rt2400pci.c 50 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724
  1. /*
  2. Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
  3. <http://rt2x00.serialmonkey.com>
  4. This program is free software; you can redistribute it and/or modify
  5. it under the terms of the GNU General Public License as published by
  6. the Free Software Foundation; either version 2 of the License, or
  7. (at your option) any later version.
  8. This program is distributed in the hope that it will be useful,
  9. but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  11. GNU General Public License for more details.
  12. You should have received a copy of the GNU General Public License
  13. along with this program; if not, write to the
  14. Free Software Foundation, Inc.,
  15. 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  16. */
  17. /*
  18. Module: rt2400pci
  19. Abstract: rt2400pci device specific routines.
  20. Supported chipsets: RT2460.
  21. */
  22. #include <linux/delay.h>
  23. #include <linux/etherdevice.h>
  24. #include <linux/init.h>
  25. #include <linux/kernel.h>
  26. #include <linux/module.h>
  27. #include <linux/pci.h>
  28. #include <linux/eeprom_93cx6.h>
  29. #include <linux/slab.h>
  30. #include "rt2x00.h"
  31. #include "rt2x00pci.h"
  32. #include "rt2400pci.h"
  33. /*
  34. * Register access.
  35. * All access to the CSR registers will go through the methods
  36. * rt2x00pci_register_read and rt2x00pci_register_write.
  37. * BBP and RF register require indirect register access,
  38. * and use the CSR registers BBPCSR and RFCSR to achieve this.
  39. * These indirect registers work with busy bits,
  40. * and we will try maximal REGISTER_BUSY_COUNT times to access
  41. * the register while taking a REGISTER_BUSY_DELAY us delay
  42. * between each attampt. When the busy bit is still set at that time,
  43. * the access attempt is considered to have failed,
  44. * and we will print an error.
  45. */
  46. #define WAIT_FOR_BBP(__dev, __reg) \
  47. rt2x00pci_regbusy_read((__dev), BBPCSR, BBPCSR_BUSY, (__reg))
  48. #define WAIT_FOR_RF(__dev, __reg) \
  49. rt2x00pci_regbusy_read((__dev), RFCSR, RFCSR_BUSY, (__reg))
  50. static void rt2400pci_bbp_write(struct rt2x00_dev *rt2x00dev,
  51. const unsigned int word, const u8 value)
  52. {
  53. u32 reg;
  54. mutex_lock(&rt2x00dev->csr_mutex);
  55. /*
  56. * Wait until the BBP becomes available, afterwards we
  57. * can safely write the new data into the register.
  58. */
  59. if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
  60. reg = 0;
  61. rt2x00_set_field32(&reg, BBPCSR_VALUE, value);
  62. rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
  63. rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
  64. rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 1);
  65. rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
  66. }
  67. mutex_unlock(&rt2x00dev->csr_mutex);
  68. }
  69. static void rt2400pci_bbp_read(struct rt2x00_dev *rt2x00dev,
  70. const unsigned int word, u8 *value)
  71. {
  72. u32 reg;
  73. mutex_lock(&rt2x00dev->csr_mutex);
  74. /*
  75. * Wait until the BBP becomes available, afterwards we
  76. * can safely write the read request into the register.
  77. * After the data has been written, we wait until hardware
  78. * returns the correct value, if at any time the register
  79. * doesn't become available in time, reg will be 0xffffffff
  80. * which means we return 0xff to the caller.
  81. */
  82. if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
  83. reg = 0;
  84. rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
  85. rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
  86. rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 0);
  87. rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
  88. WAIT_FOR_BBP(rt2x00dev, &reg);
  89. }
  90. *value = rt2x00_get_field32(reg, BBPCSR_VALUE);
  91. mutex_unlock(&rt2x00dev->csr_mutex);
  92. }
  93. static void rt2400pci_rf_write(struct rt2x00_dev *rt2x00dev,
  94. const unsigned int word, const u32 value)
  95. {
  96. u32 reg;
  97. mutex_lock(&rt2x00dev->csr_mutex);
  98. /*
  99. * Wait until the RF becomes available, afterwards we
  100. * can safely write the new data into the register.
  101. */
  102. if (WAIT_FOR_RF(rt2x00dev, &reg)) {
  103. reg = 0;
  104. rt2x00_set_field32(&reg, RFCSR_VALUE, value);
  105. rt2x00_set_field32(&reg, RFCSR_NUMBER_OF_BITS, 20);
  106. rt2x00_set_field32(&reg, RFCSR_IF_SELECT, 0);
  107. rt2x00_set_field32(&reg, RFCSR_BUSY, 1);
  108. rt2x00pci_register_write(rt2x00dev, RFCSR, reg);
  109. rt2x00_rf_write(rt2x00dev, word, value);
  110. }
  111. mutex_unlock(&rt2x00dev->csr_mutex);
  112. }
  113. static void rt2400pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
  114. {
  115. struct rt2x00_dev *rt2x00dev = eeprom->data;
  116. u32 reg;
  117. rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
  118. eeprom->reg_data_in = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_IN);
  119. eeprom->reg_data_out = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_OUT);
  120. eeprom->reg_data_clock =
  121. !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_CLOCK);
  122. eeprom->reg_chip_select =
  123. !!rt2x00_get_field32(reg, CSR21_EEPROM_CHIP_SELECT);
  124. }
  125. static void rt2400pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
  126. {
  127. struct rt2x00_dev *rt2x00dev = eeprom->data;
  128. u32 reg = 0;
  129. rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_IN, !!eeprom->reg_data_in);
  130. rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_OUT, !!eeprom->reg_data_out);
  131. rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_CLOCK,
  132. !!eeprom->reg_data_clock);
  133. rt2x00_set_field32(&reg, CSR21_EEPROM_CHIP_SELECT,
  134. !!eeprom->reg_chip_select);
  135. rt2x00pci_register_write(rt2x00dev, CSR21, reg);
  136. }
  137. #ifdef CONFIG_RT2X00_LIB_DEBUGFS
  138. static const struct rt2x00debug rt2400pci_rt2x00debug = {
  139. .owner = THIS_MODULE,
  140. .csr = {
  141. .read = rt2x00pci_register_read,
  142. .write = rt2x00pci_register_write,
  143. .flags = RT2X00DEBUGFS_OFFSET,
  144. .word_base = CSR_REG_BASE,
  145. .word_size = sizeof(u32),
  146. .word_count = CSR_REG_SIZE / sizeof(u32),
  147. },
  148. .eeprom = {
  149. .read = rt2x00_eeprom_read,
  150. .write = rt2x00_eeprom_write,
  151. .word_base = EEPROM_BASE,
  152. .word_size = sizeof(u16),
  153. .word_count = EEPROM_SIZE / sizeof(u16),
  154. },
  155. .bbp = {
  156. .read = rt2400pci_bbp_read,
  157. .write = rt2400pci_bbp_write,
  158. .word_base = BBP_BASE,
  159. .word_size = sizeof(u8),
  160. .word_count = BBP_SIZE / sizeof(u8),
  161. },
  162. .rf = {
  163. .read = rt2x00_rf_read,
  164. .write = rt2400pci_rf_write,
  165. .word_base = RF_BASE,
  166. .word_size = sizeof(u32),
  167. .word_count = RF_SIZE / sizeof(u32),
  168. },
  169. };
  170. #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
  171. static int rt2400pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
  172. {
  173. u32 reg;
  174. rt2x00pci_register_read(rt2x00dev, GPIOCSR, &reg);
  175. return rt2x00_get_field32(reg, GPIOCSR_BIT0);
  176. }
  177. #ifdef CONFIG_RT2X00_LIB_LEDS
  178. static void rt2400pci_brightness_set(struct led_classdev *led_cdev,
  179. enum led_brightness brightness)
  180. {
  181. struct rt2x00_led *led =
  182. container_of(led_cdev, struct rt2x00_led, led_dev);
  183. unsigned int enabled = brightness != LED_OFF;
  184. u32 reg;
  185. rt2x00pci_register_read(led->rt2x00dev, LEDCSR, &reg);
  186. if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
  187. rt2x00_set_field32(&reg, LEDCSR_LINK, enabled);
  188. else if (led->type == LED_TYPE_ACTIVITY)
  189. rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, enabled);
  190. rt2x00pci_register_write(led->rt2x00dev, LEDCSR, reg);
  191. }
  192. static int rt2400pci_blink_set(struct led_classdev *led_cdev,
  193. unsigned long *delay_on,
  194. unsigned long *delay_off)
  195. {
  196. struct rt2x00_led *led =
  197. container_of(led_cdev, struct rt2x00_led, led_dev);
  198. u32 reg;
  199. rt2x00pci_register_read(led->rt2x00dev, LEDCSR, &reg);
  200. rt2x00_set_field32(&reg, LEDCSR_ON_PERIOD, *delay_on);
  201. rt2x00_set_field32(&reg, LEDCSR_OFF_PERIOD, *delay_off);
  202. rt2x00pci_register_write(led->rt2x00dev, LEDCSR, reg);
  203. return 0;
  204. }
  205. static void rt2400pci_init_led(struct rt2x00_dev *rt2x00dev,
  206. struct rt2x00_led *led,
  207. enum led_type type)
  208. {
  209. led->rt2x00dev = rt2x00dev;
  210. led->type = type;
  211. led->led_dev.brightness_set = rt2400pci_brightness_set;
  212. led->led_dev.blink_set = rt2400pci_blink_set;
  213. led->flags = LED_INITIALIZED;
  214. }
  215. #endif /* CONFIG_RT2X00_LIB_LEDS */
  216. /*
  217. * Configuration handlers.
