rt2x00queue.c 26 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983
  1. /*
  2. Copyright (C) 2010 Willow Garage <http://www.willowgarage.com>
  3. Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
  4. Copyright (C) 2004 - 2009 Gertjan van Wingerde <gwingerde@gmail.com>
  5. <http://rt2x00.serialmonkey.com>
  6. This program is free software; you can redistribute it and/or modify
  7. it under the terms of the GNU General Public License as published by
  8. the Free Software Foundation; either version 2 of the License, or
  9. (at your option) any later version.
  10. This program is distributed in the hope that it will be useful,
  11. but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. GNU General Public License for more details.
  14. You should have received a copy of the GNU General Public License
  15. along with this program; if not, write to the
  16. Free Software Foundation, Inc.,
  17. 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  18. */
  19. /*
  20. Module: rt2x00lib
  21. Abstract: rt2x00 queue specific routines.
  22. */
  23. #include <linux/slab.h>
  24. #include <linux/kernel.h>
  25. #include <linux/module.h>
  26. #include <linux/dma-mapping.h>
  27. #include "rt2x00.h"
  28. #include "rt2x00lib.h"
  29. struct sk_buff *rt2x00queue_alloc_rxskb(struct rt2x00_dev *rt2x00dev,
  30. struct queue_entry *entry)
  31. {
  32. struct sk_buff *skb;
  33. struct skb_frame_desc *skbdesc;
  34. unsigned int frame_size;
  35. unsigned int head_size = 0;
  36. unsigned int tail_size = 0;
  37. /*
  38. * The frame size includes descriptor size, because the
  39. * hardware directly receive the frame into the skbuffer.
  40. */
  41. frame_size = entry->queue->data_size + entry->queue->desc_size;
  42. /*
  43. * The payload should be aligned to a 4-byte boundary,
  44. * this means we need at least 3 bytes for moving the frame
  45. * into the correct offset.
  46. */
  47. head_size = 4;
  48. /*
  49. * For IV/EIV/ICV assembly we must make sure there is
  50. * at least 8 bytes bytes available in headroom for IV/EIV
  51. * and 8 bytes for ICV data as tailroon.
  52. */
  53. if (test_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags)) {
  54. head_size += 8;
  55. tail_size += 8;
  56. }
  57. /*
  58. * Allocate skbuffer.
  59. */
  60. skb = dev_alloc_skb(frame_size + head_size + tail_size);
  61. if (!skb)
  62. return NULL;
  63. /*
  64. * Make sure we not have a frame with the requested bytes
  65. * available in the head and tail.
  66. */
  67. skb_reserve(skb, head_size);
  68. skb_put(skb, frame_size);
  69. /*
  70. * Populate skbdesc.
  71. */
  72. skbdesc = get_skb_frame_desc(skb);
  73. memset(skbdesc, 0, sizeof(*skbdesc));
  74. skbdesc->entry = entry;
  75. if (test_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags)) {
  76. skbdesc->skb_dma = dma_map_single(rt2x00dev->dev,
  77. skb->data,
  78. skb->len,
  79. DMA_FROM_DEVICE);
  80. skbdesc->flags |= SKBDESC_DMA_MAPPED_RX;
  81. }
  82. return skb;
  83. }
  84. void rt2x00queue_map_txskb(struct rt2x00_dev *rt2x00dev, struct sk_buff *skb)
  85. {
  86. struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
  87. skbdesc->skb_dma =
  88. dma_map_single(rt2x00dev->dev, skb->data, skb->len, DMA_TO_DEVICE);
  89. skbdesc->flags |= SKBDESC_DMA_MAPPED_TX;
  90. }
  91. EXPORT_SYMBOL_GPL(rt2x00queue_map_txskb);
  92. void rt2x00queue_unmap_skb(struct rt2x00_dev *rt2x00dev, struct sk_buff *skb)
  93. {
  94. struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
  95. if (skbdesc->flags & SKBDESC_DMA_MAPPED_RX) {
  96. dma_unmap_single(rt2x00dev->dev, skbdesc->skb_dma, skb->len,
  97. DMA_FROM_DEVICE);
  98. skbdesc->flags &= ~SKBDESC_DMA_MAPPED_RX;
  99. }
  100. if (skbdesc->flags & SKBDESC_DMA_MAPPED_TX) {
  101. dma_unmap_single(rt2x00dev->dev, skbdesc->skb_dma, skb->len,
  102. DMA_TO_DEVICE);
  103. skbdesc->flags &= ~SKBDESC_DMA_MAPPED_TX;
  104. }
  105. }
  106. EXPORT_SYMBOL_GPL(rt2x00queue_unmap_skb);
  107. void rt2x00queue_free_skb(struct rt2x00_dev *rt2x00dev, struct sk_buff *skb)
  108. {
  109. if (!skb)
  110. return;
  111. rt2x00queue_unmap_skb(rt2x00dev, skb);
  112. dev_kfree_skb_any(skb);
  113. }
  114. void rt2x00queue_align_frame(struct sk_buff *skb)
