spi_bfin5xx.c 38 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448
  1. /*
  2. * Blackfin On-Chip SPI Driver
  3. *
  4. * Copyright 2004-2007 Analog Devices Inc.
  5. *
  6. * Enter bugs at http://blackfin.uclinux.org/
  7. *
  8. * Licensed under the GPL-2 or later.
  9. */
  10. #include <linux/init.h>
  11. #include <linux/module.h>
  12. #include <linux/delay.h>
  13. #include <linux/device.h>
  14. #include <linux/slab.h>
  15. #include <linux/io.h>
  16. #include <linux/ioport.h>
  17. #include <linux/irq.h>
  18. #include <linux/errno.h>
  19. #include <linux/interrupt.h>
  20. #include <linux/platform_device.h>
  21. #include <linux/dma-mapping.h>
  22. #include <linux/spi/spi.h>
  23. #include <linux/workqueue.h>
  24. #include <asm/dma.h>
  25. #include <asm/portmux.h>
  26. #include <asm/bfin5xx_spi.h>
  27. #include <asm/cacheflush.h>
  28. #define DRV_NAME "bfin-spi"
  29. #define DRV_AUTHOR "Bryan Wu, Luke Yang"
  30. #define DRV_DESC "Blackfin on-chip SPI Controller Driver"
  31. #define DRV_VERSION "1.0"
  32. MODULE_AUTHOR(DRV_AUTHOR);
  33. MODULE_DESCRIPTION(DRV_DESC);
  34. MODULE_LICENSE("GPL");
  35. #define START_STATE ((void *)0)
  36. #define RUNNING_STATE ((void *)1)
  37. #define DONE_STATE ((void *)2)
  38. #define ERROR_STATE ((void *)-1)
  39. #define QUEUE_RUNNING 0
  40. #define QUEUE_STOPPED 1
  41. /* Value to send if no TX value is supplied */
  42. #define SPI_IDLE_TXVAL 0x0000
  43. struct driver_data {
  44. /* Driver model hookup */
  45. struct platform_device *pdev;
  46. /* SPI framework hookup */
  47. struct spi_master *master;
  48. /* Regs base of SPI controller */
  49. void __iomem *regs_base;
  50. /* Pin request list */
  51. u16 *pin_req;
  52. /* BFIN hookup */
  53. struct bfin5xx_spi_master *master_info;
  54. /* Driver message queue */
  55. struct workqueue_struct *workqueue;
  56. struct work_struct pump_messages;
  57. spinlock_t lock;
  58. struct list_head queue;
  59. int busy;
  60. int run;
  61. /* Message Transfer pump */
  62. struct tasklet_struct pump_transfers;
  63. /* Current message transfer state info */
  64. struct spi_message *cur_msg;
  65. struct spi_transfer *cur_transfer;
  66. struct chip_data *cur_chip;
  67. size_t len_in_bytes;
  68. size_t len;
  69. void *tx;
  70. void *tx_end;
  71. void *rx;
  72. void *rx_end;
  73. /* DMA stuffs */
  74. int dma_channel;
  75. int dma_mapped;
  76. int dma_requested;
  77. dma_addr_t rx_dma;
  78. dma_addr_t tx_dma;
  79. size_t rx_map_len;
  80. size_t tx_map_len;
  81. u8 n_bytes;
  82. int cs_change;
  83. void (*write) (struct driver_data *);
  84. void (*read) (struct driver_data *);
  85. void (*duplex) (struct driver_data *);
  86. };
  87. struct chip_data {
  88. u16 ctl_reg;
  89. u16 baud;
  90. u16 flag;
  91. u8 chip_select_num;
  92. u8 n_bytes;
  93. u8 width; /* 0 or 1 */
  94. u8 enable_dma;
  95. u8 bits_per_word; /* 8 or 16 */
  96. u8 cs_change_per_word;
  97. u16 cs_chg_udelay; /* Some devices require > 255usec delay */
  98. u32 cs_gpio;
  99. u16 idle_tx_val;
  100. void (*write) (struct driver_data *);
  101. void (*read) (struct driver_data *);
  102. void (*duplex) (struct driver_data *);
  103. };
  104. #define DEFINE_SPI_REG(reg, off) \
  105. static inline u16 read_##reg(struct driver_data *drv_data) \
  106. { return bfin_read16(drv_data->regs_base + off); } \
  107. static inline void write_##reg(struct driver_data *drv_data, u16 v) \
  108. { bfin_write16(drv_data->regs_base + off, v); }
  109. DEFINE_SPI_REG(CTRL, 0x00)
  110. DEFINE_SPI_REG(FLAG, 0x04)
  111. DEFINE_SPI_REG(STAT, 0x08)
  112. DEFINE_SPI_REG(TDBR, 0x0C)
  113. DEFINE_SPI_REG(RDBR, 0x10)
  114. DEFINE_SPI_REG(BAUD, 0x14)
  115. DEFINE_SPI_REG(SHAW, 0x18)
  116. static void bfin_spi_enable(struct driver_data *drv_data)
  117. {
  118. u16 cr;
  119. cr = read_CTRL(drv_data);
  120. write_CTRL(drv_data, (cr | BIT_CTL_ENABLE));
  121. }
  122. static void bfin_spi_disable(struct driver_data *drv_data)
  123. {
  124. u16 cr;
  125. cr = read_CTRL(drv_data);
  126. write_CTRL(drv_data, (cr & (~BIT_CTL_ENABLE)));
  127. }
  128. /* Caculate the SPI_BAUD register value based on input HZ */
  129. static u16 hz_to_spi_baud(u32 speed_hz)
  130. {
  131. u_long sclk = get_sclk();
  132. u16 spi_baud = (sclk / (2 * speed_hz));
  133. if ((sclk % (2 * speed_hz)) > 0)
  134. spi_baud++;
  135. if (spi_baud < MIN_SPI_BAUD_VAL)
  136. spi_baud = MIN_SPI_BAUD_VAL;
  137. return spi_baud;
  138. }
  139. static int bfin_spi_flush(struct driver_data *drv_data)
  140. {
  141. unsigned long limit = loops_per_jiffy << 1;
  142. /* wait for stop and clear stat */
  143. while (!(read_STAT(drv_data) & BIT_STAT_SPIF) && --limit)
  144. cpu_relax();
  145. write_STAT(drv_data, BIT_STAT_CLR);
  146. return limit;
  147. }
  148. /* Chip select operation functions for cs_change flag */
  149. static void bfin_spi_cs_active(struct driver_data *drv_data, struct chip_data *chip)
  150. {
  151. if (likely(chip->chip_select_num)) {
  152. u16 flag = read_FLAG(drv_data);
  153. flag |= chip->flag;
  154. flag &= ~(chip->flag << 8);
  155. write_FLAG(drv_data, flag);
  156. } else {
  157. gpio_set_value(chip->cs_gpio, 0);
  158. }
  159. }
  160. static void bfin_spi_cs_deactive(struct driver_data *drv_data, struct chip_data *chip)
  161. {
  162. if (likely(chip->chip_select_num)) {
  163. u16 flag = read_FLAG(drv_data);
  164. flag &= ~chip->flag;
  165. flag |= (chip->flag << 8);
  166. write_FLAG(drv_data, flag);
  167. } else {
  168. gpio_set_value(chip->cs_gpio, 1);
  169. }
  170. /* Move delay here for consistency */
  171. if (chip->cs_chg_udelay)
  172. udelay(chip->cs_chg_udelay);
  173. }
  174. /* stop controller and re-config current chip*/
  175. static void bfin_spi_restore_state(struct driver_data *drv_data)
  176. {
  177. struct chip_data *chip = drv_data->cur_chip;
  178. /* Clear status and disable clock */
  179. write_STAT(drv_data, BIT_STAT_CLR);
  180. bfin_spi_disable(drv_data);
  181. dev_dbg(&drv_data->pdev->dev, "restoring spi ctl state\n");
  182. /* Load the registers */
  183. write_CTRL(drv_data, chip->ctl_reg);
  184. write_BAUD(drv_data, chip->baud);
  185. bfin_spi_enable(drv_data);
  186. bfin_spi_cs_active(drv_data, chip);
  187. }
  188. /* used to kick off transfer in rx mode and read unwanted RX data */
  189. static inline void bfin_spi_dummy_read(struct driver_data *drv_data)
  190. {
  191. (void) read_RDBR(drv_data);
  192. }
  193. static void bfin_spi_null_writer(struct driver_data *drv_data)
  194. {
  195. u8 n_bytes = drv_data->n_bytes;
  196. u16 tx_val = drv_data->cur_chip->idle_tx_val;
  197. /* clear RXS (we check for RXS inside the loop) */
  198. bfin_spi_dummy_read(drv_data);
  199. while (drv_data->tx < drv_data->tx_end) {
  200. write_TDBR(drv_data, tx_val);
  201. drv_data->tx += n_bytes;
  202. /* wait until transfer finished.