  218. */
  219. static void rt2400pci_config_filter(struct rt2x00_dev *rt2x00dev,
  220. const unsigned int filter_flags)
  221. {
  222. u32 reg;
  223. /*
  224. * Start configuration steps.
  225. * Note that the version error will always be dropped
  226. * since there is no filter for it at this time.
  227. */
  228. rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
  229. rt2x00_set_field32(&reg, RXCSR0_DROP_CRC,
  230. !(filter_flags & FIF_FCSFAIL));
  231. rt2x00_set_field32(&reg, RXCSR0_DROP_PHYSICAL,
  232. !(filter_flags & FIF_PLCPFAIL));
  233. rt2x00_set_field32(&reg, RXCSR0_DROP_CONTROL,
  234. !(filter_flags & FIF_CONTROL));
  235. rt2x00_set_field32(&reg, RXCSR0_DROP_NOT_TO_ME,
  236. !(filter_flags & FIF_PROMISC_IN_BSS));
  237. rt2x00_set_field32(&reg, RXCSR0_DROP_TODS,
  238. !(filter_flags & FIF_PROMISC_IN_BSS) &&
  239. !rt2x00dev->intf_ap_count);
  240. rt2x00_set_field32(&reg, RXCSR0_DROP_VERSION_ERROR, 1);
  241. rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
  242. }
  243. static void rt2400pci_config_intf(struct rt2x00_dev *rt2x00dev,
  244. struct rt2x00_intf *intf,
  245. struct rt2x00intf_conf *conf,
  246. const unsigned int flags)
  247. {
  248. unsigned int bcn_preload;
  249. u32 reg;
  250. if (flags & CONFIG_UPDATE_TYPE) {
  251. /*
  252. * Enable beacon config
  253. */
  254. bcn_preload = PREAMBLE + GET_DURATION(IEEE80211_HEADER, 20);
  255. rt2x00pci_register_read(rt2x00dev, BCNCSR1, &reg);
  256. rt2x00_set_field32(&reg, BCNCSR1_PRELOAD, bcn_preload);
  257. rt2x00pci_register_write(rt2x00dev, BCNCSR1, reg);
  258. /*
  259. * Enable synchronisation.
  260. */
  261. rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
  262. rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
  263. rt2x00_set_field32(&reg, CSR14_TSF_SYNC, conf->sync);
  264. rt2x00_set_field32(&reg, CSR14_TBCN, 1);
  265. rt2x00pci_register_write(rt2x00dev, CSR14, reg);
  266. }
  267. if (flags & CONFIG_UPDATE_MAC)
  268. rt2x00pci_register_multiwrite(rt2x00dev, CSR3,
  269. conf->mac, sizeof(conf->mac));
  270. if (flags & CONFIG_UPDATE_BSSID)
  271. rt2x00pci_register_multiwrite(rt2x00dev, CSR5,
  272. conf->bssid, sizeof(conf->bssid));
  273. }
  274. static void rt2400pci_config_erp(struct rt2x00_dev *rt2x00dev,
  275. struct rt2x00lib_erp *erp,
  276. u32 changed)
  277. {
  278. int preamble_mask;
  279. u32 reg;
  280. /*
  281. * When short preamble is enabled, we should set bit 0x08
  282. */
  283. if (changed & BSS_CHANGED_ERP_PREAMBLE) {
  284. preamble_mask = erp->short_preamble << 3;
  285. rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
  286. rt2x00_set_field32(&reg, TXCSR1_ACK_TIMEOUT, 0x1ff);
  287. rt2x00_set_field32(&reg, TXCSR1_ACK_CONSUME_TIME, 0x13a);
  288. rt2x00_set_field32(&reg, TXCSR1_TSF_OFFSET, IEEE80211_HEADER);
  289. rt2x00_set_field32(&reg, TXCSR1_AUTORESPONDER, 1);
  290. rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
  291. rt2x00pci_register_read(rt2x00dev, ARCSR2, &reg);
  292. rt2x00_set_field32(&reg, ARCSR2_SIGNAL, 0x00);
  293. rt2x00_set_field32(&reg, ARCSR2_SERVICE, 0x04);
  294. rt2x00_set_field32(&reg, ARCSR2_LENGTH,
  295. GET_DURATION(ACK_SIZE, 10));
  296. rt2x00pci_register_write(rt2x00dev, ARCSR2, reg);
  297. rt2x00pci_register_read(rt2x00dev, ARCSR3, &reg);
  298. rt2x00_set_field32(&reg, ARCSR3_SIGNAL, 0x01 | preamble_mask);
  299. rt2x00_set_field32(&reg, ARCSR3_SERVICE, 0x04);
  300. rt2x00_set_field32(&reg, ARCSR2_LENGTH,
  301. GET_DURATION(ACK_SIZE, 20));
  302. rt2x00pci_register_write(rt2x00dev, ARCSR3, reg);
  303. rt2x00pci_register_read(rt2x00dev, ARCSR4, &reg);
  304. rt2x00_set_field32(&reg, ARCSR4_SIGNAL, 0x02 | preamble_mask);
  305. rt2x00_set_field32(&reg, ARCSR4_SERVICE, 0x04);
  306. rt2x00_set_field32(&reg, ARCSR2_LENGTH,
  307. GET_DURATION(ACK_SIZE, 55));
  308. rt2x00pci_register_write(rt2x00dev, ARCSR4, reg);
  309. rt2x00pci_register_read(rt2x00dev, ARCSR5, &reg);
  310. rt2x00_set_field32(&reg, ARCSR5_SIGNAL, 0x03 | preamble_mask);
  311. rt2x00_set_field32(&reg, ARCSR5_SERVICE, 0x84);
  312. rt2x00_set_field32(&reg, ARCSR2_LENGTH,
  313. GET_DURATION(ACK_SIZE, 110));
  314. rt2x00pci_register_write(rt2x00dev, ARCSR5, reg);
  315. }
  316. if (changed & BSS_CHANGED_BASIC_RATES)
  317. rt2x00pci_register_write(rt2x00dev, ARCSR1, erp->basic_rates);
  318. if (changed & BSS_CHANGED_ERP_SLOT) {
  319. rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
  320. rt2x00_set_field32(&reg, CSR11_SLOT_TIME, erp->slot_time);
  321. rt2x00pci_register_write(rt2x00dev, CSR11, reg);
  322. rt2x00pci_register_read(rt2x00dev, CSR18, &reg);
  323. rt2x00_set_field32(&reg, CSR18_SIFS, erp->sifs);
  324. rt2x00_set_field32(&reg, CSR18_PIFS, erp->pifs);
  325. rt2x00pci_register_write(rt2x00dev, CSR18, reg);
  326. rt2x00pci_register_read(rt2x00dev, CSR19, &reg);
  327. rt2x00_set_field32(&reg, CSR19_DIFS, erp->difs);
  328. rt2x00_set_field32(&reg, CSR19_EIFS, erp->eifs);
  329. rt2x00pci_register_write(rt2x00dev, CSR19, reg);
  330. }
  331. if (changed & BSS_CHANGED_BEACON_INT) {
  332. rt2x00pci_register_read(rt2x00dev, CSR12, &reg);
  333. rt2x00_set_field32(&reg, CSR12_BEACON_INTERVAL,
  334. erp->beacon_int * 16);
  335. rt2x00_set_field32(&reg, CSR12_CFP_MAX_DURATION,
  336. erp->beacon_int * 16);
  337. rt2x00pci_register_write(rt2x00dev, CSR12, reg);
  338. }
  339. }
  340. static void rt2400pci_config_ant(struct rt2x00_dev *rt2x00dev,
  341. struct antenna_setup *ant)
  342. {
  343. u8 r1;
  344. u8 r4;
  345. /*
  346. * We should never come here because rt2x00lib is supposed
  347. * to catch this and send us the correct antenna explicitely.
  348. */
  349. BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
  350. ant->tx == ANTENNA_SW_DIVERSITY);
  351. rt2400pci_bbp_read(rt2x00dev, 4, &r4);
  352. rt2400pci_bbp_read(rt2x00dev, 1, &r1);
  353. /*
  354. * Configure the TX antenna.
