dw_spi.c 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990
  1. /*
  2. * dw_spi.c - Designware SPI core controller driver (refer pxa2xx_spi.c)
  3. *
  4. * Copyright (c) 2009, Intel Corporation.
  5. *
  6. * This program is free software; you can redistribute it and/or modify it
  7. * under the terms and conditions of the GNU General Public License,
  8. * version 2, as published by the Free Software Foundation.
  9. *
  10. * This program is distributed in the hope it will be useful, but WITHOUT
  11. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  13. * more details.
  14. *
  15. * You should have received a copy of the GNU General Public License along with
  16. * this program; if not, write to the Free Software Foundation, Inc.,
  17. * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  18. */
  19. #include <linux/dma-mapping.h>
  20. #include <linux/interrupt.h>
  21. #include <linux/highmem.h>
  22. #include <linux/delay.h>
  23. #include <linux/slab.h>
  24. #include <linux/spi/dw_spi.h>
  25. #include <linux/spi/spi.h>
  26. #ifdef CONFIG_DEBUG_FS
  27. #include <linux/debugfs.h>
  28. #endif
  29. #define START_STATE ((void *)0)
  30. #define RUNNING_STATE ((void *)1)
  31. #define DONE_STATE ((void *)2)
  32. #define ERROR_STATE ((void *)-1)
  33. #define QUEUE_RUNNING 0
  34. #define QUEUE_STOPPED 1
  35. #define MRST_SPI_DEASSERT 0
  36. #define MRST_SPI_ASSERT 1
  37. /* Slave spi_dev related */
  38. struct chip_data {
  39. u16 cr0;
  40. u8 cs; /* chip select pin */
  41. u8 n_bytes; /* current is a 1/2/4 byte op */
  42. u8 tmode; /* TR/TO/RO/EEPROM */
  43. u8 type; /* SPI/SSP/MicroWire */
  44. u8 poll_mode; /* 1 means use poll mode */
  45. u32 dma_width;
  46. u32 rx_threshold;
  47. u32 tx_threshold;
  48. u8 enable_dma;
  49. u8 bits_per_word;
  50. u16 clk_div; /* baud rate divider */
  51. u32 speed_hz; /* baud rate */
  52. int (*write)(struct dw_spi *dws);
  53. int (*read)(struct dw_spi *dws);
  54. void (*cs_control)(u32 command);
  55. };
  56. #ifdef CONFIG_DEBUG_FS
  57. static int spi_show_regs_open(struct inode *inode, struct file *file)
  58. {
  59. file->private_data = inode->i_private;
  60. return 0;
  61. }
  62. #define SPI_REGS_BUFSIZE 1024
  63. static ssize_t spi_show_regs(struct file *file, char __user *user_buf,
  64. size_t count, loff_t *ppos)
  65. {
  66. struct dw_spi *dws;
  67. char *buf;
  68. u32 len = 0;
  69. ssize_t ret;
  70. dws = file->private_data;
  71. buf = kzalloc(SPI_REGS_BUFSIZE, GFP_KERNEL);
  72. if (!buf)
  73. return 0;
  74. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  75. "MRST SPI0 registers:\n");
  76. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  77. "=================================\n");
  78. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  79. "CTRL0: \t\t0x%08x\n", dw_readl(dws, ctrl0));
  80. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  81. "CTRL1: \t\t0x%08x\n", dw_readl(dws, ctrl1));
  82. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  83. "SSIENR: \t0x%08x\n", dw_readl(dws, ssienr));
  84. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  85. "SER: \t\t0x%08x\n", dw_readl(dws, ser));
  86. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  87. "BAUDR: \t\t0x%08x\n", dw_readl(dws, baudr));
  88. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  89. "TXFTLR: \t0x%08x\n", dw_readl(dws, txfltr));
  90. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  91. "RXFTLR: \t0x%08x\n", dw_readl(dws, rxfltr));
  92. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  93. "TXFLR: \t\t0x%08x\n", dw_readl(dws, txflr));
  94. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  95. "RXFLR: \t\t0x%08x\n", dw_readl(dws, rxflr));