  203. checking SPIF or TXS may not guarantee transfer completion */
  204. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  205. cpu_relax();
  206. /* discard RX data and clear RXS */
  207. bfin_spi_dummy_read(drv_data);
  208. }
  209. }
  210. static void bfin_spi_null_reader(struct driver_data *drv_data)
  211. {
  212. u8 n_bytes = drv_data->n_bytes;
  213. u16 tx_val = drv_data->cur_chip->idle_tx_val;
  214. /* discard old RX data and clear RXS */
  215. bfin_spi_dummy_read(drv_data);
  216. while (drv_data->rx < drv_data->rx_end) {
  217. write_TDBR(drv_data, tx_val);
  218. drv_data->rx += n_bytes;
  219. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  220. cpu_relax();
  221. bfin_spi_dummy_read(drv_data);
  222. }
  223. }
  224. static void bfin_spi_u8_writer(struct driver_data *drv_data)
  225. {
  226. /* clear RXS (we check for RXS inside the loop) */
  227. bfin_spi_dummy_read(drv_data);
  228. while (drv_data->tx < drv_data->tx_end) {
  229. write_TDBR(drv_data, (*(u8 *) (drv_data->tx++)));
  230. /* wait until transfer finished.
  231. checking SPIF or TXS may not guarantee transfer completion */
  232. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  233. cpu_relax();
  234. /* discard RX data and clear RXS */
  235. bfin_spi_dummy_read(drv_data);
  236. }
  237. }
  238. static void bfin_spi_u8_cs_chg_writer(struct driver_data *drv_data)
  239. {
  240. struct chip_data *chip = drv_data->cur_chip;
  241. /* clear RXS (we check for RXS inside the loop) */
  242. bfin_spi_dummy_read(drv_data);
  243. while (drv_data->tx < drv_data->tx_end) {
  244. bfin_spi_cs_active(drv_data, chip);
  245. write_TDBR(drv_data, (*(u8 *) (drv_data->tx++)));
  246. /* make sure transfer finished before deactiving CS */
  247. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  248. cpu_relax();
  249. bfin_spi_dummy_read(drv_data);
  250. bfin_spi_cs_deactive(drv_data, chip);
  251. }
  252. }
  253. static void bfin_spi_u8_reader(struct driver_data *drv_data)
  254. {
  255. u16 tx_val = drv_data->cur_chip->idle_tx_val;
  256. /* discard old RX data and clear RXS */
  257. bfin_spi_dummy_read(drv_data);
  258. while (drv_data->rx < drv_data->rx_end) {
  259. write_TDBR(drv_data, tx_val);
  260. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  261. cpu_relax();
  262. *(u8 *) (drv_data->rx++) = read_RDBR(drv_data);
  263. }
  264. }
  265. static void bfin_spi_u8_cs_chg_reader(struct driver_data *drv_data)
  266. {
  267. struct chip_data *chip = drv_data->cur_chip;
  268. u16 tx_val = chip->idle_tx_val;
  269. /* discard old RX data and clear RXS */
  270. bfin_spi_dummy_read(drv_data);
  271. while (drv_data->rx < drv_data->rx_end) {
  272. bfin_spi_cs_active(drv_data, chip);
  273. write_TDBR(drv_data, tx_val);
  274. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  275. cpu_relax();
  276. *(u8 *) (drv_data->rx++) = read_RDBR(drv_data);
  277. bfin_spi_cs_deactive(drv_data, chip);
  278. }
  279. }
  280. static void bfin_spi_u8_duplex(struct driver_data *drv_data)
  281. {
  282. /* discard old RX data and clear RXS */
  283. bfin_spi_dummy_read(drv_data);
  284. while (drv_data->rx < drv_data->rx_end) {
  285. write_TDBR(drv_data, (*(u8 *) (drv_data->tx++)));
  286. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  287. cpu_relax();
  288. *(u8 *) (drv_data->rx++) = read_RDBR(drv_data);
  289. }
  290. }
  291. static void bfin_spi_u8_cs_chg_duplex(struct driver_data *drv_data)
  292. {
  293. struct chip_data *chip = drv_data->cur_chip;
  294. /* discard old RX data and clear RXS */
  295. bfin_spi_dummy_read(drv_data);
  296. while (drv_data->rx < drv_data->rx_end) {
  297. bfin_spi_cs_active(drv_data, chip);
  298. write_TDBR(drv_data, (*(u8 *) (drv_data->tx++)));
  299. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  300. cpu_relax();
  301. *(u8 *) (drv_data->rx++) = read_RDBR(drv_data);
  302. bfin_spi_cs_deactive(drv_data, chip);
  303. }
  304. }
  305. static void bfin_spi_u16_writer(struct driver_data *drv_data)
  306. {
  307. /* clear RXS (we check for RXS inside the loop) */
  308. bfin_spi_dummy_read(drv_data);
  309. while (drv_data->tx < drv_data->tx_end) {
  310. write_TDBR(drv_data, (*(u16 *) (drv_data->tx)));
  311. drv_data->tx += 2;
  312. /* wait until transfer finished.