  355. */
  356. switch (ant->tx) {
  357. case ANTENNA_HW_DIVERSITY:
  358. rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 1);
  359. break;
  360. case ANTENNA_A:
  361. rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 0);
  362. break;
  363. case ANTENNA_B:
  364. default:
  365. rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 2);
  366. break;
  367. }
  368. /*
  369. * Configure the RX antenna.
  370. */
  371. switch (ant->rx) {
  372. case ANTENNA_HW_DIVERSITY:
  373. rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 1);
  374. break;
  375. case ANTENNA_A:
  376. rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 0);
  377. break;
  378. case ANTENNA_B:
  379. default:
  380. rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 2);
  381. break;
  382. }
  383. rt2400pci_bbp_write(rt2x00dev, 4, r4);
  384. rt2400pci_bbp_write(rt2x00dev, 1, r1);
  385. }
  386. static void rt2400pci_config_channel(struct rt2x00_dev *rt2x00dev,
  387. struct rf_channel *rf)
  388. {
  389. /*
  390. * Switch on tuning bits.
  391. */
  392. rt2x00_set_field32(&rf->rf1, RF1_TUNER, 1);
  393. rt2x00_set_field32(&rf->rf3, RF3_TUNER, 1);
  394. rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
  395. rt2400pci_rf_write(rt2x00dev, 2, rf->rf2);
  396. rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
  397. /*
  398. * RF2420 chipset don't need any additional actions.
  399. */
  400. if (rt2x00_rf(rt2x00dev, RF2420))
  401. return;
  402. /*
  403. * For the RT2421 chipsets we need to write an invalid
  404. * reference clock rate to activate auto_tune.
  405. * After that we set the value back to the correct channel.
  406. */
  407. rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
  408. rt2400pci_rf_write(rt2x00dev, 2, 0x000c2a32);
  409. rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
  410. msleep(1);
  411. rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
  412. rt2400pci_rf_write(rt2x00dev, 2, rf->rf2);
  413. rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
  414. msleep(1);
  415. /*
  416. * Switch off tuning bits.
  417. */
  418. rt2x00_set_field32(&rf->rf1, RF1_TUNER, 0);
  419. rt2x00_set_field32(&rf->rf3, RF3_TUNER, 0);
  420. rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
  421. rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
  422. /*
  423. * Clear false CRC during channel switch.
  424. */
  425. rt2x00pci_register_read(rt2x00dev, CNT0, &rf->rf1);
  426. }
  427. static void rt2400pci_config_txpower(struct rt2x00_dev *rt2x00dev, int txpower)
  428. {
  429. rt2400pci_bbp_write(rt2x00dev, 3, TXPOWER_TO_DEV(txpower));
  430. }
  431. static void rt2400pci_config_retry_limit(struct rt2x00_dev *rt2x00dev,
  432. struct rt2x00lib_conf *libconf)
  433. {
  434. u32 reg;
  435. rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
  436. rt2x00_set_field32(&reg, CSR11_LONG_RETRY,
  437. libconf->conf->long_frame_max_tx_count);
  438. rt2x00_set_field32(&reg, CSR11_SHORT_RETRY,
  439. libconf->conf->short_frame_max_tx_count);
  440. rt2x00pci_register_write(rt2x00dev, CSR11, reg);
  441. }
  442. static void rt2400pci_config_ps(struct rt2x00_dev *rt2x00dev,
  443. struct rt2x00lib_conf *libconf)
  444. {
  445. enum dev_state state =
  446. (libconf->conf->flags & IEEE80211_CONF_PS) ?
  447. STATE_SLEEP : STATE_AWAKE;
  448. u32 reg;
  449. if (state == STATE_SLEEP) {
  450. rt2x00pci_register_read(rt2x00dev, CSR20, &reg);
  451. rt2x00_set_field32(&reg, CSR20_DELAY_AFTER_TBCN,
  452. (rt2x00dev->beacon_int - 20) * 16);
  453. rt2x00_set_field32(&reg, CSR20_TBCN_BEFORE_WAKEUP,
  454. libconf->conf->listen_interval - 1);
  455. /* We must first disable autowake before it can be enabled */
  456. rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 0);
  457. rt2x00pci_register_write(rt2x00dev, CSR20, reg);
  458. rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 1);
  459. rt2x00pci_register_write(rt2x00dev, CSR20, reg);
  460. } else {
  461. rt2x00pci_register_read(rt2x00dev, CSR20, &reg);
  462. rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 0);
  463. rt2x00pci_register_write(rt2x00dev, CSR20, reg);
  464. }
  465. rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
  466. }
  467. static void rt2400pci_config(struct rt2x00_dev *rt2x00dev,
  468. struct rt2x00lib_conf *libconf,
  469. const unsigned int flags)
  470. {
  471. if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
  472. rt2400pci_config_channel(rt2x00dev, &libconf->rf);
  473. if (flags & IEEE80211_CONF_CHANGE_POWER)
  474. rt2400pci_config_txpower(rt2x00dev,
  475. libconf->conf->power_level);
  476. if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
  477. rt2400pci_config_retry_limit(rt2x00dev, libconf);
  478. if (flags & IEEE80211_CONF_CHANGE_PS)
  479. rt2400pci_config_ps(rt2x00dev, libconf);
  480. }
  481. static void rt2400pci_config_cw(struct rt2x00_dev *rt2x00dev,
  482. const int cw_min, const int cw_max)
  483. {
  484. u32 reg;
  485. rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
  486. rt2x00_set_field32(&reg, CSR11_CWMIN, cw_min);
  487. rt2x00_set_field32(&reg, CSR11_CWMAX, cw_max);
  488. rt2x00pci_register_write(rt2x00dev, CSR11, reg);
  489. }
  490. /*
  491. * Link tuning
  492. */
  493. static void rt2400pci_link_stats(struct rt2x00_dev *rt2x00dev,
  494. struct link_qual *qual)
  495. {
  496. u32 reg;
  497. u8 bbp;
  498. /*
  499. * Update FCS error count from register.
  500. */
  501. rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
  502. qual->rx_failed = rt2x00_get_field32(reg, CNT0_FCS_ERROR);
  503. /*
  504. * Update False CCA count from register.
  505. */
  506. rt2400pci_bbp_read(rt2x00dev, 39, &bbp);
  507. qual->false_cca = bbp;
  508. }
  509. static inline void rt2400pci_set_vgc(struct rt2x00_dev *rt2x00dev,
  510. struct link_qual *qual, u8 vgc_level)
  511. {
  512. if (qual->vgc_level_reg != vgc_level) {
  513. rt2400pci_bbp_write(rt2x00dev, 13, vgc_level);
  514. qual->vgc_level = vgc_level;
  515. qual->vgc_level_reg = vgc_level;
  516. }
  517. }
  518. static void rt2400pci_reset_tuner(struct rt2x00_dev *rt2x00dev,
  519. struct link_qual *qual)
  520. {
  521. rt2400pci_set_vgc(rt2x00dev, qual, 0x08);
  522. }
  523. static void rt2400pci_link_tuner(struct rt2x00_dev *rt2x00dev,
  524. struct link_qual *qual, const u32 count)
  525. {
  526. /*
  527. * The link tuner should not run longer then 60 seconds,
  528. * and should run once every 2 seconds.
  529. */
  530. if (count > 60 || !(count & 1))
  531. return;
  532. /*
  533. * Base r13 link tuning on the false cca count.
  534. */
  535. if ((qual->false_cca > 512) && (qual->vgc_level < 0x20))
  536. rt2400pci_set_vgc(rt2x00dev, qual, ++qual->vgc_level);
  537. else if ((qual->false_cca < 100) && (qual->vgc_level > 0x08))
  538. rt2400pci_set_vgc(rt2x00dev, qual, --qual->vgc_level);
  539. }
  540. /*
  541. * Initialization functions.
