. */
  1050. switch (rotation + mirror * 4) {
  1051. case OMAP_DSS_ROT_0:
  1052. case OMAP_DSS_ROT_180:
  1053. /*
  1054. * If the pixel format is YUV or UYVY divide the width
  1055. * of the image by 2 for 0 and 180 degree rotation.
  1056. */
  1057. if (color_mode == OMAP_DSS_COLOR_YUV2 ||
  1058. color_mode == OMAP_DSS_COLOR_UYVY)
  1059. width = width >> 1;
  1060. case OMAP_DSS_ROT_90:
  1061. case OMAP_DSS_ROT_270:
  1062. *offset1 = 0;
  1063. if (field_offset)
  1064. *offset0 = field_offset * screen_width * ps;
  1065. else
  1066. *offset0 = 0;
  1067. *row_inc = pixinc(1 + (screen_width - width) +
  1068. (fieldmode ? screen_width : 0),
  1069. ps);
  1070. *pix_inc = pixinc(1, ps);
  1071. break;
  1072. case OMAP_DSS_ROT_0 + 4:
  1073. case OMAP_DSS_ROT_180 + 4:
  1074. /* If the pixel format is YUV or UYVY divide the width
  1075. * of the image by 2 for 0 degree and 180 degree
  1076. */
  1077. if (color_mode == OMAP_DSS_COLOR_YUV2 ||
  1078. color_mode == OMAP_DSS_COLOR_UYVY)
  1079. width = width >> 1;
  1080. case OMAP_DSS_ROT_90 + 4:
  1081. case OMAP_DSS_ROT_270 + 4:
  1082. *offset1 = 0;
  1083. if (field_offset)
  1084. *offset0 = field_offset * screen_width * ps;
  1085. else
  1086. *offset0 = 0;
  1087. *row_inc = pixinc(1 - (screen_width + width) -
  1088. (fieldmode ? screen_width : 0),
  1089. ps);
  1090. *pix_inc = pixinc(1, ps);
  1091. break;
  1092. default:
  1093. BUG();
  1094. }
  1095. }
  1096. static void calc_dma_rotation_offset(u8 rotation, bool mirror,
  1097. u16 screen_width,
  1098. u16 width, u16 height,
  1099. enum omap_color_mode color_mode, bool fieldmode,
  1100. unsigned int field_offset,
  1101. unsigned *offset0, unsigned *offset1,
  1102. s32 *row_inc, s32 *pix_inc)
  1103. {
  1104. u8 ps;
  1105. u16 fbw, fbh;
  1106. /* FIXME CLUT formats */
  1107. switch (color_mode) {
  1108. case OMAP_DSS_COLOR_CLUT1:
  1109. case OMAP_DSS_COLOR_CLUT2:
  1110. case OMAP_DSS_COLOR_CLUT4:
  1111. case OMAP_DSS_COLOR_CLUT8:
  1112. BUG();
  1113. return;
  1114. default:
  1115. ps = color_mode_to_bpp(color_mode) / 8;
  1116. break;
  1117. }
  1118. DSSDBG("calc_rot(%d): scrw %d, %dx%d\n", rotation, screen_width,
  1119. width, height);
  1120. /* width & height are overlay sizes, convert to fb sizes */
  1121. if (rotation == OMAP_DSS_ROT_0 || rotation == OMAP_DSS_ROT_180) {
  1122. fbw = width;
  1123. fbh = height;
  1124. } else {
  1125. fbw = height;
  1126. fbh = width;
  1127. }
  1128. /*
  1129. * field 0 = even field = bottom field
  1130. * field 1 = odd field = top field
  1131. */
  1132. switch (rotation + mirror * 4) {
  1133. case OMAP_DSS_ROT_0:
  1134. *offset1 = 0;
  1135. if (field_offset)
  1136. *offset0 = *offset1 + field_offset * screen_width * ps;
  1137. else
  1138. *offset0 = *offset1;
  1139. *row_inc = pixinc(1 + (screen_width - fbw) +
  1140. (fieldmode ? screen_width : 0),
  1141. ps);
  1142. *pix_inc = pixinc(1, ps);
  1143. break;
  1144. case OMAP_DSS_ROT_90:
  1145. *offset1 = screen_width * (fbh - 1) * ps;
  1146. if (field_offset)
  1147. *offset0 = *offset1 + field_offset * ps;
  1148. else
  1149. *offset0 = *offset1;
  1150. *row_inc = pixinc(screen_width * (fbh - 1) + 1 +
  1151. (fieldmode ? 1 : 0), ps);
  1152. *pix_inc = pixinc(-screen_width, ps);
  1153. break;
  1154. case OMAP_DSS_ROT_180:
  1155. *offset1 = (screen_width * (fbh - 1) + fbw - 1) * ps;
  1156. if (field_offset)
  1157. *offset0 = *offset1 - field_offset * screen_width * ps;
  1158. else
  1159. *offset0 = *offset1;
  1160. *row_inc = pixinc(-1 -
  1161. (screen_width - fbw) -
  1162. (fieldmode ? screen_width : 0),
  1163. ps);
  1164. *pix_inc = pixinc(-1, ps);
  1165. break;
  1166. case OMAP_DSS_ROT_270:
  1167. *offset1 = (fbw - 1) * ps;
  1168. if (field_offset)
  1169. *offset0 = *offset1 - field_offset * ps;
  1170. else
  1171. *offset0 = *offset1;
  1172. *row_inc = pixinc(-screen_width * (fbh - 1) - 1 -
  1173. (fieldmode ? 1 : 0), ps);
  1174. *pix_inc = pixinc(screen_width, ps);
  1175. break;
  1176. /* mirroring */
  1177. case OMAP_DSS_ROT_0 + 4:
  1178. *offset1 = (fbw - 1) * ps;
  1179. if (field_offset)
  1180. *offset0 = *offset1 + field_offset * screen_width * ps;
  1181. else
  1182. *offset0 = *offset1;
  1183. *row_inc = pixinc(screen_width * 2 - 1 +
  1184. (fieldmode ? screen_width : 0),
  1185. ps);
  1186. *pix_inc = pixinc(-1, ps);
  1187. break;
  1188. case OMAP_DSS_ROT_90 + 4:
  1189. *offset1 = 0;
  1190. if (field_offset)
  1191. *offset0 = *offset1 + field_offset * ps;
  1192. else
  1193. *offset0 = *offset1;
  1194. *row_inc = pixinc(-screen_width * (fbh - 1) + 1 +
  1195. (fieldmode ? 1 : 0),
  1196. ps);
  1197. *pix_inc = pixinc(screen_width, ps);
  1198. break;
  1199. case OMAP_DSS_ROT_180 + 4:
  1200. *offset1 = screen_width * (fbh - 1) * ps;
  1201. if (field_offset)
  1202. *offset0 = *offset1 - field_offset * screen_width * ps;
  1203. else
  1204. *offset0 = *offset1;
  1205. *row_inc = pixinc(1 - screen_width * 2 -
  1206. (fieldmode ? screen_width : 0),
  1207. ps);
  1208. *pix_inc = pixinc(1, ps);
  1209. break;
  1210. case OMAP_DSS_ROT_270 + 4:
  1211. *offset1 = (screen_width * (fbh - 1) + fbw - 1) * ps;
  1212. if (field_offset)
  1213. *offset0 = *offset1 - field_offset * ps;
  1214. else
  1215. *offset0 = *offset1;
  1216. *row_inc = pixinc(screen_width * (fbh - 1) - 1 -
  1217. (fieldmode ? 1 : 0),
  1218. ps);
  1219. *pix_inc = pixinc(-screen_width, ps);
  1220. break;
  1221. default:
  1222. BUG();
  1223. }
  1224. }
  1225. static unsigned long calc_fclk_five_taps(u16 width, u16 height,
  1226. u16 out_width, u16 out_height, enum omap_color_mode color_mode)
  1227. {
  1228. u32 fclk = 0;
  1229. /* FIXME venc pclk? */
  1230. u64 tmp, pclk = dispc_pclk_rate();
  1231. if (height > out_height) {
  1232. /* FIXME get real display PPL */
  1233. unsigned int ppl = 800;
  1234. tmp = pclk * height * out_width;
  1235. do_div(tmp, 2 * out_height * ppl);
  1236. fclk = tmp;
  1237. if (height > 2 * out_height) {
  1238. if (ppl == out_width)
  1239. return 0;
  1240. tmp = pclk * (height - 2 * out_height) * out_width;
  1241. do_div(tmp, 2 * out_height * (ppl - out_width));
  1242. fclk = max(fclk, (u32) tmp);
  1243. }
  1244. }
  1245. if (width > out_width) {
  1246. tmp = pclk * width;
  1247. do_div(tmp, out_width);
  1248. fclk = max(fclk, (u32) tmp);
  1249. if (color_mode == OMAP_DSS_COLOR_RGB24U)
  1250. fclk <<= 1;
  1251. }
  1252. return fclk;
  1253. }
  1254. static unsigned long calc_fclk(u16 width, u16 height,
  1255. u16 out_width, u16 out_height)
  1256. {
  1257. unsigned int hf, vf;
  1258. /*
  1259. * FIXME how to determine the 'A' factor
  1260. * for the no downscaling case ?