  313. checking SPIF or TXS may not guarantee transfer completion */
  314. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  315. cpu_relax();
  316. /* discard RX data and clear RXS */
  317. bfin_spi_dummy_read(drv_data);
  318. }
  319. }
  320. static void bfin_spi_u16_cs_chg_writer(struct driver_data *drv_data)
  321. {
  322. struct chip_data *chip = drv_data->cur_chip;
  323. /* clear RXS (we check for RXS inside the loop) */
  324. bfin_spi_dummy_read(drv_data);
  325. while (drv_data->tx < drv_data->tx_end) {
  326. bfin_spi_cs_active(drv_data, chip);
  327. write_TDBR(drv_data, (*(u16 *) (drv_data->tx)));
  328. drv_data->tx += 2;
  329. /* make sure transfer finished before deactiving CS */
  330. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  331. cpu_relax();
  332. bfin_spi_dummy_read(drv_data);
  333. bfin_spi_cs_deactive(drv_data, chip);
  334. }
  335. }
  336. static void bfin_spi_u16_reader(struct driver_data *drv_data)
  337. {
  338. u16 tx_val = drv_data->cur_chip->idle_tx_val;
  339. /* discard old RX data and clear RXS */
  340. bfin_spi_dummy_read(drv_data);
  341. while (drv_data->rx < drv_data->rx_end) {
  342. write_TDBR(drv_data, tx_val);
  343. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  344. cpu_relax();
  345. *(u16 *) (drv_data->rx) = read_RDBR(drv_data);
  346. drv_data->rx += 2;
  347. }
  348. }
  349. static void bfin_spi_u16_cs_chg_reader(struct driver_data *drv_data)
  350. {
  351. struct chip_data *chip = drv_data->cur_chip;
  352. u16 tx_val = chip->idle_tx_val;
  353. /* discard old RX data and clear RXS */
  354. bfin_spi_dummy_read(drv_data);
  355. while (drv_data->rx < drv_data->rx_end) {
  356. bfin_spi_cs_active(drv_data, chip);
  357. write_TDBR(drv_data, tx_val);
  358. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  359. cpu_relax();
  360. *(u16 *) (drv_data->rx) = read_RDBR(drv_data);
  361. drv_data->rx += 2;
  362. bfin_spi_cs_deactive(drv_data, chip);
  363. }
  364. }
  365. static void bfin_spi_u16_duplex(struct driver_data *drv_data)
  366. {
  367. /* discard old RX data and clear RXS */
  368. bfin_spi_dummy_read(drv_data);
  369. while (drv_data->rx < drv_data->rx_end) {
  370. write_TDBR(drv_data, (*(u16 *) (drv_data->tx)));
  371. drv_data->tx += 2;
  372. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  373. cpu_relax();
  374. *(u16 *) (drv_data->rx) = read_RDBR(drv_data);
  375. drv_data->rx += 2;
  376. }
  377. }
  378. static void bfin_spi_u16_cs_chg_duplex(struct driver_data *drv_data)
  379. {
  380. struct chip_data *chip = drv_data->cur_chip;
  381. /* discard old RX data and clear RXS */
  382. bfin_spi_dummy_read(drv_data);
  383. while (drv_data->rx < drv_data->rx_end) {
  384. bfin_spi_cs_active(drv_data, chip);
  385. write_TDBR(drv_data, (*(u16 *) (drv_data->tx)));
  386. drv_data->tx += 2;
  387. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  388. cpu_relax();
  389. *(u16 *) (drv_data->rx) = read_RDBR(drv_data);
  390. drv_data->rx += 2;
  391. bfin_spi_cs_deactive(drv_data, chip);
  392. }
  393. }
  394. /* test if ther is more transfer to be done */
  395. static void *bfin_spi_next_transfer(struct driver_data *drv_data)
  396. {
  397. struct spi_message *msg = drv_data->cur_msg;
  398. struct spi_transfer *trans = drv_data->cur_transfer;
  399. /* Move to next transfer */
  400. if (trans->transfer_list.next != &msg->transfers) {
  401. drv_data->cur_transfer =
  402. list_entry(trans->transfer_list.next,
  403. struct spi_transfer, transfer_list);
  404. return RUNNING_STATE;
  405. } else
  406. return DONE_STATE;
  407. }
  408. /*
  409. * caller already set message->status;
  410. * dma and pio irqs are blocked give finished message back
  411. */
  412. static void bfin_spi_giveback(struct driver_data *drv_data)
  413. {
  414. struct chip_data *chip = drv_data->cur_chip;
  415. struct spi_transfer *last_transfer;
  416. unsigned long flags;
  417. struct spi_message *msg;
  418. spin_lock_irqsave(&drv_data->lock, flags);
  419. msg = drv_data->cur_msg;
  420. drv_data->cur_msg = NULL;
  421. drv_data->cur_transfer = NULL;
  422. drv_data->cur_chip = NULL;
  423. queue_work(drv_data->workqueue, &drv_data->pump_messages);
  424. spin_unlock_irqrestore(&drv_data->lock, flags);
  425. last_transfer = list_entry(msg->transfers.prev,
  426. struct spi_transfer, transfer_list);
  427. msg->state = NULL;
  428. if (!drv_data->cs_change)
  429. bfin_spi_cs_deactive(drv_data, chip);
  430. /* Not stop spi in autobuffer mode */
  431. if (drv_data->tx_dma != 0xFFFF)
  432. bfin_spi_disable(drv_data);
  433. if (msg->complete)
  434. msg->complete(msg->context);
  435. }
  436. static irqreturn_t bfin_spi_dma_irq_handler(int irq, void *dev_id)
  437. {
  438. struct driver_data *drv_data = dev_id;
  439. struct chip_data *chip = drv_data->cur_chip;
  440. struct spi_message *msg = drv_data->cur_msg;
  441. unsigned long timeout;
  442. unsigned short dmastat = get_dma_curr_irqstat(drv_data->dma_channel);
  443. u16 spistat = read_STAT(drv_data);
  444. dev_dbg(&drv_data->pdev->dev,
  445. "in dma_irq_handler dmastat:0x%x spistat:0x%x\n",
  446. dmastat, spistat);
  447. clear_dma_irqstat(drv_data->dma_channel);
  448. /* Wait for DMA to complete */
  449. while (get_dma_curr_irqstat(drv_data->dma_channel) & DMA_RUN)
  450. cpu_relax();
  451. /*
  452. * wait for the last transaction shifted out. HRM states:
  453. * at this point there may still be data in the SPI DMA FIFO waiting
  454. * to be transmitted ... software needs to poll TXS in the SPI_STAT
  455. * register until it goes low for 2 successive reads
  456. */
  457. if (drv_data->tx != NULL) {
  458. while ((read_STAT(drv_data) & TXS) ||
  459. (read_STAT(drv_data) & TXS))
  460. cpu_relax();
  461. }
  462. dev_dbg(&drv_data->pdev->dev,
  463. "in dma_irq_handler dmastat:0x%x spistat:0x%x\n",
  464. dmastat, read_STAT(drv_data));
  465. timeout = jiffies + HZ;
  466. while (!(read_STAT(drv_data) & SPIF))
  467. if (!time_before(jiffies, timeout)) {
  468. dev_warn(&drv_data->pdev->dev, "timeout waiting for SPIF");
  469. break;
  470. } else
  471. cpu_relax();
  472. if ((dmastat & DMA_ERR) && (spistat & RBSY)) {