  542. */
  543. static bool rt2400pci_get_entry_state(struct queue_entry *entry)
  544. {
  545. struct queue_entry_priv_pci *entry_priv = entry->priv_data;
  546. u32 word;
  547. if (entry->queue->qid == QID_RX) {
  548. rt2x00_desc_read(entry_priv->desc, 0, &word);
  549. return rt2x00_get_field32(word, RXD_W0_OWNER_NIC);
  550. } else {
  551. rt2x00_desc_read(entry_priv->desc, 0, &word);
  552. return (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
  553. rt2x00_get_field32(word, TXD_W0_VALID));
  554. }
  555. }
  556. static void rt2400pci_clear_entry(struct queue_entry *entry)
  557. {
  558. struct queue_entry_priv_pci *entry_priv = entry->priv_data;
  559. struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
  560. u32 word;
  561. if (entry->queue->qid == QID_RX) {
  562. rt2x00_desc_read(entry_priv->desc, 2, &word);
  563. rt2x00_set_field32(&word, RXD_W2_BUFFER_LENGTH, entry->skb->len);
  564. rt2x00_desc_write(entry_priv->desc, 2, word);
  565. rt2x00_desc_read(entry_priv->desc, 1, &word);
  566. rt2x00_set_field32(&word, RXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
  567. rt2x00_desc_write(entry_priv->desc, 1, word);
  568. rt2x00_desc_read(entry_priv->desc, 0, &word);
  569. rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
  570. rt2x00_desc_write(entry_priv->desc, 0, word);
  571. } else {
  572. rt2x00_desc_read(entry_priv->desc, 0, &word);
  573. rt2x00_set_field32(&word, TXD_W0_VALID, 0);
  574. rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
  575. rt2x00_desc_write(entry_priv->desc, 0, word);
  576. }
  577. }
  578. static int rt2400pci_init_queues(struct rt2x00_dev *rt2x00dev)
  579. {
  580. struct queue_entry_priv_pci *entry_priv;
  581. u32 reg;
  582. /*
  583. * Initialize registers.
  584. */
  585. rt2x00pci_register_read(rt2x00dev, TXCSR2, &reg);
  586. rt2x00_set_field32(&reg, TXCSR2_TXD_SIZE, rt2x00dev->tx[0].desc_size);
  587. rt2x00_set_field32(&reg, TXCSR2_NUM_TXD, rt2x00dev->tx[1].limit);
  588. rt2x00_set_field32(&reg, TXCSR2_NUM_ATIM, rt2x00dev->bcn[1].limit);
  589. rt2x00_set_field32(&reg, TXCSR2_NUM_PRIO, rt2x00dev->tx[0].limit);
  590. rt2x00pci_register_write(rt2x00dev, TXCSR2, reg);
  591. entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
  592. rt2x00pci_register_read(rt2x00dev, TXCSR3, &reg);
  593. rt2x00_set_field32(&reg, TXCSR3_TX_RING_REGISTER,
  594. entry_priv->desc_dma);
  595. rt2x00pci_register_write(rt2x00dev, TXCSR3, reg);
  596. entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
  597. rt2x00pci_register_read(rt2x00dev, TXCSR5, &reg);
  598. rt2x00_set_field32(&reg, TXCSR5_PRIO_RING_REGISTER,
  599. entry_priv->desc_dma);
  600. rt2x00pci_register_write(rt2x00dev, TXCSR5, reg);
  601. entry_priv = rt2x00dev->bcn[1].entries[0].priv_data;
  602. rt2x00pci_register_read(rt2x00dev, TXCSR4, &reg);
  603. rt2x00_set_field32(&reg, TXCSR4_ATIM_RING_REGISTER,
  604. entry_priv->desc_dma);
  605. rt2x00pci_register_write(rt2x00dev, TXCSR4, reg);
  606. entry_priv = rt2x00dev->bcn[0].entries[0].priv_data;
  607. rt2x00pci_register_read(rt2x00dev, TXCSR6, &reg);
  608. rt2x00_set_field32(&reg, TXCSR6_BEACON_RING_REGISTER,
  609. entry_priv->desc_dma);
  610. rt2x00pci_register_write(rt2x00dev, TXCSR6, reg);
  611. rt2x00pci_register_read(rt2x00dev, RXCSR1, &reg);
  612. rt2x00_set_field32(&reg, RXCSR1_RXD_SIZE, rt2x00dev->rx->desc_size);
  613. rt2x00_set_field32(&reg, RXCSR1_NUM_RXD, rt2x00dev->rx->limit);
  614. rt2x00pci_register_write(rt2x00dev, RXCSR1, reg);
  615. entry_priv = rt2x00dev->rx->entries[0].priv_data;
  616. rt2x00pci_register_read(rt2x00dev, RXCSR2, &reg);
  617. rt2x00_set_field32(&reg, RXCSR2_RX_RING_REGISTER,
  618. entry_priv->desc_dma);
  619. rt2x00pci_register_write(rt2x00dev, RXCSR2, reg);
  620. return 0;
  621. }
  622. static int rt2400pci_init_registers(struct rt2x00_dev *rt2x00dev)
  623. {
  624. u32 reg;
  625. rt2x00pci_register_write(rt2x00dev, PSCSR0, 0x00020002);
  626. rt2x00pci_register_write(rt2x00dev, PSCSR1, 0x00000002);
  627. rt2x00pci_register_write(rt2x00dev, PSCSR2, 0x00023f20);
  628. rt2x00pci_register_write(rt2x00dev, PSCSR3, 0x00000002);
  629. rt2x00pci_register_read(rt2x00dev, TIMECSR, &reg);
  630. rt2x00_set_field32(&reg, TIMECSR_US_COUNT, 33);
  631. rt2x00_set_field32(&reg, TIMECSR_US_64_COUNT, 63);
  632. rt2x00_set_field32(&reg, TIMECSR_BEACON_EXPECT, 0);
  633. rt2x00pci_register_write(rt2x00dev, TIMECSR, reg);
  634. rt2x00pci_register_read(rt2x00dev, CSR9, &reg);
  635. rt2x00_set_field32(&reg, CSR9_MAX_FRAME_UNIT,
  636. (rt2x00dev->rx->data_size / 128));
  637. rt2x00pci_register_write(rt2x00dev, CSR9, reg);
  638. rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
  639. rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
  640. rt2x00_set_field32(&reg, CSR14_TSF_SYNC, 0);
  641. rt2x00_set_field32(&reg, CSR14_TBCN, 0);
  642. rt2x00_set_field32(&reg, CSR14_TCFP, 0);
  643. rt2x00_set_field32(&reg, CSR14_TATIMW, 0);
  644. rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
  645. rt2x00_set_field32(&reg, CSR14_CFP_COUNT_PRELOAD, 0);
  646. rt2x00_set_field32(&reg, CSR14_TBCM_PRELOAD, 0);
  647. rt2x00pci_register_write(rt2x00dev, CSR14, reg);
  648. rt2x00pci_register_write(rt2x00dev, CNT3, 0x3f080000);
  649. rt2x00pci_register_read(rt2x00dev, ARCSR0, &reg);
  650. rt2x00_set_field32(&reg, ARCSR0_AR_BBP_DATA0, 133);
  651. rt2x00_set_field32(&reg, ARCSR0_AR_BBP_ID0, 134);
  652. rt2x00_set_field32(&reg, ARCSR0_AR_BBP_DATA1, 136);
  653. rt2x00_set_field32(&reg, ARCSR0_AR_BBP_ID1, 135);
  654. rt2x00pci_register_write(rt2x00dev, ARCSR0, reg);
  655. rt2x00pci_register_read(rt2x00dev, RXCSR3, &reg);
  656. rt2x00_set_field32(&reg, RXCSR3_BBP_ID0, 3); /* Tx power.*/
  657. rt2x00_set_field32(&reg, RXCSR3_BBP_ID0_VALID, 1);
  658. rt2x00_set_field32(&reg, RXCSR3_BBP_ID1, 32); /* Signal */
  659. rt2x00_set_field32(&reg, RXCSR3_BBP_ID1_VALID, 1);
  660. rt2x00_set_field32(&reg, RXCSR3_BBP_ID2, 36); /* Rssi */
  661. rt2x00_set_field32(&reg, RXCSR3_BBP_ID2_VALID, 1);
  662. rt2x00pci_register_write(rt2x00dev, RXCSR3, reg);
  663. rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0x3f3b3100);
  664. if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
  665. return -EBUSY;
  666. rt2x00pci_register_write(rt2x00dev, MACCSR0, 0x00217223);
  667. rt2x00pci_register_write(rt2x00dev, MACCSR1, 0x00235518);
  668. rt2x00pci_register_read(rt2x00dev, MACCSR2, &reg);
  669. rt2x00_set_field32(&reg, MACCSR2_DELAY, 64);
  670. rt2x00pci_register_write(rt2x00dev, MACCSR2, reg);
  671. rt2x00pci_register_read(rt2x00dev, RALINKCSR, &reg);
  672. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA0, 17);
  673. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID0, 154);
  674. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA1, 0);
  675. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID1, 154);
  676. rt2x00pci_register_write(rt2x00dev, RALINKCSR, reg);
  677. rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
  678. rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 1);
  679. rt2x00_set_field32(&reg, CSR1_BBP_RESET, 0);
  680. rt2x00_set_field32(&reg, CSR1_HOST_READY, 0);
  681. rt2x00pci_register_write(rt2x00dev, CSR1, reg);
  682. rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
  683. rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 0);
  684. rt2x00_set_field32(&reg, CSR1_HOST_READY, 1);
  685. rt2x00pci_register_write(rt2x00dev, CSR1, reg);
  686. /*
  687. * We must clear the FCS and FIFO error count.
  688. * These registers are cleared on read,
  689. * so we may pass a useless variable to store the value.