  1261. */
  1262. if (width > 3 * out_width)
  1263. hf = 4;
  1264. else if (width > 2 * out_width)
  1265. hf = 3;
  1266. else if (width > out_width)
  1267. hf = 2;
  1268. else
  1269. hf = 1;
  1270. if (height > out_height)
  1271. vf = 2;
  1272. else
  1273. vf = 1;
  1274. /* FIXME venc pclk? */
  1275. return dispc_pclk_rate() * vf * hf;
  1276. }
  1277. void dispc_set_channel_out(enum omap_plane plane, enum omap_channel channel_out)
  1278. {
  1279. enable_clocks(1);
  1280. _dispc_set_channel_out(plane, channel_out);
  1281. enable_clocks(0);
  1282. }
  1283. static int _dispc_setup_plane(enum omap_plane plane,
  1284. u32 paddr, u16 screen_width,
  1285. u16 pos_x, u16 pos_y,
  1286. u16 width, u16 height,
  1287. u16 out_width, u16 out_height,
  1288. enum omap_color_mode color_mode,
  1289. bool ilace,
  1290. enum omap_dss_rotation_type rotation_type,
  1291. u8 rotation, int mirror,
  1292. u8 global_alpha)
  1293. {
  1294. const int maxdownscale = cpu_is_omap34xx() ? 4 : 2;
  1295. bool five_taps = 0;
  1296. bool fieldmode = 0;
  1297. int cconv = 0;
  1298. unsigned offset0, offset1;
  1299. s32 row_inc;
  1300. s32 pix_inc;
  1301. u16 frame_height = height;
  1302. unsigned int field_offset = 0;
  1303. if (paddr == 0)
  1304. return -EINVAL;
  1305. if (ilace && height == out_height)
  1306. fieldmode = 1;
  1307. if (ilace) {
  1308. if (fieldmode)
  1309. height /= 2;
  1310. pos_y /= 2;
  1311. out_height /= 2;
  1312. DSSDBG("adjusting for ilace: height %d, pos_y %d, "
  1313. "out_height %d\n",
  1314. height, pos_y, out_height);
  1315. }
  1316. if (plane == OMAP_DSS_GFX) {
  1317. if (width != out_width || height != out_height)
  1318. return -EINVAL;
  1319. switch (color_mode) {
  1320. case OMAP_DSS_COLOR_ARGB16:
  1321. case OMAP_DSS_COLOR_ARGB32:
  1322. case OMAP_DSS_COLOR_RGBA32:
  1323. case OMAP_DSS_COLOR_RGBX32:
  1324. if (cpu_is_omap24xx())
  1325. return -EINVAL;
  1326. /* fall through */
  1327. case OMAP_DSS_COLOR_RGB12U:
  1328. case OMAP_DSS_COLOR_RGB16:
  1329. case OMAP_DSS_COLOR_RGB24P:
  1330. case OMAP_DSS_COLOR_RGB24U:
  1331. break;
  1332. default:
  1333. return -EINVAL;
  1334. }
  1335. } else {
  1336. /* video plane */
  1337. unsigned long fclk = 0;
  1338. if (out_width < width / maxdownscale ||
  1339. out_width > width * 8)
  1340. return -EINVAL;
  1341. if (out_height < height / maxdownscale ||
  1342. out_height > height * 8)
  1343. return -EINVAL;
  1344. switch (color_mode) {
  1345. case OMAP_DSS_COLOR_RGBX32:
  1346. case OMAP_DSS_COLOR_RGB12U:
  1347. if (cpu_is_omap24xx())
  1348. return -EINVAL;
  1349. /* fall through */
  1350. case OMAP_DSS_COLOR_RGB16:
  1351. case OMAP_DSS_COLOR_RGB24P:
  1352. case OMAP_DSS_COLOR_RGB24U:
  1353. break;
  1354. case OMAP_DSS_COLOR_ARGB16:
  1355. case OMAP_DSS_COLOR_ARGB32:
  1356. case OMAP_DSS_COLOR_RGBA32:
  1357. if (cpu_is_omap24xx())
  1358. return -EINVAL;
  1359. if (plane == OMAP_DSS_VIDEO1)
  1360. return -EINVAL;
  1361. break;
  1362. case OMAP_DSS_COLOR_YUV2:
  1363. case OMAP_DSS_COLOR_UYVY:
  1364. cconv = 1;
  1365. break;
  1366. default:
  1367. return -EINVAL;
  1368. }
  1369. /* Must use 5-tap filter? */
  1370. five_taps = height > out_height * 2;
  1371. if (!five_taps) {
  1372. fclk = calc_fclk(width, height,
  1373. out_width, out_height);
  1374. /* Try 5-tap filter if 3-tap fclk is too high */
  1375. if (cpu_is_omap34xx() && height > out_height &&
  1376. fclk > dispc_fclk_rate())
  1377. five_taps = true;
  1378. }
  1379. if (width > (2048 >> five_taps)) {
  1380. DSSERR("failed to set up scaling, fclk too low\n");
  1381. return -EINVAL;
  1382. }
  1383. if (five_taps)
  1384. fclk = calc_fclk_five_taps(width, height,
  1385. out_width, out_height, color_mode);
  1386. DSSDBG("required fclk rate = %lu Hz\n", fclk);
  1387. DSSDBG("current fclk rate = %lu Hz\n", dispc_fclk_rate());
  1388. if (!fclk || fclk > dispc_fclk_rate()) {
  1389. DSSERR("failed to set up scaling, "
  1390. "required fclk rate = %lu Hz, "
  1391. "current fclk rate = %lu Hz\n",
  1392. fclk, dispc_fclk_rate());
  1393. return -EINVAL;
  1394. }
  1395. }
  1396. if (ilace && !fieldmode) {
  1397. /*
  1398. * when downscaling the bottom field may have to start several
  1399. * source lines below the top field. Unfortunately ACCUI
  1400. * registers will only hold the fractional part of the offset
  1401. * so the integer part must be added to the base address of the
  1402. * bottom field.
  1403. */
  1404. if (!height || height == out_height)
  1405. field_offset = 0;
  1406. else
  1407. field_offset = height / out_height / 2;
  1408. }
  1409. /* Fields are independent but interleaved in memory. */
  1410. if (fieldmode)
  1411. field_offset = 1;
  1412. if (rotation_type == OMAP_DSS_ROT_DMA)
  1413. calc_dma_rotation_offset(rotation, mirror,
  1414. screen_width, width, frame_height, color_mode,
  1415. fieldmode, field_offset,
  1416. &offset0, &offset1, &row_inc, &pix_inc);
  1417. else
  1418. calc_vrfb_rotation_offset(rotation, mirror,
  1419. screen_width, width, frame_height, color_mode,
  1420. fieldmode, field_offset,
  1421. &offset0, &offset1, &row_inc, &pix_inc);
  1422. DSSDBG("offset0 %u, offset1 %u, row_inc %d, pix_inc %d\n",
  1423. offset0, offset1, row_inc, pix_inc);
  1424. _dispc_set_color_mode(plane, color_mode);
  1425. _dispc_set_plane_ba0(plane, paddr + offset0);
  1426. _dispc_set_plane_ba1(plane, paddr + offset1);
  1427. _dispc_set_row_inc(plane, row_inc);
  1428. _dispc_set_pix_inc(plane, pix_inc);
  1429. DSSDBG("%d,%d %dx%d -> %dx%d\n", pos_x, pos_y, width, height,
  1430. out_width, out_height);
  1431. _dispc_set_plane_pos(plane, pos_x, pos_y);
  1432. _dispc_set_pic_size(plane, width, height);
  1433. if (plane != OMAP_DSS_GFX) {
  1434. _dispc_set_scaling(plane, width, height,
  1435. out_width, out_height,
  1436. ilace, five_taps, fieldmode);
  1437. _dispc_set_vid_size(plane, out_width, out_height);
  1438. _dispc_set_vid_color_conv(plane, cconv);
  1439. }
  1440. _dispc_set_rotation_attrs(plane, rotation, mirror, color_mode);
  1441. if (plane != OMAP_DSS_VIDEO1)
  1442. _dispc_setup_global_alpha(plane, global_alpha);
  1443. return 0;
  1444. }
  1445. static void _dispc_enable_plane(enum omap_plane plane, bool enable)
  1446. {
  1447. REG_FLD_MOD(dispc_reg_att[plane], enable ? 1 : 0, 0, 0);
  1448. }
  1449. static void dispc_disable_isr(void *data, u32 mask)
  1450. {
  1451. struct completion *compl = data;
  1452. complete(compl);
  1453. }
  1454. static void _enable_lcd_out(bool enable)
  1455. {
  1456. REG_FLD_MOD(DISPC_CONTROL, enable ? 1 : 0, 0, 0);
  1457. }
  1458. static void dispc_enable_lcd_out(bool enable)
  1459. {
  1460. struct completion frame_done_completion;
  1461. bool is_on;
  1462. int r;
  1463. enable_clocks(1);
  1464. /* When we disable LCD output, we need to wait until frame is done.
  1465. * Otherwise the DSS is still working, and turning off the clocks
  1466. * prevents DSS from going to OFF mode */
  1467. is_on = REG_GET(DISPC_CONTROL, 0, 0);
  1468. if (!enable && is_on) {
  1469. init_completion(&frame_done_completion);
  1470. r = omap_dispc_register_isr(dispc_disable_isr,
  1471. &frame_done_completion,
  1472. DISPC_IRQ_FRAMEDONE);
  1473. if (r)
  1474. DSSERR("failed to register FRAMEDONE isr\n");
  1475. }
  1476. _enable_lcd_out(enable);
  1477. if (!enable && is_on) {
  1478. if (!wait_for_completion_timeout(&frame_done_completion,
  1479. msecs_to_jiffies(100)))
  1480. DSSERR("timeout waiting for FRAME DONE\n");
  1481. r = omap_dispc_unregister_isr(dispc_disable_isr,
  1482. &frame_done_completion,
  1483. DISPC_IRQ_FRAMEDONE);
  1484. if (r)
  1485. DSSERR("failed to unregister FRAMEDONE isr\n");
  1486. }
  1487. enable_clocks(0);
  1488. }
  1489. static void _enable_digit_out(bool enable)
  1490. {
  1491. REG_FLD_MOD(DISPC_CONTROL, enable ? 1 : 0, 1, 1);
  1492. }
  1493. static void dispc_enable_digit_out(bool enable)
  1494. {
  1495. struct completion frame_done_completion;
  1496. int r;
  1497. enable_clocks(1);
  1498. if (REG_GET(DISPC_CONTROL, 1, 1) == enable) {
  1499. enable_clocks(0);
  1500. return;
  1501. }
  1502. if (enable) {
  1503. unsigned long flags;
  1504. /* When we enable digit output, we'll get an extra digit
  1505. * sync lost interrupt, that we need to ignore */
  1506. spin_lock_irqsave(&dispc.irq_lock, flags);
  1507. dispc.irq_error_mask &= ~DISPC_IRQ_SYNC_LOST_DIGIT;
  1508. _omap_dispc_set_irqs();
  1509. spin_unlock_irqrestore(&dispc.irq_lock, flags);
  1510. }
  1511. /* When we disable digit output, we need to wait until fields are done.