  96. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  97. "SR: \t\t0x%08x\n", dw_readl(dws, sr));
  98. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  99. "IMR: \t\t0x%08x\n", dw_readl(dws, imr));
  100. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  101. "ISR: \t\t0x%08x\n", dw_readl(dws, isr));
  102. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  103. "DMACR: \t\t0x%08x\n", dw_readl(dws, dmacr));
  104. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  105. "DMATDLR: \t0x%08x\n", dw_readl(dws, dmatdlr));
  106. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  107. "DMARDLR: \t0x%08x\n", dw_readl(dws, dmardlr));
  108. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  109. "=================================\n");
  110. ret = simple_read_from_buffer(user_buf, count, ppos, buf, len);
  111. kfree(buf);
  112. return ret;
  113. }
  114. static const struct file_operations mrst_spi_regs_ops = {
  115. .owner = THIS_MODULE,
  116. .open = spi_show_regs_open,
  117. .read = spi_show_regs,
  118. };
  119. static int mrst_spi_debugfs_init(struct dw_spi *dws)
  120. {
  121. dws->debugfs = debugfs_create_dir("mrst_spi", NULL);
  122. if (!dws->debugfs)
  123. return -ENOMEM;
  124. debugfs_create_file("registers", S_IFREG | S_IRUGO,
  125. dws->debugfs, (void *)dws, &mrst_spi_regs_ops);
  126. return 0;
  127. }
  128. static void mrst_spi_debugfs_remove(struct dw_spi *dws)
  129. {
  130. if (dws->debugfs)
  131. debugfs_remove_recursive(dws->debugfs);
  132. }
  133. #else
  134. static inline int mrst_spi_debugfs_init(struct dw_spi *dws)
  135. {
  136. return 0;
  137. }
  138. static inline void mrst_spi_debugfs_remove(struct dw_spi *dws)
  139. {
  140. }
  141. #endif /* CONFIG_DEBUG_FS */
  142. static void wait_till_not_busy(struct dw_spi *dws)
  143. {
  144. unsigned long end = jiffies + 1 + usecs_to_jiffies(1000);
  145. while (time_before(jiffies, end)) {
  146. if (!(dw_readw(dws, sr) & SR_BUSY))
  147. return;
  148. }
  149. dev_err(&dws->master->dev,
  150. "DW SPI: Status keeps busy for 1000us after a read/write!\n");
  151. }
  152. static void flush(struct dw_spi *dws)
  153. {
  154. while (dw_readw(dws, sr) & SR_RF_NOT_EMPT)
  155. dw_readw(dws, dr);
  156. wait_till_not_busy(dws);
  157. }
  158. static void null_cs_control(u32 command)
  159. {
  160. }
  161. static int null_writer(struct dw_spi *dws)
  162. {
  163. u8 n_bytes = dws->n_bytes;
  164. if (!(dw_readw(dws, sr) & SR_TF_NOT_FULL)
  165. || (dws->tx == dws->tx_end))
  166. return 0;
  167. dw_writew(dws, dr, 0);
  168. dws->tx += n_bytes;
  169. wait_till_not_busy(dws);
  170. return 1;
  171. }
  172. static int null_reader(struct dw_spi *dws)
  173. {
  174. u8 n_bytes = dws->n_bytes;
  175. while ((dw_readw(dws, sr) & SR_RF_NOT_EMPT)
  176. && (dws->rx < dws->rx_end)) {
  177. dw_readw(dws, dr);
  178. dws->rx += n_bytes;
  179. }
  180. wait_till_not_busy(dws);
  181. return dws->rx == dws->rx_end;
  182. }
  183. static int u8_writer(struct dw_spi *dws)
  184. {
  185. if (!(dw_readw(dws, sr) & SR_TF_NOT_FULL)
  186. || (dws->tx == dws->tx_end))
  187. return 0;
  188. dw_writew(dws, dr, *(u8 *)(dws->tx));
  189. ++dws->tx;
  190. wait_till_not_busy(dws);
  191. return 1;
  192. }
  193. static int u8_reader(struct dw_spi *dws)
  194. {
  195. while ((dw_readw(dws, sr) & SR_RF_NOT_EMPT)
  196. && (dws->rx < dws->rx_end)) {
  197. *(u8 *)(dws->rx) = dw_readw(dws, dr);
  198. ++dws->rx;
  199. }
  200. wait_till_not_busy(dws);
  201. return dws->rx == dws->rx_end;
  202. }
  203. static int u16_writer(struct dw_spi *dws)
  204. {
  205. if (!(dw_readw(dws, sr) & SR_TF_NOT_FULL)
  206. || (dws->tx == dws->tx_end))
