iwl-eeprom.c 35 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165
  1. /******************************************************************************
  2. *
  3. * This file is provided under a dual BSD/GPLv2 license. When using or
  4. * redistributing this file, you may do so under either license.
  5. *
  6. * GPL LICENSE SUMMARY
  7. *
  8. * Copyright(c) 2008 - 2010 Intel Corporation. All rights reserved.
  9. *
  10. * This program is free software; you can redistribute it and/or modify
  11. * it under the terms of version 2 of the GNU General Public License as
  12. * published by the Free Software Foundation.
  13. *
  14. * This program is distributed in the hope that it will be useful, but
  15. * WITHOUT ANY WARRANTY; without even the implied warranty of
  16. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  17. * General Public License for more details.
  18. *
  19. * You should have received a copy of the GNU General Public License
  20. * along with this program; if not, write to the Free Software
  21. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
  22. * USA
  23. *
  24. * The full GNU General Public License is included in this distribution
  25. * in the file called LICENSE.GPL.
  26. *
  27. * Contact Information:
  28. * Intel Linux Wireless <ilw@linux.intel.com>
  29. * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  30. *
  31. * BSD LICENSE
  32. *
  33. * Copyright(c) 2005 - 2010 Intel Corporation. All rights reserved.
  34. * All rights reserved.
  35. *
  36. * Redistribution and use in source and binary forms, with or without
  37. * modification, are permitted provided that the following conditions
  38. * are met:
  39. *
  40. * * Redistributions of source code must retain the above copyright
  41. * notice, this list of conditions and the following disclaimer.
  42. * * Redistributions in binary form must reproduce the above copyright
  43. * notice, this list of conditions and the following disclaimer in
  44. * the documentation and/or other materials provided with the
  45. * distribution.
  46. * * Neither the name Intel Corporation nor the names of its
  47. * contributors may be used to endorse or promote products derived
  48. * from this software without specific prior written permission.
  49. *
  50. * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  51. * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  52. * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  53. * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  54. * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  55. * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  56. * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  57. * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  58. * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  59. * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  60. * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  61. *****************************************************************************/
  62. #include <linux/kernel.h>
  63. #include <linux/module.h>
  64. #include <linux/slab.h>
  65. #include <linux/init.h>
  66. #include <net/mac80211.h>
  67. #include "iwl-commands.h"
  68. #include "iwl-dev.h"
  69. #include "iwl-core.h"
  70. #include "iwl-debug.h"
  71. #include "iwl-eeprom.h"
  72. #include "iwl-io.h"
  73. /************************** EEPROM BANDS ****************************
  74. *
  75. * The iwl_eeprom_band definitions below provide the mapping from the
  76. * EEPROM contents to the specific channel number supported for each
  77. * band.
  78. *
  79. * For example, iwl_priv->eeprom.band_3_channels[4] from the band_3
  80. * definition below maps to physical channel 42 in the 5.2GHz spectrum.
  81. * The specific geography and calibration information for that channel
  82. * is contained in the eeprom map itself.
  83. *
  84. * During init, we copy the eeprom information and channel map
  85. * information into priv->channel_info_24/52 and priv->channel_map_24/52
  86. *
  87. * channel_map_24/52 provides the index in the channel_info array for a
  88. * given channel. We have to have two separate maps as there is channel
  89. * overlap with the 2.4GHz and 5.2GHz spectrum as seen in band_1 and
  90. * band_2
  91. *
  92. * A value of 0xff stored in the channel_map indicates that the channel
  93. * is not supported by the hardware at all.
  94. *
  95. * A value of 0xfe in the channel_map indicates that the channel is not
  96. * valid for Tx with the current hardware. This means that
  97. * while the system can tune and receive on a given channel, it may not
  98. * be able to associate or transmit any frames on that
  99. * channel. There is no corresponding channel information for that
  100. * entry.
  101. *
  102. *********************************************************************/
  103. /* 2.4 GHz */
  104. const u8 iwl_eeprom_band_1[14] = {
  105. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14
  106. };
  107. /* 5.2 GHz bands */
  108. static const u8 iwl_eeprom_band_2[] = { /* 4915-5080MHz */
  109. 183, 184, 185, 187, 188, 189, 192, 196, 7, 8, 11, 12, 16
  110. };
  111. static const u8 iwl_eeprom_band_3[] = { /* 5170-5320MHz */
  112. 34, 36, 38, 40, 42, 44, 46, 48, 52, 56, 60, 64
  113. };
  114. static const u8 iwl_eeprom_band_4[] = { /* 5500-5700MHz */
  115. 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140
  116. };
  117. static const u8 iwl_eeprom_band_5[] = { /* 5725-5825MHz */
  118. 145, 149, 153, 157, 161, 165
  119. };
  120. static const u8 iwl_eeprom_band_6[] = { /* 2.4 ht40 channel */
  121. 1, 2, 3, 4, 5, 6, 7
  122. };
  123. static const u8 iwl_eeprom_band_7[] = { /* 5.2 ht40 channel */
  124. 36, 44, 52, 60, 100, 108, 116, 124, 132, 149, 157
  125. };
  126. /**
