hw.c 66 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595
  1. /*
  2. * Copyright (c) 2008-2010 Atheros Communications Inc.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for any
  5. * purpose with or without fee is hereby granted, provided that the above
  6. * copyright notice and this permission notice appear in all copies.
  7. *
  8. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15. */
  16. #include <linux/io.h>
  17. #include <linux/slab.h>
  18. #include <asm/unaligned.h>
  19. #include "hw.h"
  20. #include "hw-ops.h"
  21. #include "rc.h"
  22. #include "ar9003_mac.h"
  23. static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
  24. MODULE_AUTHOR("Atheros Communications");
  25. MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
  26. MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
  27. MODULE_LICENSE("Dual BSD/GPL");
  28. static int __init ath9k_init(void)
  29. {
  30. return 0;
  31. }
  32. module_init(ath9k_init);
  33. static void __exit ath9k_exit(void)
  34. {
  35. return;
  36. }
  37. module_exit(ath9k_exit);
  38. /* Private hardware callbacks */
  39. static void ath9k_hw_init_cal_settings(struct ath_hw *ah)
  40. {
  41. ath9k_hw_private_ops(ah)->init_cal_settings(ah);
  42. }
  43. static void ath9k_hw_init_mode_regs(struct ath_hw *ah)
  44. {
  45. ath9k_hw_private_ops(ah)->init_mode_regs(ah);
  46. }
  47. static bool ath9k_hw_macversion_supported(struct ath_hw *ah)
  48. {
  49. struct ath_hw_private_ops *priv_ops = ath9k_hw_private_ops(ah);
  50. return priv_ops->macversion_supported(ah->hw_version.macVersion);
  51. }
  52. static u32 ath9k_hw_compute_pll_control(struct ath_hw *ah,
  53. struct ath9k_channel *chan)
  54. {
  55. return ath9k_hw_private_ops(ah)->compute_pll_control(ah, chan);
  56. }
  57. static void ath9k_hw_init_mode_gain_regs(struct ath_hw *ah)
  58. {
  59. if (!ath9k_hw_private_ops(ah)->init_mode_gain_regs)
  60. return;
  61. ath9k_hw_private_ops(ah)->init_mode_gain_regs(ah);
  62. }
  63. static void ath9k_hw_ani_cache_ini_regs(struct ath_hw *ah)
  64. {
  65. /* You will not have this callback if using the old ANI */
  66. if (!ath9k_hw_private_ops(ah)->ani_cache_ini_regs)
  67. return;
  68. ath9k_hw_private_ops(ah)->ani_cache_ini_regs(ah);
  69. }
  70. /********************/
  71. /* Helper Functions */
  72. /********************/
  73. static u32 ath9k_hw_mac_clks(struct ath_hw *ah, u32 usecs)
  74. {
  75. struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
  76. if (!ah->curchan) /* should really check for CCK instead */
  77. return usecs *ATH9K_CLOCK_RATE_CCK;
  78. if (conf->channel->band == IEEE80211_BAND_2GHZ)
  79. return usecs *ATH9K_CLOCK_RATE_2GHZ_OFDM;
  80. if (ah->caps.hw_caps & ATH9K_HW_CAP_FASTCLOCK)
  81. return usecs * ATH9K_CLOCK_FAST_RATE_5GHZ_OFDM;
  82. else
  83. return usecs * ATH9K_CLOCK_RATE_5GHZ_OFDM;
  84. }
  85. static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
  86. {
  87. struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
  88. if (conf_is_ht40(conf))
  89. return ath9k_hw_mac_clks(ah, usecs) * 2;
  90. else
  91. return ath9k_hw_mac_clks(ah, usecs);
  92. }
  93. bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
  94. {
  95. int i;
  96. BUG_ON(timeout < AH_TIME_QUANTUM);
  97. for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
  98. if ((REG_READ(ah, reg) & mask) == val)
  99. return true;
  100. udelay(AH_TIME_QUANTUM);
  101. }
  102. ath_print(ath9k_hw_common(ah), ATH_DBG_ANY,
  103. "timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
  104. timeout, reg, REG_READ(ah, reg), mask, val);
  105. return false;
  106. }
  107. EXPORT_SYMBOL(ath9k_hw_wait);
  108. u32 ath9k_hw_reverse_bits(u32 val, u32 n)
  109. {
  110. u32 retval;
  111. int i;
  112. for (i = 0, retval = 0; i < n; i++) {
  113. retval = (retval << 1) | (val & 1);
  114. val >>= 1;
  115. }
  116. return retval;
  117. }
  118. bool ath9k_get_channel_edges(struct ath_hw *ah,
  119. u16 flags, u16 *low,
  120. u16 *high)
  121. {
  122. struct ath9k_hw_capabilities *pCap = &ah->caps;
  123. if (flags & CHANNEL_5GHZ) {
  124. *low = pCap->low_5ghz_chan;
  125. *high = pCap->high_5ghz_chan;
  126. return true;
  127. }
  128. if ((flags & CHANNEL_2GHZ)) {
  129. *low = pCap->low_2ghz_chan;
  130. *high = pCap->high_2ghz_chan;
  131. return true;
  132. }
  133. return false;
  134. }
  135. u16 ath9k_hw_computetxtime(struct ath_hw *ah,
  136. u8 phy, int kbps,
  137. u32 frameLen, u16 rateix,
  138. bool shortPreamble)
  139. {
  140. u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
  141. if (kbps == 0)
  142. return 0;
  143. switch (phy) {
  144. case WLAN_RC_PHY_CCK:
  145. phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
  146. if (shortPreamble)
  147. phyTime >>= 1;
  148. numBits = frameLen << 3;
  149. txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
  150. break;
  151. case WLAN_RC_PHY_OFDM:
  152. if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
  153. bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
  154. numBits = OFDM_PLCP_BITS + (frameLen << 3);
  155. numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
  156. txTime = OFDM_SIFS_TIME_QUARTER
  157. + OFDM_PREAMBLE_TIME_QUARTER
  158. + (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
  159. } else if (ah->curchan &&
  160. IS_CHAN_HALF_RATE(ah->curchan)) {
  161. bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
  162. numBits = OFDM_PLCP_BITS + (frameLen << 3);
  163. numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
  164. txTime = OFDM_SIFS_TIME_HALF +
  165. OFDM_PREAMBLE_TIME_HALF
  166. + (numSymbols * OFDM_SYMBOL_TIME_HALF);
  167. } else {
  168. bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
  169. numBits = OFDM_PLCP_BITS + (frameLen << 3);
  170. numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
  171. txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
  172. + (numSymbols * OFDM_SYMBOL_TIME);
  173. }
  174. break;
  175. default:
  176. ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
  177. "Unknown phy %u (rate ix %u)\n", phy, rateix);
  178. txTime = 0;
  179. break;
  180. }
  181. return txTime;
  182. }
  183. EXPORT_SYMBOL(ath9k_hw_computetxtime);
  184. void ath9k_hw_get_channel_centers(struct ath_hw *ah,
  185. struct ath9k_channel *chan,
  186. struct chan_centers *centers)
  187. {
  188. int8_t extoff;
  189. if (!IS_CHAN_HT40(chan)) {
  190. centers->ctl_center = centers->ext_center =
  191. centers->synth_center = chan->channel;
  192. return;
  193. }
  194. if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
  195. (chan->chanmode == CHANNEL_G_HT40PLUS)) {
  196. centers->synth_center =
  197. chan->channel + HT40_CHANNEL_CENTER_SHIFT;
  198. extoff = 1;
  199. } else {
  200. centers->synth_center =
  201. chan->channel - HT40_CHANNEL_CENTER_SHIFT;
  202. extoff = -1;
  203. }
  204. centers->ctl_center =
  205. centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
  206. /* 25 MHz spacing is supported by hw but not on upper layers */
  207. centers->ext_center =
  208. centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT);
  209. }
  210. /******************/
  211. /* Chip Revisions */
  212. /******************/
  213. static void ath9k_hw_read_revisions(struct ath_hw *ah)
  214. {
  215. u32 val;
  216. val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
  217. if (val == 0xFF) {
  218. val = REG_READ(ah, AR_SREV);
  219. ah->hw_version.macVersion =
  220. (val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
  221. ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
  222. ah->is_pciexpress = (val & AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
  223. } else {
  224. if (!AR_SREV_9100(ah))
  225. ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
  226. ah->hw_version.macRev = val & AR_SREV_REVISION;
  227. if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
  228. ah->is_pciexpress = true;
  229. }
  230. }
  231. /************************************/
  232. /* HW Attach, Detach, Init Routines */
  233. /************************************/
  234. static void ath9k_hw_disablepcie(struct ath_hw *ah)
  235. {
  236. if (AR_SREV_9100(ah))
  237. return;
  238. ENABLE_REGWRITE_BUFFER(ah);
  239. REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
  240. REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
  241. REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
  242. REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