  1512. * Otherwise the DSS is still working, and turning off the clocks
  1513. * prevents DSS from going to OFF mode. And when enabling, we need to
  1514. * wait for the extra sync losts */
  1515. init_completion(&frame_done_completion);
  1516. r = omap_dispc_register_isr(dispc_disable_isr, &frame_done_completion,
  1517. DISPC_IRQ_EVSYNC_EVEN | DISPC_IRQ_EVSYNC_ODD);
  1518. if (r)
  1519. DSSERR("failed to register EVSYNC isr\n");
  1520. _enable_digit_out(enable);
  1521. /* XXX I understand from TRM that we should only wait for the
  1522. * current field to complete. But it seems we have to wait
  1523. * for both fields */
  1524. if (!wait_for_completion_timeout(&frame_done_completion,
  1525. msecs_to_jiffies(100)))
  1526. DSSERR("timeout waiting for EVSYNC\n");
  1527. if (!wait_for_completion_timeout(&frame_done_completion,
  1528. msecs_to_jiffies(100)))
  1529. DSSERR("timeout waiting for EVSYNC\n");
  1530. r = omap_dispc_unregister_isr(dispc_disable_isr,
  1531. &frame_done_completion,
  1532. DISPC_IRQ_EVSYNC_EVEN | DISPC_IRQ_EVSYNC_ODD);
  1533. if (r)
  1534. DSSERR("failed to unregister EVSYNC isr\n");
  1535. if (enable) {
  1536. unsigned long flags;
  1537. spin_lock_irqsave(&dispc.irq_lock, flags);
  1538. dispc.irq_error_mask = DISPC_IRQ_MASK_ERROR;
  1539. dispc_write_reg(DISPC_IRQSTATUS, DISPC_IRQ_SYNC_LOST_DIGIT);
  1540. _omap_dispc_set_irqs();
  1541. spin_unlock_irqrestore(&dispc.irq_lock, flags);
  1542. }
  1543. enable_clocks(0);
  1544. }
  1545. bool dispc_is_channel_enabled(enum omap_channel channel)
  1546. {
  1547. if (channel == OMAP_DSS_CHANNEL_LCD)
  1548. return !!REG_GET(DISPC_CONTROL, 0, 0);
  1549. else if (channel == OMAP_DSS_CHANNEL_DIGIT)
  1550. return !!REG_GET(DISPC_CONTROL, 1, 1);
  1551. else
  1552. BUG();
  1553. }
  1554. void dispc_enable_channel(enum omap_channel channel, bool enable)
  1555. {
  1556. if (channel == OMAP_DSS_CHANNEL_LCD)
  1557. dispc_enable_lcd_out(enable);
  1558. else if (channel == OMAP_DSS_CHANNEL_DIGIT)
  1559. dispc_enable_digit_out(enable);
  1560. else
  1561. BUG();
  1562. }
  1563. void dispc_lcd_enable_signal_polarity(bool act_high)
  1564. {
  1565. enable_clocks(1);
  1566. REG_FLD_MOD(DISPC_CONTROL, act_high ? 1 : 0, 29, 29);
  1567. enable_clocks(0);
  1568. }
  1569. void dispc_lcd_enable_signal(bool enable)
  1570. {
  1571. enable_clocks(1);
  1572. REG_FLD_MOD(DISPC_CONTROL, enable ? 1 : 0, 28, 28);
  1573. enable_clocks(0);
  1574. }
  1575. void dispc_pck_free_enable(bool enable)
  1576. {
  1577. enable_clocks(1);
  1578. REG_FLD_MOD(DISPC_CONTROL, enable ? 1 : 0, 27, 27);
  1579. enable_clocks(0);
  1580. }
  1581. void dispc_enable_fifohandcheck(bool enable)
  1582. {
  1583. enable_clocks(1);
  1584. REG_FLD_MOD(DISPC_CONFIG, enable ? 1 : 0, 16, 16);
  1585. enable_clocks(0);
  1586. }
  1587. void dispc_set_lcd_display_type(enum omap_lcd_display_type type)
  1588. {
  1589. int mode;
  1590. switch (type) {
  1591. case OMAP_DSS_LCD_DISPLAY_STN:
  1592. mode = 0;
  1593. break;
  1594. case OMAP_DSS_LCD_DISPLAY_TFT:
  1595. mode = 1;
  1596. break;
  1597. default:
  1598. BUG();
  1599. return;
  1600. }
  1601. enable_clocks(1);
  1602. REG_FLD_MOD(DISPC_CONTROL, mode, 3, 3);
  1603. enable_clocks(0);
  1604. }
  1605. void dispc_set_loadmode(enum omap_dss_load_mode mode)
  1606. {
  1607. enable_clocks(1);
  1608. REG_FLD_MOD(DISPC_CONFIG, mode, 2, 1);
  1609. enable_clocks(0);
  1610. }
  1611. void dispc_set_default_color(enum omap_channel channel, u32 color)
  1612. {
  1613. const struct dispc_reg def_reg[] = { DISPC_DEFAULT_COLOR0,
  1614. DISPC_DEFAULT_COLOR1 };
  1615. enable_clocks(1);
  1616. dispc_write_reg(def_reg[channel], color);
  1617. enable_clocks(0);
  1618. }
  1619. u32 dispc_get_default_color(enum omap_channel channel)
  1620. {
  1621. const struct dispc_reg def_reg[] = { DISPC_DEFAULT_COLOR0,
  1622. DISPC_DEFAULT_COLOR1 };
  1623. u32 l;
  1624. BUG_ON(channel != OMAP_DSS_CHANNEL_DIGIT &&
  1625. channel != OMAP_DSS_CHANNEL_LCD);
  1626. enable_clocks(1);
  1627. l = dispc_read_reg(def_reg[channel]);
  1628. enable_clocks(0);
  1629. return l;
  1630. }
  1631. void dispc_set_trans_key(enum omap_channel ch,
  1632. enum omap_dss_trans_key_type type,
  1633. u32 trans_key)
  1634. {
  1635. const struct dispc_reg tr_reg[] = {
  1636. DISPC_TRANS_COLOR0, DISPC_TRANS_COLOR1 };
  1637. enable_clocks(1);
  1638. if (ch == OMAP_DSS_CHANNEL_LCD)
  1639. REG_FLD_MOD(DISPC_CONFIG, type, 11, 11);
  1640. else /* OMAP_DSS_CHANNEL_DIGIT */
  1641. REG_FLD_MOD(DISPC_CONFIG, type, 13, 13);
  1642. dispc_write_reg(tr_reg[ch], trans_key);
  1643. enable_clocks(0);
  1644. }
  1645. void dispc_get_trans_key(enum omap_channel ch,
  1646. enum omap_dss_trans_key_type *type,
  1647. u32 *trans_key)
  1648. {
  1649. const struct dispc_reg tr_reg[] = {
  1650. DISPC_TRANS_COLOR0, DISPC_TRANS_COLOR1 };
  1651. enable_clocks(1);
  1652. if (type) {
  1653. if (ch == OMAP_DSS_CHANNEL_LCD)
  1654. *type = REG_GET(DISPC_CONFIG, 11, 11);
  1655. else if (ch == OMAP_DSS_CHANNEL_DIGIT)
  1656. *type = REG_GET(DISPC_CONFIG, 13, 13);
  1657. else
  1658. BUG();
  1659. }
  1660. if (trans_key)
  1661. *trans_key = dispc_read_reg(tr_reg[ch]);
  1662. enable_clocks(0);
  1663. }
  1664. void dispc_enable_trans_key(enum omap_channel ch, bool enable)
  1665. {
  1666. enable_clocks(1);
  1667. if (ch == OMAP_DSS_CHANNEL_LCD)
  1668. REG_FLD_MOD(DISPC_CONFIG, enable, 10, 10);
  1669. else /* OMAP_DSS_CHANNEL_DIGIT */
  1670. REG_FLD_MOD(DISPC_CONFIG, enable, 12, 12);
  1671. enable_clocks(0);
  1672. }
  1673. void dispc_enable_alpha_blending(enum omap_channel ch, bool enable)
  1674. {
  1675. if (cpu_is_omap24xx())
  1676. return;
  1677. enable_clocks(1);
  1678. if (ch == OMAP_DSS_CHANNEL_LCD)
  1679. REG_FLD_MOD(DISPC_CONFIG, enable, 18, 18);
  1680. else /* OMAP_DSS_CHANNEL_DIGIT */
  1681. REG_FLD_MOD(DISPC_CONFIG, enable, 19, 19);
  1682. enable_clocks(0);
  1683. }
  1684. bool dispc_alpha_blending_enabled(enum omap_channel ch)
  1685. {
  1686. bool enabled;
  1687. if (cpu_is_omap24xx())
  1688. return false;
  1689. enable_clocks(1);
  1690. if (ch == OMAP_DSS_CHANNEL_LCD)
  1691. enabled = REG_GET(DISPC_CONFIG, 18, 18);
  1692. else if (ch == OMAP_DSS_CHANNEL_DIGIT)
  1693. enabled = REG_GET(DISPC_CONFIG, 18, 18);