  127. * struct iwl_txpwr_section: eeprom section information
  128. * @offset: indirect address into eeprom image
  129. * @count: number of "struct iwl_eeprom_enhanced_txpwr" in this section
  130. * @band: band type for the section
  131. * @is_common - true: common section, false: channel section
  132. * @is_cck - true: cck section, false: not cck section
  133. * @is_ht_40 - true: all channel in the section are HT40 channel,
  134. * false: legacy or HT 20 MHz
  135. * ignore if it is common section
  136. * @iwl_eeprom_section_channel: channel array in the section,
  137. * ignore if common section
  138. */
  139. struct iwl_txpwr_section {
  140. u32 offset;
  141. u8 count;
  142. enum ieee80211_band band;
  143. bool is_common;
  144. bool is_cck;
  145. bool is_ht40;
  146. u8 iwl_eeprom_section_channel[EEPROM_MAX_TXPOWER_SECTION_ELEMENTS];
  147. };
  148. /**
  149. * section 1 - 3 are regulatory tx power apply to all channels based on
  150. * modulation: CCK, OFDM
  151. * Band: 2.4GHz, 5.2GHz
  152. * section 4 - 10 are regulatory tx power apply to specified channels
  153. * For example:
  154. * 1L - Channel 1 Legacy
  155. * 1HT - Channel 1 HT
  156. * (1,+1) - Channel 1 HT40 "_above_"
  157. *
  158. * Section 1: all CCK channels
  159. * Section 2: all 2.4 GHz OFDM (Legacy, HT and HT40) channels
  160. * Section 3: all 5.2 GHz OFDM (Legacy, HT and HT40) channels
  161. * Section 4: 2.4 GHz 20MHz channels: 1L, 1HT, 2L, 2HT, 10L, 10HT, 11L, 11HT
  162. * Section 5: 2.4 GHz 40MHz channels: (1,+1) (2,+1) (6,+1) (7,+1) (9,+1)
  163. * Section 6: 5.2 GHz 20MHz channels: 36L, 64L, 100L, 36HT, 64HT, 100HT
  164. * Section 7: 5.2 GHz 40MHz channels: (36,+1) (60,+1) (100,+1)
  165. * Section 8: 2.4 GHz channel: 13L, 13HT
  166. * Section 9: 2.4 GHz channel: 140L, 140HT
  167. * Section 10: 2.4 GHz 40MHz channels: (132,+1) (44,+1)
  168. *
  169. */
  170. static const struct iwl_txpwr_section enhinfo[] = {
  171. { EEPROM_LB_CCK_20_COMMON, 1, IEEE80211_BAND_2GHZ, true, true, false },
  172. { EEPROM_LB_OFDM_COMMON, 3, IEEE80211_BAND_2GHZ, true, false, false },
  173. { EEPROM_HB_OFDM_COMMON, 3, IEEE80211_BAND_5GHZ, true, false, false },
  174. { EEPROM_LB_OFDM_20_BAND, 8, IEEE80211_BAND_2GHZ,
  175. false, false, false,
  176. {1, 1, 2, 2, 10, 10, 11, 11 } },
  177. { EEPROM_LB_OFDM_HT40_BAND, 5, IEEE80211_BAND_2GHZ,
  178. false, false, true,
  179. { 1, 2, 6, 7, 9 } },
  180. { EEPROM_HB_OFDM_20_BAND, 6, IEEE80211_BAND_5GHZ,
  181. false, false, false,
  182. { 36, 64, 100, 36, 64, 100 } },
  183. { EEPROM_HB_OFDM_HT40_BAND, 3, IEEE80211_BAND_5GHZ,
  184. false, false, true,
  185. { 36, 60, 100 } },
  186. { EEPROM_LB_OFDM_20_CHANNEL_13, 2, IEEE80211_BAND_2GHZ,
  187. false, false, false,
  188. { 13, 13 } },
  189. { EEPROM_HB_OFDM_20_CHANNEL_140, 2, IEEE80211_BAND_5GHZ,
  190. false, false, false,
  191. { 140, 140 } },
  192. { EEPROM_HB_OFDM_HT40_BAND_1, 2, IEEE80211_BAND_5GHZ,
  193. false, false, true,
  194. { 132, 44 } },
  195. };
  196. /******************************************************************************
  197. *
  198. * EEPROM related functions
  199. *
  200. ******************************************************************************/
  201. int iwlcore_eeprom_verify_signature(struct iwl_priv *priv)
  202. {
  203. u32 gp = iwl_read32(priv, CSR_EEPROM_GP) & CSR_EEPROM_GP_VALID_MSK;
  204. int ret = 0;
  205. IWL_DEBUG_INFO(priv, "EEPROM signature=0x%08x\n", gp);
  206. switch (gp) {
  207. case CSR_EEPROM_GP_BAD_SIG_EEP_GOOD_SIG_OTP:
  208. if (priv->nvm_device_type != NVM_DEVICE_TYPE_OTP) {
  209. IWL_ERR(priv, "EEPROM with bad signature: 0x%08x\n",
  210. gp);
  211. ret = -ENOENT;
  212. }
  213. break;
  214. case CSR_EEPROM_GP_GOOD_SIG_EEP_LESS_THAN_4K:
  215. case CSR_EEPROM_GP_GOOD_SIG_EEP_MORE_THAN_4K:
  216. if (priv->nvm_device_type != NVM_DEVICE_TYPE_EEPROM) {
  217. IWL_ERR(priv, "OTP with bad signature: 0x%08x\n", gp);
  218. ret = -ENOENT;
  219. }
  220. break;
  221. case CSR_EEPROM_GP_BAD_SIGNATURE_BOTH_EEP_AND_OTP:
  222. default:
  223. IWL_ERR(priv, "bad EEPROM/OTP signature, type=%s, "
  224. "EEPROM_GP=0x%08x\n",
  225. (priv->nvm_device_type == NVM_DEVICE_TYPE_OTP)
  226. ? "OTP" : "EEPROM", gp);
  227. ret = -ENOENT;
  228. break;
  229. }
  230. return ret;
  231. }
  232. EXPORT_SYMBOL(iwlcore_eeprom_verify_signature);
  233. static void iwl_set_otp_access(struct iwl_priv *priv, enum iwl_access_mode mode)
  234. {
  235. u32 otpgp;
  236. otpgp = iwl_read32(priv, CSR_OTP_GP_REG);
  237. if (mode == IWL_OTP_ACCESS_ABSOLUTE)
  238. iwl_clear_bit(priv, CSR_OTP_GP_REG,
  239. CSR_OTP_GP_REG_OTP_ACCESS_MODE);
  240. else
  241. iwl_set_bit(priv, CSR_OTP_GP_REG,
  242. CSR_OTP_GP_REG_OTP_ACCESS_MODE);
  243. }
  244. static int iwlcore_get_nvm_type(struct iwl_priv *priv)
  245. {
  246. u32 otpgp;
  247. int nvm_type;
  248. /* OTP only valid for CP/PP and after */
  249. switch (priv->hw_rev & CSR_HW_REV_TYPE_MSK) {
  250. case CSR_HW_REV_TYPE_NONE:
  251. IWL_ERR(priv, "Unknown hardware type\n");
  252. return -ENOENT;
  253. case CSR_HW_REV_TYPE_3945:
  254. case CSR_HW_REV_TYPE_4965:
  255. case CSR_HW_REV_TYPE_5300:
  256. case CSR_HW_REV_TYPE_5350:
  257. case CSR_HW_REV_TYPE_5100:
  258. case CSR_HW_REV_TYPE_5150:
  259. nvm_type = NVM_DEVICE_TYPE_EEPROM;
  260. break;
  261. default:
  262. otpgp = iwl_read32(priv, CSR_OTP_GP_REG);
  263. if (otpgp & CSR_OTP_GP_REG_DEVICE_SELECT)
  264. nvm_type = NVM_DEVICE_TYPE_OTP;
  265. else
  266. nvm_type = NVM_DEVICE_TYPE_EEPROM;
  267. break;
  268. }
  269. return nvm_type;
  270. }
  271. /*
  272. * The device's EEPROM semaphore prevents conflicts between driver and uCode
  273. * when accessing the EEPROM; each access is a series of pulses to/from the
  274. * EEPROM chip, not a single event, so even reads could conflict if they
  275. * weren't arbitrated by the semaphore.