  243. REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
  244. REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
  245. REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
  246. REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
  247. REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
  248. REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
  249. REGWRITE_BUFFER_FLUSH(ah);
  250. DISABLE_REGWRITE_BUFFER(ah);
  251. }
  252. /* This should work for all families including legacy */
  253. static bool ath9k_hw_chip_test(struct ath_hw *ah)
  254. {
  255. struct ath_common *common = ath9k_hw_common(ah);
  256. u32 regAddr[2] = { AR_STA_ID0 };
  257. u32 regHold[2];
  258. u32 patternData[4] = { 0x55555555,
  259. 0xaaaaaaaa,
  260. 0x66666666,
  261. 0x99999999 };
  262. int i, j, loop_max;
  263. if (!AR_SREV_9300_20_OR_LATER(ah)) {
  264. loop_max = 2;
  265. regAddr[1] = AR_PHY_BASE + (8 << 2);
  266. } else
  267. loop_max = 1;
  268. for (i = 0; i < loop_max; i++) {
  269. u32 addr = regAddr[i];
  270. u32 wrData, rdData;
  271. regHold[i] = REG_READ(ah, addr);
  272. for (j = 0; j < 0x100; j++) {
  273. wrData = (j << 16) | j;
  274. REG_WRITE(ah, addr, wrData);
  275. rdData = REG_READ(ah, addr);
  276. if (rdData != wrData) {
  277. ath_print(common, ATH_DBG_FATAL,
  278. "address test failed "
  279. "addr: 0x%08x - wr:0x%08x != "
  280. "rd:0x%08x\n",
  281. addr, wrData, rdData);
  282. return false;
  283. }
  284. }
  285. for (j = 0; j < 4; j++) {
  286. wrData = patternData[j];
  287. REG_WRITE(ah, addr, wrData);
  288. rdData = REG_READ(ah, addr);
  289. if (wrData != rdData) {
  290. ath_print(common, ATH_DBG_FATAL,
  291. "address test failed "
  292. "addr: 0x%08x - wr:0x%08x != "
  293. "rd:0x%08x\n",
  294. addr, wrData, rdData);
  295. return false;
  296. }
  297. }
  298. REG_WRITE(ah, regAddr[i], regHold[i]);
  299. }
  300. udelay(100);
  301. return true;
  302. }
  303. static void ath9k_hw_init_config(struct ath_hw *ah)
  304. {
  305. int i;
  306. ah->config.dma_beacon_response_time = 2;
  307. ah->config.sw_beacon_response_time = 10;
  308. ah->config.additional_swba_backoff = 0;
  309. ah->config.ack_6mb = 0x0;
  310. ah->config.cwm_ignore_extcca = 0;
  311. ah->config.pcie_powersave_enable = 0;
  312. ah->config.pcie_clock_req = 0;
  313. ah->config.pcie_waen = 0;
  314. ah->config.analog_shiftreg = 1;
  315. ah->config.ofdm_trig_low = 200;
  316. ah->config.ofdm_trig_high = 500;
  317. ah->config.cck_trig_high = 200;
  318. ah->config.cck_trig_low = 100;
  319. ah->config.enable_ani = true;
  320. for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
  321. ah->config.spurchans[i][0] = AR_NO_SPUR;
  322. ah->config.spurchans[i][1] = AR_NO_SPUR;
  323. }
  324. if (ah->hw_version.devid != AR2427_DEVID_PCIE)
  325. ah->config.ht_enable = 1;
  326. else
  327. ah->config.ht_enable = 0;
  328. ah->config.rx_intr_mitigation = true;
  329. ah->config.pcieSerDesWrite = true;
  330. /*
  331. * We need this for PCI devices only (Cardbus, PCI, miniPCI)
  332. * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
  333. * This means we use it for all AR5416 devices, and the few
  334. * minor PCI AR9280 devices out there.
  335. *
  336. * Serialization is required because these devices do not handle
  337. * well the case of two concurrent reads/writes due to the latency
  338. * involved. During one read/write another read/write can be issued
  339. * on another CPU while the previous read/write may still be working
  340. * on our hardware, if we hit this case the hardware poops in a loop.
  341. * We prevent this by serializing reads and writes.
  342. *
  343. * This issue is not present on PCI-Express devices or pre-AR5416
  344. * devices (legacy, 802.11abg).
  345. */
  346. if (num_possible_cpus() > 1)
  347. ah->config.serialize_regmode = SER_REG_MODE_AUTO;
  348. }
  349. static void ath9k_hw_init_defaults(struct ath_hw *ah)
  350. {
  351. struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
  352. regulatory->country_code = CTRY_DEFAULT;
  353. regulatory->power_limit = MAX_RATE_POWER;
  354. regulatory->tp_scale = ATH9K_TP_SCALE_MAX;
  355. ah->hw_version.magic = AR5416_MAGIC;
  356. ah->hw_version.subvendorid = 0;
  357. ah->ah_flags = 0;
  358. if (!AR_SREV_9100(ah))
  359. ah->ah_flags = AH_USE_EEPROM;
  360. ah->atim_window = 0;
  361. ah->sta_id1_defaults =
  362. AR_STA_ID1_CRPT_MIC_ENABLE |
  363. AR_STA_ID1_MCAST_KSRCH;
  364. ah->beacon_interval = 100;
  365. ah->enable_32kHz_clock = DONT_USE_32KHZ;
  366. ah->slottime = (u32) -1;
  367. ah->globaltxtimeout = (u32) -1;
  368. ah->power_mode = ATH9K_PM_UNDEFINED;
  369. }
  370. static int ath9k_hw_init_macaddr(struct ath_hw *ah)
  371. {
  372. struct ath_common *common = ath9k_hw_common(ah);
  373. u32 sum;
  374. int i;
  375. u16 eeval;
  376. u32 EEP_MAC[] = { EEP_MAC_LSW, EEP_MAC_MID, EEP_MAC_MSW };
  377. sum = 0;
  378. for (i = 0; i < 3; i++) {
  379. eeval = ah->eep_ops->get_eeprom(ah, EEP_MAC[i]);
  380. sum += eeval;
  381. common->macaddr[2 * i] = eeval >> 8;
  382. common->macaddr[2 * i + 1] = eeval & 0xff;
  383. }
  384. if (sum == 0 || sum == 0xffff * 3)
  385. return -EADDRNOTAVAIL;
  386. return 0;
  387. }
  388. static int ath9k_hw_post_init(struct ath_hw *ah)
  389. {
  390. int ecode;
  391. if (!AR_SREV_9271(ah)) {
  392. if (!ath9k_hw_chip_test(ah))
  393. return -ENODEV;
  394. }
  395. if (!AR_SREV_9300_20_OR_LATER(ah)) {
  396. ecode = ar9002_hw_rf_claim(ah);
  397. if (ecode != 0)
  398. return ecode;
  399. }
  400. ecode = ath9k_hw_eeprom_init(ah);
  401. if (ecode != 0)
  402. return ecode;
  403. ath_print(ath9k_hw_common(ah), ATH_DBG_CONFIG,
  404. "Eeprom VER: %d, REV: %d\n",
  405. ah->eep_ops->get_eeprom_ver(ah),
  406. ah->eep_ops->get_eeprom_rev(ah));
  407. ecode = ath9k_hw_rf_alloc_ext_banks(ah);
  408. if (ecode) {
  409. ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
  410. "Failed allocating banks for "
  411. "external radio\n");
  412. return ecode;
  413. }
  414. if (!AR_SREV_9100(ah)) {
  415. ath9k_hw_ani_setup(ah);
  416. ath9k_hw_ani_init(ah);
  417. }
  418. return 0;
  419. }
  420. static void ath9k_hw_attach_ops(struct ath_hw *ah)
  421. {
  422. if (AR_SREV_9300_20_OR_LATER(ah))
  423. ar9003_hw_attach_ops(ah);
  424. else
  425. ar9002_hw_attach_ops(ah);
  426. }
  427. /* Called for all hardware families */
  428. static int __ath9k_hw_init(struct ath_hw *ah)
  429. {
  430. struct ath_common *common = ath9k_hw_common(ah);
  431. int r = 0;
  432. if (ah->hw_version.devid == AR5416_AR9100_DEVID)
  433. ah->hw_version.macVersion = AR_SREV_VERSION_9100;
  434. if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
  435. ath_print(common, ATH_DBG_FATAL,
  436. "Couldn't reset chip\n");
  437. return -EIO;
  438. }
  439. ath9k_hw_init_defaults(ah);
  440. ath9k_hw_init_config(ah);
  441. ath9k_hw_attach_ops(ah);
  442. if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
  443. ath_print(common, ATH_DBG_FATAL, "Couldn't wakeup chip\n");
  444. return -EIO;
  445. }
  446. if (ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
  447. if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
  448. ((AR_SREV_9160(ah) || AR_SREV_9280(ah)) &&
  449. !ah->is_pciexpress)) {
  450. ah->config.serialize_regmode =
  451. SER_REG_MODE_ON;
  452. } else {
  453. ah->config.serialize_regmode =
  454. SER_REG_MODE_OFF;
  455. }
  456. }
  457. ath_print(common, ATH_DBG_RESET, "serialize_regmode is %d\n",
  458. ah->config.serialize_regmode);
  459. if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
  460. ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD >> 1;
  461. else
  462. ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD;
  463. if (!ath9k_hw_macversion_supported(ah)) {
  464. ath_print(common, ATH_DBG_FATAL,
  465. "Mac Chip Rev 0x%02x.%x is not supported by "
  466. "this driver\n", ah->hw_version.macVersion,
  467. ah->hw_version.macRev);
  468. return -EOPNOTSUPP;
  469. }
  470. if (AR_SREV_9271(ah) || AR_SREV_9100(ah))
  471. ah->is_pciexpress = false;
  472. ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
  473. ath9k_hw_init_cal_settings(ah);
  474. ah->ani_function = ATH9K_ANI_ALL;
  475. if (AR_SREV_9280_20_OR_LATER(ah) && !AR_SREV_9300_20_OR_LATER(ah))
  476. ah->ani_function &= ~ATH9K_ANI_NOISE_IMMUNITY_LEVEL;
  477. if (!AR_SREV_9300_20_OR_LATER(ah))
  478. ah->ani_function &= ~ATH9K_ANI_MRC_CCK;
  479. ath9k_hw_init_mode_regs(ah);
  480. /*
  481. * Read back AR_WA into a permanent copy and set bits 14 and 17.