  207. return 0;
  208. dw_writew(dws, dr, *(u16 *)(dws->tx));
  209. dws->tx += 2;
  210. wait_till_not_busy(dws);
  211. return 1;
  212. }
  213. static int u16_reader(struct dw_spi *dws)
  214. {
  215. u16 temp;
  216. while ((dw_readw(dws, sr) & SR_RF_NOT_EMPT)
  217. && (dws->rx < dws->rx_end)) {
  218. temp = dw_readw(dws, dr);
  219. *(u16 *)(dws->rx) = temp;
  220. dws->rx += 2;
  221. }
  222. wait_till_not_busy(dws);
  223. return dws->rx == dws->rx_end;
  224. }
  225. static void *next_transfer(struct dw_spi *dws)
  226. {
  227. struct spi_message *msg = dws->cur_msg;
  228. struct spi_transfer *trans = dws->cur_transfer;
  229. /* Move to next transfer */
  230. if (trans->transfer_list.next != &msg->transfers) {
  231. dws->cur_transfer =
  232. list_entry(trans->transfer_list.next,
  233. struct spi_transfer,
  234. transfer_list);
  235. return RUNNING_STATE;
  236. } else
  237. return DONE_STATE;
  238. }
  239. /*
  240. * Note: first step is the protocol driver prepares
  241. * a dma-capable memory, and this func just need translate
  242. * the virt addr to physical
  243. */
  244. static int map_dma_buffers(struct dw_spi *dws)
  245. {
  246. if (!dws->cur_msg->is_dma_mapped || !dws->dma_inited
  247. || !dws->cur_chip->enable_dma)
  248. return 0;
  249. if (dws->cur_transfer->tx_dma)
  250. dws->tx_dma = dws->cur_transfer->tx_dma;
  251. if (dws->cur_transfer->rx_dma)
  252. dws->rx_dma = dws->cur_transfer->rx_dma;
  253. return 1;
  254. }
  255. /* Caller already set message->status; dma and pio irqs are blocked */
  256. static void giveback(struct dw_spi *dws)
  257. {
  258. struct spi_transfer *last_transfer;
  259. unsigned long flags;
  260. struct spi_message *msg;
  261. spin_lock_irqsave(&dws->lock, flags);
  262. msg = dws->cur_msg;
  263. dws->cur_msg = NULL;
  264. dws->cur_transfer = NULL;
  265. dws->prev_chip = dws->cur_chip;
  266. dws->cur_chip = NULL;
  267. dws->dma_mapped = 0;
  268. queue_work(dws->workqueue, &dws->pump_messages);
  269. spin_unlock_irqrestore(&dws->lock, flags);
  270. last_transfer = list_entry(msg->transfers.prev,
  271. struct spi_transfer,
  272. transfer_list);
  273. if (!last_transfer->cs_change)
  274. dws->cs_control(MRST_SPI_DEASSERT);
  275. msg->state = NULL;
  276. if (msg->complete)
  277. msg->complete(msg->context);
  278. }
  279. static void int_error_stop(struct dw_spi *dws, const char *msg)
  280. {
  281. /* Stop and reset hw */
  282. flush(dws);
  283. spi_enable_chip(dws, 0);
  284. dev_err(&dws->master->dev, "%s\n", msg);
  285. dws->cur_msg->state = ERROR_STATE;
  286. tasklet_schedule(&dws->pump_transfers);
  287. }
  288. static void transfer_complete(struct dw_spi *dws)
  289. {
  290. /* Update total byte transfered return count actual bytes read */
  291. dws->cur_msg->actual_length += dws->len;
  292. /* Move to next transfer */
  293. dws->cur_msg->state = next_transfer(dws);
  294. /* Handle end of message */
  295. if (dws->cur_msg->state == DONE_STATE) {
  296. dws->cur_msg->status = 0;
  297. giveback(dws);
  298. } else
  299. tasklet_schedule(&dws->pump_transfers);
  300. }
  301. static irqreturn_t interrupt_transfer(struct dw_spi *dws)
  302. {
  303. u16 irq_status, irq_mask = 0x3f;
  304. u32 int_level = dws->fifo_len / 2;
  305. u32 left;
  306. irq_status = dw_readw(dws, isr) & irq_mask;
  307. /* Error handling */
  308. if (irq_status & (SPI_INT_TXOI | SPI_INT_RXOI | SPI_INT_RXUI)) {
  309. dw_readw(dws, txoicr);
  310. dw_readw(dws, rxoicr);
  311. dw_readw(dws, rxuicr);
  312. int_error_stop(dws, "interrupt_transfer: fifo overrun");
  313. return IRQ_HANDLED;
  314. }
  315. if (irq_status & SPI_INT_TXEI) {
  316. spi_mask_intr(dws, SPI_INT_TXEI);