  276. */
  277. int iwlcore_eeprom_acquire_semaphore(struct iwl_priv *priv)
  278. {
  279. u16 count;
  280. int ret;
  281. for (count = 0; count < EEPROM_SEM_RETRY_LIMIT; count++) {
  282. /* Request semaphore */
  283. iwl_set_bit(priv, CSR_HW_IF_CONFIG_REG,
  284. CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM);
  285. /* See if we got it */
  286. ret = iwl_poll_bit(priv, CSR_HW_IF_CONFIG_REG,
  287. CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM,
  288. CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM,
  289. EEPROM_SEM_TIMEOUT);
  290. if (ret >= 0) {
  291. IWL_DEBUG_IO(priv, "Acquired semaphore after %d tries.\n",
  292. count+1);
  293. return ret;
  294. }
  295. }
  296. return ret;
  297. }
  298. EXPORT_SYMBOL(iwlcore_eeprom_acquire_semaphore);
  299. void iwlcore_eeprom_release_semaphore(struct iwl_priv *priv)
  300. {
  301. iwl_clear_bit(priv, CSR_HW_IF_CONFIG_REG,
  302. CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM);
  303. }
  304. EXPORT_SYMBOL(iwlcore_eeprom_release_semaphore);
  305. const u8 *iwlcore_eeprom_query_addr(const struct iwl_priv *priv, size_t offset)
  306. {
  307. BUG_ON(offset >= priv->cfg->base_params->eeprom_size);
  308. return &priv->eeprom[offset];
  309. }
  310. EXPORT_SYMBOL(iwlcore_eeprom_query_addr);
  311. static int iwl_init_otp_access(struct iwl_priv *priv)
  312. {
  313. int ret;
  314. /* Enable 40MHz radio clock */
  315. _iwl_write32(priv, CSR_GP_CNTRL,
  316. _iwl_read32(priv, CSR_GP_CNTRL) |
  317. CSR_GP_CNTRL_REG_FLAG_INIT_DONE);
  318. /* wait for clock to be ready */
  319. ret = iwl_poll_bit(priv, CSR_GP_CNTRL,
  320. CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY,
  321. CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY,
  322. 25000);
  323. if (ret < 0)
  324. IWL_ERR(priv, "Time out access OTP\n");
  325. else {
  326. iwl_set_bits_prph(priv, APMG_PS_CTRL_REG,
  327. APMG_PS_CTRL_VAL_RESET_REQ);
  328. udelay(5);
  329. iwl_clear_bits_prph(priv, APMG_PS_CTRL_REG,
  330. APMG_PS_CTRL_VAL_RESET_REQ);
  331. /*
  332. * CSR auto clock gate disable bit -
  333. * this is only applicable for HW with OTP shadow RAM
  334. */
  335. if (priv->cfg->base_params->shadow_ram_support)
  336. iwl_set_bit(priv, CSR_DBG_LINK_PWR_MGMT_REG,
  337. CSR_RESET_LINK_PWR_MGMT_DISABLED);
  338. }
  339. return ret;
  340. }
  341. static int iwl_read_otp_word(struct iwl_priv *priv, u16 addr, __le16 *eeprom_data)
  342. {
  343. int ret = 0;
  344. u32 r;
  345. u32 otpgp;
  346. _iwl_write32(priv, CSR_EEPROM_REG,
  347. CSR_EEPROM_REG_MSK_ADDR & (addr << 1));
  348. ret = iwl_poll_bit(priv, CSR_EEPROM_REG,
  349. CSR_EEPROM_REG_READ_VALID_MSK,
  350. CSR_EEPROM_REG_READ_VALID_MSK,
  351. IWL_EEPROM_ACCESS_TIMEOUT);
  352. if (ret < 0) {
  353. IWL_ERR(priv, "Time out reading OTP[%d]\n", addr);
  354. return ret;
  355. }
  356. r = _iwl_read_direct32(priv, CSR_EEPROM_REG);
  357. /* check for ECC errors: */
  358. otpgp = iwl_read32(priv, CSR_OTP_GP_REG);
  359. if (otpgp & CSR_OTP_GP_REG_ECC_UNCORR_STATUS_MSK) {
  360. /* stop in this case */
  361. /* set the uncorrectable OTP ECC bit for acknowledgement */
  362. iwl_set_bit(priv, CSR_OTP_GP_REG,
  363. CSR_OTP_GP_REG_ECC_UNCORR_STATUS_MSK);
  364. IWL_ERR(priv, "Uncorrectable OTP ECC error, abort OTP read\n");
  365. return -EINVAL;
  366. }
  367. if (otpgp & CSR_OTP_GP_REG_ECC_CORR_STATUS_MSK) {
  368. /* continue in this case */
  369. /* set the correctable OTP ECC bit for acknowledgement */
  370. iwl_set_bit(priv, CSR_OTP_GP_REG,
  371. CSR_OTP_GP_REG_ECC_CORR_STATUS_MSK);
  372. IWL_ERR(priv, "Correctable OTP ECC error, continue read\n");
  373. }
  374. *eeprom_data = cpu_to_le16(r >> 16);
  375. return 0;
  376. }
  377. /*
  378. * iwl_is_otp_empty: check for empty OTP
  379. */
  380. static bool iwl_is_otp_empty(struct iwl_priv *priv)
  381. {
  382. u16 next_link_addr = 0;
  383. __le16 link_value;
  384. bool is_empty = false;
  385. /* locate the beginning of OTP link list */
  386. if (!iwl_read_otp_word(priv, next_link_addr, &link_value)) {
  387. if (!link_value) {
  388. IWL_ERR(priv, "OTP is empty\n");
  389. is_empty = true;
  390. }
  391. } else {
  392. IWL_ERR(priv, "Unable to read first block of OTP list.\n");
  393. is_empty = true;
  394. }
  395. return is_empty;
  396. }
  397. /*
  398. * iwl_find_otp_image: find EEPROM image in OTP
  399. * finding the OTP block that contains the EEPROM image.