  115. {
  116. unsigned int frame_length = skb->len;
  117. unsigned int align = ALIGN_SIZE(skb, 0);
  118. if (!align)
  119. return;
  120. skb_push(skb, align);
  121. memmove(skb->data, skb->data + align, frame_length);
  122. skb_trim(skb, frame_length);
  123. }
  124. void rt2x00queue_align_payload(struct sk_buff *skb, unsigned int header_length)
  125. {
  126. unsigned int frame_length = skb->len;
  127. unsigned int align = ALIGN_SIZE(skb, header_length);
  128. if (!align)
  129. return;
  130. skb_push(skb, align);
  131. memmove(skb->data, skb->data + align, frame_length);
  132. skb_trim(skb, frame_length);
  133. }
  134. void rt2x00queue_insert_l2pad(struct sk_buff *skb, unsigned int header_length)
  135. {
  136. unsigned int payload_length = skb->len - header_length;
  137. unsigned int header_align = ALIGN_SIZE(skb, 0);
  138. unsigned int payload_align = ALIGN_SIZE(skb, header_length);
  139. unsigned int l2pad = payload_length ? L2PAD_SIZE(header_length) : 0;
  140. /*
  141. * Adjust the header alignment if the payload needs to be moved more
  142. * than the header.
  143. */
  144. if (payload_align > header_align)
  145. header_align += 4;
  146. /* There is nothing to do if no alignment is needed */
  147. if (!header_align)
  148. return;
  149. /* Reserve the amount of space needed in front of the frame */
  150. skb_push(skb, header_align);
  151. /*
  152. * Move the header.
  153. */
  154. memmove(skb->data, skb->data + header_align, header_length);
  155. /* Move the payload, if present and if required */
  156. if (payload_length && payload_align)
  157. memmove(skb->data + header_length + l2pad,
  158. skb->data + header_length + l2pad + payload_align,
  159. payload_length);
  160. /* Trim the skb to the correct size */
  161. skb_trim(skb, header_length + l2pad + payload_length);
  162. }
  163. void rt2x00queue_remove_l2pad(struct sk_buff *skb, unsigned int header_length)
  164. {
  165. unsigned int l2pad = L2PAD_SIZE(header_length);
  166. if (!l2pad)
  167. return;
  168. memmove(skb->data + l2pad, skb->data, header_length);
  169. skb_pull(skb, l2pad);
  170. }
  171. static void rt2x00queue_create_tx_descriptor_seq(struct queue_entry *entry,
  172. struct txentry_desc *txdesc)
  173. {
  174. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
  175. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)entry->skb->data;
  176. struct rt2x00_intf *intf = vif_to_intf(tx_info->control.vif);
  177. unsigned long irqflags;
  178. if (!(tx_info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) ||
  179. unlikely(!tx_info->control.vif))
  180. return;
  181. /*
  182. * Hardware should insert sequence counter.
  183. * FIXME: We insert a software sequence counter first for
  184. * hardware that doesn't support hardware sequence counting.
  185. *
  186. * This is wrong because beacons are not getting sequence
  187. * numbers assigned properly.
  188. *
  189. * A secondary problem exists for drivers that cannot toggle
  190. * sequence counting per-frame, since those will override the
  191. * sequence counter given by mac80211.
  192. */
  193. spin_lock_irqsave(&intf->seqlock, irqflags);
  194. if (test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags))
  195. intf->seqno += 0x10;
  196. hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
  197. hdr->seq_ctrl |= cpu_to_le16(intf->seqno);
  198. spin_unlock_irqrestore(&intf->seqlock, irqflags);
  199. __set_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags);
  200. }
  201. static void rt2x00queue_create_tx_descriptor_plcp(struct queue_entry *entry,
  202. struct txentry_desc *txdesc,
  203. const struct rt2x00_rate *hwrate)
  204. {
  205. struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
  206. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
  207. struct ieee80211_tx_rate *txrate = &tx_info->control.rates[0];
  208. unsigned int data_length;
  209. unsigned int duration;
  210. unsigned int residual;
  211. /* Data length + CRC + Crypto overhead (IV/EIV/ICV/MIC) */
  212. data_length = entry->skb->len + 4;
  213. data_length += rt2x00crypto_tx_overhead(rt2x00dev, entry->skb);
  214. /*
  215. * PLCP setup
  216. * Length calculation depends on OFDM/CCK rate.