  482. * We need to do this to avoid RMW of this register. We cannot
  483. * read the reg when chip is asleep.
  484. */
  485. ah->WARegVal = REG_READ(ah, AR_WA);
  486. ah->WARegVal |= (AR_WA_D3_L1_DISABLE |
  487. AR_WA_ASPM_TIMER_BASED_DISABLE);
  488. if (ah->is_pciexpress)
  489. ath9k_hw_configpcipowersave(ah, 0, 0);
  490. else
  491. ath9k_hw_disablepcie(ah);
  492. if (!AR_SREV_9300_20_OR_LATER(ah))
  493. ar9002_hw_cck_chan14_spread(ah);
  494. r = ath9k_hw_post_init(ah);
  495. if (r)
  496. return r;
  497. ath9k_hw_init_mode_gain_regs(ah);
  498. r = ath9k_hw_fill_cap_info(ah);
  499. if (r)
  500. return r;
  501. r = ath9k_hw_init_macaddr(ah);
  502. if (r) {
  503. ath_print(common, ATH_DBG_FATAL,
  504. "Failed to initialize MAC address\n");
  505. return r;
  506. }
  507. if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
  508. ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
  509. else
  510. ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
  511. ah->bb_watchdog_timeout_ms = 25;
  512. common->state = ATH_HW_INITIALIZED;
  513. return 0;
  514. }
  515. int ath9k_hw_init(struct ath_hw *ah)
  516. {
  517. int ret;
  518. struct ath_common *common = ath9k_hw_common(ah);
  519. /* These are all the AR5008/AR9001/AR9002 hardware family of chipsets */
  520. switch (ah->hw_version.devid) {
  521. case AR5416_DEVID_PCI:
  522. case AR5416_DEVID_PCIE:
  523. case AR5416_AR9100_DEVID:
  524. case AR9160_DEVID_PCI:
  525. case AR9280_DEVID_PCI:
  526. case AR9280_DEVID_PCIE:
  527. case AR9285_DEVID_PCIE:
  528. case AR9287_DEVID_PCI:
  529. case AR9287_DEVID_PCIE:
  530. case AR2427_DEVID_PCIE:
  531. case AR9300_DEVID_PCIE:
  532. break;
  533. default:
  534. if (common->bus_ops->ath_bus_type == ATH_USB)
  535. break;
  536. ath_print(common, ATH_DBG_FATAL,
  537. "Hardware device ID 0x%04x not supported\n",
  538. ah->hw_version.devid);
  539. return -EOPNOTSUPP;
  540. }
  541. ret = __ath9k_hw_init(ah);
  542. if (ret) {
  543. ath_print(common, ATH_DBG_FATAL,
  544. "Unable to initialize hardware; "
  545. "initialization status: %d\n", ret);
  546. return ret;
  547. }
  548. return 0;
  549. }
  550. EXPORT_SYMBOL(ath9k_hw_init);
  551. static void ath9k_hw_init_qos(struct ath_hw *ah)
  552. {
  553. ENABLE_REGWRITE_BUFFER(ah);
  554. REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
  555. REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
  556. REG_WRITE(ah, AR_QOS_NO_ACK,
  557. SM(2, AR_QOS_NO_ACK_TWO_BIT) |
  558. SM(5, AR_QOS_NO_ACK_BIT_OFF) |
  559. SM(0, AR_QOS_NO_ACK_BYTE_OFF));
  560. REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
  561. REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
  562. REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
  563. REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
  564. REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
  565. REGWRITE_BUFFER_FLUSH(ah);
  566. DISABLE_REGWRITE_BUFFER(ah);
  567. }
  568. static void ath9k_hw_init_pll(struct ath_hw *ah,
  569. struct ath9k_channel *chan)
  570. {
  571. u32 pll = ath9k_hw_compute_pll_control(ah, chan);
  572. REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
  573. /* Switch the core clock for ar9271 to 117Mhz */
  574. if (AR_SREV_9271(ah)) {
  575. udelay(500);
  576. REG_WRITE(ah, 0x50040, 0x304);
  577. }
  578. udelay(RTC_PLL_SETTLE_DELAY);
  579. REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
  580. }
  581. static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
  582. enum nl80211_iftype opmode)
  583. {
  584. u32 imr_reg = AR_IMR_TXERR |
  585. AR_IMR_TXURN |
  586. AR_IMR_RXERR |
  587. AR_IMR_RXORN |
  588. AR_IMR_BCNMISC;
  589. if (AR_SREV_9300_20_OR_LATER(ah)) {
  590. imr_reg |= AR_IMR_RXOK_HP;
  591. if (ah->config.rx_intr_mitigation)
  592. imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
  593. else
  594. imr_reg |= AR_IMR_RXOK_LP;
  595. } else {
  596. if (ah->config.rx_intr_mitigation)
  597. imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
  598. else
  599. imr_reg |= AR_IMR_RXOK;
  600. }
  601. if (ah->config.tx_intr_mitigation)
  602. imr_reg |= AR_IMR_TXINTM | AR_IMR_TXMINTR;
  603. else
  604. imr_reg |= AR_IMR_TXOK;
  605. if (opmode == NL80211_IFTYPE_AP)
  606. imr_reg |= AR_IMR_MIB;
  607. ENABLE_REGWRITE_BUFFER(ah);
  608. REG_WRITE(ah, AR_IMR, imr_reg);
  609. ah->imrs2_reg |= AR_IMR_S2_GTT;
  610. REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
  611. if (!AR_SREV_9100(ah)) {
  612. REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
  613. REG_WRITE(ah, AR_INTR_SYNC_ENABLE, AR_INTR_SYNC_DEFAULT);
  614. REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
  615. }
  616. REGWRITE_BUFFER_FLUSH(ah);
  617. DISABLE_REGWRITE_BUFFER(ah);
  618. if (AR_SREV_9300_20_OR_LATER(ah)) {
  619. REG_WRITE(ah, AR_INTR_PRIO_ASYNC_ENABLE, 0);
  620. REG_WRITE(ah, AR_INTR_PRIO_ASYNC_MASK, 0);
  621. REG_WRITE(ah, AR_INTR_PRIO_SYNC_ENABLE, 0);
  622. REG_WRITE(ah, AR_INTR_PRIO_SYNC_MASK, 0);
  623. }
  624. }
  625. static void ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
  626. {
  627. u32 val = ath9k_hw_mac_to_clks(ah, us);
  628. val = min(val, (u32) 0xFFFF);
  629. REG_WRITE(ah, AR_D_GBL_IFS_SLOT, val);
  630. }
  631. static void ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
  632. {
  633. u32 val = ath9k_hw_mac_to_clks(ah, us);
  634. val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_ACK));
  635. REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_ACK, val);
  636. }
  637. static void ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
  638. {
  639. u32 val = ath9k_hw_mac_to_clks(ah, us);
  640. val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_CTS));
  641. REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_CTS, val);
  642. }
  643. static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
  644. {
  645. if (tu > 0xFFFF) {
  646. ath_print(ath9k_hw_common(ah), ATH_DBG_XMIT,
  647. "bad global tx timeout %u\n", tu);
  648. ah->globaltxtimeout = (u32) -1;
  649. return false;
  650. } else {
  651. REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
  652. ah->globaltxtimeout = tu;
  653. return true;
  654. }
  655. }
  656. void ath9k_hw_init_global_settings(struct ath_hw *ah)
  657. {
  658. struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
  659. int acktimeout;
  660. int slottime;
  661. int sifstime;
  662. ath_print(ath9k_hw_common(ah), ATH_DBG_RESET, "ah->misc_mode 0x%x\n",
  663. ah->misc_mode);
  664. if (ah->misc_mode != 0)
  665. REG_WRITE(ah, AR_PCU_MISC,
  666. REG_READ(ah, AR_PCU_MISC) | ah->misc_mode);
  667. if (conf->channel && conf->channel->band == IEEE80211_BAND_5GHZ)
  668. sifstime = 16;
  669. else
  670. sifstime = 10;
  671. /* As defined by IEEE 802.11-2007 17.3.8.6 */
  672. slottime = ah->slottime + 3 * ah->coverage_class;
  673. acktimeout = slottime + sifstime;
  674. /*
  675. * Workaround for early ACK timeouts, add an offset to match the
  676. * initval's 64us ack timeout value.