  400. * the last valid block on the link list (the block _before_ the last block)
  401. * is the block we should read and used to configure the device.
  402. * If all the available OTP blocks are full, the last block will be the block
  403. * we should read and used to configure the device.
  404. * only perform this operation if shadow RAM is disabled
  405. */
  406. static int iwl_find_otp_image(struct iwl_priv *priv,
  407. u16 *validblockaddr)
  408. {
  409. u16 next_link_addr = 0, valid_addr;
  410. __le16 link_value = 0;
  411. int usedblocks = 0;
  412. /* set addressing mode to absolute to traverse the link list */
  413. iwl_set_otp_access(priv, IWL_OTP_ACCESS_ABSOLUTE);
  414. /* checking for empty OTP or error */
  415. if (iwl_is_otp_empty(priv))
  416. return -EINVAL;
  417. /*
  418. * start traverse link list
  419. * until reach the max number of OTP blocks
  420. * different devices have different number of OTP blocks
  421. */
  422. do {
  423. /* save current valid block address
  424. * check for more block on the link list
  425. */
  426. valid_addr = next_link_addr;
  427. next_link_addr = le16_to_cpu(link_value) * sizeof(u16);
  428. IWL_DEBUG_INFO(priv, "OTP blocks %d addr 0x%x\n",
  429. usedblocks, next_link_addr);
  430. if (iwl_read_otp_word(priv, next_link_addr, &link_value))
  431. return -EINVAL;
  432. if (!link_value) {
  433. /*
  434. * reach the end of link list, return success and
  435. * set address point to the starting address
  436. * of the image
  437. */
  438. *validblockaddr = valid_addr;
  439. /* skip first 2 bytes (link list pointer) */
  440. *validblockaddr += 2;
  441. return 0;
  442. }
  443. /* more in the link list, continue */
  444. usedblocks++;
  445. } while (usedblocks <= priv->cfg->base_params->max_ll_items);
  446. /* OTP has no valid blocks */
  447. IWL_DEBUG_INFO(priv, "OTP has no valid blocks\n");
  448. return -EINVAL;
  449. }
  450. /**
  451. * iwl_eeprom_init - read EEPROM contents
  452. *
  453. * Load the EEPROM contents from adapter into priv->eeprom
  454. *
  455. * NOTE: This routine uses the non-debug IO access functions.
  456. */
  457. int iwl_eeprom_init(struct iwl_priv *priv)
  458. {
  459. __le16 *e;
  460. u32 gp = iwl_read32(priv, CSR_EEPROM_GP);
  461. int sz;
  462. int ret;
  463. u16 addr;
  464. u16 validblockaddr = 0;
  465. u16 cache_addr = 0;
  466. priv->nvm_device_type = iwlcore_get_nvm_type(priv);
  467. if (priv->nvm_device_type == -ENOENT)
  468. return -ENOENT;
  469. /* allocate eeprom */
  470. sz = priv->cfg->base_params->eeprom_size;
  471. IWL_DEBUG_INFO(priv, "NVM size = %d\n", sz);
  472. priv->eeprom = kzalloc(sz, GFP_KERNEL);
  473. if (!priv->eeprom) {
  474. ret = -ENOMEM;
  475. goto alloc_err;
  476. }
  477. e = (__le16 *)priv->eeprom;
  478. priv->cfg->ops->lib->apm_ops.init(priv);
  479. ret = priv->cfg->ops->lib->eeprom_ops.verify_signature(priv);
  480. if (ret < 0) {
  481. IWL_ERR(priv, "EEPROM not found, EEPROM_GP=0x%08x\n", gp);
  482. ret = -ENOENT;
  483. goto err;
  484. }
  485. /* Make sure driver (instead of uCode) is allowed to read EEPROM */
  486. ret = priv->cfg->ops->lib->eeprom_ops.acquire_semaphore(priv);
  487. if (ret < 0) {
  488. IWL_ERR(priv, "Failed to acquire EEPROM semaphore.\n");
  489. ret = -ENOENT;
  490. goto err;
  491. }
  492. if (priv->nvm_device_type == NVM_DEVICE_TYPE_OTP) {
  493. ret = iwl_init_otp_access(priv);
  494. if (ret) {
  495. IWL_ERR(priv, "Failed to initialize OTP access.\n");
  496. ret = -ENOENT;
  497. goto done;
  498. }
  499. _iwl_write32(priv, CSR_EEPROM_GP,
  500. iwl_read32(priv, CSR_EEPROM_GP) &
  501. ~CSR_EEPROM_GP_IF_OWNER_MSK);
  502. iwl_set_bit(priv, CSR_OTP_GP_REG,
  503. CSR_OTP_GP_REG_ECC_CORR_STATUS_MSK |
  504. CSR_OTP_GP_REG_ECC_UNCORR_STATUS_MSK);
  505. /* traversing the linked list if no shadow ram supported */
  506. if (!priv->cfg->base_params->shadow_ram_support) {
  507. if (iwl_find_otp_image(priv, &validblockaddr)) {
  508. ret = -ENOENT;
  509. goto done;
  510. }
  511. }
  512. for (addr = validblockaddr; addr < validblockaddr + sz;
  513. addr += sizeof(u16)) {
  514. __le16 eeprom_data;
  515. ret = iwl_read_otp_word(priv, addr, &eeprom_data);
  516. if (ret)
  517. goto done;
  518. e[cache_addr / 2] = eeprom_data;
  519. cache_addr += sizeof(u16);
  520. }
  521. } else {
  522. /* eeprom is an array of 16bit values */
  523. for (addr = 0; addr < sz; addr += sizeof(u16)) {
  524. u32 r;
  525. _iwl_write32(priv, CSR_EEPROM_REG,
  526. CSR_EEPROM_REG_MSK_ADDR & (addr << 1));
  527. ret = iwl_poll_bit(priv, CSR_EEPROM_REG,
  528. CSR_EEPROM_REG_READ_VALID_MSK,
  529. CSR_EEPROM_REG_READ_VALID_MSK,
  530. IWL_EEPROM_ACCESS_TIMEOUT);
  531. if (ret < 0) {
  532. IWL_ERR(priv, "Time out reading EEPROM[%d]\n", addr);