  1694. else
  1695. BUG();
  1696. enable_clocks(0);
  1697. return enabled;
  1698. }
  1699. bool dispc_trans_key_enabled(enum omap_channel ch)
  1700. {
  1701. bool enabled;
  1702. enable_clocks(1);
  1703. if (ch == OMAP_DSS_CHANNEL_LCD)
  1704. enabled = REG_GET(DISPC_CONFIG, 10, 10);
  1705. else if (ch == OMAP_DSS_CHANNEL_DIGIT)
  1706. enabled = REG_GET(DISPC_CONFIG, 12, 12);
  1707. else
  1708. BUG();
  1709. enable_clocks(0);
  1710. return enabled;
  1711. }
  1712. void dispc_set_tft_data_lines(u8 data_lines)
  1713. {
  1714. int code;
  1715. switch (data_lines) {
  1716. case 12:
  1717. code = 0;
  1718. break;
  1719. case 16:
  1720. code = 1;
  1721. break;
  1722. case 18:
  1723. code = 2;
  1724. break;
  1725. case 24:
  1726. code = 3;
  1727. break;
  1728. default:
  1729. BUG();
  1730. return;
  1731. }
  1732. enable_clocks(1);
  1733. REG_FLD_MOD(DISPC_CONTROL, code, 9, 8);
  1734. enable_clocks(0);
  1735. }
  1736. void dispc_set_parallel_interface_mode(enum omap_parallel_interface_mode mode)
  1737. {
  1738. u32 l;
  1739. int stallmode;
  1740. int gpout0 = 1;
  1741. int gpout1;
  1742. switch (mode) {
  1743. case OMAP_DSS_PARALLELMODE_BYPASS:
  1744. stallmode = 0;
  1745. gpout1 = 1;
  1746. break;
  1747. case OMAP_DSS_PARALLELMODE_RFBI:
  1748. stallmode = 1;
  1749. gpout1 = 0;
  1750. break;
  1751. case OMAP_DSS_PARALLELMODE_DSI:
  1752. stallmode = 1;
  1753. gpout1 = 1;
  1754. break;
  1755. default:
  1756. BUG();
  1757. return;
  1758. }
  1759. enable_clocks(1);
  1760. l = dispc_read_reg(DISPC_CONTROL);
  1761. l = FLD_MOD(l, stallmode, 11, 11);
  1762. l = FLD_MOD(l, gpout0, 15, 15);
  1763. l = FLD_MOD(l, gpout1, 16, 16);
  1764. dispc_write_reg(DISPC_CONTROL, l);
  1765. enable_clocks(0);
  1766. }
  1767. static bool _dispc_lcd_timings_ok(int hsw, int hfp, int hbp,
  1768. int vsw, int vfp, int vbp)
  1769. {
  1770. if (cpu_is_omap24xx() || omap_rev() < OMAP3430_REV_ES3_0) {
  1771. if (hsw < 1 || hsw > 64 ||
  1772. hfp < 1 || hfp > 256 ||
  1773. hbp < 1 || hbp > 256 ||
  1774. vsw < 1 || vsw > 64 ||
  1775. vfp < 0 || vfp > 255 ||
  1776. vbp < 0 || vbp > 255)
  1777. return false;
  1778. } else {
  1779. if (hsw < 1 || hsw > 256 ||
  1780. hfp < 1 || hfp > 4096 ||
  1781. hbp < 1 || hbp > 4096 ||
  1782. vsw < 1 || vsw > 256 ||
  1783. vfp < 0 || vfp > 4095 ||
  1784. vbp < 0 || vbp > 4095)
  1785. return false;
  1786. }
  1787. return true;
  1788. }
  1789. bool dispc_lcd_timings_ok(struct omap_video_timings *timings)
  1790. {
  1791. return _dispc_lcd_timings_ok(timings->hsw, timings->hfp,
  1792. timings->hbp, timings->vsw,
  1793. timings->vfp, timings->vbp);
  1794. }
  1795. static void _dispc_set_lcd_timings(int hsw, int hfp, int hbp,
  1796. int vsw, int vfp, int vbp)
  1797. {
  1798. u32 timing_h, timing_v;
  1799. if (cpu_is_omap24xx() || omap_rev() < OMAP3430_REV_ES3_0) {
  1800. timing_h = FLD_VAL(hsw-1, 5, 0) | FLD_VAL(hfp-1, 15, 8) |
  1801. FLD_VAL(hbp-1, 27, 20);
  1802. timing_v = FLD_VAL(vsw-1, 5, 0) | FLD_VAL(vfp, 15, 8) |
  1803. FLD_VAL(vbp, 27, 20);
  1804. } else {
  1805. timing_h = FLD_VAL(hsw-1, 7, 0) | FLD_VAL(hfp-1, 19, 8) |
  1806. FLD_VAL(hbp-1, 31, 20);
  1807. timing_v = FLD_VAL(vsw-1, 7, 0) | FLD_VAL(vfp, 19, 8) |
  1808. FLD_VAL(vbp, 31, 20);
  1809. }
  1810. enable_clocks(1);
  1811. dispc_write_reg(DISPC_TIMING_H, timing_h);
  1812. dispc_write_reg(DISPC_TIMING_V, timing_v);
  1813. enable_clocks(0);
  1814. }
  1815. /* change name to mode? */
  1816. void dispc_set_lcd_timings(struct omap_video_timings *timings)
  1817. {
  1818. unsigned xtot, ytot;
  1819. unsigned long ht, vt;
  1820. if (!_dispc_lcd_timings_ok(timings->hsw, timings->hfp,
  1821. timings->hbp, timings->vsw,
  1822. timings->vfp, timings->vbp))
  1823. BUG();
  1824. _dispc_set_lcd_timings(timings->hsw, timings->hfp, timings->hbp,
  1825. timings->vsw, timings->vfp, timings->vbp);
  1826. dispc_set_lcd_size(timings->x_res, timings->y_res);
  1827. xtot = timings->x_res + timings->hfp + timings->hsw + timings->hbp;
  1828. ytot = timings->y_res + timings->vfp + timings->vsw + timings->vbp;
  1829. ht = (timings->pixel_clock * 1000) / xtot;
  1830. vt = (timings->pixel_clock * 1000) / xtot / ytot;
  1831. DSSDBG("xres %u yres %u\n", timings->x_res, timings->y_res);
  1832. DSSDBG("pck %u\n", timings->pixel_clock);
  1833. DSSDBG("hsw %d hfp %d hbp %d vsw %d vfp %d vbp %d\n",
  1834. timings->hsw, timings->hfp, timings->hbp,
  1835. timings->vsw, timings->vfp, timings->vbp);
  1836. DSSDBG("hsync %luHz, vsync %luHz\n", ht, vt);
  1837. }
  1838. static void dispc_set_lcd_divisor(u16 lck_div, u16 pck_div)
  1839. {
  1840. BUG_ON(lck_div < 1);
  1841. BUG_ON(pck_div < 2);
  1842. enable_clocks(1);
  1843. dispc_write_reg(DISPC_DIVISOR,
  1844. FLD_VAL(lck_div, 23, 16) | FLD_VAL(pck_div, 7, 0));
  1845. enable_clocks(0);
  1846. }
  1847. static void dispc_get_lcd_divisor(int *lck_div, int *pck_div)
  1848. {
  1849. u32 l;
  1850. l = dispc_read_reg(DISPC_DIVISOR);
  1851. *lck_div = FLD_GET(l, 23, 16);
  1852. *pck_div = FLD_GET(l, 7, 0);
  1853. }
  1854. unsigned long dispc_fclk_rate(void)
  1855. {
  1856. unsigned long r = 0;
  1857. if (dss_get_dispc_clk_source() == DSS_SRC_DSS1_ALWON_FCLK)
  1858. r = dss_clk_get_rate(DSS_CLK_FCK1);
  1859. else
  1860. #ifdef CONFIG_OMAP2_DSS_DSI
  1861. r = dsi_get_dsi1_pll_rate();
  1862. #else
  1863. BUG();
  1864. #endif
  1865. return r;
  1866. }
  1867. unsigned long dispc_lclk_rate(void)
  1868. {
  1869. int lcd;
  1870. unsigned long r;
  1871. u32 l;
  1872. l = dispc_read_reg(DISPC_DIVISOR);
  1873. lcd = FLD_GET(l, 23, 16);
  1874. r = dispc_fclk_rate();
  1875. return r / lcd;
  1876. }
  1877. unsigned long dispc_pclk_rate(void)
  1878. {
  1879. int lcd, pcd;
  1880. unsigned long r;
  1881. u32 l;
  1882. l = dispc_read_reg(DISPC_DIVISOR);
  1883. lcd = FLD_GET(l, 23, 16);
  1884. pcd = FLD_GET(l, 7, 0);
  1885. r = dispc_fclk_rate();
  1886. return r / lcd / pcd;
  1887. }
  1888. void dispc_dump_clocks(struct seq_file *s)
  1889. {
  1890. int lcd, pcd;
  1891. enable_clocks(1);
  1892. dispc_get_lcd_divisor(&lcd, &pcd);
  1893. seq_printf(s, "- DISPC -\n");
  1894. seq_printf(s, "dispc fclk source = %s\n",
  1895. dss_get_dispc_clk_source() == DSS_SRC_DSS1_ALWON_FCLK ?