  317. left = (dws->tx_end - dws->tx) / dws->n_bytes;
  318. left = (left > int_level) ? int_level : left;
  319. while (left--)
  320. dws->write(dws);
  321. dws->read(dws);
  322. /* Re-enable the IRQ if there is still data left to tx */
  323. if (dws->tx_end > dws->tx)
  324. spi_umask_intr(dws, SPI_INT_TXEI);
  325. else
  326. transfer_complete(dws);
  327. }
  328. return IRQ_HANDLED;
  329. }
  330. static irqreturn_t dw_spi_irq(int irq, void *dev_id)
  331. {
  332. struct dw_spi *dws = dev_id;
  333. if (!dws->cur_msg) {
  334. spi_mask_intr(dws, SPI_INT_TXEI);
  335. /* Never fail */
  336. return IRQ_HANDLED;
  337. }
  338. return dws->transfer_handler(dws);
  339. }
  340. /* Must be called inside pump_transfers() */
  341. static void poll_transfer(struct dw_spi *dws)
  342. {
  343. while (dws->write(dws))
  344. dws->read(dws);
  345. transfer_complete(dws);
  346. }
  347. static void dma_transfer(struct dw_spi *dws, int cs_change)
  348. {
  349. }
  350. static void pump_transfers(unsigned long data)
  351. {
  352. struct dw_spi *dws = (struct dw_spi *)data;
  353. struct spi_message *message = NULL;
  354. struct spi_transfer *transfer = NULL;
  355. struct spi_transfer *previous = NULL;
  356. struct spi_device *spi = NULL;
  357. struct chip_data *chip = NULL;
  358. u8 bits = 0;
  359. u8 imask = 0;
  360. u8 cs_change = 0;
  361. u16 txint_level = 0;
  362. u16 clk_div = 0;
  363. u32 speed = 0;
  364. u32 cr0 = 0;
  365. /* Get current state information */
  366. message = dws->cur_msg;
  367. transfer = dws->cur_transfer;
  368. chip = dws->cur_chip;
  369. spi = message->spi;
  370. if (unlikely(!chip->clk_div))
  371. chip->clk_div = dws->max_freq / chip->speed_hz;
  372. if (message->state == ERROR_STATE) {
  373. message->status = -EIO;
  374. goto early_exit;
  375. }
  376. /* Handle end of message */
  377. if (message->state == DONE_STATE) {
  378. message->status = 0;
  379. goto early_exit;
  380. }
  381. /* Delay if requested at end of transfer*/
  382. if (message->state == RUNNING_STATE) {
  383. previous = list_entry(transfer->transfer_list.prev,
  384. struct spi_transfer,
  385. transfer_list);
  386. if (previous->delay_usecs)
  387. udelay(previous->delay_usecs);
  388. }
  389. dws->n_bytes = chip->n_bytes;
  390. dws->dma_width = chip->dma_width;
  391. dws->cs_control = chip->cs_control;
  392. dws->rx_dma = transfer->rx_dma;
  393. dws->tx_dma = transfer->tx_dma;
  394. dws->tx = (void *)transfer->tx_buf;
  395. dws->tx_end = dws->tx + transfer->len;
  396. dws->rx = transfer->rx_buf;
  397. dws->rx_end = dws->rx + transfer->len;
  398. dws->write = dws->tx ? chip->write : null_writer;
  399. dws->read = dws->rx ? chip->read : null_reader;
  400. dws->cs_change = transfer->cs_change;
  401. dws->len = dws->cur_transfer->len;
  402. if (chip != dws->prev_chip)
  403. cs_change = 1;
  404. cr0 = chip->cr0;
  405. /* Handle per transfer options for bpw and speed */
  406. if (transfer->speed_hz) {
  407. speed = chip->speed_hz;
  408. if (transfer->speed_hz != speed) {
  409. speed = transfer->speed_hz;
  410. if (speed > dws->max_freq) {
  411. printk(KERN_ERR "MRST SPI0: unsupported"
  412. "freq: %dHz\n", speed);
  413. message->status = -EIO;
  414. goto early_exit;
  415. }
  416. /* clk_div doesn't support odd number */
  417. clk_div = dws->max_freq / speed;
  418. clk_div = (clk_div + 1) & 0xfffe;
  419. chip->speed_hz = speed;
  420. chip->clk_div = clk_div;
  421. }
  422. }
  423. if (transfer->bits_per_word) {
  424. bits = transfer->bits_per_word;
  425. switch (bits) {
  426. case 8:
  427. dws->n_bytes = 1;
  428. dws->dma_width = 1;
  429. dws->read = (dws->read != null_reader) ?