  533. goto done;
  534. }
  535. r = _iwl_read_direct32(priv, CSR_EEPROM_REG);
  536. e[addr / 2] = cpu_to_le16(r >> 16);
  537. }
  538. }
  539. IWL_DEBUG_INFO(priv, "NVM Type: %s, version: 0x%x\n",
  540. (priv->nvm_device_type == NVM_DEVICE_TYPE_OTP)
  541. ? "OTP" : "EEPROM",
  542. iwl_eeprom_query16(priv, EEPROM_VERSION));
  543. ret = 0;
  544. done:
  545. priv->cfg->ops->lib->eeprom_ops.release_semaphore(priv);
  546. err:
  547. if (ret)
  548. iwl_eeprom_free(priv);
  549. /* Reset chip to save power until we load uCode during "up". */
  550. priv->cfg->ops->lib->apm_ops.stop(priv);
  551. alloc_err:
  552. return ret;
  553. }
  554. EXPORT_SYMBOL(iwl_eeprom_init);
  555. void iwl_eeprom_free(struct iwl_priv *priv)
  556. {
  557. kfree(priv->eeprom);
  558. priv->eeprom = NULL;
  559. }
  560. EXPORT_SYMBOL(iwl_eeprom_free);
  561. int iwl_eeprom_check_version(struct iwl_priv *priv)
  562. {
  563. u16 eeprom_ver;
  564. u16 calib_ver;
  565. eeprom_ver = iwl_eeprom_query16(priv, EEPROM_VERSION);
  566. calib_ver = priv->cfg->ops->lib->eeprom_ops.calib_version(priv);
  567. if (eeprom_ver < priv->cfg->eeprom_ver ||
  568. calib_ver < priv->cfg->eeprom_calib_ver)
  569. goto err;
  570. IWL_INFO(priv, "device EEPROM VER=0x%x, CALIB=0x%x\n",
  571. eeprom_ver, calib_ver);
  572. return 0;
  573. err:
  574. IWL_ERR(priv, "Unsupported (too old) EEPROM VER=0x%x < 0x%x CALIB=0x%x < 0x%x\n",
  575. eeprom_ver, priv->cfg->eeprom_ver,
  576. calib_ver, priv->cfg->eeprom_calib_ver);
  577. return -EINVAL;
  578. }
  579. EXPORT_SYMBOL(iwl_eeprom_check_version);
  580. const u8 *iwl_eeprom_query_addr(const struct iwl_priv *priv, size_t offset)
  581. {
  582. return priv->cfg->ops->lib->eeprom_ops.query_addr(priv, offset);
  583. }
  584. EXPORT_SYMBOL(iwl_eeprom_query_addr);
  585. u16 iwl_eeprom_query16(const struct iwl_priv *priv, size_t offset)
  586. {
  587. if (!priv->eeprom)
  588. return 0;
  589. return (u16)priv->eeprom[offset] | ((u16)priv->eeprom[offset + 1] << 8);
  590. }
  591. EXPORT_SYMBOL(iwl_eeprom_query16);
  592. void iwl_eeprom_get_mac(const struct iwl_priv *priv, u8 *mac)
  593. {
  594. const u8 *addr = priv->cfg->ops->lib->eeprom_ops.query_addr(priv,
  595. EEPROM_MAC_ADDRESS);
  596. memcpy(mac, addr, ETH_ALEN);
  597. }
  598. EXPORT_SYMBOL(iwl_eeprom_get_mac);
  599. static void iwl_init_band_reference(const struct iwl_priv *priv,
  600. int eep_band, int *eeprom_ch_count,
  601. const struct iwl_eeprom_channel **eeprom_ch_info,
  602. const u8 **eeprom_ch_index)
  603. {
  604. u32 offset = priv->cfg->ops->lib->
  605. eeprom_ops.regulatory_bands[eep_band - 1];
  606. switch (eep_band) {
  607. case 1: /* 2.4GHz band */
  608. *eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_1);
  609. *eeprom_ch_info = (struct iwl_eeprom_channel *)
  610. iwl_eeprom_query_addr(priv, offset);
  611. *eeprom_ch_index = iwl_eeprom_band_1;
  612. break;
  613. case 2: /* 4.9GHz band */
  614. *eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_2);
  615. *eeprom_ch_info = (struct iwl_eeprom_channel *)
  616. iwl_eeprom_query_addr(priv, offset);
  617. *eeprom_ch_index = iwl_eeprom_band_2;
  618. break;
  619. case 3: /* 5.2GHz band */
  620. *eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_3);
  621. *eeprom_ch_info = (struct iwl_eeprom_channel *)
  622. iwl_eeprom_query_addr(priv, offset);
  623. *eeprom_ch_index = iwl_eeprom_band_3;
  624. break;
  625. case 4: /* 5.5GHz band */
  626. *eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_4);
  627. *eeprom_ch_info = (struct iwl_eeprom_channel *)
  628. iwl_eeprom_query_addr(priv, offset);
  629. *eeprom_ch_index = iwl_eeprom_band_4;
  630. break;
  631. case 5: /* 5.7GHz band */
  632. *eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_5);
  633. *eeprom_ch_info = (struct iwl_eeprom_channel *)
  634. iwl_eeprom_query_addr(priv, offset);
  635. *eeprom_ch_index = iwl_eeprom_band_5;
  636. break;
  637. case 6: /* 2.4GHz ht40 channels */
  638. *eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_6);
  639. *eeprom_ch_info = (struct iwl_eeprom_channel *)
  640. iwl_eeprom_query_addr(priv, offset);
  641. *eeprom_ch_index = iwl_eeprom_band_6;
  642. break;
  643. case 7: /* 5 GHz ht40 channels */
  644. *eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_7);
  645. *eeprom_ch_info = (struct iwl_eeprom_channel *)
  646. iwl_eeprom_query_addr(priv, offset);
  647. *eeprom_ch_index = iwl_eeprom_band_7;
  648. break;
  649. default:
  650. BUG();
  651. return;
  652. }
  653. }
  654. #define CHECK_AND_PRINT(x) ((eeprom_ch->flags & EEPROM_CHANNEL_##x) \
  655. ? # x " " : "")
  656. /**
  657. * iwl_mod_ht40_chan_info - Copy ht40 channel info into driver's priv.
  658. *
  659. * Does not set up a command, or touch hardware.