  690. */
  691. rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
  692. rt2x00pci_register_read(rt2x00dev, CNT4, &reg);
  693. return 0;
  694. }
  695. static int rt2400pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
  696. {
  697. unsigned int i;
  698. u8 value;
  699. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  700. rt2400pci_bbp_read(rt2x00dev, 0, &value);
  701. if ((value != 0xff) && (value != 0x00))
  702. return 0;
  703. udelay(REGISTER_BUSY_DELAY);
  704. }
  705. ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
  706. return -EACCES;
  707. }
  708. static int rt2400pci_init_bbp(struct rt2x00_dev *rt2x00dev)
  709. {
  710. unsigned int i;
  711. u16 eeprom;
  712. u8 reg_id;
  713. u8 value;
  714. if (unlikely(rt2400pci_wait_bbp_ready(rt2x00dev)))
  715. return -EACCES;
  716. rt2400pci_bbp_write(rt2x00dev, 1, 0x00);
  717. rt2400pci_bbp_write(rt2x00dev, 3, 0x27);
  718. rt2400pci_bbp_write(rt2x00dev, 4, 0x08);
  719. rt2400pci_bbp_write(rt2x00dev, 10, 0x0f);
  720. rt2400pci_bbp_write(rt2x00dev, 15, 0x72);
  721. rt2400pci_bbp_write(rt2x00dev, 16, 0x74);
  722. rt2400pci_bbp_write(rt2x00dev, 17, 0x20);
  723. rt2400pci_bbp_write(rt2x00dev, 18, 0x72);
  724. rt2400pci_bbp_write(rt2x00dev, 19, 0x0b);
  725. rt2400pci_bbp_write(rt2x00dev, 20, 0x00);
  726. rt2400pci_bbp_write(rt2x00dev, 28, 0x11);
  727. rt2400pci_bbp_write(rt2x00dev, 29, 0x04);
  728. rt2400pci_bbp_write(rt2x00dev, 30, 0x21);
  729. rt2400pci_bbp_write(rt2x00dev, 31, 0x00);
  730. for (i = 0; i < EEPROM_BBP_SIZE; i++) {
  731. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
  732. if (eeprom != 0xffff && eeprom != 0x0000) {
  733. reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
  734. value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
  735. rt2400pci_bbp_write(rt2x00dev, reg_id, value);
  736. }
  737. }
  738. return 0;
  739. }
  740. /*
  741. * Device state switch handlers.
  742. */
  743. static void rt2400pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
  744. enum dev_state state)
  745. {
  746. u32 reg;
  747. rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
  748. rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX,
  749. (state == STATE_RADIO_RX_OFF) ||
  750. (state == STATE_RADIO_RX_OFF_LINK));
  751. rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
  752. }
  753. static void rt2400pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
  754. enum dev_state state)
  755. {
  756. int mask = (state == STATE_RADIO_IRQ_OFF) ||
  757. (state == STATE_RADIO_IRQ_OFF_ISR);
  758. u32 reg;
  759. /*
  760. * When interrupts are being enabled, the interrupt registers
  761. * should clear the register to assure a clean state.
  762. */
  763. if (state == STATE_RADIO_IRQ_ON) {
  764. rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
  765. rt2x00pci_register_write(rt2x00dev, CSR7, reg);
  766. }
  767. /*
  768. * Only toggle the interrupts bits we are going to use.
  769. * Non-checked interrupt bits are disabled by default.
  770. */
  771. rt2x00pci_register_read(rt2x00dev, CSR8, &reg);
  772. rt2x00_set_field32(&reg, CSR8_TBCN_EXPIRE, mask);
  773. rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, mask);
  774. rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, mask);
  775. rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, mask);
  776. rt2x00_set_field32(&reg, CSR8_RXDONE, mask);
  777. rt2x00pci_register_write(rt2x00dev, CSR8, reg);
  778. }
  779. static int rt2400pci_enable_radio(struct rt2x00_dev *rt2x00dev)
  780. {
  781. /*
  782. * Initialize all registers.
  783. */
  784. if (unlikely(rt2400pci_init_queues(rt2x00dev) ||
  785. rt2400pci_init_registers(rt2x00dev) ||
  786. rt2400pci_init_bbp(rt2x00dev)))
  787. return -EIO;
  788. return 0;
  789. }
  790. static void rt2400pci_disable_radio(struct rt2x00_dev *rt2x00dev)
  791. {
  792. /*
  793. * Disable power
  794. */
  795. rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0);
  796. }
  797. static int rt2400pci_set_state(struct rt2x00_dev *rt2x00dev,
  798. enum dev_state state)
  799. {
  800. u32 reg, reg2;
  801. unsigned int i;
  802. char put_to_sleep;
  803. char bbp_state;
  804. char rf_state;
  805. put_to_sleep = (state != STATE_AWAKE);
  806. rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
  807. rt2x00_set_field32(&reg, PWRCSR1_SET_STATE, 1);
  808. rt2x00_set_field32(&reg, PWRCSR1_BBP_DESIRE_STATE, state);
  809. rt2x00_set_field32(&reg, PWRCSR1_RF_DESIRE_STATE, state);
  810. rt2x00_set_field32(&reg, PWRCSR1_PUT_TO_SLEEP, put_to_sleep);
  811. rt2x00pci_register_write(rt2x00dev, PWRCSR1, reg);
  812. /*
  813. * Device is not guaranteed to be in the requested state yet.
  814. * We must wait until the register indicates that the
  815. * device has entered the correct state.
  816. */
  817. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  818. rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg2);
  819. bbp_state = rt2x00_get_field32(reg2, PWRCSR1_BBP_CURR_STATE);
  820. rf_state = rt2x00_get_field32(reg2, PWRCSR1_RF_CURR_STATE);
  821. if (bbp_state == state && rf_state == state)
  822. return 0;
  823. rt2x00pci_register_write(rt2x00dev, PWRCSR1, reg);
  824. msleep(10);
  825. }
  826. return -EBUSY;
  827. }
  828. static int rt2400pci_set_device_state(struct rt2x00_dev *rt2x00dev,
  829. enum dev_state state)
  830. {
  831. int retval = 0;
  832. switch (state) {
  833. case STATE_RADIO_ON:
  834. retval = rt2400pci_enable_radio(rt2x00dev);
  835. break;
  836. case STATE_RADIO_OFF:
  837. rt2400pci_disable_radio(rt2x00dev);
  838. break;
  839. case STATE_RADIO_RX_ON:
  840. case STATE_RADIO_RX_ON_LINK:
  841. case STATE_RADIO_RX_OFF:
  842. case STATE_RADIO_RX_OFF_LINK:
  843. rt2400pci_toggle_rx(rt2x00dev, state);
  844. break;
  845. case STATE_RADIO_IRQ_ON:
  846. case STATE_RADIO_IRQ_ON_ISR:
  847. case STATE_RADIO_IRQ_OFF:
  848. case STATE_RADIO_IRQ_OFF_ISR:
  849. rt2400pci_toggle_irq(rt2x00dev, state);
  850. break;
  851. case STATE_DEEP_SLEEP:
  852. case STATE_SLEEP:
  853. case STATE_STANDBY:
  854. case STATE_AWAKE:
  855. retval = rt2400pci_set_state(rt2x00dev, state);
  856. break;
  857. default:
  858. retval = -ENOTSUPP;
  859. break;
  860. }
  861. if (unlikely(retval))
  862. ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
  863. state, retval);
  864. return retval;
  865. }
  866. /*
  867. * TX descriptor initialization
  868. */
  869. static void rt2400pci_write_tx_desc(struct queue_entry *entry,
  870. struct txentry_desc *txdesc)
  871. {
  872. struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
  873. struct queue_entry_priv_pci *entry_priv = entry->priv_data;
  874. __le32 *txd = entry_priv->desc;
  875. u32 word;
  876. /*
  877. * Start writing the descriptor words.
  878. */
  879. rt2x00_desc_read(txd, 1, &word);
  880. rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
  881. rt2x00_desc_write(txd, 1, word);
  882. rt2x00_desc_read(txd, 2, &word);
  883. rt2x00_set_field32(&word, TXD_W2_BUFFER_LENGTH, txdesc->length);
  884. rt2x00_set_field32(&word, TXD_W2_DATABYTE_COUNT, txdesc->length);
  885. rt2x00_desc_write(txd, 2, word);
  886. rt2x00_desc_read(txd, 3, &word);
  887. rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL, txdesc->signal);
  888. rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL_REGNUM, 5);
  889. rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL_BUSY, 1);
  890. rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE, txdesc->service);
  891. rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE_REGNUM, 6);
  892. rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE_BUSY, 1);
  893. rt2x00_desc_write(txd, 3, word);
  894. rt2x00_desc_read(txd, 4, &word);
  895. rt2x00_set_field32(&word, TXD_W4_PLCP_LENGTH_LOW, txdesc->length_low);
  896. rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW_REGNUM, 8);
  897. rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW_BUSY, 1);
  898. rt2x00_set_field32(&word, TXD_W4_PLCP_LENGTH_HIGH, txdesc->length_high);
  899. rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH_REGNUM, 7);
  900. rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH_BUSY, 1);
  901. rt2x00_desc_write(txd, 4, word);
  902. /*
  903. * Writing TXD word 0 must the last to prevent a race condition with
  904. * the device, whereby the device may take hold of the TXD before we
  905. * finished updating it.