  1896. "dss1_alwon_fclk" : "dsi1_pll_fclk");
  1897. seq_printf(s, "fck\t\t%-16lu\n", dispc_fclk_rate());
  1898. seq_printf(s, "lck\t\t%-16lulck div\t%u\n", dispc_lclk_rate(), lcd);
  1899. seq_printf(s, "pck\t\t%-16lupck div\t%u\n", dispc_pclk_rate(), pcd);
  1900. enable_clocks(0);
  1901. }
  1902. #ifdef CONFIG_OMAP2_DSS_COLLECT_IRQ_STATS
  1903. void dispc_dump_irqs(struct seq_file *s)
  1904. {
  1905. unsigned long flags;
  1906. struct dispc_irq_stats stats;
  1907. spin_lock_irqsave(&dispc.irq_stats_lock, flags);
  1908. stats = dispc.irq_stats;
  1909. memset(&dispc.irq_stats, 0, sizeof(dispc.irq_stats));
  1910. dispc.irq_stats.last_reset = jiffies;
  1911. spin_unlock_irqrestore(&dispc.irq_stats_lock, flags);
  1912. seq_printf(s, "period %u ms\n",
  1913. jiffies_to_msecs(jiffies - stats.last_reset));
  1914. seq_printf(s, "irqs %d\n", stats.irq_count);
  1915. #define PIS(x) \
  1916. seq_printf(s, "%-20s %10d\n", #x, stats.irqs[ffs(DISPC_IRQ_##x)-1]);
  1917. PIS(FRAMEDONE);
  1918. PIS(VSYNC);
  1919. PIS(EVSYNC_EVEN);
  1920. PIS(EVSYNC_ODD);
  1921. PIS(ACBIAS_COUNT_STAT);
  1922. PIS(PROG_LINE_NUM);
  1923. PIS(GFX_FIFO_UNDERFLOW);
  1924. PIS(GFX_END_WIN);
  1925. PIS(PAL_GAMMA_MASK);
  1926. PIS(OCP_ERR);
  1927. PIS(VID1_FIFO_UNDERFLOW);
  1928. PIS(VID1_END_WIN);
  1929. PIS(VID2_FIFO_UNDERFLOW);
  1930. PIS(VID2_END_WIN);
  1931. PIS(SYNC_LOST);
  1932. PIS(SYNC_LOST_DIGIT);
  1933. PIS(WAKEUP);
  1934. #undef PIS
  1935. }
  1936. #endif
  1937. void dispc_dump_regs(struct seq_file *s)
  1938. {
  1939. #define DUMPREG(r) seq_printf(s, "%-35s %08x\n", #r, dispc_read_reg(r))
  1940. dss_clk_enable(DSS_CLK_ICK | DSS_CLK_FCK1);
  1941. DUMPREG(DISPC_REVISION);
  1942. DUMPREG(DISPC_SYSCONFIG);
  1943. DUMPREG(DISPC_SYSSTATUS);
  1944. DUMPREG(DISPC_IRQSTATUS);
  1945. DUMPREG(DISPC_IRQENABLE);
  1946. DUMPREG(DISPC_CONTROL);
  1947. DUMPREG(DISPC_CONFIG);
  1948. DUMPREG(DISPC_CAPABLE);
  1949. DUMPREG(DISPC_DEFAULT_COLOR0);
  1950. DUMPREG(DISPC_DEFAULT_COLOR1);
  1951. DUMPREG(DISPC_TRANS_COLOR0);
  1952. DUMPREG(DISPC_TRANS_COLOR1);
  1953. DUMPREG(DISPC_LINE_STATUS);
  1954. DUMPREG(DISPC_LINE_NUMBER);
  1955. DUMPREG(DISPC_TIMING_H);
  1956. DUMPREG(DISPC_TIMING_V);
  1957. DUMPREG(DISPC_POL_FREQ);
  1958. DUMPREG(DISPC_DIVISOR);
  1959. DUMPREG(DISPC_GLOBAL_ALPHA);
  1960. DUMPREG(DISPC_SIZE_DIG);
  1961. DUMPREG(DISPC_SIZE_LCD);
  1962. DUMPREG(DISPC_GFX_BA0);
  1963. DUMPREG(DISPC_GFX_BA1);
  1964. DUMPREG(DISPC_GFX_POSITION);
  1965. DUMPREG(DISPC_GFX_SIZE);
  1966. DUMPREG(DISPC_GFX_ATTRIBUTES);
  1967. DUMPREG(DISPC_GFX_FIFO_THRESHOLD);
  1968. DUMPREG(DISPC_GFX_FIFO_SIZE_STATUS);
  1969. DUMPREG(DISPC_GFX_ROW_INC);
  1970. DUMPREG(DISPC_GFX_PIXEL_INC);
  1971. DUMPREG(DISPC_GFX_WINDOW_SKIP);
  1972. DUMPREG(DISPC_GFX_TABLE_BA);
  1973. DUMPREG(DISPC_DATA_CYCLE1);
  1974. DUMPREG(DISPC_DATA_CYCLE2);
  1975. DUMPREG(DISPC_DATA_CYCLE3);
  1976. DUMPREG(DISPC_CPR_COEF_R);
  1977. DUMPREG(DISPC_CPR_COEF_G);
  1978. DUMPREG(DISPC_CPR_COEF_B);
  1979. DUMPREG(DISPC_GFX_PRELOAD);
  1980. DUMPREG(DISPC_VID_BA0(0));
  1981. DUMPREG(DISPC_VID_BA1(0));
  1982. DUMPREG(DISPC_VID_POSITION(0));
  1983. DUMPREG(DISPC_VID_SIZE(0));
  1984. DUMPREG(DISPC_VID_ATTRIBUTES(0));
  1985. DUMPREG(DISPC_VID_FIFO_THRESHOLD(0));
  1986. DUMPREG(DISPC_VID_FIFO_SIZE_STATUS(0));
  1987. DUMPREG(DISPC_VID_ROW_INC(0));
  1988. DUMPREG(DISPC_VID_PIXEL_INC(0));
  1989. DUMPREG(DISPC_VID_FIR(0));
  1990. DUMPREG(DISPC_VID_PICTURE_SIZE(0));
  1991. DUMPREG(DISPC_VID_ACCU0(0));
  1992. DUMPREG(DISPC_VID_ACCU1(0));
  1993. DUMPREG(DISPC_VID_BA0(1));
  1994. DUMPREG(DISPC_VID_BA1(1));
  1995. DUMPREG(DISPC_VID_POSITION(1));
  1996. DUMPREG(DISPC_VID_SIZE(1));
  1997. DUMPREG(DISPC_VID_ATTRIBUTES(1));
  1998. DUMPREG(DISPC_VID_FIFO_THRESHOLD(1));
  1999. DUMPREG(DISPC_VID_FIFO_SIZE_STATUS(1));
  2000. DUMPREG(DISPC_VID_ROW_INC(1));
  2001. DUMPREG(DISPC_VID_PIXEL_INC(1));
  2002. DUMPREG(DISPC_VID_FIR(1));
  2003. DUMPREG(DISPC_VID_PICTURE_SIZE(1));
  2004. DUMPREG(DISPC_VID_ACCU0(1));
  2005. DUMPREG(DISPC_VID_ACCU1(1));
  2006. DUMPREG(DISPC_VID_FIR_COEF_H(0, 0));
  2007. DUMPREG(DISPC_VID_FIR_COEF_H(0, 1));
  2008. DUMPREG(DISPC_VID_FIR_COEF_H(0, 2));
  2009. DUMPREG(DISPC_VID_FIR_COEF_H(0, 3));
  2010. DUMPREG(DISPC_VID_FIR_COEF_H(0, 4));
  2011. DUMPREG(DISPC_VID_FIR_COEF_H(0, 5));
  2012. DUMPREG(DISPC_VID_FIR_COEF_H(0, 6));
  2013. DUMPREG(DISPC_VID_FIR_COEF_H(0, 7));
  2014. DUMPREG(DISPC_VID_FIR_COEF_HV(0, 0));
  2015. DUMPREG(DISPC_VID_FIR_COEF_HV(0, 1));
  2016. DUMPREG(DISPC_VID_FIR_COEF_HV(0, 2));
  2017. DUMPREG(DISPC_VID_FIR_COEF_HV(0, 3));
  2018. DUMPREG(DISPC_VID_FIR_COEF_HV(0, 4));
  2019. DUMPREG(DISPC_VID_FIR_COEF_HV(0, 5));
  2020. DUMPREG(DISPC_VID_FIR_COEF_HV(0, 6));
  2021. DUMPREG(DISPC_VID_FIR_COEF_HV(0, 7));
  2022. DUMPREG(DISPC_VID_CONV_COEF(0, 0));
  2023. DUMPREG(DISPC_VID_CONV_COEF(0, 1));
  2024. DUMPREG(DISPC_VID_CONV_COEF(0, 2));
  2025. DUMPREG(DISPC_VID_CONV_COEF(0, 3));
  2026. DUMPREG(DISPC_VID_CONV_COEF(0, 4));
  2027. DUMPREG(DISPC_VID_FIR_COEF_V(0, 0));
  2028. DUMPREG(DISPC_VID_FIR_COEF_V(0, 1));
  2029. DUMPREG(DISPC_VID_FIR_COEF_V(0, 2));
  2030. DUMPREG(DISPC_VID_FIR_COEF_V(0, 3));
  2031. DUMPREG(DISPC_VID_FIR_COEF_V(0, 4));
  2032. DUMPREG(DISPC_VID_FIR_COEF_V(0, 5));
  2033. DUMPREG(DISPC_VID_FIR_COEF_V(0, 6));
  2034. DUMPREG(DISPC_VID_FIR_COEF_V(0, 7));
  2035. DUMPREG(DISPC_VID_FIR_COEF_H(1, 0));
  2036. DUMPREG(DISPC_VID_FIR_COEF_H(1, 1));
  2037. DUMPREG(DISPC_VID_FIR_COEF_H(1, 2));
  2038. DUMPREG(DISPC_VID_FIR_COEF_H(1, 3));
  2039. DUMPREG(DISPC_VID_FIR_COEF_H(1, 4));
  2040. DUMPREG(DISPC_VID_FIR_COEF_H(1, 5));
  2041. DUMPREG(DISPC_VID_FIR_COEF_H(1, 6));
  2042. DUMPREG(DISPC_VID_FIR_COEF_H(1, 7));
  2043. DUMPREG(DISPC_VID_FIR_COEF_HV(1, 0));
  2044. DUMPREG(DISPC_VID_FIR_COEF_HV(1, 1));
  2045. DUMPREG(DISPC_VID_FIR_COEF_HV(1, 2));
  2046. DUMPREG(DISPC_VID_FIR_COEF_HV(1, 3));
  2047. DUMPREG(DISPC_VID_FIR_COEF_HV(1, 4));
  2048. DUMPREG(DISPC_VID_FIR_COEF_HV(1, 5));
  2049. DUMPREG(DISPC_VID_FIR_COEF_HV(1, 6));
  2050. DUMPREG(DISPC_VID_FIR_COEF_HV(1, 7));
  2051. DUMPREG(DISPC_VID_CONV_COEF(1, 0));
  2052. DUMPREG(DISPC_VID_CONV_COEF(1, 1));
  2053. DUMPREG(DISPC_VID_CONV_COEF(1, 2));
  2054. DUMPREG(DISPC_VID_CONV_COEF(1, 3));
  2055. DUMPREG(DISPC_VID_CONV_COEF(1, 4));
  2056. DUMPREG(DISPC_VID_FIR_COEF_V(1, 0));
  2057. DUMPREG(DISPC_VID_FIR_COEF_V(1, 1));