  217. */
  218. txdesc->signal = hwrate->plcp;
  219. txdesc->service = 0x04;
  220. if (hwrate->flags & DEV_RATE_OFDM) {
  221. txdesc->length_high = (data_length >> 6) & 0x3f;
  222. txdesc->length_low = data_length & 0x3f;
  223. } else {
  224. /*
  225. * Convert length to microseconds.
  226. */
  227. residual = GET_DURATION_RES(data_length, hwrate->bitrate);
  228. duration = GET_DURATION(data_length, hwrate->bitrate);
  229. if (residual != 0) {
  230. duration++;
  231. /*
  232. * Check if we need to set the Length Extension
  233. */
  234. if (hwrate->bitrate == 110 && residual <= 30)
  235. txdesc->service |= 0x80;
  236. }
  237. txdesc->length_high = (duration >> 8) & 0xff;
  238. txdesc->length_low = duration & 0xff;
  239. /*
  240. * When preamble is enabled we should set the
  241. * preamble bit for the signal.
  242. */
  243. if (txrate->flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
  244. txdesc->signal |= 0x08;
  245. }
  246. }
  247. static void rt2x00queue_create_tx_descriptor(struct queue_entry *entry,
  248. struct txentry_desc *txdesc)
  249. {
  250. struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
  251. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
  252. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)entry->skb->data;
  253. struct ieee80211_rate *rate =
  254. ieee80211_get_tx_rate(rt2x00dev->hw, tx_info);
  255. const struct rt2x00_rate *hwrate;
  256. memset(txdesc, 0, sizeof(*txdesc));
  257. /*
  258. * Initialize information from queue
  259. */
  260. txdesc->qid = entry->queue->qid;
  261. txdesc->cw_min = entry->queue->cw_min;
  262. txdesc->cw_max = entry->queue->cw_max;
  263. txdesc->aifs = entry->queue->aifs;
  264. /*
  265. * Header and frame information.
  266. */
  267. txdesc->length = entry->skb->len;
  268. txdesc->header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
  269. /*
  270. * Check whether this frame is to be acked.
  271. */
  272. if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK))
  273. __set_bit(ENTRY_TXD_ACK, &txdesc->flags);
  274. /*
  275. * Check if this is a RTS/CTS frame
  276. */
  277. if (ieee80211_is_rts(hdr->frame_control) ||
  278. ieee80211_is_cts(hdr->frame_control)) {
  279. __set_bit(ENTRY_TXD_BURST, &txdesc->flags);
  280. if (ieee80211_is_rts(hdr->frame_control))
  281. __set_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags);
  282. else
  283. __set_bit(ENTRY_TXD_CTS_FRAME, &txdesc->flags);
  284. if (tx_info->control.rts_cts_rate_idx >= 0)
  285. rate =
  286. ieee80211_get_rts_cts_rate(rt2x00dev->hw, tx_info);
  287. }
  288. /*
  289. * Determine retry information.
  290. */
  291. txdesc->retry_limit = tx_info->control.rates[0].count - 1;
  292. if (txdesc->retry_limit >= rt2x00dev->long_retry)
  293. __set_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags);
  294. /*
  295. * Check if more fragments are pending
  296. */
  297. if (ieee80211_has_morefrags(hdr->frame_control)) {
  298. __set_bit(ENTRY_TXD_BURST, &txdesc->flags);
  299. __set_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags);
  300. }
  301. /*
  302. * Check if more frames (!= fragments) are pending
  303. */
  304. if (tx_info->flags & IEEE80211_TX_CTL_MORE_FRAMES)
  305. __set_bit(ENTRY_TXD_BURST, &txdesc->flags);
  306. /*
  307. * Beacons and probe responses require the tsf timestamp
  308. * to be inserted into the frame, except for a frame that has been injected
  309. * through a monitor interface. This latter is needed for testing a
  310. * monitor interface.
  311. */
  312. if ((ieee80211_is_beacon(hdr->frame_control) ||
  313. ieee80211_is_probe_resp(hdr->frame_control)) &&
  314. (!(tx_info->flags & IEEE80211_TX_CTL_INJECTED)))
  315. __set_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags);
  316. /*
  317. * Determine with what IFS priority this frame should be send.