  430. u8_reader : null_reader;
  431. dws->write = (dws->write != null_writer) ?
  432. u8_writer : null_writer;
  433. break;
  434. case 16:
  435. dws->n_bytes = 2;
  436. dws->dma_width = 2;
  437. dws->read = (dws->read != null_reader) ?
  438. u16_reader : null_reader;
  439. dws->write = (dws->write != null_writer) ?
  440. u16_writer : null_writer;
  441. break;
  442. default:
  443. printk(KERN_ERR "MRST SPI0: unsupported bits:"
  444. "%db\n", bits);
  445. message->status = -EIO;
  446. goto early_exit;
  447. }
  448. cr0 = (bits - 1)
  449. | (chip->type << SPI_FRF_OFFSET)
  450. | (spi->mode << SPI_MODE_OFFSET)
  451. | (chip->tmode << SPI_TMOD_OFFSET);
  452. }
  453. message->state = RUNNING_STATE;
  454. /*
  455. * Adjust transfer mode if necessary. Requires platform dependent
  456. * chipselect mechanism.
  457. */
  458. if (dws->cs_control) {
  459. if (dws->rx && dws->tx)
  460. chip->tmode = 0x00;
  461. else if (dws->rx)
  462. chip->tmode = 0x02;
  463. else
  464. chip->tmode = 0x01;
  465. cr0 &= ~(0x3 << SPI_MODE_OFFSET);
  466. cr0 |= (chip->tmode << SPI_TMOD_OFFSET);
  467. }
  468. /* Check if current transfer is a DMA transaction */
  469. dws->dma_mapped = map_dma_buffers(dws);
  470. /*
  471. * Interrupt mode
  472. * we only need set the TXEI IRQ, as TX/RX always happen syncronizely
  473. */
  474. if (!dws->dma_mapped && !chip->poll_mode) {
  475. int templen = dws->len / dws->n_bytes;
  476. txint_level = dws->fifo_len / 2;
  477. txint_level = (templen > txint_level) ? txint_level : templen;
  478. imask |= SPI_INT_TXEI;
  479. dws->transfer_handler = interrupt_transfer;
  480. }
  481. /*
  482. * Reprogram registers only if
  483. * 1. chip select changes
  484. * 2. clk_div is changed
  485. * 3. control value changes
  486. */
  487. if (dw_readw(dws, ctrl0) != cr0 || cs_change || clk_div || imask) {
  488. spi_enable_chip(dws, 0);
  489. if (dw_readw(dws, ctrl0) != cr0)
  490. dw_writew(dws, ctrl0, cr0);
  491. spi_set_clk(dws, clk_div ? clk_div : chip->clk_div);
  492. spi_chip_sel(dws, spi->chip_select);
  493. /* Set the interrupt mask, for poll mode just diable all int */
  494. spi_mask_intr(dws, 0xff);
  495. if (imask)
  496. spi_umask_intr(dws, imask);
  497. if (txint_level)
  498. dw_writew(dws, txfltr, txint_level);
  499. spi_enable_chip(dws, 1);
  500. if (cs_change)
  501. dws->prev_chip = chip;
  502. }
  503. if (dws->dma_mapped)
  504. dma_transfer(dws, cs_change);
  505. if (chip->poll_mode)
  506. poll_transfer(dws);
  507. return;
  508. early_exit:
  509. giveback(dws);
  510. return;
  511. }
  512. static void pump_messages(struct work_struct *work)
  513. {
  514. struct dw_spi *dws =