  2058. DUMPREG(DISPC_VID_FIR_COEF_V(1, 2));
  2059. DUMPREG(DISPC_VID_FIR_COEF_V(1, 3));
  2060. DUMPREG(DISPC_VID_FIR_COEF_V(1, 4));
  2061. DUMPREG(DISPC_VID_FIR_COEF_V(1, 5));
  2062. DUMPREG(DISPC_VID_FIR_COEF_V(1, 6));
  2063. DUMPREG(DISPC_VID_FIR_COEF_V(1, 7));
  2064. DUMPREG(DISPC_VID_PRELOAD(0));
  2065. DUMPREG(DISPC_VID_PRELOAD(1));
  2066. dss_clk_disable(DSS_CLK_ICK | DSS_CLK_FCK1);
  2067. #undef DUMPREG
  2068. }
  2069. static void _dispc_set_pol_freq(bool onoff, bool rf, bool ieo, bool ipc,
  2070. bool ihs, bool ivs, u8 acbi, u8 acb)
  2071. {
  2072. u32 l = 0;
  2073. DSSDBG("onoff %d rf %d ieo %d ipc %d ihs %d ivs %d acbi %d acb %d\n",
  2074. onoff, rf, ieo, ipc, ihs, ivs, acbi, acb);
  2075. l |= FLD_VAL(onoff, 17, 17);
  2076. l |= FLD_VAL(rf, 16, 16);
  2077. l |= FLD_VAL(ieo, 15, 15);
  2078. l |= FLD_VAL(ipc, 14, 14);
  2079. l |= FLD_VAL(ihs, 13, 13);
  2080. l |= FLD_VAL(ivs, 12, 12);
  2081. l |= FLD_VAL(acbi, 11, 8);
  2082. l |= FLD_VAL(acb, 7, 0);
  2083. enable_clocks(1);
  2084. dispc_write_reg(DISPC_POL_FREQ, l);
  2085. enable_clocks(0);
  2086. }
  2087. void dispc_set_pol_freq(enum omap_panel_config config, u8 acbi, u8 acb)
  2088. {
  2089. _dispc_set_pol_freq((config & OMAP_DSS_LCD_ONOFF) != 0,
  2090. (config & OMAP_DSS_LCD_RF) != 0,
  2091. (config & OMAP_DSS_LCD_IEO) != 0,
  2092. (config & OMAP_DSS_LCD_IPC) != 0,
  2093. (config & OMAP_DSS_LCD_IHS) != 0,
  2094. (config & OMAP_DSS_LCD_IVS) != 0,
  2095. acbi, acb);
  2096. }
  2097. /* with fck as input clock rate, find dispc dividers that produce req_pck */
  2098. void dispc_find_clk_divs(bool is_tft, unsigned long req_pck, unsigned long fck,
  2099. struct dispc_clock_info *cinfo)
  2100. {
  2101. u16 pcd_min = is_tft ? 2 : 3;
  2102. unsigned long best_pck;
  2103. u16 best_ld, cur_ld;
  2104. u16 best_pd, cur_pd;
  2105. best_pck = 0;
  2106. best_ld = 0;
  2107. best_pd = 0;
  2108. for (cur_ld = 1; cur_ld <= 255; ++cur_ld) {
  2109. unsigned long lck = fck / cur_ld;
  2110. for (cur_pd = pcd_min; cur_pd <= 255; ++cur_pd) {
  2111. unsigned long pck = lck / cur_pd;
  2112. long old_delta = abs(best_pck - req_pck);
  2113. long new_delta = abs(pck - req_pck);
  2114. if (best_pck == 0 || new_delta < old_delta) {
  2115. best_pck = pck;
  2116. best_ld = cur_ld;
  2117. best_pd = cur_pd;
  2118. if (pck == req_pck)
  2119. goto found;
  2120. }
  2121. if (pck < req_pck)
  2122. break;
  2123. }
  2124. if (lck / pcd_min < req_pck)
  2125. break;
  2126. }
  2127. found:
  2128. cinfo->lck_div = best_ld;
  2129. cinfo->pck_div = best_pd;
  2130. cinfo->lck = fck / cinfo->lck_div;
  2131. cinfo->pck = cinfo->lck / cinfo->pck_div;
  2132. }
  2133. /* calculate clock rates using dividers in cinfo */
  2134. int dispc_calc_clock_rates(unsigned long dispc_fclk_rate,
  2135. struct dispc_clock_info *cinfo)
  2136. {
  2137. if (cinfo->lck_div > 255 || cinfo->lck_div == 0)
  2138. return -EINVAL;
  2139. if (cinfo->pck_div < 2 || cinfo->pck_div > 255)
  2140. return -EINVAL;
  2141. cinfo->lck = dispc_fclk_rate / cinfo->lck_div;
  2142. cinfo->pck = cinfo->lck / cinfo->pck_div;
  2143. return 0;
  2144. }
  2145. int dispc_set_clock_div(struct dispc_clock_info *cinfo)
  2146. {
  2147. DSSDBG("lck = %lu (%u)\n", cinfo->lck, cinfo->lck_div);
  2148. DSSDBG("pck = %lu (%u)\n", cinfo->pck, cinfo->pck_div);
  2149. dispc_set_lcd_divisor(cinfo->lck_div, cinfo->pck_div);
  2150. return 0;
  2151. }
  2152. int dispc_get_clock_div(struct dispc_clock_info *cinfo)
  2153. {
  2154. unsigned long fck;
  2155. fck = dispc_fclk_rate();
  2156. cinfo->lck_div = REG_GET(DISPC_DIVISOR, 23, 16);
  2157. cinfo->pck_div = REG_GET(DISPC_DIVISOR, 7, 0);
  2158. cinfo->lck = fck / cinfo->lck_div;
  2159. cinfo->pck = cinfo->lck / cinfo->pck_div;
  2160. return 0;
  2161. }
  2162. /* dispc.irq_lock has to be locked by the caller */
  2163. static void _omap_dispc_set_irqs(void)
  2164. {
  2165. u32 mask;
  2166. u32 old_mask;
  2167. int i;
  2168. struct omap_dispc_isr_data *isr_data;
  2169. mask = dispc.irq_error_mask;
  2170. for (i = 0; i < DISPC_MAX_NR_ISRS; i++) {
  2171. isr_data = &dispc.registered_isr[i];
  2172. if (isr_data->isr == NULL)
  2173. continue;
  2174. mask |= isr_data->mask;
  2175. }
  2176. enable_clocks(1);
  2177. old_mask = dispc_read_reg(DISPC_IRQENABLE);
  2178. /* clear the irqstatus for newly enabled irqs */
  2179. dispc_write_reg(DISPC_IRQSTATUS, (mask ^ old_mask) & mask);
  2180. dispc_write_reg(DISPC_IRQENABLE, mask);
  2181. enable_clocks(0);
  2182. }
  2183. int omap_dispc_register_isr(omap_dispc_isr_t isr, void *arg, u32 mask)
  2184. {
  2185. int i;
  2186. int ret;
  2187. unsigned long flags;
  2188. struct omap_dispc_isr_data *isr_data;
  2189. if (isr == NULL)
  2190. return -EINVAL;
  2191. spin_lock_irqsave(&dispc.irq_lock, flags);
  2192. /* check for duplicate entry */
  2193. for (i = 0; i < DISPC_MAX_NR_ISRS; i++) {
  2194. isr_data = &dispc.registered_isr[i];
  2195. if (isr_data->isr == isr && isr_data->arg == arg &&
  2196. isr_data->mask == mask) {
  2197. ret = -EINVAL;
  2198. goto err;
  2199. }
  2200. }
  2201. isr_data = NULL;
  2202. ret = -EBUSY;
  2203. for (i = 0; i < DISPC_MAX_NR_ISRS; i++) {
  2204. isr_data = &dispc.registered_isr[i];
  2205. if (isr_data->isr != NULL)
  2206. continue;
  2207. isr_data->isr = isr;
  2208. isr_data->arg = arg;
  2209. isr_data->mask = mask;
  2210. ret = 0;
  2211. break;
  2212. }
  2213. _omap_dispc_set_irqs();
  2214. spin_unlock_irqrestore(&dispc.irq_lock, flags);
  2215. return 0;
  2216. err:
  2217. spin_unlock_irqrestore(&dispc.irq_lock, flags);
  2218. return ret;
  2219. }
  2220. EXPORT_SYMBOL(omap_dispc_register_isr);
  2221. int omap_dispc_unregister_isr(omap_dispc_isr_t isr, void *arg, u32 mask)
  2222. {
  2223. int i;
  2224. unsigned long flags;
  2225. int ret = -EINVAL;
  2226. struct omap_dispc_isr_data *isr_data;
  2227. spin_lock_irqsave(&dispc.irq_lock, flags);
  2228. for (i = 0; i < DISPC_MAX_NR_ISRS; i++) {
  2229. isr_data = &dispc.registered_isr[i];
  2230. if (isr_data->isr != isr || isr_data->arg != arg ||
  2231. isr_data->mask != mask)
  2232. continue;
  2233. /* found the correct isr */
  2234. isr_data->isr = NULL;
  2235. isr_data->arg = NULL;
  2236. isr_data->mask = 0;
  2237. ret = 0;
  2238. break;
  2239. }
  2240. if (ret == 0)
  2241. _omap_dispc_set_irqs();