  660. */
  661. static int iwl_mod_ht40_chan_info(struct iwl_priv *priv,
  662. enum ieee80211_band band, u16 channel,
  663. const struct iwl_eeprom_channel *eeprom_ch,
  664. u8 clear_ht40_extension_channel)
  665. {
  666. struct iwl_channel_info *ch_info;
  667. ch_info = (struct iwl_channel_info *)
  668. iwl_get_channel_info(priv, band, channel);
  669. if (!is_channel_valid(ch_info))
  670. return -1;
  671. IWL_DEBUG_INFO(priv, "HT40 Ch. %d [%sGHz] %s%s%s%s%s(0x%02x %ddBm):"
  672. " Ad-Hoc %ssupported\n",
  673. ch_info->channel,
  674. is_channel_a_band(ch_info) ?
  675. "5.2" : "2.4",
  676. CHECK_AND_PRINT(IBSS),
  677. CHECK_AND_PRINT(ACTIVE),
  678. CHECK_AND_PRINT(RADAR),
  679. CHECK_AND_PRINT(WIDE),
  680. CHECK_AND_PRINT(DFS),
  681. eeprom_ch->flags,
  682. eeprom_ch->max_power_avg,
  683. ((eeprom_ch->flags & EEPROM_CHANNEL_IBSS)
  684. && !(eeprom_ch->flags & EEPROM_CHANNEL_RADAR)) ?
  685. "" : "not ");
  686. ch_info->ht40_eeprom = *eeprom_ch;
  687. ch_info->ht40_max_power_avg = eeprom_ch->max_power_avg;
  688. ch_info->ht40_flags = eeprom_ch->flags;
  689. if (eeprom_ch->flags & EEPROM_CHANNEL_VALID)
  690. ch_info->ht40_extension_channel &= ~clear_ht40_extension_channel;
  691. return 0;
  692. }
  693. /**
  694. * iwl_get_max_txpower_avg - get the highest tx power from all chains.
  695. * find the highest tx power from all chains for the channel
  696. */
  697. static s8 iwl_get_max_txpower_avg(struct iwl_priv *priv,
  698. struct iwl_eeprom_enhanced_txpwr *enhanced_txpower,
  699. int element, s8 *max_txpower_in_half_dbm)
  700. {
  701. s8 max_txpower_avg = 0; /* (dBm) */
  702. IWL_DEBUG_INFO(priv, "%d - "
  703. "chain_a: %d dB chain_b: %d dB "
  704. "chain_c: %d dB mimo2: %d dB mimo3: %d dB\n",
  705. element,
  706. enhanced_txpower[element].chain_a_max >> 1,
  707. enhanced_txpower[element].chain_b_max >> 1,
  708. enhanced_txpower[element].chain_c_max >> 1,
  709. enhanced_txpower[element].mimo2_max >> 1,
  710. enhanced_txpower[element].mimo3_max >> 1);
  711. /* Take the highest tx power from any valid chains */
  712. if ((priv->cfg->valid_tx_ant & ANT_A) &&
  713. (enhanced_txpower[element].chain_a_max > max_txpower_avg))
  714. max_txpower_avg = enhanced_txpower[element].chain_a_max;
  715. if ((priv->cfg->valid_tx_ant & ANT_B) &&
  716. (enhanced_txpower[element].chain_b_max > max_txpower_avg))
  717. max_txpower_avg = enhanced_txpower[element].chain_b_max;
  718. if ((priv->cfg->valid_tx_ant & ANT_C) &&
  719. (enhanced_txpower[element].chain_c_max > max_txpower_avg))
  720. max_txpower_avg = enhanced_txpower[element].chain_c_max;
  721. if (((priv->cfg->valid_tx_ant == ANT_AB) |
  722. (priv->cfg->valid_tx_ant == ANT_BC) |
  723. (priv->cfg->valid_tx_ant == ANT_AC)) &&
  724. (enhanced_txpower[element].mimo2_max > max_txpower_avg))
  725. max_txpower_avg = enhanced_txpower[element].mimo2_max;
  726. if ((priv->cfg->valid_tx_ant == ANT_ABC) &&
  727. (enhanced_txpower[element].mimo3_max > max_txpower_avg))
  728. max_txpower_avg = enhanced_txpower[element].mimo3_max;
  729. /*
  730. * max. tx power in EEPROM is in 1/2 dBm format
  731. * convert from 1/2 dBm to dBm (round-up convert)
  732. * but we also do not want to loss 1/2 dBm resolution which
  733. * will impact performance
  734. */
  735. *max_txpower_in_half_dbm = max_txpower_avg;
  736. return (max_txpower_avg & 0x01) + (max_txpower_avg >> 1);
  737. }
  738. /**
  739. * iwl_update_common_txpower: update channel tx power
  740. * update tx power per band based on EEPROM enhanced tx power info.
  741. */
  742. static s8 iwl_update_common_txpower(struct iwl_priv *priv,
  743. struct iwl_eeprom_enhanced_txpwr *enhanced_txpower,
  744. int section, int element, s8 *max_txpower_in_half_dbm)
  745. {
  746. struct iwl_channel_info *ch_info;
  747. int ch;
  748. bool is_ht40 = false;
  749. s8 max_txpower_avg; /* (dBm) */
  750. /* it is common section, contain all type (Legacy, HT and HT40)
  751. * based on the element in the section to determine
  752. * is it HT 40 or not
  753. */
  754. if (element == EEPROM_TXPOWER_COMMON_HT40_INDEX)
  755. is_ht40 = true;
  756. max_txpower_avg =
  757. iwl_get_max_txpower_avg(priv, enhanced_txpower,
  758. element, max_txpower_in_half_dbm);
  759. ch_info = priv->channel_info;
  760. for (ch = 0; ch < priv->channel_count; ch++) {
  761. /* find matching band and update tx power if needed */
  762. if ((ch_info->band == enhinfo[section].band) &&
  763. (ch_info->max_power_avg < max_txpower_avg) &&
  764. (!is_ht40)) {
  765. /* Update regulatory-based run-time data */
  766. ch_info->max_power_avg = ch_info->curr_txpow =
  767. max_txpower_avg;
  768. ch_info->scan_power = max_txpower_avg;
  769. }
  770. if ((ch_info->band == enhinfo[section].band) && is_ht40 &&
  771. (ch_info->ht40_max_power_avg < max_txpower_avg)) {
  772. /* Update regulatory-based run-time data */
  773. ch_info->ht40_max_power_avg = max_txpower_avg;
  774. }
  775. ch_info++;
  776. }
  777. return max_txpower_avg;
  778. }
  779. /**
  780. * iwl_update_channel_txpower: update channel tx power
  781. * update channel tx power based on EEPROM enhanced tx power info.