  906. */
  907. rt2x00_desc_read(txd, 0, &word);
  908. rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
  909. rt2x00_set_field32(&word, TXD_W0_VALID, 1);
  910. rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
  911. test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
  912. rt2x00_set_field32(&word, TXD_W0_ACK,
  913. test_bit(ENTRY_TXD_ACK, &txdesc->flags));
  914. rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
  915. test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
  916. rt2x00_set_field32(&word, TXD_W0_RTS,
  917. test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags));
  918. rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
  919. rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
  920. test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
  921. rt2x00_desc_write(txd, 0, word);
  922. /*
  923. * Register descriptor details in skb frame descriptor.
  924. */
  925. skbdesc->desc = txd;
  926. skbdesc->desc_len = TXD_DESC_SIZE;
  927. }
  928. /*
  929. * TX data initialization
  930. */
  931. static void rt2400pci_write_beacon(struct queue_entry *entry,
  932. struct txentry_desc *txdesc)
  933. {
  934. struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
  935. u32 reg;
  936. /*
  937. * Disable beaconing while we are reloading the beacon data,
  938. * otherwise we might be sending out invalid data.
  939. */
  940. rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
  941. rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
  942. rt2x00pci_register_write(rt2x00dev, CSR14, reg);
  943. rt2x00queue_map_txskb(rt2x00dev, entry->skb);
  944. /*
  945. * Write the TX descriptor for the beacon.
  946. */
  947. rt2400pci_write_tx_desc(entry, txdesc);
  948. /*
  949. * Dump beacon to userspace through debugfs.
  950. */
  951. rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry->skb);
  952. /*
  953. * Enable beaconing again.
  954. */
  955. rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
  956. rt2x00_set_field32(&reg, CSR14_TBCN, 1);
  957. rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
  958. rt2x00pci_register_write(rt2x00dev, CSR14, reg);
  959. }
  960. static void rt2400pci_kick_tx_queue(struct data_queue *queue)
  961. {
  962. struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
  963. u32 reg;
  964. rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
  965. rt2x00_set_field32(&reg, TXCSR0_KICK_PRIO, (queue->qid == QID_AC_BE));
  966. rt2x00_set_field32(&reg, TXCSR0_KICK_TX, (queue->qid == QID_AC_BK));
  967. rt2x00_set_field32(&reg, TXCSR0_KICK_ATIM, (queue->qid == QID_ATIM));
  968. rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
  969. }
  970. static void rt2400pci_kill_tx_queue(struct data_queue *queue)
  971. {
  972. struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
  973. u32 reg;
  974. if (queue->qid == QID_BEACON) {
  975. rt2x00pci_register_write(rt2x00dev, CSR14, 0);
  976. } else {
  977. rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
  978. rt2x00_set_field32(&reg, TXCSR0_ABORT, 1);
  979. rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
  980. }
  981. }
  982. /*
  983. * RX control handlers
  984. */
  985. static void rt2400pci_fill_rxdone(struct queue_entry *entry,
  986. struct rxdone_entry_desc *rxdesc)
  987. {
  988. struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
  989. struct queue_entry_priv_pci *entry_priv = entry->priv_data;
  990. u32 word0;
  991. u32 word2;
  992. u32 word3;
  993. u32 word4;
  994. u64 tsf;
  995. u32 rx_low;
  996. u32 rx_high;
  997. rt2x00_desc_read(entry_priv->desc, 0, &word0);
  998. rt2x00_desc_read(entry_priv->desc, 2, &word2);
  999. rt2x00_desc_read(entry_priv->desc, 3, &word3);
  1000. rt2x00_desc_read(entry_priv->desc, 4, &word4);
  1001. if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
  1002. rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
  1003. if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
  1004. rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
  1005. /*
  1006. * We only get the lower 32bits from the timestamp,
  1007. * to get the full 64bits we must complement it with
  1008. * the timestamp from get_tsf().
  1009. * Note that when a wraparound of the lower 32bits
  1010. * has occurred between the frame arrival and the get_tsf()
  1011. * call, we must decrease the higher 32bits with 1 to get
  1012. * to correct value.
  1013. */
  1014. tsf = rt2x00dev->ops->hw->get_tsf(rt2x00dev->hw);
  1015. rx_low = rt2x00_get_field32(word4, RXD_W4_RX_END_TIME);
  1016. rx_high = upper_32_bits(tsf);
  1017. if ((u32)tsf <= rx_low)
  1018. rx_high--;
  1019. /*
  1020. * Obtain the status about this packet.
  1021. * The signal is the PLCP value, and needs to be stripped
  1022. * of the preamble bit (0x08).
  1023. */
  1024. rxdesc->timestamp = ((u64)rx_high << 32) | rx_low;
  1025. rxdesc->signal = rt2x00_get_field32(word2, RXD_W2_SIGNAL) & ~0x08;
  1026. rxdesc->rssi = rt2x00_get_field32(word2, RXD_W3_RSSI) -
  1027. entry->queue->rt2x00dev->rssi_offset;
  1028. rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
  1029. rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
  1030. if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
  1031. rxdesc->dev_flags |= RXDONE_MY_BSS;
  1032. }
  1033. /*
  1034. * Interrupt functions.
  1035. */
  1036. static void rt2400pci_txdone(struct rt2x00_dev *rt2x00dev,
  1037. const enum data_queue_qid queue_idx)
  1038. {
  1039. struct data_queue *queue = rt2x00queue_get_queue(rt2x00dev, queue_idx);
  1040. struct queue_entry_priv_pci *entry_priv;
  1041. struct queue_entry *entry;
  1042. struct txdone_entry_desc txdesc;
  1043. u32 word;
  1044. while (!rt2x00queue_empty(queue)) {
  1045. entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
  1046. entry_priv = entry->priv_data;
  1047. rt2x00_desc_read(entry_priv->desc, 0, &word);
  1048. if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
  1049. !rt2x00_get_field32(word, TXD_W0_VALID))
  1050. break;
  1051. /*
  1052. * Obtain the status about this packet.
  1053. */
  1054. txdesc.flags = 0;
  1055. switch (rt2x00_get_field32(word, TXD_W0_RESULT)) {
  1056. case 0: /* Success */
  1057. case 1: /* Success with retry */
  1058. __set_bit(TXDONE_SUCCESS, &txdesc.flags);
  1059. break;
  1060. case 2: /* Failure, excessive retries */
  1061. __set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
  1062. /* Don't break, this is a failed frame! */
  1063. default: /* Failure */
  1064. __set_bit(TXDONE_FAILURE, &txdesc.flags);
  1065. }
  1066. txdesc.retry = rt2x00_get_field32(word, TXD_W0_RETRY_COUNT);
  1067. rt2x00lib_txdone(entry, &txdesc);
  1068. }
  1069. }
  1070. static irqreturn_t rt2400pci_interrupt_thread(int irq, void *dev_instance)
  1071. {
  1072. struct rt2x00_dev *rt2x00dev = dev_instance;
  1073. u32 reg = rt2x00dev->irqvalue[0];
  1074. /*
  1075. * Handle interrupts, walk through all bits
  1076. * and run the tasks, the bits are checked in order of
  1077. * priority.
  1078. */
  1079. /*
  1080. * 1 - Beacon timer expired interrupt.
  1081. */
  1082. if (rt2x00_get_field32(reg, CSR7_TBCN_EXPIRE))
  1083. rt2x00lib_beacondone(rt2x00dev);
  1084. /*
  1085. * 2 - Rx ring done interrupt.
  1086. */
  1087. if (rt2x00_get_field32(reg, CSR7_RXDONE))
  1088. rt2x00pci_rxdone(rt2x00dev);
  1089. /*
  1090. * 3 - Atim ring transmit done interrupt.
  1091. */
  1092. if (rt2x00_get_field32(reg, CSR7_TXDONE_ATIMRING))
  1093. rt2400pci_txdone(rt2x00dev, QID_ATIM);
  1094. /*
  1095. * 4 - Priority ring transmit done interrupt.
  1096. */
  1097. if (rt2x00_get_field32(reg, CSR7_TXDONE_PRIORING))
  1098. rt2400pci_txdone(rt2x00dev, QID_AC_BE);
  1099. /*
  1100. * 5 - Tx ring transmit done interrupt.