  677. * This was initially only meant to work around an issue with delayed
  678. * BA frames in some implementations, but it has been found to fix ACK
  679. * timeout issues in other cases as well.
  680. */
  681. if (conf->channel && conf->channel->band == IEEE80211_BAND_2GHZ)
  682. acktimeout += 64 - sifstime - ah->slottime;
  683. ath9k_hw_setslottime(ah, slottime);
  684. ath9k_hw_set_ack_timeout(ah, acktimeout);
  685. ath9k_hw_set_cts_timeout(ah, acktimeout);
  686. if (ah->globaltxtimeout != (u32) -1)
  687. ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
  688. }
  689. EXPORT_SYMBOL(ath9k_hw_init_global_settings);
  690. void ath9k_hw_deinit(struct ath_hw *ah)
  691. {
  692. struct ath_common *common = ath9k_hw_common(ah);
  693. if (common->state < ATH_HW_INITIALIZED)
  694. goto free_hw;
  695. ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
  696. free_hw:
  697. ath9k_hw_rf_free_ext_banks(ah);
  698. }
  699. EXPORT_SYMBOL(ath9k_hw_deinit);
  700. /*******/
  701. /* INI */
  702. /*******/
  703. u32 ath9k_regd_get_ctl(struct ath_regulatory *reg, struct ath9k_channel *chan)
  704. {
  705. u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
  706. if (IS_CHAN_B(chan))
  707. ctl |= CTL_11B;
  708. else if (IS_CHAN_G(chan))
  709. ctl |= CTL_11G;
  710. else
  711. ctl |= CTL_11A;
  712. return ctl;
  713. }
  714. /****************************************/
  715. /* Reset and Channel Switching Routines */
  716. /****************************************/
  717. static inline void ath9k_hw_set_dma(struct ath_hw *ah)
  718. {
  719. struct ath_common *common = ath9k_hw_common(ah);
  720. u32 regval;
  721. ENABLE_REGWRITE_BUFFER(ah);
  722. /*
  723. * set AHB_MODE not to do cacheline prefetches
  724. */
  725. if (!AR_SREV_9300_20_OR_LATER(ah)) {
  726. regval = REG_READ(ah, AR_AHB_MODE);
  727. REG_WRITE(ah, AR_AHB_MODE, regval | AR_AHB_PREFETCH_RD_EN);
  728. }
  729. /*
  730. * let mac dma reads be in 128 byte chunks
  731. */
  732. regval = REG_READ(ah, AR_TXCFG) & ~AR_TXCFG_DMASZ_MASK;
  733. REG_WRITE(ah, AR_TXCFG, regval | AR_TXCFG_DMASZ_128B);
  734. REGWRITE_BUFFER_FLUSH(ah);
  735. DISABLE_REGWRITE_BUFFER(ah);
  736. /*
  737. * Restore TX Trigger Level to its pre-reset value.
  738. * The initial value depends on whether aggregation is enabled, and is
  739. * adjusted whenever underruns are detected.
  740. */
  741. if (!AR_SREV_9300_20_OR_LATER(ah))
  742. REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
  743. ENABLE_REGWRITE_BUFFER(ah);
  744. /*
  745. * let mac dma writes be in 128 byte chunks
  746. */
  747. regval = REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_DMASZ_MASK;
  748. REG_WRITE(ah, AR_RXCFG, regval | AR_RXCFG_DMASZ_128B);
  749. /*
  750. * Setup receive FIFO threshold to hold off TX activities
  751. */
  752. REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
  753. if (AR_SREV_9300_20_OR_LATER(ah)) {
  754. REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_HP, 0x1);
  755. REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_LP, 0x1);
  756. ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize -
  757. ah->caps.rx_status_len);
  758. }
  759. /*
  760. * reduce the number of usable entries in PCU TXBUF to avoid
  761. * wrap around issues.
  762. */
  763. if (AR_SREV_9285(ah)) {
  764. /* For AR9285 the number of Fifos are reduced to half.
  765. * So set the usable tx buf size also to half to
  766. * avoid data/delimiter underruns
  767. */
  768. REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
  769. AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE);
  770. } else if (!AR_SREV_9271(ah)) {
  771. REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
  772. AR_PCU_TXBUF_CTRL_USABLE_SIZE);
  773. }
  774. REGWRITE_BUFFER_FLUSH(ah);
  775. DISABLE_REGWRITE_BUFFER(ah);
  776. if (AR_SREV_9300_20_OR_LATER(ah))
  777. ath9k_hw_reset_txstatus_ring(ah);
  778. }
  779. static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
  780. {
  781. u32 val;
  782. val = REG_READ(ah, AR_STA_ID1);
  783. val &= ~(AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC);
  784. switch (opmode) {
  785. case NL80211_IFTYPE_AP:
  786. REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_STA_AP
  787. | AR_STA_ID1_KSRCH_MODE);
  788. REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
  789. break;
  790. case NL80211_IFTYPE_ADHOC:
  791. case NL80211_IFTYPE_MESH_POINT:
  792. REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_ADHOC
  793. | AR_STA_ID1_KSRCH_MODE);
  794. REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
  795. break;
  796. case NL80211_IFTYPE_STATION:
  797. case NL80211_IFTYPE_MONITOR:
  798. REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_KSRCH_MODE);
  799. break;
  800. }
  801. }
  802. void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah, u32 coef_scaled,
  803. u32 *coef_mantissa, u32 *coef_exponent)
  804. {
  805. u32 coef_exp, coef_man;
  806. for (coef_exp = 31; coef_exp > 0; coef_exp--)
  807. if ((coef_scaled >> coef_exp) & 0x1)
  808. break;
  809. coef_exp = 14 - (coef_exp - COEF_SCALE_S);
  810. coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
  811. *coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
  812. *coef_exponent = coef_exp - 16;
  813. }
  814. static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
  815. {
  816. u32 rst_flags;
  817. u32 tmpReg;
  818. if (AR_SREV_9100(ah)) {
  819. u32 val = REG_READ(ah, AR_RTC_DERIVED_CLK);
  820. val &= ~AR_RTC_DERIVED_CLK_PERIOD;
  821. val |= SM(1, AR_RTC_DERIVED_CLK_PERIOD);
  822. REG_WRITE(ah, AR_RTC_DERIVED_CLK, val);
  823. (void)REG_READ(ah, AR_RTC_DERIVED_CLK);
  824. }
  825. ENABLE_REGWRITE_BUFFER(ah);
  826. if (AR_SREV_9300_20_OR_LATER(ah)) {
  827. REG_WRITE(ah, AR_WA, ah->WARegVal);
  828. udelay(10);
  829. }
  830. REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
  831. AR_RTC_FORCE_WAKE_ON_INT);
  832. if (AR_SREV_9100(ah)) {
  833. rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
  834. AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
  835. } else {
  836. tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
  837. if (tmpReg &
  838. (AR_INTR_SYNC_LOCAL_TIMEOUT |
  839. AR_INTR_SYNC_RADM_CPL_TIMEOUT)) {
  840. u32 val;
  841. REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
  842. val = AR_RC_HOSTIF;
  843. if (!AR_SREV_9300_20_OR_LATER(ah))
  844. val |= AR_RC_AHB;
  845. REG_WRITE(ah, AR_RC, val);
  846. } else if (!AR_SREV_9300_20_OR_LATER(ah))
  847. REG_WRITE(ah, AR_RC, AR_RC_AHB);
  848. rst_flags = AR_RTC_RC_MAC_WARM;
  849. if (type == ATH9K_RESET_COLD)
  850. rst_flags |= AR_RTC_RC_MAC_COLD;
  851. }
  852. REG_WRITE(ah, AR_RTC_RC, rst_flags);
  853. REGWRITE_BUFFER_FLUSH(ah);
  854. DISABLE_REGWRITE_BUFFER(ah);
  855. udelay(50);
  856. REG_WRITE(ah, AR_RTC_RC, 0);
  857. if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
  858. ath_print(ath9k_hw_common(ah), ATH_DBG_RESET,
  859. "RTC stuck in MAC reset\n");
  860. return false;
  861. }
  862. if (!AR_SREV_9100(ah))
  863. REG_WRITE(ah, AR_RC, 0);
  864. if (AR_SREV_9100(ah))
  865. udelay(50);
  866. return true;
  867. }
  868. static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
  869. {
  870. ENABLE_REGWRITE_BUFFER(ah);
  871. if (AR_SREV_9300_20_OR_LATER(ah)) {
  872. REG_WRITE(ah, AR_WA, ah->WARegVal);
  873. udelay(10);
  874. }
  875. REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
  876. AR_RTC_FORCE_WAKE_ON_INT);
  877. if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
  878. REG_WRITE(ah, AR_RC, AR_RC_AHB);
  879. REG_WRITE(ah, AR_RTC_RESET, 0);
  880. udelay(2);
  881. REGWRITE_BUFFER_FLUSH(ah);
  882. DISABLE_REGWRITE_BUFFER(ah);
  883. if (!AR_SREV_9300_20_OR_LATER(ah))
  884. udelay(2);
  885. if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
  886. REG_WRITE(ah, AR_RC, 0);
  887. REG_WRITE(ah, AR_RTC_RESET, 1);
  888. if (!ath9k_hw_wait(ah,
  889. AR_RTC_STATUS,
  890. AR_RTC_STATUS_M,
  891. AR_RTC_STATUS_ON,
  892. AH_WAIT_TIMEOUT)) {
  893. ath_print(ath9k_hw_common(ah), ATH_DBG_RESET,
  894. "RTC not waking up\n");
  895. return false;
  896. }