  473. msg->state = ERROR_STATE;
  474. dev_err(&drv_data->pdev->dev, "dma receive: fifo/buffer overflow\n");
  475. } else {
  476. msg->actual_length += drv_data->len_in_bytes;
  477. if (drv_data->cs_change)
  478. bfin_spi_cs_deactive(drv_data, chip);
  479. /* Move to next transfer */
  480. msg->state = bfin_spi_next_transfer(drv_data);
  481. }
  482. /* Schedule transfer tasklet */
  483. tasklet_schedule(&drv_data->pump_transfers);
  484. /* free the irq handler before next transfer */
  485. dev_dbg(&drv_data->pdev->dev,
  486. "disable dma channel irq%d\n",
  487. drv_data->dma_channel);
  488. dma_disable_irq(drv_data->dma_channel);
  489. return IRQ_HANDLED;
  490. }
  491. static void bfin_spi_pump_transfers(unsigned long data)
  492. {
  493. struct driver_data *drv_data = (struct driver_data *)data;
  494. struct spi_message *message = NULL;
  495. struct spi_transfer *transfer = NULL;
  496. struct spi_transfer *previous = NULL;
  497. struct chip_data *chip = NULL;
  498. u8 width;
  499. u16 cr, dma_width, dma_config;
  500. u32 tranf_success = 1;
  501. u8 full_duplex = 0;
  502. /* Get current state information */
  503. message = drv_data->cur_msg;
  504. transfer = drv_data->cur_transfer;
  505. chip = drv_data->cur_chip;
  506. /*
  507. * if msg is error or done, report it back using complete() callback
  508. */
  509. /* Handle for abort */
  510. if (message->state == ERROR_STATE) {
  511. dev_dbg(&drv_data->pdev->dev, "transfer: we've hit an error\n");
  512. message->status = -EIO;
  513. bfin_spi_giveback(drv_data);
  514. return;
  515. }
  516. /* Handle end of message */
  517. if (message->state == DONE_STATE) {
  518. dev_dbg(&drv_data->pdev->dev, "transfer: all done!\n");
  519. message->status = 0;
  520. bfin_spi_giveback(drv_data);
  521. return;
  522. }
  523. /* Delay if requested at end of transfer */
  524. if (message->state == RUNNING_STATE) {
  525. dev_dbg(&drv_data->pdev->dev, "transfer: still running ...\n");
  526. previous = list_entry(transfer->transfer_list.prev,
  527. struct spi_transfer, transfer_list);
  528. if (previous->delay_usecs)
  529. udelay(previous->delay_usecs);
  530. }
  531. /* Setup the transfer state based on the type of transfer */
  532. if (bfin_spi_flush(drv_data) == 0) {
  533. dev_err(&drv_data->pdev->dev, "pump_transfers: flush failed\n");
  534. message->status = -EIO;
  535. bfin_spi_giveback(drv_data);
  536. return;
  537. }
  538. if (transfer->len == 0) {
  539. /* Move to next transfer of this msg */
  540. message->state = bfin_spi_next_transfer(drv_data);
  541. /* Schedule next transfer tasklet */
  542. tasklet_schedule(&drv_data->pump_transfers);
  543. }
  544. if (transfer->tx_buf != NULL) {
  545. drv_data->tx = (void *)transfer->tx_buf;
  546. drv_data->tx_end = drv_data->tx + transfer->len;
  547. dev_dbg(&drv_data->pdev->dev, "tx_buf is %p, tx_end is %p\n",
  548. transfer->tx_buf, drv_data->tx_end);
  549. } else {
  550. drv_data->tx = NULL;
  551. }
  552. if (transfer->rx_buf != NULL) {
  553. full_duplex = transfer->tx_buf != NULL;
  554. drv_data->rx = transfer->rx_buf;
  555. drv_data->rx_end = drv_data->rx + transfer->len;
  556. dev_dbg(&drv_data->pdev->dev, "rx_buf is %p, rx_end is %p\n",
  557. transfer->rx_buf, drv_data->rx_end);
  558. } else {
  559. drv_data->rx = NULL;
  560. }
  561. drv_data->rx_dma = transfer->rx_dma;
  562. drv_data->tx_dma = transfer->tx_dma;
  563. drv_data->len_in_bytes = transfer->len;
  564. drv_data->cs_change = transfer->cs_change;
  565. /* Bits per word setup */
  566. switch (transfer->bits_per_word) {
  567. case 8:
  568. drv_data->n_bytes = 1;
  569. width = CFG_SPI_WORDSIZE8;
  570. drv_data->read = chip->cs_change_per_word ?
  571. bfin_spi_u8_cs_chg_reader : bfin_spi_u8_reader;
  572. drv_data->write = chip->cs_change_per_word ?
  573. bfin_spi_u8_cs_chg_writer : bfin_spi_u8_writer;
  574. drv_data->duplex = chip->cs_change_per_word ?
  575. bfin_spi_u8_cs_chg_duplex : bfin_spi_u8_duplex;
  576. break;
  577. case 16:
  578. drv_data->n_bytes = 2;
  579. width = CFG_SPI_WORDSIZE16;
  580. drv_data->read = chip->cs_change_per_word ?
  581. bfin_spi_u16_cs_chg_reader : bfin_spi_u16_reader;
  582. drv_data->write = chip->cs_change_per_word ?
  583. bfin_spi_u16_cs_chg_writer : bfin_spi_u16_writer;
  584. drv_data->duplex = chip->cs_change_per_word ?
  585. bfin_spi_u16_cs_chg_duplex : bfin_spi_u16_duplex;
  586. break;
  587. default:
  588. /* No change, the same as default setting */
  589. drv_data->n_bytes = chip->n_bytes;
  590. width = chip->width;
  591. drv_data->write = drv_data->tx ? chip->write : bfin_spi_null_writer;
  592. drv_data->read = drv_data->rx ? chip->read : bfin_spi_null_reader;
  593. drv_data->duplex = chip->duplex ? chip->duplex : bfin_spi_null_writer;
  594. break;
  595. }
  596. cr = (read_CTRL(drv_data) & (~BIT_CTL_TIMOD));
  597. cr |= (width << 8);
  598. write_CTRL(drv_data, cr);
  599. if (width == CFG_SPI_WORDSIZE16) {
  600. drv_data->len = (transfer->len) >> 1;
  601. } else {
  602. drv_data->len = transfer->len;
  603. }
  604. dev_dbg(&drv_data->pdev->dev,
  605. "transfer: drv_data->write is %p, chip->write is %p, null_wr is %p\n",
  606. drv_data->write, chip->write, bfin_spi_null_writer);
  607. /* speed and width has been set on per message */
  608. message->state = RUNNING_STATE;
  609. dma_config = 0;
  610. /* Speed setup (surely valid because already checked) */
  611. if (transfer->speed_hz)
  612. write_BAUD(drv_data, hz_to_spi_baud(transfer->speed_hz));
  613. else
  614. write_BAUD(drv_data, chip->baud);
  615. write_STAT(drv_data, BIT_STAT_CLR);
  616. cr = (read_CTRL(drv_data) & (~BIT_CTL_TIMOD));
  617. if (drv_data->cs_change)
  618. bfin_spi_cs_active(drv_data, chip);
  619. dev_dbg(&drv_data->pdev->dev,
  620. "now pumping a transfer: width is %d, len is %d\n",
  621. width, transfer->len);
  622. /*
  623. * Try to map dma buffer and do a dma transfer. If successful use,
  624. * different way to r/w according to the enable_dma settings and if
  625. * we are not doing a full duplex transfer (since the hardware does
  626. * not support full duplex DMA transfers).