  318. * Set ifs to IFS_SIFS when the this is not the first fragment,
  319. * or this fragment came after RTS/CTS.
  320. */
  321. if ((tx_info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT) &&
  322. !test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags)) {
  323. __set_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags);
  324. txdesc->ifs = IFS_BACKOFF;
  325. } else
  326. txdesc->ifs = IFS_SIFS;
  327. /*
  328. * Determine rate modulation.
  329. */
  330. hwrate = rt2x00_get_rate(rate->hw_value);
  331. txdesc->rate_mode = RATE_MODE_CCK;
  332. if (hwrate->flags & DEV_RATE_OFDM)
  333. txdesc->rate_mode = RATE_MODE_OFDM;
  334. /*
  335. * Apply TX descriptor handling by components
  336. */
  337. rt2x00crypto_create_tx_descriptor(entry, txdesc);
  338. rt2x00ht_create_tx_descriptor(entry, txdesc, hwrate);
  339. rt2x00queue_create_tx_descriptor_seq(entry, txdesc);
  340. rt2x00queue_create_tx_descriptor_plcp(entry, txdesc, hwrate);
  341. }
  342. static int rt2x00queue_write_tx_data(struct queue_entry *entry,
  343. struct txentry_desc *txdesc)
  344. {
  345. struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
  346. /*
  347. * This should not happen, we already checked the entry
  348. * was ours. When the hardware disagrees there has been
  349. * a queue corruption!
  350. */
  351. if (unlikely(rt2x00dev->ops->lib->get_entry_state &&
  352. rt2x00dev->ops->lib->get_entry_state(entry))) {
  353. ERROR(rt2x00dev,
  354. "Corrupt queue %d, accessing entry which is not ours.\n"
  355. "Please file bug report to %s.\n",
  356. entry->queue->qid, DRV_PROJECT);
  357. return -EINVAL;
  358. }
  359. /*
  360. * Add the requested extra tx headroom in front of the skb.
  361. */
  362. skb_push(entry->skb, rt2x00dev->ops->extra_tx_headroom);
  363. memset(entry->skb->data, 0, rt2x00dev->ops->extra_tx_headroom);
  364. /*
  365. * Call the driver's write_tx_data function, if it exists.
  366. */
  367. if (rt2x00dev->ops->lib->write_tx_data)
  368. rt2x00dev->ops->lib->write_tx_data(entry, txdesc);
  369. /*
  370. * Map the skb to DMA.
  371. */
  372. if (test_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags))
  373. rt2x00queue_map_txskb(rt2x00dev, entry->skb);
  374. return 0;
  375. }
  376. static void rt2x00queue_write_tx_descriptor(struct queue_entry *entry,
  377. struct txentry_desc *txdesc)
  378. {
  379. struct data_queue *queue = entry->queue;
  380. queue->rt2x00dev->ops->lib->write_tx_desc(entry, txdesc);
  381. /*
  382. * All processing on the frame has been completed, this means
  383. * it is now ready to be dumped to userspace through debugfs.
  384. */
  385. rt2x00debug_dump_frame(queue->rt2x00dev, DUMP_FRAME_TX, entry->skb);
  386. }
  387. static void rt2x00queue_kick_tx_queue(struct queue_entry *entry,
  388. struct txentry_desc *txdesc)
  389. {
  390. struct data_queue *queue = entry->queue;
  391. struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
  392. /*
  393. * Check if we need to kick the queue, there are however a few rules
  394. * 1) Don't kick unless this is the last in frame in a burst.
  395. * When the burst flag is set, this frame is always followed
  396. * by another frame which in some way are related to eachother.
  397. * This is true for fragments, RTS or CTS-to-self frames.
  398. * 2) Rule 1 can be broken when the available entries
  399. * in the queue are less then a certain threshold.