  515. container_of(work, struct dw_spi, pump_messages);
  516. unsigned long flags;
  517. /* Lock queue and check for queue work */
  518. spin_lock_irqsave(&dws->lock, flags);
  519. if (list_empty(&dws->queue) || dws->run == QUEUE_STOPPED) {
  520. dws->busy = 0;
  521. spin_unlock_irqrestore(&dws->lock, flags);
  522. return;
  523. }
  524. /* Make sure we are not already running a message */
  525. if (dws->cur_msg) {
  526. spin_unlock_irqrestore(&dws->lock, flags);
  527. return;
  528. }
  529. /* Extract head of queue */
  530. dws->cur_msg = list_entry(dws->queue.next, struct spi_message, queue);
  531. list_del_init(&dws->cur_msg->queue);
  532. /* Initial message state*/
  533. dws->cur_msg->state = START_STATE;
  534. dws->cur_transfer = list_entry(dws->cur_msg->transfers.next,
  535. struct spi_transfer,
  536. transfer_list);
  537. dws->cur_chip = spi_get_ctldata(dws->cur_msg->spi);
  538. /* Mark as busy and launch transfers */
  539. tasklet_schedule(&dws->pump_transfers);
  540. dws->busy = 1;
  541. spin_unlock_irqrestore(&dws->lock, flags);
  542. }
  543. /* spi_device use this to queue in their spi_msg */
  544. static int dw_spi_transfer(struct spi_device *spi, struct spi_message *msg)
  545. {
  546. struct dw_spi *dws = spi_master_get_devdata(spi->master);
  547. unsigned long flags;
  548. spin_lock_irqsave(&dws->lock, flags);
  549. if (dws->run == QUEUE_STOPPED) {
  550. spin_unlock_irqrestore(&dws->lock, flags);
  551. return -ESHUTDOWN;
  552. }
  553. msg->actual_length = 0;
  554. msg->status = -EINPROGRESS;
  555. msg->state = START_STATE;
  556. list_add_tail(&msg->queue, &dws->queue);
  557. if (dws->run == QUEUE_RUNNING && !dws->busy) {
  558. if (dws->cur_transfer || dws->cur_msg)
  559. queue_work(dws->workqueue,
  560. &dws->pump_messages);
  561. else {
  562. /* If no other data transaction in air, just go */
  563. spin_unlock_irqrestore(&dws->lock, flags);
  564. pump_messages(&dws->pump_messages);
  565. return 0;
  566. }
  567. }
  568. spin_unlock_irqrestore(&dws->lock, flags);
  569. return 0;
  570. }
  571. /* This may be called twice for each spi dev */
  572. static int dw_spi_setup(struct spi_device *spi)
  573. {
  574. struct dw_spi_chip *chip_info = NULL;
  575. struct chip_data *chip;
  576. if (spi->bits_per_word != 8 && spi->bits_per_word != 16)
  577. return -EINVAL;
  578. /* Only alloc on first setup */
  579. chip = spi_get_ctldata(spi);
  580. if (!chip) {
  581. chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
  582. if (!chip)
  583. return -ENOMEM;
  584. chip->cs_control = null_cs_control;
  585. chip->enable_dma = 0;
  586. }
  587. /*
  588. * Protocol drivers may change the chip settings, so...