  2242. spin_unlock_irqrestore(&dispc.irq_lock, flags);
  2243. return ret;
  2244. }
  2245. EXPORT_SYMBOL(omap_dispc_unregister_isr);
  2246. #ifdef DEBUG
  2247. static void print_irq_status(u32 status)
  2248. {
  2249. if ((status & dispc.irq_error_mask) == 0)
  2250. return;
  2251. printk(KERN_DEBUG "DISPC IRQ: 0x%x: ", status);
  2252. #define PIS(x) \
  2253. if (status & DISPC_IRQ_##x) \
  2254. printk(#x " ");
  2255. PIS(GFX_FIFO_UNDERFLOW);
  2256. PIS(OCP_ERR);
  2257. PIS(VID1_FIFO_UNDERFLOW);
  2258. PIS(VID2_FIFO_UNDERFLOW);
  2259. PIS(SYNC_LOST);
  2260. PIS(SYNC_LOST_DIGIT);
  2261. #undef PIS
  2262. printk("\n");
  2263. }
  2264. #endif
  2265. /* Called from dss.c. Note that we don't touch clocks here,
  2266. * but we presume they are on because we got an IRQ. However,
  2267. * an irq handler may turn the clocks off, so we may not have
  2268. * clock later in the function. */
  2269. void dispc_irq_handler(void)
  2270. {
  2271. int i;
  2272. u32 irqstatus;
  2273. u32 handledirqs = 0;
  2274. u32 unhandled_errors;
  2275. struct omap_dispc_isr_data *isr_data;
  2276. struct omap_dispc_isr_data registered_isr[DISPC_MAX_NR_ISRS];
  2277. spin_lock(&dispc.irq_lock);
  2278. irqstatus = dispc_read_reg(DISPC_IRQSTATUS);
  2279. #ifdef CONFIG_OMAP2_DSS_COLLECT_IRQ_STATS
  2280. spin_lock(&dispc.irq_stats_lock);
  2281. dispc.irq_stats.irq_count++;
  2282. dss_collect_irq_stats(irqstatus, dispc.irq_stats.irqs);
  2283. spin_unlock(&dispc.irq_stats_lock);
  2284. #endif
  2285. #ifdef DEBUG
  2286. if (dss_debug)
  2287. print_irq_status(irqstatus);
  2288. #endif
  2289. /* Ack the interrupt. Do it here before clocks are possibly turned
  2290. * off */
  2291. dispc_write_reg(DISPC_IRQSTATUS, irqstatus);
  2292. /* flush posted write */
  2293. dispc_read_reg(DISPC_IRQSTATUS);
  2294. /* make a copy and unlock, so that isrs can unregister
  2295. * themselves */
  2296. memcpy(registered_isr, dispc.registered_isr,
  2297. sizeof(registered_isr));
  2298. spin_unlock(&dispc.irq_lock);
  2299. for (i = 0; i < DISPC_MAX_NR_ISRS; i++) {
  2300. isr_data = &registered_isr[i];
  2301. if (!isr_data->isr)
  2302. continue;
  2303. if (isr_data->mask & irqstatus) {
  2304. isr_data->isr(isr_data->arg, irqstatus);
  2305. handledirqs |= isr_data->mask;
  2306. }
  2307. }
  2308. spin_lock(&dispc.irq_lock);
  2309. unhandled_errors = irqstatus & ~handledirqs & dispc.irq_error_mask;
  2310. if (unhandled_errors) {
  2311. dispc.error_irqs |= unhandled_errors;
  2312. dispc.irq_error_mask &= ~unhandled_errors;
  2313. _omap_dispc_set_irqs();
  2314. schedule_work(&dispc.error_work);
  2315. }
  2316. spin_unlock(&dispc.irq_lock);
  2317. }
  2318. static void dispc_error_worker(struct work_struct *work)
  2319. {
  2320. int i;
  2321. u32 errors;
  2322. unsigned long flags;
  2323. spin_lock_irqsave(&dispc.irq_lock, flags);
  2324. errors = dispc.error_irqs;
  2325. dispc.error_irqs = 0;
  2326. spin_unlock_irqrestore(&dispc.irq_lock, flags);
  2327. if (errors & DISPC_IRQ_GFX_FIFO_UNDERFLOW) {
  2328. DSSERR("GFX_FIFO_UNDERFLOW, disabling GFX\n");
  2329. for (i = 0; i < omap_dss_get_num_overlays(); ++i) {
  2330. struct omap_overlay *ovl;
  2331. ovl = omap_dss_get_overlay(i);
  2332. if (!(ovl->caps & OMAP_DSS_OVL_CAP_DISPC))
  2333. continue;
  2334. if (ovl->id == 0) {
  2335. dispc_enable_plane(ovl->id, 0);
  2336. dispc_go(ovl->manager->id);
  2337. mdelay(50);
  2338. break;
  2339. }
  2340. }
  2341. }
  2342. if (errors & DISPC_IRQ_VID1_FIFO_UNDERFLOW) {
  2343. DSSERR("VID1_FIFO_UNDERFLOW, disabling VID1\n");
  2344. for (i = 0; i < omap_dss_get_num_overlays(); ++i) {
  2345. struct omap_overlay *ovl;
  2346. ovl = omap_dss_get_overlay(i);
  2347. if (!(ovl->caps & OMAP_DSS_OVL_CAP_DISPC))
  2348. continue;
  2349. if (ovl->id == 1) {
  2350. dispc_enable_plane(ovl->id, 0);
  2351. dispc_go(ovl->manager->id);
  2352. mdelay(50);
  2353. break;
  2354. }
  2355. }
  2356. }
  2357. if (errors & DISPC_IRQ_VID2_FIFO_UNDERFLOW) {
  2358. DSSERR("VID2_FIFO_UNDERFLOW, disabling VID2\n");
  2359. for (i = 0; i < omap_dss_get_num_overlays(); ++i) {
  2360. struct omap_overlay *ovl;
  2361. ovl = omap_dss_get_overlay(i);
  2362. if (!(ovl->caps & OMAP_DSS_OVL_CAP_DISPC))
  2363. continue;
  2364. if (ovl->id == 2) {
  2365. dispc_enable_plane(ovl->id, 0);
  2366. dispc_go(ovl->manager->id);
  2367. mdelay(50);
  2368. break;
  2369. }
  2370. }
  2371. }
  2372. if (errors & DISPC_IRQ_SYNC_LOST) {
  2373. struct omap_overlay_manager *manager = NULL;
  2374. bool enable = false;
  2375. DSSERR("SYNC_LOST, disabling LCD\n");
  2376. for (i = 0; i < omap_dss_get_num_overlay_managers(); ++i) {
  2377. struct omap_overlay_manager *mgr;
  2378. mgr = omap_dss_get_overlay_manager(i);
  2379. if (mgr->id == OMAP_DSS_CHANNEL_LCD) {
  2380. manager = mgr;
  2381. enable = mgr->device->state ==
  2382. OMAP_DSS_DISPLAY_ACTIVE;
  2383. mgr->device->driver->disable(mgr->device);
  2384. break;
  2385. }
  2386. }
  2387. if (manager) {
  2388. struct omap_dss_device *dssdev = manager->device;
  2389. for (i = 0; i < omap_dss_get_num_overlays(); ++i) {
  2390. struct omap_overlay *ovl;
  2391. ovl = omap_dss_get_overlay(i);
  2392. if (!(ovl->caps & OMAP_DSS_OVL_CAP_DISPC))
  2393. continue;
  2394. if (ovl->id != 0 && ovl->manager == manager)
  2395. dispc_enable_plane(ovl->id, 0);
  2396. }
  2397. dispc_go(manager->id);
  2398. mdelay(50);
  2399. if (enable)
  2400. dssdev->driver->enable(dssdev);
  2401. }
  2402. }
  2403. if (errors & DISPC_IRQ_SYNC_LOST_DIGIT) {
  2404. struct omap_overlay_manager *manager = NULL;
  2405. bool enable = false;
  2406. DSSERR("SYNC_LOST_DIGIT, disabling TV\n");
  2407. for (i = 0; i < omap_dss_get_num_overlay_managers(); ++i) {
  2408. struct omap_overlay_manager *mgr;
  2409. mgr = omap_dss_get_overlay_manager(i);
  2410. if (mgr->id == OMAP_DSS_CHANNEL_DIGIT) {
  2411. manager = mgr;
  2412. enable = mgr->device->state ==
  2413. OMAP_DSS_DISPLAY_ACTIVE;
  2414. mgr->device->driver->disable(mgr->device);
  2415. break;
  2416. }
  2417. }
  2418. if (manager) {
  2419. struct omap_dss_device *dssdev = manager->device;
  2420. for (i = 0; i < omap_dss_get_num_overlays(); ++i) {
  2421. struct omap_overlay *ovl;
  2422. ovl = omap_dss_get_overlay(i);
  2423. if (!(ovl->caps & OMAP_DSS_OVL_CAP_DISPC))
  2424. continue;
  2425. if (ovl->id != 0 && ovl->manager == manager)