  400. */
  401. if (rt2x00queue_threshold(queue) ||
  402. !test_bit(ENTRY_TXD_BURST, &txdesc->flags))
  403. rt2x00dev->ops->lib->kick_tx_queue(queue);
  404. }
  405. int rt2x00queue_write_tx_frame(struct data_queue *queue, struct sk_buff *skb,
  406. bool local)
  407. {
  408. struct ieee80211_tx_info *tx_info;
  409. struct queue_entry *entry = rt2x00queue_get_entry(queue, Q_INDEX);
  410. struct txentry_desc txdesc;
  411. struct skb_frame_desc *skbdesc;
  412. u8 rate_idx, rate_flags;
  413. if (unlikely(rt2x00queue_full(queue)))
  414. return -ENOBUFS;
  415. if (test_and_set_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags)) {
  416. ERROR(queue->rt2x00dev,
  417. "Arrived at non-free entry in the non-full queue %d.\n"
  418. "Please file bug report to %s.\n",
  419. queue->qid, DRV_PROJECT);
  420. return -EINVAL;
  421. }
  422. /*
  423. * Copy all TX descriptor information into txdesc,
  424. * after that we are free to use the skb->cb array
  425. * for our information.
  426. */
  427. entry->skb = skb;
  428. rt2x00queue_create_tx_descriptor(entry, &txdesc);
  429. /*
  430. * All information is retrieved from the skb->cb array,
  431. * now we should claim ownership of the driver part of that
  432. * array, preserving the bitrate index and flags.
  433. */
  434. tx_info = IEEE80211_SKB_CB(skb);
  435. rate_idx = tx_info->control.rates[0].idx;
  436. rate_flags = tx_info->control.rates[0].flags;
  437. skbdesc = get_skb_frame_desc(skb);
  438. memset(skbdesc, 0, sizeof(*skbdesc));
  439. skbdesc->entry = entry;
  440. skbdesc->tx_rate_idx = rate_idx;
  441. skbdesc->tx_rate_flags = rate_flags;
  442. if (local)
  443. skbdesc->flags |= SKBDESC_NOT_MAC80211;
  444. /*
  445. * When hardware encryption is supported, and this frame
  446. * is to be encrypted, we should strip the IV/EIV data from
  447. * the frame so we can provide it to the driver separately.
  448. */
  449. if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc.flags) &&
  450. !test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc.flags)) {
  451. if (test_bit(DRIVER_REQUIRE_COPY_IV, &queue->rt2x00dev->flags))
  452. rt2x00crypto_tx_copy_iv(skb, &txdesc);
  453. else
  454. rt2x00crypto_tx_remove_iv(skb, &txdesc);
  455. }
  456. /*
  457. * When DMA allocation is required we should guarentee to the
  458. * driver that the DMA is aligned to a 4-byte boundary.
  459. * However some drivers require L2 padding to pad the payload
  460. * rather then the header. This could be a requirement for
  461. * PCI and USB devices, while header alignment only is valid
  462. * for PCI devices.
  463. */
  464. if (test_bit(DRIVER_REQUIRE_L2PAD, &queue->rt2x00dev->flags))
  465. rt2x00queue_insert_l2pad(entry->skb, txdesc.header_length);
  466. else if (test_bit(DRIVER_REQUIRE_DMA, &queue->rt2x00dev->flags))
  467. rt2x00queue_align_frame(entry->skb);
  468. /*
  469. * It could be possible that the queue was corrupted and this
  470. * call failed. Since we always return NETDEV_TX_OK to mac80211,
  471. * this frame will simply be dropped.
  472. */
  473. if (unlikely(rt2x00queue_write_tx_data(entry, &txdesc))) {
  474. clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
  475. entry->skb = NULL;
  476. return -EIO;
  477. }
  478. set_bit(ENTRY_DATA_PENDING, &entry->flags);
  479. rt2x00queue_index_inc(queue, Q_INDEX);
  480. rt2x00queue_write_tx_descriptor(entry, &txdesc);
  481. rt2x00queue_kick_tx_queue(entry, &txdesc);
  482. return 0;
  483. }
  484. int rt2x00queue_update_beacon(struct rt2x00_dev *rt2x00dev,
  485. struct ieee80211_vif *vif,
  486. const bool enable_beacon)
  487. {
  488. struct rt2x00_intf *intf = vif_to_intf(vif);
  489. struct skb_frame_desc *skbdesc;
  490. struct txentry_desc txdesc;
  491. if (unlikely(!intf->beacon))
  492. return -ENOBUFS;
  493. mutex_lock(&intf->beacon_skb_mutex);
  494. /*
  495. * Clean up the beacon skb.