  897. ath9k_hw_read_revisions(ah);
  898. return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
  899. }
  900. static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
  901. {
  902. if (AR_SREV_9300_20_OR_LATER(ah)) {
  903. REG_WRITE(ah, AR_WA, ah->WARegVal);
  904. udelay(10);
  905. }
  906. REG_WRITE(ah, AR_RTC_FORCE_WAKE,
  907. AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
  908. switch (type) {
  909. case ATH9K_RESET_POWER_ON:
  910. return ath9k_hw_set_reset_power_on(ah);
  911. case ATH9K_RESET_WARM:
  912. case ATH9K_RESET_COLD:
  913. return ath9k_hw_set_reset(ah, type);
  914. default:
  915. return false;
  916. }
  917. }
  918. static bool ath9k_hw_chip_reset(struct ath_hw *ah,
  919. struct ath9k_channel *chan)
  920. {
  921. if (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)) {
  922. if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON))
  923. return false;
  924. } else if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
  925. return false;
  926. if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
  927. return false;
  928. ah->chip_fullsleep = false;
  929. ath9k_hw_init_pll(ah, chan);
  930. ath9k_hw_set_rfmode(ah, chan);
  931. return true;
  932. }
  933. static bool ath9k_hw_channel_change(struct ath_hw *ah,
  934. struct ath9k_channel *chan)
  935. {
  936. struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
  937. struct ath_common *common = ath9k_hw_common(ah);
  938. struct ieee80211_channel *channel = chan->chan;
  939. u32 qnum;
  940. int r;
  941. for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
  942. if (ath9k_hw_numtxpending(ah, qnum)) {
  943. ath_print(common, ATH_DBG_QUEUE,
  944. "Transmit frames pending on "
  945. "queue %d\n", qnum);
  946. return false;
  947. }
  948. }
  949. if (!ath9k_hw_rfbus_req(ah)) {
  950. ath_print(common, ATH_DBG_FATAL,
  951. "Could not kill baseband RX\n");
  952. return false;
  953. }
  954. ath9k_hw_set_channel_regs(ah, chan);
  955. r = ath9k_hw_rf_set_freq(ah, chan);
  956. if (r) {
  957. ath_print(common, ATH_DBG_FATAL,
  958. "Failed to set channel\n");
  959. return false;
  960. }
  961. ah->eep_ops->set_txpower(ah, chan,
  962. ath9k_regd_get_ctl(regulatory, chan),
  963. channel->max_antenna_gain * 2,
  964. channel->max_power * 2,
  965. min((u32) MAX_RATE_POWER,
  966. (u32) regulatory->power_limit));
  967. ath9k_hw_rfbus_done(ah);
  968. if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
  969. ath9k_hw_set_delta_slope(ah, chan);
  970. ath9k_hw_spur_mitigate_freq(ah, chan);
  971. return true;
  972. }
  973. bool ath9k_hw_check_alive(struct ath_hw *ah)
  974. {
  975. int count = 50;
  976. u32 reg;
  977. if (AR_SREV_9285_12_OR_LATER(ah))
  978. return true;
  979. do {
  980. reg = REG_READ(ah, AR_OBS_BUS_1);
  981. if ((reg & 0x7E7FFFEF) == 0x00702400)
  982. continue;
  983. switch (reg & 0x7E000B00) {
  984. case 0x1E000000:
  985. case 0x52000B00:
  986. case 0x18000B00:
  987. continue;
  988. default:
  989. return true;
  990. }
  991. } while (count-- > 0);
  992. return false;
  993. }
  994. EXPORT_SYMBOL(ath9k_hw_check_alive);
  995. int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
  996. struct ath9k_hw_cal_data *caldata, bool bChannelChange)
  997. {
  998. struct ath_common *common = ath9k_hw_common(ah);
  999. u32 saveLedState;
  1000. struct ath9k_channel *curchan = ah->curchan;
  1001. u32 saveDefAntenna;
  1002. u32 macStaId1;
  1003. u64 tsf = 0;
  1004. int i, r;
  1005. ah->txchainmask = common->tx_chainmask;
  1006. ah->rxchainmask = common->rx_chainmask;
  1007. if (!ah->chip_fullsleep) {
  1008. ath9k_hw_abortpcurecv(ah);
  1009. if (!ath9k_hw_stopdmarecv(ah)) {
  1010. ath_print(common, ATH_DBG_XMIT,
  1011. "Failed to stop receive dma\n");
  1012. bChannelChange = false;
  1013. }
  1014. }
  1015. if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
  1016. return -EIO;
  1017. if (curchan && !ah->chip_fullsleep)
  1018. ath9k_hw_getnf(ah, curchan);
  1019. ah->caldata = caldata;
  1020. if (caldata &&
  1021. (chan->channel != caldata->channel ||
  1022. (chan->channelFlags & ~CHANNEL_CW_INT) !=
  1023. (caldata->channelFlags & ~CHANNEL_CW_INT))) {
  1024. /* Operating channel changed, reset channel calibration data */
  1025. memset(caldata, 0, sizeof(*caldata));
  1026. ath9k_init_nfcal_hist_buffer(ah, chan);
  1027. }
  1028. if (bChannelChange &&
  1029. (ah->chip_fullsleep != true) &&
  1030. (ah->curchan != NULL) &&
  1031. (chan->channel != ah->curchan->channel) &&
  1032. ((chan->channelFlags & CHANNEL_ALL) ==
  1033. (ah->curchan->channelFlags & CHANNEL_ALL)) &&
  1034. (!AR_SREV_9280(ah) || AR_DEVID_7010(ah))) {
  1035. if (ath9k_hw_channel_change(ah, chan)) {
  1036. ath9k_hw_loadnf(ah, ah->curchan);
  1037. ath9k_hw_start_nfcal(ah, true);
  1038. if (AR_SREV_9271(ah))
  1039. ar9002_hw_load_ani_reg(ah, chan);
  1040. return 0;
  1041. }
  1042. }
  1043. saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
  1044. if (saveDefAntenna == 0)
  1045. saveDefAntenna = 1;
  1046. macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
  1047. /* For chips on which RTC reset is done, save TSF before it gets cleared */
  1048. if (AR_SREV_9100(ah) ||
  1049. (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)))
  1050. tsf = ath9k_hw_gettsf64(ah);
  1051. saveLedState = REG_READ(ah, AR_CFG_LED) &
  1052. (AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
  1053. AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
  1054. ath9k_hw_mark_phy_inactive(ah);
  1055. /* Only required on the first reset */
  1056. if (AR_SREV_9271(ah) && ah->htc_reset_init) {
  1057. REG_WRITE(ah,
  1058. AR9271_RESET_POWER_DOWN_CONTROL,
  1059. AR9271_RADIO_RF_RST);
  1060. udelay(50);
  1061. }
  1062. if (!ath9k_hw_chip_reset(ah, chan)) {
  1063. ath_print(common, ATH_DBG_FATAL, "Chip reset failed\n");
  1064. return -EINVAL;
  1065. }
  1066. /* Only required on the first reset */
  1067. if (AR_SREV_9271(ah) && ah->htc_reset_init) {
  1068. ah->htc_reset_init = false;
  1069. REG_WRITE(ah,
  1070. AR9271_RESET_POWER_DOWN_CONTROL,
  1071. AR9271_GATE_MAC_CTL);
  1072. udelay(50);
  1073. }
  1074. /* Restore TSF */
  1075. if (tsf)
  1076. ath9k_hw_settsf64(ah, tsf);
  1077. if (AR_SREV_9280_20_OR_LATER(ah))
  1078. REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
  1079. if (!AR_SREV_9300_20_OR_LATER(ah))
  1080. ar9002_hw_enable_async_fifo(ah);
  1081. r = ath9k_hw_process_ini(ah, chan);
  1082. if (r)
  1083. return r;
  1084. /*
  1085. * Some AR91xx SoC devices frequently fail to accept TSF writes
  1086. * right after the chip reset. When that happens, write a new
  1087. * value after the initvals have been applied, with an offset
  1088. * based on measured time difference
  1089. */
  1090. if (AR_SREV_9100(ah) && (ath9k_hw_gettsf64(ah) < tsf)) {
  1091. tsf += 1500;
  1092. ath9k_hw_settsf64(ah, tsf);
  1093. }
  1094. /* Setup MFP options for CCMP */
  1095. if (AR_SREV_9280_20_OR_LATER(ah)) {
  1096. /* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
  1097. * frames when constructing CCMP AAD. */
  1098. REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
  1099. 0xc7ff);
  1100. ah->sw_mgmt_crypto = false;
  1101. } else if (AR_SREV_9160_10_OR_LATER(ah)) {
  1102. /* Disable hardware crypto for management frames */
  1103. REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
  1104. AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
  1105. REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
  1106. AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
  1107. ah->sw_mgmt_crypto = true;
  1108. } else
  1109. ah->sw_mgmt_crypto = true;
  1110. if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
  1111. ath9k_hw_set_delta_slope(ah, chan);
  1112. ath9k_hw_spur_mitigate_freq(ah, chan);
  1113. ah->eep_ops->set_board_values(ah, chan);
  1114. ath9k_hw_set_operating_mode(ah, ah->opmode);
  1115. ENABLE_REGWRITE_BUFFER(ah);
  1116. REG_WRITE(ah, AR_STA_ID0, get_unaligned_le32(common->macaddr));
  1117. REG_WRITE(ah, AR_STA_ID1, get_unaligned_le16(common->macaddr + 4)
  1118. | macStaId1
  1119. | AR_STA_ID1_RTS_USE_DEF
  1120. | (ah->config.