  589. * if chip_info exists, use it
  590. */
  591. chip_info = spi->controller_data;
  592. /* chip_info doesn't always exist */
  593. if (chip_info) {
  594. if (chip_info->cs_control)
  595. chip->cs_control = chip_info->cs_control;
  596. chip->poll_mode = chip_info->poll_mode;
  597. chip->type = chip_info->type;
  598. chip->rx_threshold = 0;
  599. chip->tx_threshold = 0;
  600. chip->enable_dma = chip_info->enable_dma;
  601. }
  602. if (spi->bits_per_word <= 8) {
  603. chip->n_bytes = 1;
  604. chip->dma_width = 1;
  605. chip->read = u8_reader;
  606. chip->write = u8_writer;
  607. } else if (spi->bits_per_word <= 16) {
  608. chip->n_bytes = 2;
  609. chip->dma_width = 2;
  610. chip->read = u16_reader;
  611. chip->write = u16_writer;
  612. } else {
  613. /* Never take >16b case for MRST SPIC */
  614. dev_err(&spi->dev, "invalid wordsize\n");
  615. return -EINVAL;
  616. }
  617. chip->bits_per_word = spi->bits_per_word;
  618. if (!spi->max_speed_hz) {
  619. dev_err(&spi->dev, "No max speed HZ parameter\n");
  620. return -EINVAL;
  621. }
  622. chip->speed_hz = spi->max_speed_hz;
  623. chip->tmode = 0; /* Tx & Rx */
  624. /* Default SPI mode is SCPOL = 0, SCPH = 0 */
  625. chip->cr0 = (chip->bits_per_word - 1)
  626. | (chip->type << SPI_FRF_OFFSET)
  627. | (spi->mode << SPI_MODE_OFFSET)
  628. | (chip->tmode << SPI_TMOD_OFFSET);
  629. spi_set_ctldata(spi, chip);
  630. return 0;
  631. }
  632. static void dw_spi_cleanup(struct spi_device *spi)
  633. {
  634. struct chip_data *chip = spi_get_ctldata(spi);
  635. kfree(chip);
  636. }
  637. static int __devinit init_queue(struct dw_spi *dws)
  638. {
  639. INIT_LIST_HEAD(&dws->queue);
  640. spin_lock_init(&dws->lock);
  641. dws->run = QUEUE_STOPPED;
  642. dws->busy = 0;
  643. tasklet_init(&dws->pump_transfers,
  644. pump_transfers, (unsigned long)dws);
  645. INIT_WORK(&dws->pump_messages, pump_messages);
  646. dws->workqueue = create_singlethread_workqueue(
  647. dev_name(dws->master->dev.parent));
  648. if (dws->workqueue == NULL)
  649. return -EBUSY;
  650. return 0;
  651. }
  652. static int start_queue(struct dw_spi *dws)
  653. {
  654. unsigned long flags;
  655. spin_lock_irqsave(&dws->lock, flags);
  656. if (dws->run == QUEUE_RUNNING || dws->busy) {
  657. spin_unlock_irqrestore(&dws->lock, flags);
  658. return -EBUSY;
  659. }
  660. dws->run = QUEUE_RUNNING;
  661. dws->cur_msg = NULL;
  662. dws->cur_transfer = NULL;
  663. dws->cur_chip = NULL;
  664. dws->prev_chip = NULL;
  665. spin_unlock_irqrestore(&dws->lock, flags);
  666. queue_work(dws->workqueue, &dws->pump_messages);
  667. return 0;
  668. }
  669. static int stop_queue(struct dw_spi *dws)
  670. {
  671. unsigned long flags;
  672. unsigned limit = 50;
  673. int status = 0;
  674. spin_lock_irqsave(&dws->lock, flags);
  675. dws->run = QUEUE_STOPPED;
  676. while (!list_empty(&dws->queue) && dws->busy && limit--) {
  677. spin_unlock_irqrestore(&dws->lock, flags);
  678. msleep(10);
  679. spin_lock_irqsave(&dws->lock, flags);
  680. }
  681. if (!list_empty(&dws->queue) || dws->busy)
  682. status = -EBUSY;
  683. spin_unlock_irqrestore(&dws->lock, flags);
  684. return status;
  685. }
  686. static int destroy_queue(struct dw_spi *dws)
  687. {
  688. int status;
  689. status = stop_queue(dws);
  690. if (status != 0)
  691. return status;
  692. destroy_workqueue(dws->workqueue);
  693. return 0;
  694. }
  695. /* Restart the controller, disable all interrupts, clean rx fifo */
  696. static void spi_hw_init(struct dw_spi *dws)
  697. {
  698. spi_enable_chip(dws, 0);
  699. spi_mask_intr(dws, 0xff);