  496. */
  497. rt2x00queue_free_skb(rt2x00dev, intf->beacon->skb);
  498. intf->beacon->skb = NULL;
  499. if (!enable_beacon) {
  500. rt2x00dev->ops->lib->kill_tx_queue(intf->beacon->queue);
  501. mutex_unlock(&intf->beacon_skb_mutex);
  502. return 0;
  503. }
  504. intf->beacon->skb = ieee80211_beacon_get(rt2x00dev->hw, vif);
  505. if (!intf->beacon->skb) {
  506. mutex_unlock(&intf->beacon_skb_mutex);
  507. return -ENOMEM;
  508. }
  509. /*
  510. * Copy all TX descriptor information into txdesc,
  511. * after that we are free to use the skb->cb array
  512. * for our information.
  513. */
  514. rt2x00queue_create_tx_descriptor(intf->beacon, &txdesc);
  515. /*
  516. * Fill in skb descriptor
  517. */
  518. skbdesc = get_skb_frame_desc(intf->beacon->skb);
  519. memset(skbdesc, 0, sizeof(*skbdesc));
  520. skbdesc->entry = intf->beacon;
  521. /*
  522. * Send beacon to hardware and enable beacon genaration..
  523. */
  524. rt2x00dev->ops->lib->write_beacon(intf->beacon, &txdesc);
  525. mutex_unlock(&intf->beacon_skb_mutex);
  526. return 0;
  527. }
  528. void rt2x00queue_for_each_entry(struct data_queue *queue,
  529. enum queue_index start,
  530. enum queue_index end,
  531. void (*fn)(struct queue_entry *entry))
  532. {
  533. unsigned long irqflags;
  534. unsigned int index_start;
  535. unsigned int index_end;
  536. unsigned int i;
  537. if (unlikely(start >= Q_INDEX_MAX || end >= Q_INDEX_MAX)) {
  538. ERROR(queue->rt2x00dev,
  539. "Entry requested from invalid index range (%d - %d)\n",
  540. start, end);
  541. return;
  542. }
  543. /*
  544. * Only protect the range we are going to loop over,
  545. * if during our loop a extra entry is set to pending
  546. * it should not be kicked during this run, since it
  547. * is part of another TX operation.
  548. */
  549. spin_lock_irqsave(&queue->lock, irqflags);
  550. index_start = queue->index[start];
  551. index_end = queue->index[end];
  552. spin_unlock_irqrestore(&queue->lock, irqflags);
  553. /*
  554. * Start from the TX done pointer, this guarentees that we will
  555. * send out all frames in the correct order.
  556. */
  557. if (index_start < index_end) {
  558. for (i = index_start; i < index_end; i++)
  559. fn(&queue->entries[i]);
  560. } else {
  561. for (i = index_start; i < queue->limit; i++)
  562. fn(&queue->entries[i]);
  563. for (i = 0; i < index_end; i++)
  564. fn(&queue->entries[i]);
  565. }
  566. }
  567. EXPORT_SYMBOL_GPL(rt2x00queue_for_each_entry);
  568. struct data_queue *rt2x00queue_get_queue(struct rt2x00_dev *rt2x00dev,
  569. const enum data_queue_qid queue)
  570. {
  571. int atim = test_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
  572. if (queue == QID_RX)
  573. return rt2x00dev->rx;
  574. if (queue < rt2x00dev->ops->tx_queues && rt2x00dev->tx)
  575. return &rt2x00dev->tx[queue];
  576. if (!rt2x00dev->bcn)
  577. return NULL;
  578. if (queue == QID_BEACON)
  579. return &rt2x00dev->bcn[0];
  580. else if (queue == QID_ATIM && atim)
  581. return &rt2x00dev->bcn[1];
  582. return NULL;
  583. }
  584. EXPORT_SYMBOL_GPL(rt2x00queue_get_queue);
  585. struct queue_entry *rt2x00queue_get_entry(struct data_queue *queue,
  586. enum queue_index index)
  587. {
  588. struct queue_entry *entry;
  589. unsigned long irqflags;
  590. if (unlikely(index >= Q_INDEX_MAX)) {
  591. ERROR(queue->rt2x00dev,
  592. "Entry requested from invalid index type (%d)\n", index);
  593. return NULL;
  594. }
  595. spin_lock_irqsave(&queue->lock, irqflags);