  1121. ack_6mb ? AR_STA_ID1_ACKCTS_6MB : 0)
  1122. | ah->sta_id1_defaults);
  1123. ath_hw_setbssidmask(common);
  1124. REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
  1125. ath9k_hw_write_associd(ah);
  1126. REG_WRITE(ah, AR_ISR, ~0);
  1127. REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
  1128. REGWRITE_BUFFER_FLUSH(ah);
  1129. DISABLE_REGWRITE_BUFFER(ah);
  1130. r = ath9k_hw_rf_set_freq(ah, chan);
  1131. if (r)
  1132. return r;
  1133. ENABLE_REGWRITE_BUFFER(ah);
  1134. for (i = 0; i < AR_NUM_DCU; i++)
  1135. REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
  1136. REGWRITE_BUFFER_FLUSH(ah);
  1137. DISABLE_REGWRITE_BUFFER(ah);
  1138. ah->intr_txqs = 0;
  1139. for (i = 0; i < ah->caps.total_queues; i++)
  1140. ath9k_hw_resettxqueue(ah, i);
  1141. ath9k_hw_init_interrupt_masks(ah, ah->opmode);
  1142. ath9k_hw_ani_cache_ini_regs(ah);
  1143. ath9k_hw_init_qos(ah);
  1144. if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
  1145. ath9k_enable_rfkill(ah);
  1146. ath9k_hw_init_global_settings(ah);
  1147. if (!AR_SREV_9300_20_OR_LATER(ah)) {
  1148. ar9002_hw_update_async_fifo(ah);
  1149. ar9002_hw_enable_wep_aggregation(ah);
  1150. }
  1151. REG_WRITE(ah, AR_STA_ID1,
  1152. REG_READ(ah, AR_STA_ID1) | AR_STA_ID1_PRESERVE_SEQNUM);
  1153. ath9k_hw_set_dma(ah);
  1154. REG_WRITE(ah, AR_OBS, 8);
  1155. if (ah->config.rx_intr_mitigation) {
  1156. REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 500);
  1157. REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 2000);
  1158. }
  1159. if (ah->config.tx_intr_mitigation) {
  1160. REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_LAST, 300);
  1161. REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_FIRST, 750);
  1162. }
  1163. ath9k_hw_init_bb(ah, chan);
  1164. if (!ath9k_hw_init_cal(ah, chan))
  1165. return -EIO;
  1166. ENABLE_REGWRITE_BUFFER(ah);
  1167. ath9k_hw_restore_chainmask(ah);
  1168. REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
  1169. REGWRITE_BUFFER_FLUSH(ah);
  1170. DISABLE_REGWRITE_BUFFER(ah);
  1171. /*
  1172. * For big endian systems turn on swapping for descriptors
  1173. */
  1174. if (AR_SREV_9100(ah)) {
  1175. u32 mask;
  1176. mask = REG_READ(ah, AR_CFG);
  1177. if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
  1178. ath_print(common, ATH_DBG_RESET,
  1179. "CFG Byte Swap Set 0x%x\n", mask);
  1180. } else {
  1181. mask =
  1182. INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
  1183. REG_WRITE(ah, AR_CFG, mask);
  1184. ath_print(common, ATH_DBG_RESET,
  1185. "Setting CFG 0x%x\n", REG_READ(ah, AR_CFG));
  1186. }
  1187. } else {
  1188. if (common->bus_ops->ath_bus_type == ATH_USB) {
  1189. /* Configure AR9271 target WLAN */
  1190. if (AR_SREV_9271(ah))
  1191. REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
  1192. else
  1193. REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
  1194. }
  1195. #ifdef __BIG_ENDIAN
  1196. else
  1197. REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
  1198. #endif
  1199. }
  1200. if (ah->btcoex_hw.enabled)
  1201. ath9k_hw_btcoex_enable(ah);
  1202. if (AR_SREV_9300_20_OR_LATER(ah))
  1203. ar9003_hw_bb_watchdog_config(ah);
  1204. return 0;
  1205. }
  1206. EXPORT_SYMBOL(ath9k_hw_reset);
  1207. /******************************/
  1208. /* Power Management (Chipset) */
  1209. /******************************/
  1210. /*
  1211. * Notify Power Mgt is disabled in self-generated frames.
  1212. * If requested, force chip to sleep.
  1213. */
  1214. static void ath9k_set_power_sleep(struct ath_hw *ah, int setChip)
  1215. {
  1216. REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
  1217. if (setChip) {
  1218. /*
  1219. * Clear the RTC force wake bit to allow the
  1220. * mac to go to sleep.
  1221. */
  1222. REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
  1223. AR_RTC_FORCE_WAKE_EN);
  1224. if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
  1225. REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
  1226. /* Shutdown chip. Active low */
  1227. if (!AR_SREV_5416(ah) && !AR_SREV_9271(ah))
  1228. REG_CLR_BIT(ah, (AR_RTC_RESET),
  1229. AR_RTC_RESET_EN);
  1230. }
  1231. /* Clear Bit 14 of AR_WA after putting chip into Full Sleep mode. */
  1232. if (AR_SREV_9300_20_OR_LATER(ah))
  1233. REG_WRITE(ah, AR_WA,
  1234. ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
  1235. }
  1236. /*
  1237. * Notify Power Management is enabled in self-generating
  1238. * frames. If request, set power mode of chip to
  1239. * auto/normal. Duration in units of 128us (1/8 TU).
  1240. */
  1241. static void ath9k_set_power_network_sleep(struct ath_hw *ah, int setChip)
  1242. {
  1243. REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
  1244. if (setChip) {
  1245. struct ath9k_hw_capabilities *pCap = &ah->caps;
  1246. if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
  1247. /* Set WakeOnInterrupt bit; clear ForceWake bit */
  1248. REG_WRITE(ah, AR_RTC_FORCE_WAKE,
  1249. AR_RTC_FORCE_WAKE_ON_INT);
  1250. } else {
  1251. /*
  1252. * Clear the RTC force wake bit to allow the
  1253. * mac to go to sleep.