  1101. */
  1102. if (rt2x00_get_field32(reg, CSR7_TXDONE_TXRING))
  1103. rt2400pci_txdone(rt2x00dev, QID_AC_BK);
  1104. /* Enable interrupts again. */
  1105. rt2x00dev->ops->lib->set_device_state(rt2x00dev,
  1106. STATE_RADIO_IRQ_ON_ISR);
  1107. return IRQ_HANDLED;
  1108. }
  1109. static irqreturn_t rt2400pci_interrupt(int irq, void *dev_instance)
  1110. {
  1111. struct rt2x00_dev *rt2x00dev = dev_instance;
  1112. u32 reg;
  1113. /*
  1114. * Get the interrupt sources & saved to local variable.
  1115. * Write register value back to clear pending interrupts.
  1116. */
  1117. rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
  1118. rt2x00pci_register_write(rt2x00dev, CSR7, reg);
  1119. if (!reg)
  1120. return IRQ_NONE;
  1121. if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
  1122. return IRQ_HANDLED;
  1123. /* Store irqvalues for use in the interrupt thread. */
  1124. rt2x00dev->irqvalue[0] = reg;
  1125. /* Disable interrupts, will be enabled again in the interrupt thread. */
  1126. rt2x00dev->ops->lib->set_device_state(rt2x00dev,
  1127. STATE_RADIO_IRQ_OFF_ISR);
  1128. return IRQ_WAKE_THREAD;
  1129. }
  1130. /*
  1131. * Device probe functions.
  1132. */
  1133. static int rt2400pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
  1134. {
  1135. struct eeprom_93cx6 eeprom;
  1136. u32 reg;
  1137. u16 word;
  1138. u8 *mac;
  1139. rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
  1140. eeprom.data = rt2x00dev;
  1141. eeprom.register_read = rt2400pci_eepromregister_read;
  1142. eeprom.register_write = rt2400pci_eepromregister_write;
  1143. eeprom.width = rt2x00_get_field32(reg, CSR21_TYPE_93C46) ?
  1144. PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
  1145. eeprom.reg_data_in = 0;
  1146. eeprom.reg_data_out = 0;
  1147. eeprom.reg_data_clock = 0;
  1148. eeprom.reg_chip_select = 0;
  1149. eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
  1150. EEPROM_SIZE / sizeof(u16));
  1151. /*
  1152. * Start validation of the data that has been read.
  1153. */
  1154. mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
  1155. if (!is_valid_ether_addr(mac)) {
  1156. random_ether_addr(mac);
  1157. EEPROM(rt2x00dev, "MAC: %pM\n", mac);
  1158. }
  1159. rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
  1160. if (word == 0xffff) {
  1161. ERROR(rt2x00dev, "Invalid EEPROM data detected.\n");
  1162. return -EINVAL;
  1163. }
  1164. return 0;
  1165. }
  1166. static int rt2400pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
  1167. {
  1168. u32 reg;
  1169. u16 value;
  1170. u16 eeprom;
  1171. /*
  1172. * Read EEPROM word for configuration.
  1173. */
  1174. rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
  1175. /*
  1176. * Identify RF chipset.
  1177. */
  1178. value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
  1179. rt2x00pci_register_read(rt2x00dev, CSR0, &reg);
  1180. rt2x00_set_chip(rt2x00dev, RT2460, value,
  1181. rt2x00_get_field32(reg, CSR0_REVISION));
  1182. if (!rt2x00_rf(rt2x00dev, RF2420) && !rt2x00_rf(rt2x00dev, RF2421)) {
  1183. ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
  1184. return -ENODEV;
  1185. }
  1186. /*
  1187. * Identify default antenna configuration.
  1188. */
  1189. rt2x00dev->default_ant.tx =
  1190. rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
  1191. rt2x00dev->default_ant.rx =
  1192. rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
  1193. /*
  1194. * When the eeprom indicates SW_DIVERSITY use HW_DIVERSITY instead.
  1195. * I am not 100% sure about this, but the legacy drivers do not
  1196. * indicate antenna swapping in software is required when
  1197. * diversity is enabled.
  1198. */
  1199. if (rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
  1200. rt2x00dev->default_ant.tx = ANTENNA_HW_DIVERSITY;
  1201. if (rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
  1202. rt2x00dev->default_ant.rx = ANTENNA_HW_DIVERSITY;
  1203. /*
  1204. * Store led mode, for correct led behaviour.
  1205. */
  1206. #ifdef CONFIG_RT2X00_LIB_LEDS
  1207. value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
  1208. rt2400pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
  1209. if (value == LED_MODE_TXRX_ACTIVITY ||
  1210. value == LED_MODE_DEFAULT ||
  1211. value == LED_MODE_ASUS)
  1212. rt2400pci_init_led(rt2x00dev, &rt2x00dev->led_qual,
  1213. LED_TYPE_ACTIVITY);
  1214. #endif /* CONFIG_RT2X00_LIB_LEDS */
  1215. /*
  1216. * Detect if this device has an hardware controlled radio.
  1217. */
  1218. if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
  1219. __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
  1220. /*
  1221. * Check if the BBP tuning should be enabled.
  1222. */
  1223. if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_AGCVGC_TUNING))
  1224. __set_bit(DRIVER_SUPPORT_LINK_TUNING, &rt2x00dev->flags);
  1225. return 0;
  1226. }
  1227. /*
  1228. * RF value list for RF2420 & RF2421
  1229. * Supports: 2.4 GHz
  1230. */
  1231. static const struct rf_channel rf_vals_b[] = {
  1232. { 1, 0x00022058, 0x000c1fda, 0x00000101, 0 },
  1233. { 2, 0x00022058, 0x000c1fee, 0x00000101, 0 },
  1234. { 3, 0x00022058, 0x000c2002, 0x00000101, 0 },
  1235. { 4, 0x00022058, 0x000c2016, 0x00000101, 0 },
  1236. { 5, 0x00022058, 0x000c202a, 0x00000101, 0 },
  1237. { 6, 0x00022058, 0x000c203e, 0x00000101, 0 },
  1238. { 7, 0x00022058, 0x000c2052, 0x00000101, 0 },
  1239. { 8, 0x00022058, 0x000c2066, 0x00000101, 0 },
  1240. { 9, 0x00022058, 0x000c207a, 0x00000101, 0 },
  1241. { 10, 0x00022058, 0x000c208e, 0x00000101, 0 },
  1242. { 11, 0x00022058, 0x000c20a2, 0x00000101, 0 },
  1243. { 12, 0x00022058, 0x000c20b6, 0x00000101, 0 },
  1244. { 13, 0x00022058, 0x000c20ca, 0x00000101, 0 },
  1245. { 14, 0x00022058, 0x000c20fa, 0x00000101, 0 },
  1246. };
  1247. static int rt2400pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
  1248. {
  1249. struct hw_mode_spec *spec = &rt2x00dev->spec;
  1250. struct channel_info *info;
  1251. char *tx_power;
  1252. unsigned int i;
  1253. /*
  1254. * Initialize all hw fields.
  1255. */
  1256. rt2x00dev->hw->flags = IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
  1257. IEEE80211_HW_SIGNAL_DBM |
  1258. IEEE80211_HW_SUPPORTS_PS |
  1259. IEEE80211_HW_PS_NULLFUNC_STACK;
  1260. SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
  1261. SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
  1262. rt2x00_eeprom_addr(rt2x00dev,
  1263. EEPROM_MAC_ADDR_0));
  1264. /*
  1265. * Initialize hw_mode information.
  1266. */
  1267. spec->supported_bands = SUPPORT_BAND_2GHZ;
  1268. spec->supported_rates = SUPPORT_RATE_CCK;
  1269. spec->num_channels = ARRAY_SIZE(rf_vals_b);
  1270. spec->channels = rf_vals_b;
  1271. /*
  1272. * Create channel information array
  1273. */
  1274. info = kzalloc(spec->num_channels * sizeof(*info), GFP_KERNEL);
  1275. if (!info)
  1276. return -ENOMEM;
  1277. spec->channels_info = info;
  1278. tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
  1279. for (i = 0; i < 14; i++) {
  1280. info[i].max_power = TXPOWER_FROM_DEV(MAX_TXPOWER);
  1281. info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
  1282. }
  1283. return 0;
  1284. }
  1285. static int rt2400pci_probe_hw(struct rt2x00_dev *rt2x00dev)
  1286. {
  1287. int retval;
  1288. /*
  1289. * Allocate eeprom data.
  1290. */
  1291. retval = rt2400pci_validate_eeprom(rt2x00dev);
  1292. if (retval)
  1293. return retval;
  1294. retval = rt2400pci_init_eeprom(rt2x00dev);
  1295. if (retval)
  1296. return retval;
  1297. /*
  1298. * Initialize hw specifications.