  596. entry = &queue->entries[queue->index[index]];
  597. spin_unlock_irqrestore(&queue->lock, irqflags);
  598. return entry;
  599. }
  600. EXPORT_SYMBOL_GPL(rt2x00queue_get_entry);
  601. void rt2x00queue_index_inc(struct data_queue *queue, enum queue_index index)
  602. {
  603. unsigned long irqflags;
  604. if (unlikely(index >= Q_INDEX_MAX)) {
  605. ERROR(queue->rt2x00dev,
  606. "Index change on invalid index type (%d)\n", index);
  607. return;
  608. }
  609. spin_lock_irqsave(&queue->lock, irqflags);
  610. queue->index[index]++;
  611. if (queue->index[index] >= queue->limit)
  612. queue->index[index] = 0;
  613. queue->last_action[index] = jiffies;
  614. if (index == Q_INDEX) {
  615. queue->length++;
  616. } else if (index == Q_INDEX_DONE) {
  617. queue->length--;
  618. queue->count++;
  619. }
  620. spin_unlock_irqrestore(&queue->lock, irqflags);
  621. }
  622. static void rt2x00queue_reset(struct data_queue *queue)
  623. {
  624. unsigned long irqflags;
  625. unsigned int i;
  626. spin_lock_irqsave(&queue->lock, irqflags);
  627. queue->count = 0;
  628. queue->length = 0;
  629. for (i = 0; i < Q_INDEX_MAX; i++) {
  630. queue->index[i] = 0;
  631. queue->last_action[i] = jiffies;
  632. }
  633. spin_unlock_irqrestore(&queue->lock, irqflags);
  634. }
  635. void rt2x00queue_stop_queues(struct rt2x00_dev *rt2x00dev)
  636. {
  637. struct data_queue *queue;
  638. txall_queue_for_each(rt2x00dev, queue)
  639. rt2x00dev->ops->lib->kill_tx_queue(queue);
  640. }
  641. void rt2x00queue_init_queues(struct rt2x00_dev *rt2x00dev)
  642. {
  643. struct data_queue *queue;
  644. unsigned int i;
  645. queue_for_each(rt2x00dev, queue) {
  646. rt2x00queue_reset(queue);
  647. for (i = 0; i < queue->limit; i++) {
  648. rt2x00dev->ops->lib->clear_entry(&queue->entries[i]);
  649. if (queue->qid == QID_RX)
  650. rt2x00queue_index_inc(queue, Q_INDEX);
  651. }
  652. }
  653. }
  654. static int rt2x00queue_alloc_entries(struct data_queue *queue,
  655. const struct data_queue_desc *qdesc)
  656. {
  657. struct queue_entry *entries;
  658. unsigned int entry_size;
  659. unsigned int i;
  660. rt2x00queue_reset(queue);
  661. queue->limit = qdesc->entry_num;
  662. queue->threshold = DIV_ROUND_UP(qdesc->entry_num, 10);
  663. queue->data_size = qdesc->data_size;
  664. queue->desc_size = qdesc->desc_size;
  665. /*
  666. * Allocate all queue entries.
  667. */
  668. entry_size = sizeof(*entries) + qdesc->priv_size;
  669. entries = kzalloc(queue->limit * entry_size, GFP_KERNEL);
  670. if (!entries)
  671. return -ENOMEM;
  672. #define QUEUE_ENTRY_PRIV_OFFSET(__base, __index, __limit, __esize, __psize) \
  673. ( ((char *)(__base)) + ((__limit) * (__esize)) + \
  674. ((__index) * (__psize)) )
  675. for (i = 0; i < queue->limit; i++) {
  676. entries[i].flags = 0;
  677. entries[i].queue = queue;
  678. entries[i].skb = NULL;
  679. entries[i].entry_idx = i;
  680. entries[i].priv_data =
  681. QUEUE_ENTRY_PRIV_OFFSET(entries, i, queue->limit,
  682. sizeof(*entries), qdesc->priv_size);
  683. }
  684. #undef QUEUE_ENTRY_PRIV_OFFSET
  685. queue->entries = entries;
  686. return 0;
  687. }
  688. static void rt2x00queue_free_skbs(struct rt2x00_dev *rt2x00dev,
  689. struct data_queue *queue)
  690. {
  691. unsigned int i;
  692. if (!queue->entries)
  693. return;
  694. for (i = 0; i < queue->limit; i++) {
  695. if (queue->entries[i].skb)
  696. rt2x00queue_free_skb(rt2x00dev, queue->entries[i].skb);
  697. }
  698. }
  699. static int rt2x00queue_alloc_rxskbs(struct rt2x00_dev *rt2x00dev,