  1254. */
  1255. REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
  1256. AR_RTC_FORCE_WAKE_EN);
  1257. }
  1258. }
  1259. /* Clear Bit 14 of AR_WA after putting chip into Net Sleep mode. */
  1260. if (AR_SREV_9300_20_OR_LATER(ah))
  1261. REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
  1262. }
  1263. static bool ath9k_hw_set_power_awake(struct ath_hw *ah, int setChip)
  1264. {
  1265. u32 val;
  1266. int i;
  1267. /* Set Bits 14 and 17 of AR_WA before powering on the chip. */
  1268. if (AR_SREV_9300_20_OR_LATER(ah)) {
  1269. REG_WRITE(ah, AR_WA, ah->WARegVal);
  1270. udelay(10);
  1271. }
  1272. if (setChip) {
  1273. if ((REG_READ(ah, AR_RTC_STATUS) &
  1274. AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
  1275. if (ath9k_hw_set_reset_reg(ah,
  1276. ATH9K_RESET_POWER_ON) != true) {
  1277. return false;
  1278. }
  1279. if (!AR_SREV_9300_20_OR_LATER(ah))
  1280. ath9k_hw_init_pll(ah, NULL);
  1281. }
  1282. if (AR_SREV_9100(ah))
  1283. REG_SET_BIT(ah, AR_RTC_RESET,
  1284. AR_RTC_RESET_EN);
  1285. REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
  1286. AR_RTC_FORCE_WAKE_EN);
  1287. udelay(50);
  1288. for (i = POWER_UP_TIME / 50; i > 0; i--) {
  1289. val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
  1290. if (val == AR_RTC_STATUS_ON)
  1291. break;
  1292. udelay(50);
  1293. REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
  1294. AR_RTC_FORCE_WAKE_EN);
  1295. }
  1296. if (i == 0) {
  1297. ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
  1298. "Failed to wakeup in %uus\n",
  1299. POWER_UP_TIME / 20);
  1300. return false;
  1301. }
  1302. }
  1303. REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
  1304. return true;
  1305. }
  1306. bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
  1307. {
  1308. struct ath_common *common = ath9k_hw_common(ah);
  1309. int status = true, setChip = true;
  1310. static const char *modes[] = {
  1311. "AWAKE",
  1312. "FULL-SLEEP",
  1313. "NETWORK SLEEP",
  1314. "UNDEFINED"
  1315. };
  1316. if (ah->power_mode == mode)
  1317. return status;
  1318. ath_print(common, ATH_DBG_RESET, "%s -> %s\n",
  1319. modes[ah->power_mode], modes[mode]);
  1320. switch (mode) {
  1321. case ATH9K_PM_AWAKE:
  1322. status = ath9k_hw_set_power_awake(ah, setChip);
  1323. break;
  1324. case ATH9K_PM_FULL_SLEEP:
  1325. ath9k_set_power_sleep(ah, setChip);
  1326. ah->chip_fullsleep = true;
  1327. break;
  1328. case ATH9K_PM_NETWORK_SLEEP:
  1329. ath9k_set_power_network_sleep(ah, setChip);
  1330. break;
  1331. default:
  1332. ath_print(common, ATH_DBG_FATAL,
  1333. "Unknown power mode %u\n", mode);
  1334. return false;
  1335. }
  1336. ah->power_mode = mode;
  1337. return status;
  1338. }
  1339. EXPORT_SYMBOL(ath9k_hw_setpower);
  1340. /*******************/
  1341. /* Beacon Handling */
  1342. /*******************/
  1343. void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
  1344. {
  1345. int flags = 0;
  1346. ah->beacon_interval = beacon_period;
  1347. ENABLE_REGWRITE_BUFFER(ah);
  1348. switch (ah->opmode) {
  1349. case NL80211_IFTYPE_STATION:
  1350. case NL80211_IFTYPE_MONITOR:
  1351. REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon));
  1352. REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, 0xffff);
  1353. REG_WRITE(ah, AR_NEXT_SWBA, 0x7ffff);
  1354. flags |= AR_TBTT_TIMER_EN;
  1355. break;
  1356. case NL80211_IFTYPE_ADHOC:
  1357. case NL80211_IFTYPE_MESH_POINT:
  1358. REG_SET_BIT(ah, AR_TXCFG,
  1359. AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
  1360. REG_WRITE(ah, AR_NEXT_NDP_TIMER,
  1361. TU_TO_USEC(next_beacon +
  1362. (ah->atim_window ? ah->
  1363. atim_window : 1)));
  1364. flags |= AR_NDP_TIMER_EN;
  1365. case NL80211_IFTYPE_AP:
  1366. REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon));
  1367. REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT,
  1368. TU_TO_USEC(next_beacon -
  1369. ah->config.
  1370. dma_beacon_response_time));
  1371. REG_WRITE(ah, AR_NEXT_SWBA,
  1372. TU_TO_USEC(next_beacon -
  1373. ah->config.
  1374. sw_beacon_response_time));
  1375. flags |=
  1376. AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
  1377. break;
  1378. default:
  1379. ath_print(ath9k_hw_common(ah), ATH_DBG_BEACON,
  1380. "%s: unsupported opmode: %d\n",
  1381. __func__, ah->opmode);
  1382. return;
  1383. break;
  1384. }
  1385. REG_WRITE(ah, AR_BEACON_PERIOD, TU_TO_USEC(beacon_period));
  1386. REG_WRITE(ah, AR_DMA_BEACON_PERIOD, TU_TO_USEC(beacon_period));
  1387. REG_WRITE(ah, AR_SWBA_PERIOD, TU_TO_USEC(beacon_period));
  1388. REG_WRITE(ah, AR_NDP_PERIOD, TU_TO_USEC(beacon_period));
  1389. REGWRITE_BUFFER_FLUSH(ah);
  1390. DISABLE_REGWRITE_BUFFER(ah);
  1391. beacon_period &= ~ATH9K_BEACON_ENA;
  1392. if (beacon_period & ATH9K_BEACON_RESET_TSF) {
  1393. ath9k_hw_reset_tsf(ah);
  1394. }
  1395. REG_SET_BIT(ah, AR_TIMER_MODE, flags);
  1396. }
  1397. EXPORT_SYMBOL(ath9k_hw_beaconinit);
  1398. void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
  1399. const struct ath9k_beacon_state *bs)
  1400. {
  1401. u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
  1402. struct ath9k_hw_capabilities *pCap = &ah->caps;
  1403. struct ath_common *common = ath9k_hw_common(ah);
  1404. ENABLE_REGWRITE_BUFFER(ah);
  1405. REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(bs->bs_nexttbtt));
  1406. REG_WRITE(ah, AR_BEACON_PERIOD,
  1407. TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
  1408. REG_WRITE(ah, AR_DMA_BEACON_PERIOD,
  1409. TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
  1410. REGWRITE_BUFFER_FLUSH(ah);
  1411. DISABLE_REGWRITE_BUFFER(ah);
  1412. REG_RMW_FIELD(ah, AR_RSSI_THR,
  1413. AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
  1414. beaconintval = bs->bs_intval & ATH9K_BEACON_PERIOD;
  1415. if (bs->bs_sleepduration > beaconintval)
  1416. beaconintval = bs->bs_sleepduration;
  1417. dtimperiod = bs->bs_dtimperiod;
  1418. if (bs->bs_sleepduration > dtimperiod)
  1419. dtimperiod = bs->bs_sleepduration;
  1420. if (beaconintval == dtimperiod)
  1421. nextTbtt = bs->bs_nextdtim;
  1422. else
  1423. nextTbtt = bs->bs_nexttbtt;
  1424. ath_print(common, ATH_DBG_BEACON, "next DTIM %d\n", bs->bs_nextdtim);
  1425. ath_print(common, ATH_DBG_BEACON, "next beacon %d\n", nextTbtt);
  1426. ath_print(common, ATH_DBG_BEACON, "beacon period %d\n", beaconintval);
  1427. ath_print(common, ATH_DBG_BEACON, "DTIM period %d\n", dtimperiod);
  1428. ENABLE_REGWRITE_BUFFER(ah);
  1429. REG_WRITE(ah, AR_NEXT_DTIM,
  1430. TU_TO_USEC(bs->bs_nextdtim - SLEEP_SLOP));
  1431. REG_WRITE(ah, AR_NEXT_TIM, TU_TO_USEC(nextTbtt - SLEEP_SLOP));
  1432. REG_WRITE(ah, AR_SLEEP1,
  1433. SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
  1434. | AR_SLEEP1_ASSUME_DTIM);
  1435. if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
  1436. beacontimeout = (BEACON_TIMEOUT_VAL << 3);
  1437. else
  1438. beacontimeout = MIN_BEACON_TIMEOUT_VAL;
  1439. REG_WRITE(ah, AR_SLEEP2,
  1440. SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
  1441. REG_WRITE(ah, AR_TIM_PERIOD, TU_TO_USEC(beaconintval));
  1442. REG_WRITE(ah, AR_DTIM_PERIOD, TU_TO_USEC(dtimperiod));
  1443. REGWRITE_BUFFER_FLUSH(ah);
  1444. DISABLE_REGWRITE_BUFFER(ah);
  1445. REG_SET_BIT(ah, AR_TIMER_MODE,
  1446. AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
  1447. AR_DTIM_TIMER_EN);
  1448. /* TSF Out of Range Threshold */
  1449. REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
  1450. }