  782. */
  783. static s8 iwl_update_channel_txpower(struct iwl_priv *priv,
  784. struct iwl_eeprom_enhanced_txpwr *enhanced_txpower,
  785. int section, int element, s8 *max_txpower_in_half_dbm)
  786. {
  787. struct iwl_channel_info *ch_info;
  788. int ch;
  789. u8 channel;
  790. s8 max_txpower_avg; /* (dBm) */
  791. channel = enhinfo[section].iwl_eeprom_section_channel[element];
  792. max_txpower_avg =
  793. iwl_get_max_txpower_avg(priv, enhanced_txpower,
  794. element, max_txpower_in_half_dbm);
  795. ch_info = priv->channel_info;
  796. for (ch = 0; ch < priv->channel_count; ch++) {
  797. /* find matching channel and update tx power if needed */
  798. if (ch_info->channel == channel) {
  799. if ((ch_info->max_power_avg < max_txpower_avg) &&
  800. (!enhinfo[section].is_ht40)) {
  801. /* Update regulatory-based run-time data */
  802. ch_info->max_power_avg = max_txpower_avg;
  803. ch_info->curr_txpow = max_txpower_avg;
  804. ch_info->scan_power = max_txpower_avg;
  805. }
  806. if ((enhinfo[section].is_ht40) &&
  807. (ch_info->ht40_max_power_avg < max_txpower_avg)) {
  808. /* Update regulatory-based run-time data */
  809. ch_info->ht40_max_power_avg = max_txpower_avg;
  810. }
  811. break;
  812. }
  813. ch_info++;
  814. }
  815. return max_txpower_avg;
  816. }
  817. /**
  818. * iwlcore_eeprom_enhanced_txpower: process enhanced tx power info
  819. */
  820. void iwlcore_eeprom_enhanced_txpower(struct iwl_priv *priv)
  821. {
  822. int eeprom_section_count = 0;
  823. int section, element;
  824. struct iwl_eeprom_enhanced_txpwr *enhanced_txpower;
  825. u32 offset;
  826. s8 max_txpower_avg; /* (dBm) */
  827. s8 max_txpower_in_half_dbm; /* (half-dBm) */
  828. /* Loop through all the sections
  829. * adjust bands and channel's max tx power
  830. * Set the tx_power_user_lmt to the highest power
  831. * supported by any channels and chains
  832. */
  833. for (section = 0; section < ARRAY_SIZE(enhinfo); section++) {
  834. eeprom_section_count = enhinfo[section].count;
  835. offset = enhinfo[section].offset;
  836. enhanced_txpower = (struct iwl_eeprom_enhanced_txpwr *)
  837. iwl_eeprom_query_addr(priv, offset);
  838. /*
  839. * check for valid entry -
  840. * different version of EEPROM might contain different set
  841. * of enhanced tx power table
  842. * always check for valid entry before process
  843. * the information
  844. */
  845. if (!enhanced_txpower->common || enhanced_txpower->reserved)
  846. continue;
  847. for (element = 0; element < eeprom_section_count; element++) {
  848. if (enhinfo[section].is_common)
  849. max_txpower_avg =
  850. iwl_update_common_txpower(priv,
  851. enhanced_txpower, section,
  852. element,
  853. &max_txpower_in_half_dbm);
  854. else
  855. max_txpower_avg =
  856. iwl_update_channel_txpower(priv,
  857. enhanced_txpower, section,
  858. element,
  859. &max_txpower_in_half_dbm);
  860. /* Update the tx_power_user_lmt to the highest power
  861. * supported by any channel */
  862. if (max_txpower_avg > priv->tx_power_user_lmt)
  863. priv->tx_power_user_lmt = max_txpower_avg;
  864. /*
  865. * Update the tx_power_lmt_in_half_dbm to
  866. * the highest power supported by any channel
  867. */
  868. if (max_txpower_in_half_dbm >
  869. priv->tx_power_lmt_in_half_dbm)
  870. priv->tx_power_lmt_in_half_dbm =
  871. max_txpower_in_half_dbm;
  872. }
  873. }
  874. }
  875. EXPORT_SYMBOL(iwlcore_eeprom_enhanced_txpower);
  876. #define CHECK_AND_PRINT_I(x) ((eeprom_ch_info[ch].flags & EEPROM_CHANNEL_##x) \
  877. ? # x " " : "")
  878. /**
  879. * iwl_init_channel_map - Set up driver's info for all possible channels
  880. */
  881. int iwl_init_channel_map(struct iwl_priv *priv)
  882. {
  883. int eeprom_ch_count = 0;
  884. const u8 *eeprom_ch_index = NULL;
  885. const struct iwl_eeprom_channel *eeprom_ch_info = NULL;
  886. int band, ch;
  887. struct iwl_channel_info *ch_info;
  888. if (priv->channel_count) {
  889. IWL_DEBUG_INFO(priv, "Channel map already initialized.\n");
  890. return 0;
  891. }
  892. IWL_DEBUG_INFO(priv, "Initializing regulatory info from EEPROM\n");
  893. priv->channel_count =
  894. ARRAY_SIZE(iwl_eeprom_band_1) +
  895. ARRAY_SIZE(iwl_eeprom_band_2) +
  896. ARRAY_SIZE(iwl_eeprom_band_3) +
  897. ARRAY_SIZE(iwl_eeprom_band_4) +
  898. ARRAY_SIZE(iwl_eeprom_band_5);
  899. IWL_DEBUG_INFO(priv, "Parsing data for %d channels.\n", priv->channel_count);
  900. priv->channel_info = kzalloc(sizeof(struct iwl_channel_info) *
  901. priv->channel_count, GFP_KERNEL);
  902. if (!priv->channel_info) {
  903. IWL_ERR(priv, "Could not allocate channel_info\n");
  904. priv->channel_count = 0;
  905. return -ENOMEM;
  906. }
  907. ch_info = priv->channel_info;
  908. /* Loop through the 5 EEPROM bands adding them in order to the
  909. * channel map we maintain (that contains additional information than
  910. * what just in the EEPROM) */
  911. for (band = 1; band <= 5; band++) {
  912. iwl_init_band_reference(priv, band, &eeprom_ch_count,
  913. &eeprom_ch_info, &eeprom_ch_index);
  914. /* Loop through each band adding each of the channels */
  915. for (ch = 0; ch < eeprom_ch_count; ch++) {
  916. ch_info->channel = eeprom_ch_index[ch];
  917. ch_info->band = (band == 1) ? IEEE80211_BAND_2GHZ :
  918. IEEE80211_BAND_5GHZ;
  919. /* permanently store EEPROM's channel regulatory flags
  920. * and max power in channel info database. */
  921. ch_info->eeprom = eeprom_ch_info[ch];
  922. /* Copy the run-time flags so they are there even on
  923. * invalid channels */
  924. ch_info->flags = eeprom_ch_info[ch].flags;
  925. /* First write that ht40 is not enabled, and then enable
  926. * one by one */
  927. ch_info->ht40_extension_channel =
  928. IEEE80211_CHAN_NO_HT40;
  929. if (!(is_channel_valid(ch_info))) {
  930. IWL_DEBUG_INFO(priv, "Ch. %d Flags %x [%sGHz] - "
  931. "No traffic\n",
  932. ch_info->channel,
  933. ch_info->flags,
  934. is_channel_a_band(ch_info) ?