  700. struct data_queue *queue)
  701. {
  702. unsigned int i;
  703. struct sk_buff *skb;
  704. for (i = 0; i < queue->limit; i++) {
  705. skb = rt2x00queue_alloc_rxskb(rt2x00dev, &queue->entries[i]);
  706. if (!skb)
  707. return -ENOMEM;
  708. queue->entries[i].skb = skb;
  709. }
  710. return 0;
  711. }
  712. int rt2x00queue_initialize(struct rt2x00_dev *rt2x00dev)
  713. {
  714. struct data_queue *queue;
  715. int status;
  716. status = rt2x00queue_alloc_entries(rt2x00dev->rx, rt2x00dev->ops->rx);
  717. if (status)
  718. goto exit;
  719. tx_queue_for_each(rt2x00dev, queue) {
  720. status = rt2x00queue_alloc_entries(queue, rt2x00dev->ops->tx);
  721. if (status)
  722. goto exit;
  723. }
  724. status = rt2x00queue_alloc_entries(rt2x00dev->bcn, rt2x00dev->ops->bcn);
  725. if (status)
  726. goto exit;
  727. if (test_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags)) {
  728. status = rt2x00queue_alloc_entries(&rt2x00dev->bcn[1],
  729. rt2x00dev->ops->atim);
  730. if (status)
  731. goto exit;
  732. }
  733. status = rt2x00queue_alloc_rxskbs(rt2x00dev, rt2x00dev->rx);
  734. if (status)
  735. goto exit;
  736. return 0;
  737. exit:
  738. ERROR(rt2x00dev, "Queue entries allocation failed.\n");
  739. rt2x00queue_uninitialize(rt2x00dev);
  740. return status;
  741. }
  742. void rt2x00queue_uninitialize(struct rt2x00_dev *rt2x00dev)
  743. {
  744. struct data_queue *queue;
  745. rt2x00queue_free_skbs(rt2x00dev, rt2x00dev->rx);
  746. queue_for_each(rt2x00dev, queue) {
  747. kfree(queue->entries);
  748. queue->entries = NULL;
  749. }
  750. }
  751. static void rt2x00queue_init(struct rt2x00_dev *rt2x00dev,
  752. struct data_queue *queue, enum data_queue_qid qid)
  753. {
  754. spin_lock_init(&queue->lock);
  755. queue->rt2x00dev = rt2x00dev;
  756. queue->qid = qid;
  757. queue->txop = 0;
  758. queue->aifs = 2;
  759. queue->cw_min = 5;
  760. queue->cw_max = 10;
  761. }
  762. int rt2x00queue_allocate(struct rt2x00_dev *rt2x00dev)
  763. {
  764. struct data_queue *queue;
  765. enum data_queue_qid qid;
  766. unsigned int req_atim =
  767. !!test_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
  768. /*
  769. * We need the following queues:
  770. * RX: 1
  771. * TX: ops->tx_queues
  772. * Beacon: 1
  773. * Atim: 1 (if required)
  774. */
  775. rt2x00dev->data_queues = 2 + rt2x00dev->ops->tx_queues + req_atim;
  776. queue = kzalloc(rt2x00dev->data_queues * sizeof(*queue), GFP_KERNEL);
  777. if (!queue) {
  778. ERROR(rt2x00dev, "Queue allocation failed.\n");
  779. return -ENOMEM;
  780. }
  781. /*
  782. * Initialize pointers
  783. */
  784. rt2x00dev->rx = queue;
  785. rt2x00dev->tx = &queue[1];
  786. rt2x00dev->bcn = &queue[1 + rt2x00dev->ops->tx_queues];
  787. /*
  788. * Initialize queue parameters.
  789. * RX: qid = QID_RX
  790. * TX: qid = QID_AC_BE + index
  791. * TX: cw_min: 2^5 = 32.
  792. * TX: cw_max: 2^10 = 1024.
  793. * BCN: qid = QID_BEACON
  794. * ATIM: qid = QID_ATIM
  795. */
  796. rt2x00queue_init(rt2x00dev, rt2x00dev->rx, QID_RX);
  797. qid = QID_AC_BE;
  798. tx_queue_for_each(rt2x00dev, queue)
  799. rt2x00queue_init(rt2x00dev, queue, qid++);
  800. rt2x00queue_init(rt2x00dev, &rt2x00dev->bcn[0], QID_BEACON);
  801. if (req_atim)
  802. rt2x00queue_init(rt2x00dev, &rt2x00dev->bcn[1], QID_ATIM);
  803. return 0;
  804. }
  805. void rt2x00queue_free(struct rt2x00_dev *rt2x00dev)
  806. {
  807. kfree(rt2x00dev->rx);
  808. rt2x00dev->rx = NULL;
  809. rt2x00dev->tx = NULL;
  810. rt2x00dev->bcn = NULL;
  811. }