  627. */
  628. if (!full_duplex && drv_data->cur_chip->enable_dma
  629. && drv_data->len > 6) {
  630. unsigned long dma_start_addr, flags;
  631. disable_dma(drv_data->dma_channel);
  632. clear_dma_irqstat(drv_data->dma_channel);
  633. /* config dma channel */
  634. dev_dbg(&drv_data->pdev->dev, "doing dma transfer\n");
  635. set_dma_x_count(drv_data->dma_channel, drv_data->len);
  636. if (width == CFG_SPI_WORDSIZE16) {
  637. set_dma_x_modify(drv_data->dma_channel, 2);
  638. dma_width = WDSIZE_16;
  639. } else {
  640. set_dma_x_modify(drv_data->dma_channel, 1);
  641. dma_width = WDSIZE_8;
  642. }
  643. /* poll for SPI completion before start */
  644. while (!(read_STAT(drv_data) & BIT_STAT_SPIF))
  645. cpu_relax();
  646. /* dirty hack for autobuffer DMA mode */
  647. if (drv_data->tx_dma == 0xFFFF) {
  648. dev_dbg(&drv_data->pdev->dev,
  649. "doing autobuffer DMA out.\n");
  650. /* no irq in autobuffer mode */
  651. dma_config =
  652. (DMAFLOW_AUTO | RESTART | dma_width | DI_EN);
  653. set_dma_config(drv_data->dma_channel, dma_config);
  654. set_dma_start_addr(drv_data->dma_channel,
  655. (unsigned long)drv_data->tx);
  656. enable_dma(drv_data->dma_channel);
  657. /* start SPI transfer */
  658. write_CTRL(drv_data, cr | BIT_CTL_TIMOD_DMA_TX);
  659. /* just return here, there can only be one transfer
  660. * in this mode
  661. */
  662. message->status = 0;
  663. bfin_spi_giveback(drv_data);
  664. return;
  665. }
  666. /* In dma mode, rx or tx must be NULL in one transfer */
  667. dma_config = (RESTART | dma_width | DI_EN);
  668. if (drv_data->rx != NULL) {
  669. /* set transfer mode, and enable SPI */
  670. dev_dbg(&drv_data->pdev->dev, "doing DMA in to %p (size %zx)\n",
  671. drv_data->rx, drv_data->len_in_bytes);
  672. /* invalidate caches, if needed */
  673. if (bfin_addr_dcacheable((unsigned long) drv_data->rx))
  674. invalidate_dcache_range((unsigned long) drv_data->rx,
  675. (unsigned long) (drv_data->rx +
  676. drv_data->len_in_bytes));
  677. dma_config |= WNR;
  678. dma_start_addr = (unsigned long)drv_data->rx;
  679. cr |= BIT_CTL_TIMOD_DMA_RX | BIT_CTL_SENDOPT;
  680. } else if (drv_data->tx != NULL) {
  681. dev_dbg(&drv_data->pdev->dev, "doing DMA out.\n");
  682. /* flush caches, if needed */
  683. if (bfin_addr_dcacheable((unsigned long) drv_data->tx))
  684. flush_dcache_range((unsigned long) drv_data->tx,
  685. (unsigned long) (drv_data->tx +
  686. drv_data->len_in_bytes));
  687. dma_start_addr = (unsigned long)drv_data->tx;
  688. cr |= BIT_CTL_TIMOD_DMA_TX;
  689. } else
  690. BUG();
  691. /* oh man, here there be monsters ... and i dont mean the
  692. * fluffy cute ones from pixar, i mean the kind that'll eat
  693. * your data, kick your dog, and love it all. do *not* try
  694. * and change these lines unless you (1) heavily test DMA
  695. * with SPI flashes on a loaded system (e.g. ping floods),
  696. * (2) know just how broken the DMA engine interaction with
  697. * the SPI peripheral is, and (3) have someone else to blame
  698. * when you screw it all up anyways.
  699. */
  700. set_dma_start_addr(drv_data->dma_channel, dma_start_addr);
  701. set_dma_config(drv_data->dma_channel, dma_config);
  702. local_irq_save(flags);
  703. SSYNC();
  704. write_CTRL(drv_data, cr);
  705. enable_dma(drv_data->dma_channel);
  706. dma_enable_irq(drv_data->dma_channel);
  707. local_irq_restore(flags);
  708. } else {
  709. /* IO mode write then read */
  710. dev_dbg(&drv_data->pdev->dev, "doing IO transfer\n");
  711. /* we always use SPI_WRITE mode. SPI_READ mode
  712. seems to have problems with setting up the
  713. output value in TDBR prior to the transfer. */
  714. write_CTRL(drv_data, (cr | CFG_SPI_WRITE));
  715. if (full_duplex) {
  716. /* full duplex mode */
  717. BUG_ON((drv_data->tx_end - drv_data->tx) !=
  718. (drv_data->rx_end - drv_data->rx));
  719. dev_dbg(&drv_data->pdev->dev,
  720. "IO duplex: cr is 0x%x\n", cr);
  721. drv_data->duplex(drv_data);
  722. if (drv_data->tx != drv_data->tx_end)
  723. tranf_success = 0;
  724. } else if (drv_data->tx != NULL) {
  725. /* write only half duplex */
  726. dev_dbg(&drv_data->pdev->dev,
  727. "IO write: cr is 0x%x\n", cr);
  728. drv_data->write(drv_data);
  729. if (drv_data->tx != drv_data->tx_end)
  730. tranf_success = 0;
  731. } else if (drv_data->rx != NULL) {
  732. /* read only half duplex */
  733. dev_dbg(&drv_data->pdev->dev,
  734. "IO read: cr is 0x%x\n", cr);
  735. drv_data->read(drv_data);
  736. if (drv_data->rx != drv_data->rx_end)
  737. tranf_success = 0;
  738. }
  739. if (!tranf_success) {
  740. dev_dbg(&drv_data->pdev->dev,
  741. "IO write error!\n");