  935. "5.2" : "2.4");
  936. ch_info++;
  937. continue;
  938. }
  939. /* Initialize regulatory-based run-time data */
  940. ch_info->max_power_avg = ch_info->curr_txpow =
  941. eeprom_ch_info[ch].max_power_avg;
  942. ch_info->scan_power = eeprom_ch_info[ch].max_power_avg;
  943. ch_info->min_power = 0;
  944. IWL_DEBUG_INFO(priv, "Ch. %d [%sGHz] %s%s%s%s%s%s(0x%02x %ddBm):"
  945. " Ad-Hoc %ssupported\n",
  946. ch_info->channel,
  947. is_channel_a_band(ch_info) ?
  948. "5.2" : "2.4",
  949. CHECK_AND_PRINT_I(VALID),
  950. CHECK_AND_PRINT_I(IBSS),
  951. CHECK_AND_PRINT_I(ACTIVE),
  952. CHECK_AND_PRINT_I(RADAR),
  953. CHECK_AND_PRINT_I(WIDE),
  954. CHECK_AND_PRINT_I(DFS),
  955. eeprom_ch_info[ch].flags,
  956. eeprom_ch_info[ch].max_power_avg,
  957. ((eeprom_ch_info[ch].
  958. flags & EEPROM_CHANNEL_IBSS)
  959. && !(eeprom_ch_info[ch].
  960. flags & EEPROM_CHANNEL_RADAR))
  961. ? "" : "not ");
  962. /* Set the tx_power_user_lmt to the highest power
  963. * supported by any channel */
  964. if (eeprom_ch_info[ch].max_power_avg >
  965. priv->tx_power_user_lmt)
  966. priv->tx_power_user_lmt =
  967. eeprom_ch_info[ch].max_power_avg;
  968. ch_info++;
  969. }
  970. }
  971. /* Check if we do have HT40 channels */
  972. if (priv->cfg->ops->lib->eeprom_ops.regulatory_bands[5] ==
  973. EEPROM_REGULATORY_BAND_NO_HT40 &&
  974. priv->cfg->ops->lib->eeprom_ops.regulatory_bands[6] ==
  975. EEPROM_REGULATORY_BAND_NO_HT40)
  976. return 0;
  977. /* Two additional EEPROM bands for 2.4 and 5 GHz HT40 channels */
  978. for (band = 6; band <= 7; band++) {
  979. enum ieee80211_band ieeeband;
  980. iwl_init_band_reference(priv, band, &eeprom_ch_count,
  981. &eeprom_ch_info, &eeprom_ch_index);
  982. /* EEPROM band 6 is 2.4, band 7 is 5 GHz */
  983. ieeeband =
  984. (band == 6) ? IEEE80211_BAND_2GHZ : IEEE80211_BAND_5GHZ;
  985. /* Loop through each band adding each of the channels */
  986. for (ch = 0; ch < eeprom_ch_count; ch++) {
  987. /* Set up driver's info for lower half */
  988. iwl_mod_ht40_chan_info(priv, ieeeband,
  989. eeprom_ch_index[ch],
  990. &eeprom_ch_info[ch],
  991. IEEE80211_CHAN_NO_HT40PLUS);
  992. /* Set up driver's info for upper half */
  993. iwl_mod_ht40_chan_info(priv, ieeeband,
  994. eeprom_ch_index[ch] + 4,
  995. &eeprom_ch_info[ch],
  996. IEEE80211_CHAN_NO_HT40MINUS);
  997. }
  998. }
  999. /* for newer device (6000 series and up)
  1000. * EEPROM contain enhanced tx power information
  1001. * driver need to process addition information
  1002. * to determine the max channel tx power limits
  1003. */
  1004. if (priv->cfg->ops->lib->eeprom_ops.update_enhanced_txpower)
  1005. priv->cfg->ops->lib->eeprom_ops.update_enhanced_txpower(priv);
  1006. return 0;
  1007. }
  1008. EXPORT_SYMBOL(iwl_init_channel_map);
  1009. /*
  1010. * iwl_free_channel_map - undo allocations in iwl_init_channel_map
  1011. */
  1012. void iwl_free_channel_map(struct iwl_priv *priv)
  1013. {
  1014. kfree(priv->channel_info);
  1015. priv->channel_count = 0;
  1016. }
  1017. EXPORT_SYMBOL(iwl_free_channel_map);
  1018. /**
  1019. * iwl_get_channel_info - Find driver's private channel info
  1020. *
  1021. * Based on band and channel number.
  1022. */
  1023. const struct iwl_channel_info *iwl_get_channel_info(const struct iwl_priv *priv,
  1024. enum ieee80211_band band, u16 channel)
  1025. {
  1026. int i;
  1027. switch (band) {
  1028. case IEEE80211_BAND_5GHZ:
  1029. for (i = 14; i < priv->channel_count; i++) {
  1030. if (priv->channel_info[i].channel == channel)
  1031. return &priv->channel_info[i];
  1032. }
  1033. break;
  1034. case IEEE80211_BAND_2GHZ:
  1035. if (channel >= 1 && channel <= 14)
  1036. return &priv->channel_info[channel - 1];
  1037. break;
  1038. default:
  1039. BUG();
  1040. }
  1041. return NULL;
  1042. }
  1043. EXPORT_SYMBOL(iwl_get_channel_info);