  700. spi_enable_chip(dws, 1);
  701. flush(dws);
  702. /*
  703. * Try to detect the FIFO depth if not set by interface driver,
  704. * the depth could be from 2 to 256 from HW spec
  705. */
  706. if (!dws->fifo_len) {
  707. u32 fifo;
  708. for (fifo = 2; fifo <= 257; fifo++) {
  709. dw_writew(dws, txfltr, fifo);
  710. if (fifo != dw_readw(dws, txfltr))
  711. break;
  712. }
  713. dws->fifo_len = (fifo == 257) ? 0 : fifo;
  714. dw_writew(dws, txfltr, 0);
  715. }
  716. }
  717. int __devinit dw_spi_add_host(struct dw_spi *dws)
  718. {
  719. struct spi_master *master;
  720. int ret;
  721. BUG_ON(dws == NULL);
  722. master = spi_alloc_master(dws->parent_dev, 0);
  723. if (!master) {
  724. ret = -ENOMEM;
  725. goto exit;
  726. }
  727. dws->master = master;
  728. dws->type = SSI_MOTO_SPI;
  729. dws->prev_chip = NULL;
  730. dws->dma_inited = 0;
  731. dws->dma_addr = (dma_addr_t)(dws->paddr + 0x60);
  732. ret = request_irq(dws->irq, dw_spi_irq, 0,
  733. "dw_spi", dws);
  734. if (ret < 0) {
  735. dev_err(&master->dev, "can not get IRQ\n");
  736. goto err_free_master;
  737. }
  738. master->mode_bits = SPI_CPOL | SPI_CPHA;
  739. master->bus_num = dws->bus_num;
  740. master->num_chipselect = dws->num_cs;
  741. master->cleanup = dw_spi_cleanup;
  742. master->setup = dw_spi_setup;
  743. master->transfer = dw_spi_transfer;
  744. dws->dma_inited = 0;
  745. /* Basic HW init */
  746. spi_hw_init(dws);
  747. /* Initial and start queue */
  748. ret = init_queue(dws);
  749. if (ret) {
  750. dev_err(&master->dev, "problem initializing queue\n");
  751. goto err_diable_hw;
  752. }
  753. ret = start_queue(dws);
  754. if (ret) {
  755. dev_err(&master->dev, "problem starting queue\n");
  756. goto err_diable_hw;
  757. }
  758. spi_master_set_devdata(master, dws);
  759. ret = spi_register_master(master);
  760. if (ret) {
  761. dev_err(&master->dev, "problem registering spi master\n");
  762. goto err_queue_alloc;
  763. }
  764. mrst_spi_debugfs_init(dws);
  765. return 0;
  766. err_queue_alloc:
  767. destroy_queue(dws);
  768. err_diable_hw:
  769. spi_enable_chip(dws, 0);
  770. free_irq(dws->irq, dws);
  771. err_free_master:
  772. spi_master_put(master);
  773. exit:
  774. return ret;
  775. }
  776. EXPORT_SYMBOL(dw_spi_add_host);
  777. void __devexit dw_spi_remove_host(struct dw_spi *dws)
  778. {
  779. int status = 0;
  780. if (!dws)
  781. return;
  782. mrst_spi_debugfs_remove(dws);
  783. /* Remove the queue */
  784. status = destroy_queue(dws);
  785. if (status != 0)
  786. dev_err(&dws->master->dev, "dw_spi_remove: workqueue will not "
  787. "complete, message memory not freed\n");
  788. spi_enable_chip(dws, 0);
  789. /* Disable clk */
  790. spi_set_clk(dws, 0);
  791. free_irq(dws->irq, dws);
  792. /* Disconnect from the SPI framework */
  793. spi_unregister_master(dws->master);
  794. }
  795. EXPORT_SYMBOL(dw_spi_remove_host);
  796. int dw_spi_suspend_host(struct dw_spi *dws)
  797. {
  798. int ret = 0;
  799. ret = stop_queue(dws);
  800. if (ret)
  801. return ret;
  802. spi_enable_chip(dws, 0);
  803. spi_set_clk(dws, 0);
  804. return ret;
  805. }
  806. EXPORT_SYMBOL(dw_spi_suspend_host);
  807. int dw_spi_resume_host(struct dw_spi *dws)
  808. {
  809. int ret;
  810. spi_hw_init(dws);
  811. ret = start_queue(dws);
  812. if (ret)
  813. dev_err(&dws->master->dev, "fail to start queue (%d)\n", ret);
  814. return ret;
  815. }
  816. EXPORT_SYMBOL(dw_spi_resume_host);
  817. MODULE_AUTHOR("Feng Tang <feng.tang@intel.com>");
  818. MODULE_DESCRIPTION("Driver for DesignWare SPI controller core");
  819. MODULE_LICENSE("GPL v2");