  742. message->state = ERROR_STATE;
  743. } else {
  744. /* Update total byte transfered */
  745. message->actual_length += drv_data->len_in_bytes;
  746. /* Move to next transfer of this msg */
  747. message->state = bfin_spi_next_transfer(drv_data);
  748. if (drv_data->cs_change)
  749. bfin_spi_cs_deactive(drv_data, chip);
  750. }
  751. /* Schedule next transfer tasklet */
  752. tasklet_schedule(&drv_data->pump_transfers);
  753. }
  754. }
  755. /* pop a msg from queue and kick off real transfer */
  756. static void bfin_spi_pump_messages(struct work_struct *work)
  757. {
  758. struct driver_data *drv_data;
  759. unsigned long flags;
  760. drv_data = container_of(work, struct driver_data, pump_messages);
  761. /* Lock queue and check for queue work */
  762. spin_lock_irqsave(&drv_data->lock, flags);
  763. if (list_empty(&drv_data->queue) || drv_data->run == QUEUE_STOPPED) {
  764. /* pumper kicked off but no work to do */
  765. drv_data->busy = 0;
  766. spin_unlock_irqrestore(&drv_data->lock, flags);
  767. return;
  768. }
  769. /* Make sure we are not already running a message */
  770. if (drv_data->cur_msg) {
  771. spin_unlock_irqrestore(&drv_data->lock, flags);
  772. return;
  773. }
  774. /* Extract head of queue */
  775. drv_data->cur_msg = list_entry(drv_data->queue.next,
  776. struct spi_message, queue);
  777. /* Setup the SSP using the per chip configuration */
  778. drv_data->cur_chip = spi_get_ctldata(drv_data->cur_msg->spi);
  779. bfin_spi_restore_state(drv_data);
  780. list_del_init(&drv_data->cur_msg->queue);
  781. /* Initial message state */
  782. drv_data->cur_msg->state = START_STATE;
  783. drv_data->cur_transfer = list_entry(drv_data->cur_msg->transfers.next,
  784. struct spi_transfer, transfer_list);
  785. dev_dbg(&drv_data->pdev->dev, "got a message to pump, "
  786. "state is set to: baud %d, flag 0x%x, ctl 0x%x\n",
  787. drv_data->cur_chip->baud, drv_data->cur_chip->flag,
  788. drv_data->cur_chip->ctl_reg);
  789. dev_dbg(&drv_data->pdev->dev,
  790. "the first transfer len is %d\n",
  791. drv_data->cur_transfer->len);
  792. /* Mark as busy and launch transfers */
  793. tasklet_schedule(&drv_data->pump_transfers);
  794. drv_data->busy = 1;
  795. spin_unlock_irqrestore(&drv_data->lock, flags);
  796. }
  797. /*
  798. * got a msg to transfer, queue it in drv_data->queue.
  799. * And kick off message pumper
  800. */
  801. static int bfin_spi_transfer(struct spi_device *spi, struct spi_message *msg)
  802. {
  803. struct driver_data *drv_data = spi_master_get_devdata(spi->master);
  804. unsigned long flags;
  805. spin_lock_irqsave(&drv_data->lock, flags);
  806. if (drv_data->run == QUEUE_STOPPED) {
  807. spin_unlock_irqrestore(&drv_data->lock, flags);
  808. return -ESHUTDOWN;
  809. }
  810. msg->actual_length = 0;
  811. msg->status = -EINPROGRESS;
  812. msg->state = START_STATE;
  813. dev_dbg(&spi->dev, "adding an msg in transfer() \n");
  814. list_add_tail(&msg->queue, &drv_data->queue);
  815. if (drv_data->run == QUEUE_RUNNING && !drv_data->busy)
  816. queue_work(drv_data->workqueue, &drv_data->pump_messages);
  817. spin_unlock_irqrestore(&drv_data->lock, flags);
  818. return 0;
  819. }
  820. #define MAX_SPI_SSEL 7
  821. static u16 ssel[][MAX_SPI_SSEL] = {
  822. {P_SPI0_SSEL1, P_SPI0_SSEL2, P_SPI0_SSEL3,
  823. P_SPI0_SSEL4, P_SPI0_SSEL5,
  824. P_SPI0_SSEL6, P_SPI0_SSEL7},
  825. {P_SPI1_SSEL1, P_SPI1_SSEL2, P_SPI1_SSEL3,
  826. P_SPI1_SSEL4, P_SPI1_SSEL5,
  827. P_SPI1_SSEL6, P_SPI1_SSEL7},
  828. {P_SPI2_SSEL1, P_SPI2_SSEL2, P_SPI2_SSEL3,
  829. P_SPI2_SSEL4, P_SPI2_SSEL5,
  830. P_SPI2_SSEL6, P_SPI2_SSEL7},
  831. };
  832. /* first setup for new devices */
  833. static int bfin_spi_setup(struct spi_device *spi)
  834. {
  835. struct bfin5xx_spi_chip *chip_info = NULL;
  836. struct chip_data *chip;
  837. struct driver_data *drv_data = spi_master_get_devdata(spi->master);
  838. int ret;
  839. if (spi->bits_per_word != 8 && spi->bits_per_word != 16)
  840. return -EINVAL;
  841. /* Only alloc (or use chip_info) on first setup */
  842. chip = spi_get_ctldata(spi);
  843. if (chip == NULL) {
  844. chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
  845. if (!chip)
  846. return -ENOMEM;
  847. chip->enable_dma = 0;
  848. chip_info = spi->controller_data;
  849. }
  850. /* chip_info isn't always needed */
  851. if (chip_info) {
  852. /* Make sure people stop trying to set fields via ctl_reg
  853. * when they should actually be using common SPI framework.
  854. * Currently we let through: WOM EMISO PSSE GM SZ TIMOD.
  855. * Not sure if a user actually needs/uses any of these,
  856. * but let's assume (for now) they do.