  2426. dispc_enable_plane(ovl->id, 0);
  2427. }
  2428. dispc_go(manager->id);
  2429. mdelay(50);
  2430. if (enable)
  2431. dssdev->driver->enable(dssdev);
  2432. }
  2433. }
  2434. if (errors & DISPC_IRQ_OCP_ERR) {
  2435. DSSERR("OCP_ERR\n");
  2436. for (i = 0; i < omap_dss_get_num_overlay_managers(); ++i) {
  2437. struct omap_overlay_manager *mgr;
  2438. mgr = omap_dss_get_overlay_manager(i);
  2439. if (mgr->caps & OMAP_DSS_OVL_CAP_DISPC)
  2440. mgr->device->driver->disable(mgr->device);
  2441. }
  2442. }
  2443. spin_lock_irqsave(&dispc.irq_lock, flags);
  2444. dispc.irq_error_mask |= errors;
  2445. _omap_dispc_set_irqs();
  2446. spin_unlock_irqrestore(&dispc.irq_lock, flags);
  2447. }
  2448. int omap_dispc_wait_for_irq_timeout(u32 irqmask, unsigned long timeout)
  2449. {
  2450. void dispc_irq_wait_handler(void *data, u32 mask)
  2451. {
  2452. complete((struct completion *)data);
  2453. }
  2454. int r;
  2455. DECLARE_COMPLETION_ONSTACK(completion);
  2456. r = omap_dispc_register_isr(dispc_irq_wait_handler, &completion,
  2457. irqmask);
  2458. if (r)
  2459. return r;
  2460. timeout = wait_for_completion_timeout(&completion, timeout);
  2461. omap_dispc_unregister_isr(dispc_irq_wait_handler, &completion, irqmask);
  2462. if (timeout == 0)
  2463. return -ETIMEDOUT;
  2464. if (timeout == -ERESTARTSYS)
  2465. return -ERESTARTSYS;
  2466. return 0;
  2467. }
  2468. int omap_dispc_wait_for_irq_interruptible_timeout(u32 irqmask,
  2469. unsigned long timeout)
  2470. {
  2471. void dispc_irq_wait_handler(void *data, u32 mask)
  2472. {
  2473. complete((struct completion *)data);
  2474. }
  2475. int r;
  2476. DECLARE_COMPLETION_ONSTACK(completion);
  2477. r = omap_dispc_register_isr(dispc_irq_wait_handler, &completion,
  2478. irqmask);
  2479. if (r)
  2480. return r;
  2481. timeout = wait_for_completion_interruptible_timeout(&completion,
  2482. timeout);
  2483. omap_dispc_unregister_isr(dispc_irq_wait_handler, &completion, irqmask);
  2484. if (timeout == 0)
  2485. return -ETIMEDOUT;
  2486. if (timeout == -ERESTARTSYS)
  2487. return -ERESTARTSYS;
  2488. return 0;
  2489. }
  2490. #ifdef CONFIG_OMAP2_DSS_FAKE_VSYNC
  2491. void dispc_fake_vsync_irq(void)
  2492. {
  2493. u32 irqstatus = DISPC_IRQ_VSYNC;
  2494. int i;
  2495. local_irq_disable();
  2496. for (i = 0; i < DISPC_MAX_NR_ISRS; i++) {
  2497. struct omap_dispc_isr_data *isr_data;
  2498. isr_data = &dispc.registered_isr[i];
  2499. if (!isr_data->isr)
  2500. continue;
  2501. if (isr_data->mask & irqstatus)
  2502. isr_data->isr(isr_data->arg, irqstatus);
  2503. }
  2504. local_irq_enable();
  2505. }
  2506. #endif
  2507. static void _omap_dispc_initialize_irq(void)
  2508. {
  2509. unsigned long flags;
  2510. spin_lock_irqsave(&dispc.irq_lock, flags);
  2511. memset(dispc.registered_isr, 0, sizeof(dispc.registered_isr));
  2512. dispc.irq_error_mask = DISPC_IRQ_MASK_ERROR;
  2513. /* there's SYNC_LOST_DIGIT waiting after enabling the DSS,
  2514. * so clear it */
  2515. dispc_write_reg(DISPC_IRQSTATUS, dispc_read_reg(DISPC_IRQSTATUS));
  2516. _omap_dispc_set_irqs();
  2517. spin_unlock_irqrestore(&dispc.irq_lock, flags);
  2518. }
  2519. void dispc_enable_sidle(void)
  2520. {
  2521. REG_FLD_MOD(DISPC_SYSCONFIG, 2, 4, 3); /* SIDLEMODE: smart idle */
  2522. }
  2523. void dispc_disable_sidle(void)
  2524. {
  2525. REG_FLD_MOD(DISPC_SYSCONFIG, 1, 4, 3); /* SIDLEMODE: no idle */
  2526. }
  2527. static void _omap_dispc_initial_config(void)
  2528. {
  2529. u32 l;
  2530. l = dispc_read_reg(DISPC_SYSCONFIG);
  2531. l = FLD_MOD(l, 2, 13, 12); /* MIDLEMODE: smart standby */
  2532. l = FLD_MOD(l, 2, 4, 3); /* SIDLEMODE: smart idle */
  2533. l = FLD_MOD(l, 1, 2, 2); /* ENWAKEUP */
  2534. l = FLD_MOD(l, 1, 0, 0); /* AUTOIDLE */
  2535. dispc_write_reg(DISPC_SYSCONFIG, l);
  2536. /* FUNCGATED */
  2537. REG_FLD_MOD(DISPC_CONFIG, 1, 9, 9);
  2538. /* L3 firewall setting: enable access to OCM RAM */
  2539. /* XXX this should be somewhere in plat-omap */
  2540. if (cpu_is_omap24xx())
  2541. __raw_writel(0x402000b0, OMAP2_L3_IO_ADDRESS(0x680050a0));
  2542. _dispc_setup_color_conv_coef();
  2543. dispc_set_loadmode(OMAP_DSS_LOAD_FRAME_ONLY);
  2544. dispc_read_plane_fifo_sizes();
  2545. }
  2546. int dispc_init(void)
  2547. {
  2548. u32 rev;
  2549. spin_lock_init(&dispc.irq_lock);
  2550. #ifdef CONFIG_OMAP2_DSS_COLLECT_IRQ_STATS
  2551. spin_lock_init(&dispc.irq_stats_lock);
  2552. dispc.irq_stats.last_reset = jiffies;
  2553. #endif
  2554. INIT_WORK(&dispc.error_work, dispc_error_worker);
  2555. dispc.base = ioremap(DISPC_BASE, DISPC_SZ_REGS);
  2556. if (!dispc.base) {
  2557. DSSERR("can't ioremap DISPC\n");
  2558. return -ENOMEM;
  2559. }
  2560. enable_clocks(1);
  2561. _omap_dispc_initial_config();
  2562. _omap_dispc_initialize_irq();
  2563. dispc_save_context();
  2564. rev = dispc_read_reg(DISPC_REVISION);
  2565. printk(KERN_INFO "OMAP DISPC rev %d.%d\n",
  2566. FLD_GET(rev, 7, 4), FLD_GET(rev, 3, 0));
  2567. enable_clocks(0);
  2568. return 0;
  2569. }
  2570. void dispc_exit(void)
  2571. {
  2572. iounmap(dispc.base);
  2573. }
  2574. int dispc_enable_plane(enum omap_plane plane, bool enable)
  2575. {
  2576. DSSDBG("dispc_enable_plane %d, %d\n", plane, enable);
  2577. enable_clocks(1);
  2578. _dispc_enable_plane(plane, enable);
  2579. enable_clocks(0);
  2580. return 0;
  2581. }
  2582. int dispc_setup_plane(enum omap_plane plane,
  2583. u32 paddr, u16 screen_width,
  2584. u16 pos_x, u16 pos_y,
  2585. u16 width, u16 height,
  2586. u16 out_width, u16 out_height,
  2587. enum omap_color_mode color_mode,
  2588. bool ilace,
  2589. enum omap_dss_rotation_type rotation_type,
  2590. u8 rotation, bool mirror, u8 global_alpha)
  2591. {
  2592. int r = 0;
  2593. DSSDBG("dispc_setup_plane %d, pa %x, sw %d, %d,%d, %dx%d -> "
  2594. "%dx%d, ilace %d, cmode %x, rot %d, mir %d\n",
  2595. plane, paddr, screen_width, pos_x, pos_y,
  2596. width, height,
  2597. out_width, out_height,
  2598. ilace, color_mode,
  2599. rotation, mirror);
  2600. enable_clocks(1);
  2601. r = _dispc_setup_plane(plane,
  2602. paddr, screen_width,
  2603. pos_x, pos_y,
  2604. width, height,
  2605. out_width, out_height,
  2606. color_mode, ilace,
  2607. rotation_type,
  2608. rotation, mirror,
  2609. global_alpha);
  2610. enable_clocks(0);
  2611. return r;
  2612. }