  1299. */
  1300. retval = rt2400pci_probe_hw_mode(rt2x00dev);
  1301. if (retval)
  1302. return retval;
  1303. /*
  1304. * This device requires the atim queue and DMA-mapped skbs.
  1305. */
  1306. __set_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
  1307. __set_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags);
  1308. /*
  1309. * Set the rssi offset.
  1310. */
  1311. rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
  1312. return 0;
  1313. }
  1314. /*
  1315. * IEEE80211 stack callback functions.
  1316. */
  1317. static int rt2400pci_conf_tx(struct ieee80211_hw *hw, u16 queue,
  1318. const struct ieee80211_tx_queue_params *params)
  1319. {
  1320. struct rt2x00_dev *rt2x00dev = hw->priv;
  1321. /*
  1322. * We don't support variating cw_min and cw_max variables
  1323. * per queue. So by default we only configure the TX queue,
  1324. * and ignore all other configurations.
  1325. */
  1326. if (queue != 0)
  1327. return -EINVAL;
  1328. if (rt2x00mac_conf_tx(hw, queue, params))
  1329. return -EINVAL;
  1330. /*
  1331. * Write configuration to register.
  1332. */
  1333. rt2400pci_config_cw(rt2x00dev,
  1334. rt2x00dev->tx->cw_min, rt2x00dev->tx->cw_max);
  1335. return 0;
  1336. }
  1337. static u64 rt2400pci_get_tsf(struct ieee80211_hw *hw)
  1338. {
  1339. struct rt2x00_dev *rt2x00dev = hw->priv;
  1340. u64 tsf;
  1341. u32 reg;
  1342. rt2x00pci_register_read(rt2x00dev, CSR17, &reg);
  1343. tsf = (u64) rt2x00_get_field32(reg, CSR17_HIGH_TSFTIMER) << 32;
  1344. rt2x00pci_register_read(rt2x00dev, CSR16, &reg);
  1345. tsf |= rt2x00_get_field32(reg, CSR16_LOW_TSFTIMER);
  1346. return tsf;
  1347. }
  1348. static int rt2400pci_tx_last_beacon(struct ieee80211_hw *hw)
  1349. {
  1350. struct rt2x00_dev *rt2x00dev = hw->priv;
  1351. u32 reg;
  1352. rt2x00pci_register_read(rt2x00dev, CSR15, &reg);
  1353. return rt2x00_get_field32(reg, CSR15_BEACON_SENT);
  1354. }
  1355. static const struct ieee80211_ops rt2400pci_mac80211_ops = {
  1356. .tx = rt2x00mac_tx,
  1357. .start = rt2x00mac_start,
  1358. .stop = rt2x00mac_stop,
  1359. .add_interface = rt2x00mac_add_interface,
  1360. .remove_interface = rt2x00mac_remove_interface,
  1361. .config = rt2x00mac_config,
  1362. .configure_filter = rt2x00mac_configure_filter,
  1363. .sw_scan_start = rt2x00mac_sw_scan_start,
  1364. .sw_scan_complete = rt2x00mac_sw_scan_complete,
  1365. .get_stats = rt2x00mac_get_stats,
  1366. .bss_info_changed = rt2x00mac_bss_info_changed,
  1367. .conf_tx = rt2400pci_conf_tx,
  1368. .get_tsf = rt2400pci_get_tsf,
  1369. .tx_last_beacon = rt2400pci_tx_last_beacon,
  1370. .rfkill_poll = rt2x00mac_rfkill_poll,
  1371. };
  1372. static const struct rt2x00lib_ops rt2400pci_rt2x00_ops = {
  1373. .irq_handler = rt2400pci_interrupt,
  1374. .irq_handler_thread = rt2400pci_interrupt_thread,
  1375. .probe_hw = rt2400pci_probe_hw,
  1376. .initialize = rt2x00pci_initialize,
  1377. .uninitialize = rt2x00pci_uninitialize,
  1378. .get_entry_state = rt2400pci_get_entry_state,
  1379. .clear_entry = rt2400pci_clear_entry,
  1380. .set_device_state = rt2400pci_set_device_state,
  1381. .rfkill_poll = rt2400pci_rfkill_poll,
  1382. .link_stats = rt2400pci_link_stats,
  1383. .reset_tuner = rt2400pci_reset_tuner,
  1384. .link_tuner = rt2400pci_link_tuner,
  1385. .write_tx_desc = rt2400pci_write_tx_desc,
  1386. .write_beacon = rt2400pci_write_beacon,
  1387. .kick_tx_queue = rt2400pci_kick_tx_queue,
  1388. .kill_tx_queue = rt2400pci_kill_tx_queue,
  1389. .fill_rxdone = rt2400pci_fill_rxdone,
  1390. .config_filter = rt2400pci_config_filter,
  1391. .config_intf = rt2400pci_config_intf,
  1392. .config_erp = rt2400pci_config_erp,
  1393. .config_ant = rt2400pci_config_ant,
  1394. .config = rt2400pci_config,
  1395. };
  1396. static const struct data_queue_desc rt2400pci_queue_rx = {
  1397. .entry_num = RX_ENTRIES,
  1398. .data_size = DATA_FRAME_SIZE,
  1399. .desc_size = RXD_DESC_SIZE,
  1400. .priv_size = sizeof(struct queue_entry_priv_pci),
  1401. };
  1402. static const struct data_queue_desc rt2400pci_queue_tx = {
  1403. .entry_num = TX_ENTRIES,
  1404. .data_size = DATA_FRAME_SIZE,
  1405. .desc_size = TXD_DESC_SIZE,
  1406. .priv_size = sizeof(struct queue_entry_priv_pci),
  1407. };
  1408. static const struct data_queue_desc rt2400pci_queue_bcn = {
  1409. .entry_num = BEACON_ENTRIES,
  1410. .data_size = MGMT_FRAME_SIZE,
  1411. .desc_size = TXD_DESC_SIZE,
  1412. .priv_size = sizeof(struct queue_entry_priv_pci),
  1413. };
  1414. static const struct data_queue_desc rt2400pci_queue_atim = {
  1415. .entry_num = ATIM_ENTRIES,
  1416. .data_size = DATA_FRAME_SIZE,
  1417. .desc_size = TXD_DESC_SIZE,
  1418. .priv_size = sizeof(struct queue_entry_priv_pci),
  1419. };
  1420. static const struct rt2x00_ops rt2400pci_ops = {
  1421. .name = KBUILD_MODNAME,
  1422. .max_sta_intf = 1,
  1423. .max_ap_intf = 1,
  1424. .eeprom_size = EEPROM_SIZE,
  1425. .rf_size = RF_SIZE,
  1426. .tx_queues = NUM_TX_QUEUES,
  1427. .extra_tx_headroom = 0,
  1428. .rx = &rt2400pci_queue_rx,
  1429. .tx = &rt2400pci_queue_tx,
  1430. .bcn = &rt2400pci_queue_bcn,
  1431. .atim = &rt2400pci_queue_atim,
  1432. .lib = &rt2400pci_rt2x00_ops,
  1433. .hw = &rt2400pci_mac80211_ops,
  1434. #ifdef CONFIG_RT2X00_LIB_DEBUGFS
  1435. .debugfs = &rt2400pci_rt2x00debug,
  1436. #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
  1437. };
  1438. /*
  1439. * RT2400pci module information.
  1440. */
  1441. static DEFINE_PCI_DEVICE_TABLE(rt2400pci_device_table) = {
  1442. { PCI_DEVICE(0x1814, 0x0101), PCI_DEVICE_DATA(&rt2400pci_ops) },
  1443. { 0, }
  1444. };
  1445. MODULE_AUTHOR(DRV_PROJECT);
  1446. MODULE_VERSION(DRV_VERSION);
  1447. MODULE_DESCRIPTION("Ralink RT2400 PCI & PCMCIA Wireless LAN driver.");
  1448. MODULE_SUPPORTED_DEVICE("Ralink RT2460 PCI & PCMCIA chipset based cards");
  1449. MODULE_DEVICE_TABLE(pci, rt2400pci_device_table);
  1450. MODULE_LICENSE("GPL");
  1451. static struct pci_driver rt2400pci_driver = {
  1452. .name = KBUILD_MODNAME,
  1453. .id_table = rt2400pci_device_table,
  1454. .probe = rt2x00pci_probe,
  1455. .remove = __devexit_p(rt2x00pci_remove),
  1456. .suspend = rt2x00pci_suspend,
  1457. .resume = rt2x00pci_resume,
  1458. };
  1459. static int __init rt2400pci_init(void)
  1460. {
  1461. return pci_register_driver(&rt2400pci_driver);
  1462. }
  1463. static void __exit rt2400pci_exit(void)
  1464. {
  1465. pci_unregister_driver(&rt2400pci_driver);
  1466. }
  1467. module_init(rt2400pci_init);
  1468. module_exit(rt2400pci_exit);