  857. */
  858. if (chip_info->ctl_reg & (SPE|MSTR|CPOL|CPHA|LSBF|SIZE)) {
  859. dev_err(&spi->dev, "do not set bits in ctl_reg "
  860. "that the SPI framework manages\n");
  861. return -EINVAL;
  862. }
  863. chip->enable_dma = chip_info->enable_dma != 0
  864. && drv_data->master_info->enable_dma;
  865. chip->ctl_reg = chip_info->ctl_reg;
  866. chip->bits_per_word = chip_info->bits_per_word;
  867. chip->cs_change_per_word = chip_info->cs_change_per_word;
  868. chip->cs_chg_udelay = chip_info->cs_chg_udelay;
  869. chip->cs_gpio = chip_info->cs_gpio;
  870. chip->idle_tx_val = chip_info->idle_tx_val;
  871. }
  872. /* translate common spi framework into our register */
  873. if (spi->mode & SPI_CPOL)
  874. chip->ctl_reg |= CPOL;
  875. if (spi->mode & SPI_CPHA)
  876. chip->ctl_reg |= CPHA;
  877. if (spi->mode & SPI_LSB_FIRST)
  878. chip->ctl_reg |= LSBF;
  879. /* we dont support running in slave mode (yet?) */
  880. chip->ctl_reg |= MSTR;
  881. /*
  882. * if any one SPI chip is registered and wants DMA, request the
  883. * DMA channel for it
  884. */
  885. if (chip->enable_dma && !drv_data->dma_requested) {
  886. /* register dma irq handler */
  887. if (request_dma(drv_data->dma_channel, "BFIN_SPI_DMA") < 0) {
  888. dev_dbg(&spi->dev,
  889. "Unable to request BlackFin SPI DMA channel\n");
  890. return -ENODEV;
  891. }
  892. if (set_dma_callback(drv_data->dma_channel,
  893. bfin_spi_dma_irq_handler, drv_data) < 0) {
  894. dev_dbg(&spi->dev, "Unable to set dma callback\n");
  895. return -EPERM;
  896. }
  897. dma_disable_irq(drv_data->dma_channel);
  898. drv_data->dma_requested = 1;
  899. }
  900. /*
  901. * Notice: for blackfin, the speed_hz is the value of register
  902. * SPI_BAUD, not the real baudrate
  903. */
  904. chip->baud = hz_to_spi_baud(spi->max_speed_hz);
  905. chip->flag = 1 << (spi->chip_select);
  906. chip->chip_select_num = spi->chip_select;
  907. if (chip->chip_select_num == 0) {
  908. ret = gpio_request(chip->cs_gpio, spi->modalias);
  909. if (ret) {
  910. if (drv_data->dma_requested)
  911. free_dma(drv_data->dma_channel);
  912. return ret;
  913. }
  914. gpio_direction_output(chip->cs_gpio, 1);
  915. }
  916. switch (chip->bits_per_word) {
  917. case 8:
  918. chip->n_bytes = 1;
  919. chip->width = CFG_SPI_WORDSIZE8;
  920. chip->read = chip->cs_change_per_word ?
  921. bfin_spi_u8_cs_chg_reader : bfin_spi_u8_reader;
  922. chip->write = chip->cs_change_per_word ?
  923. bfin_spi_u8_cs_chg_writer : bfin_spi_u8_writer;
  924. chip->duplex = chip->cs_change_per_word ?
  925. bfin_spi_u8_cs_chg_duplex : bfin_spi_u8_duplex;
  926. break;
  927. case 16:
  928. chip->n_bytes = 2;
  929. chip->width = CFG_SPI_WORDSIZE16;
  930. chip->read = chip->cs_change_per_word ?
  931. bfin_spi_u16_cs_chg_reader : bfin_spi_u16_reader;
  932. chip->write = chip->cs_change_per_word ?
  933. bfin_spi_u16_cs_chg_writer : bfin_spi_u16_writer;
  934. chip->duplex = chip->cs_change_per_word ?
  935. bfin_spi_u16_cs_chg_duplex : bfin_spi_u16_duplex;
  936. break;
  937. default:
  938. dev_err(&spi->dev, "%d bits_per_word is not supported\n",
  939. chip->bits_per_word);
  940. if (chip_info)
  941. kfree(chip);
  942. return -ENODEV;
  943. }
  944. dev_dbg(&spi->dev, "setup spi chip %s, width is %d, dma is %d\n",
  945. spi->modalias, chip->width, chip->enable_dma);
  946. dev_dbg(&spi->dev, "ctl_reg is 0x%x, flag_reg is 0x%x\n",
  947. chip->ctl_reg, chip->flag);
  948. spi_set_ctldata(spi, chip);
  949. dev_dbg(&spi->dev, "chip select number is %d\n", chip->chip_select_num);
  950. if ((chip->chip_select_num > 0)
  951. && (chip->chip_select_num <= spi->master->num_chipselect))
  952. peripheral_request(ssel[spi->master->bus_num]
  953. [chip->chip_select_num-1], spi->modalias);
  954. bfin_spi_cs_deactive(drv_data, chip);
  955. return 0;
  956. }
  957. /*
  958. * callback for spi framework.
  959. * clean driver specific data
  960. */
  961. static void bfin_spi_cleanup(struct spi_device *spi)
  962. {
  963. struct chip_data *chip = spi_get_ctldata(spi);
  964. if (!chip)
  965. return;
  966. if ((chip->chip_select_num > 0)
  967. && (chip->chip_select_num <= spi->master->num_chipselect))
  968. peripheral_free(ssel[spi->master->bus_num]
  969. [chip->chip_select_num-1]);
  970. if (chip->chip_select_num == 0)
  971. gpio_free(chip->cs_gpio);
  972. kfree(chip);
  973. }
  974. static inline int bfin_spi_init_queue(struct driver_data *drv_data)
  975. {
  976. INIT_LIST_HEAD(&drv_data->queue);
  977. spin_lock_init(&drv_data->lock);
  978. drv_data->run = QUEUE_STOPPED;
  979. drv_data->busy = 0;
  980. /* init transfer tasklet */
  981. tasklet_init(&drv_data->pump_transfers,
  982. bfin_spi_pump_transfers, (unsigned long)drv_data);
  983. /* init messages workqueue */
  984. INIT_WORK(&drv_data->pump_messages, bfin_spi_pump_messages);
  985. drv_data->workqueue = create_singlethread_workqueue(
  986. dev_name(drv_data->master->dev.parent));
  987. if (drv_data->workqueue == NULL)
  988. return -EBUSY;
  989. return 0;
  990. }
  991. static inline int bfin_spi_start_queue(struct driver_data *drv_data)
  992. {
  993. unsigned long flags;
  994. spin_lock_irqsave(&drv_data->lock, flags);
  995. if (drv_data->run == QUEUE_RUNNING || drv_data->busy) {
  996. spin_unlock_irqrestore(&drv_data->lock, flags);
  997. return -EBUSY;
  998. }
  999. drv_data->run = QUEUE_RUNNING;
  1000. drv_data->cur_msg = NULL;
  1001. drv_data->cur_transfer = NULL;
  1002. drv_data->cur_chip = NULL;
  1003. spin_unlock_irqrestore(&drv_data->lock, flags);
  1004. queue_work(drv_data->workqueue, &drv_data->pump_messages);
  1005. return 0;
  1006. }
  1007. static inline int bfin_spi_stop_queue(struct driver_data *drv_data)
  1008. {
  1009. unsigned long flags;
  1010. unsigned limit = 500;
  1011. int status = 0;
  1012. spin_lock_irqsave(&drv_data->lock, flags);
  1013. /*
  1014. * This is a bit lame, but is optimized for the common execution path.
  1015. * A wait_queue on the drv_data->busy could be used, but then the common
  1016. * execution path (pump_messages) would be required to call wake_up or
  1017. * friends on every SPI message. Do this instead
  1018. */
  1019. drv_data->run = QUEUE_STOPPED;
  1020. while (!list_empty(&drv_data->queue) && drv_data->busy && limit--) {
  1021. spin_unlock_irqrestore(&drv_data->lock, flags);
  1022. msleep(10);
  1023. spin_lock_irqsave(&drv_data->lock, flags);
  1024. }
  1025. if (!list_empty(&drv_data->queue) || drv_data->busy)
  1026. status = -EBUSY;
  1027. spin_unlock_irqrestore(&drv_data->lock, flags);
  1028. return status;
  1029. }
  1030. static inline int bfin_spi_destroy_queue(struct driver_data *drv_data)
  1031. {
  1032. int status;
  1033. status = bfin_spi_stop_queue(drv_data);
  1034. if (status != 0)
  1035. return status;
  1036. destroy_workqueue(drv_data->workqueue);
  1037. return 0;
  1038. }
  1039. static int __init bfin_spi_probe(struct platform_device *pdev)
  1040. {
  1041. struct device *dev = &pdev->dev;
  1042. struct bfin5xx_spi_master *platform_info;
  1043. struct spi_master *master;
  1044. struct driver_data *drv_data = 0;
  1045. struct resource *res;
  1046. int status = 0;
  1047. platform_info = dev->platform_data;
  1048. /* Allocate master with space for drv_data */
  1049. master = spi_alloc_master(dev, sizeof(struct driver_data) + 16);
  1050. if (!master) {
  1051. dev_err(&pdev->dev, "can not alloc spi_master\n");
  1052. return -ENOMEM;
  1053. }
  1054. drv_data = spi_master_get_devdata(master);
  1055. drv_data->master = master;
  1056. drv_data->master_info = platform_info;
  1057. drv_data->pdev = pdev;
  1058. drv_data->pin_req = platform_info->pin_req;
  1059. /* the spi->mode bits supported by this driver: */
  1060. master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST;
  1061. master->bus_num = pdev->id;
  1062. master->num_chipselect = platform_info->num_chipselect;
  1063. master->cleanup = bfin_spi_cleanup;
  1064. master->setup = bfin_spi_setup;
  1065. master->transfer = bfin_spi_transfer;
  1066. /* Find and map our resources */
  1067. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1068. if (res == NULL) {
  1069. dev_err(dev, "Cannot get IORESOURCE_MEM\n");
  1070. status = -ENOENT;
  1071. goto out_error_get_res;
  1072. }
  1073. drv_data->regs_base = ioremap(res->start, resource_size(res));
  1074. if (drv_data->regs_base == NULL) {
  1075. dev_err(dev, "Cannot map IO\n");
  1076. status = -ENXIO;
  1077. goto out_error_ioremap;
  1078. }
  1079. drv_data->dma_channel = platform_get_irq(pdev, 0);
  1080. if (drv_data->dma_channel < 0) {
  1081. dev_err(dev, "No DMA channel specified\n");
  1082. status = -ENOENT;
  1083. goto out_error_no_dma_ch;
  1084. }
  1085. /* Initial and start queue */
  1086. status = bfin_spi_init_queue(drv_data);
  1087. if (status != 0) {
  1088. dev_err(dev, "problem initializing queue\n");
  1089. goto out_error_queue_alloc;
  1090. }
  1091. status = bfin_spi_start_queue(drv_data);
  1092. if (status != 0) {
  1093. dev_err(dev, "problem starting queue\n");
  1094. goto out_error_queue_alloc;
  1095. }
  1096. status = peripheral_request_list(drv_data->pin_req, DRV_NAME);
  1097. if (status != 0) {
  1098. dev_err(&pdev->dev, ": Requesting Peripherals failed\n");
  1099. goto out_error_queue_alloc;
  1100. }
  1101. /* Register with the SPI framework */
  1102. platform_set_drvdata(pdev, drv_data);
  1103. status = spi_register_master(master);
  1104. if (status != 0) {
  1105. dev_err(dev, "problem registering spi master\n");
  1106. goto out_error_queue_alloc;
  1107. }
  1108. dev_info(dev, "%s, Version %s, regs_base@%p, dma channel@%d\n",
  1109. DRV_DESC, DRV_VERSION, drv_data->regs_base,
  1110. drv_data->dma_channel);
  1111. return status;
  1112. out_error_queue_alloc:
  1113. bfin_spi_destroy_queue(drv_data);
  1114. out_error_no_dma_ch:
  1115. iounmap((void *) drv_data->regs_base);
  1116. out_error_ioremap:
  1117. out_error_get_res:
  1118. spi_master_put(master);
  1119. return status;
  1120. }
  1121. /* stop hardware and remove the driver */
  1122. static int __devexit bfin_spi_remove(struct platform_device *pdev)
  1123. {
  1124. struct driver_data *drv_data = platform_get_drvdata(pdev);
  1125. int status = 0;
  1126. if (!drv_data)
  1127. return 0;
  1128. /* Remove the queue */
  1129. status = bfin_spi_destroy_queue(drv_data);
  1130. if (status != 0)
  1131. return status;
  1132. /* Disable the SSP at the peripheral and SOC level */
  1133. bfin_spi_disable(drv_data);
  1134. /* Release DMA */
  1135. if (drv_data->master_info->enable_dma) {
  1136. if (dma_channel_active(drv_data->dma_channel))
  1137. free_dma(drv_data->dma_channel);
  1138. }
  1139. /* Disconnect from the SPI framework */
  1140. spi_unregister_master(drv_data->master);
  1141. peripheral_free_list(drv_data->pin_req);
  1142. /* Prevent double remove */
  1143. platform_set_drvdata(pdev, NULL);
  1144. return 0;
  1145. }
  1146. #ifdef CONFIG_PM
  1147. static int bfin_spi_suspend(struct platform_device *pdev, pm_message_t state)
  1148. {
  1149. struct driver_data *drv_data = platform_get_drvdata(pdev);
  1150. int status = 0;
  1151. status = bfin_spi_stop_queue(drv_data);
  1152. if (status != 0)
  1153. return status;
  1154. /* stop hardware */
  1155. bfin_spi_disable(drv_data);
  1156. return 0;
  1157. }
  1158. static int bfin_spi_resume(struct platform_device *pdev)
  1159. {
  1160. struct driver_data *drv_data = platform_get_drvdata(pdev);
  1161. int status = 0;
  1162. /* Enable the SPI interface */
  1163. bfin_spi_enable(drv_data);
  1164. /* Start the queue running */
  1165. status = bfin_spi_start_queue(drv_data);
  1166. if (status != 0) {
  1167. dev_err(&pdev->dev, "problem starting queue (%d)\n", status);
  1168. return status;
  1169. }
  1170. return 0;
  1171. }
  1172. #else
  1173. #define bfin_spi_suspend NULL
  1174. #define bfin_spi_resume NULL
  1175. #endif /* CONFIG_PM */
  1176. MODULE_ALIAS("platform:bfin-spi");
  1177. static struct platform_driver bfin_spi_driver = {
  1178. .driver = {
  1179. .name = DRV_NAME,
  1180. .owner = THIS_MODULE,
  1181. },
  1182. .suspend = bfin_spi_suspend,
  1183. .resume = bfin_spi_resume,
  1184. .remove = __devexit_p(bfin_spi_remove),
  1185. };
  1186. static int __init bfin_spi_init(void)
  1187. {
  1188. return platform_driver_probe(&bfin_spi_driver, bfin_spi_probe);
  1189. }
  1190. module_init(bfin_spi_init);
  1191. static void __exit bfin_spi_exit(void)
  1192. {
  1193. platform_driver_unregister(&bfin_spi_driver);
  1194. }
  1195. module_exit(bfin_spi_exit);