  1451. EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers);
  1452. /*******************/
  1453. /* HW Capabilities */
  1454. /*******************/
  1455. int ath9k_hw_fill_cap_info(struct ath_hw *ah)
  1456. {
  1457. struct ath9k_hw_capabilities *pCap = &ah->caps;
  1458. struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
  1459. struct ath_common *common = ath9k_hw_common(ah);
  1460. struct ath_btcoex_hw *btcoex_hw = &ah->btcoex_hw;
  1461. u16 capField = 0, eeval;
  1462. u8 ant_div_ctl1;
  1463. eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
  1464. regulatory->current_rd = eeval;
  1465. eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_1);
  1466. if (AR_SREV_9285_12_OR_LATER(ah))
  1467. eeval |= AR9285_RDEXT_DEFAULT;
  1468. regulatory->current_rd_ext = eeval;
  1469. capField = ah->eep_ops->get_eeprom(ah, EEP_OP_CAP);
  1470. if (ah->opmode != NL80211_IFTYPE_AP &&
  1471. ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
  1472. if (regulatory->current_rd == 0x64 ||
  1473. regulatory->current_rd == 0x65)
  1474. regulatory->current_rd += 5;
  1475. else if (regulatory->current_rd == 0x41)
  1476. regulatory->current_rd = 0x43;
  1477. ath_print(common, ATH_DBG_REGULATORY,
  1478. "regdomain mapped to 0x%x\n", regulatory->current_rd);
  1479. }
  1480. eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
  1481. if ((eeval & (AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A)) == 0) {
  1482. ath_print(common, ATH_DBG_FATAL,
  1483. "no band has been marked as supported in EEPROM.\n");
  1484. return -EINVAL;
  1485. }
  1486. bitmap_zero(pCap->wireless_modes, ATH9K_MODE_MAX);
  1487. if (eeval & AR5416_OPFLAGS_11A) {
  1488. set_bit(ATH9K_MODE_11A, pCap->wireless_modes);
  1489. if (ah->config.ht_enable) {
  1490. if (!(eeval & AR5416_OPFLAGS_N_5G_HT20))
  1491. set_bit(ATH9K_MODE_11NA_HT20,
  1492. pCap->wireless_modes);
  1493. if (!(eeval & AR5416_OPFLAGS_N_5G_HT40)) {
  1494. set_bit(ATH9K_MODE_11NA_HT40PLUS,
  1495. pCap->wireless_modes);
  1496. set_bit(ATH9K_MODE_11NA_HT40MINUS,
  1497. pCap->wireless_modes);
  1498. }
  1499. }
  1500. }
  1501. if (eeval & AR5416_OPFLAGS_11G) {
  1502. set_bit(ATH9K_MODE_11G, pCap->wireless_modes);
  1503. if (ah->config.ht_enable) {
  1504. if (!(eeval & AR5416_OPFLAGS_N_2G_HT20))
  1505. set_bit(ATH9K_MODE_11NG_HT20,
  1506. pCap->wireless_modes);
  1507. if (!(eeval & AR5416_OPFLAGS_N_2G_HT40)) {
  1508. set_bit(ATH9K_MODE_11NG_HT40PLUS,
  1509. pCap->wireless_modes);
  1510. set_bit(ATH9K_MODE_11NG_HT40MINUS,
  1511. pCap->wireless_modes);
  1512. }
  1513. }
  1514. }
  1515. pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
  1516. /*
  1517. * For AR9271 we will temporarilly uses the rx chainmax as read from
  1518. * the EEPROM.
  1519. */
  1520. if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
  1521. !(eeval & AR5416_OPFLAGS_11A) &&
  1522. !(AR_SREV_9271(ah)))
  1523. /* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
  1524. pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
  1525. else
  1526. /* Use rx_chainmask from EEPROM. */
  1527. pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
  1528. ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
  1529. pCap->low_2ghz_chan = 2312;
  1530. pCap->high_2ghz_chan = 2732;
  1531. pCap->low_5ghz_chan = 4920;
  1532. pCap->high_5ghz_chan = 6100;
  1533. common->crypt_caps |= ATH_CRYPT_CAP_CIPHER_AESCCM;
  1534. if (ah->config.ht_enable)
  1535. pCap->hw_caps |= ATH9K_HW_CAP_HT;
  1536. else
  1537. pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
  1538. if (capField & AR_EEPROM_EEPCAP_MAXQCU)
  1539. pCap->total_queues =
  1540. MS(capField, AR_EEPROM_EEPCAP_MAXQCU);
  1541. else
  1542. pCap->total_queues = ATH9K_NUM_TX_QUEUES;
  1543. if (capField & AR_EEPROM_EEPCAP_KC_ENTRIES)
  1544. pCap->keycache_size =
  1545. 1 << MS(capField, AR_EEPROM_EEPCAP_KC_ENTRIES);
  1546. else
  1547. pCap->keycache_size = AR_KEYTABLE_SIZE;
  1548. if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
  1549. pCap->tx_triglevel_max = MAX_TX_FIFO_THRESHOLD >> 1;
  1550. else
  1551. pCap->tx_triglevel_max = MAX_TX_FIFO_THRESHOLD;
  1552. if (AR_SREV_9271(ah))
  1553. pCap->num_gpio_pins = AR9271_NUM_GPIO;
  1554. else if (AR_DEVID_7010(ah))
  1555. pCap->num_gpio_pins = AR7010_NUM_GPIO;
  1556. else if (AR_SREV_9285_12_OR_LATER(ah))
  1557. pCap->num_gpio_pins = AR9285_NUM_GPIO;
  1558. else if (AR_SREV_9280_20_OR_LATER(ah))
  1559. pCap->num_gpio_pins = AR928X_NUM_GPIO;
  1560. else
  1561. pCap->num_gpio_pins = AR_NUM_GPIO;
  1562. if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah)) {
  1563. pCap->hw_caps |= ATH9K_HW_CAP_CST;
  1564. pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
  1565. } else {
  1566. pCap->rts_aggr_limit = (8 * 1024);
  1567. }
  1568. pCap->hw_caps |= ATH9K_HW_CAP_ENHANCEDPM;
  1569. #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
  1570. ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
  1571. if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
  1572. ah->rfkill_gpio =
  1573. MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
  1574. ah->rfkill_polarity =
  1575. MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
  1576. pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
  1577. }
  1578. #endif
  1579. if (AR_SREV_9271(ah) || AR_SREV_9300_20_OR_LATER(ah))
  1580. pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP;
  1581. else
  1582. pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
  1583. if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
  1584. pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
  1585. else
  1586. pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
  1587. if (regulatory->current_rd_ext & (1 << REG_EXT_JAPAN_MIDBAND)) {
  1588. pCap->reg_cap =
  1589. AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
  1590. AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN |
  1591. AR_EEPROM_EEREGCAP_EN_KK_U2 |
  1592. AR_EEPROM_EEREGCAP_EN_KK_MIDBAND;
  1593. } else {
  1594. pCap->reg_cap =
  1595. AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
  1596. AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN;
  1597. }
  1598. /* Advertise midband for AR5416 with FCC midband set in eeprom */
  1599. if (regulatory->current_rd_ext & (1 << REG_EXT_FCC_MIDBAND) &&
  1600. AR_SREV_5416(ah))
  1601. pCap->reg_cap |= AR_EEPROM_EEREGCAP_EN_FCC_MIDBAND;
  1602. pCap->num_antcfg_5ghz =
  1603. ah->eep_ops->get_num_ant_config(ah, ATH9K_HAL_FREQ_BAND_5GHZ);
  1604. pCap->num_antcfg_2ghz =
  1605. ah->eep_ops->get_num_ant_config(ah, ATH9K_HAL_FREQ_BAND_2GHZ);
  1606. if (AR_SREV_9280_20_OR_LATER(ah) &&
  1607. ath9k_hw_btcoex_supported(ah)) {
  1608. btcoex_hw->btactive_gpio = ATH_BTACTIVE_GPIO;
  1609. btcoex_hw->wlanactive_gpio = ATH_WLANACTIVE_GPIO;
  1610. if (AR_SREV_9285(ah)) {
  1611. btcoex_hw->scheme = ATH_BTCOEX_CFG_3WIRE;
  1612. btcoex_hw->btpriority_gpio = ATH_BTPRIORITY_GPIO;
  1613. } else {
  1614. btcoex_hw->scheme = ATH_BTCOEX_CFG_2WIRE;
  1615. }
  1616. } else {
  1617. btcoex_hw->scheme = ATH_BTCOEX_CFG_NONE;
  1618. }
  1619. if (AR_SREV_9300_20_OR_LATER(ah)) {
  1620. pCap->hw_caps |= ATH9K_HW_CAP_EDMA | ATH9K_HW_CAP_LDPC |
  1621. ATH9K_HW_CAP_FASTCLOCK;
  1622. pCap->rx_hp_qdepth = ATH9K_HW_RX_HP_QDEPTH;
  1623. pCap->rx_lp_qdepth = ATH9K_HW_RX_LP_QDEPTH;
  1624. pCap->rx_status_len = sizeof(struct ar9003_rxs);
  1625. pCap->tx_desc_len = sizeof(struct ar9003_txc);
  1626. pCap->txs_len = sizeof(struct ar9003_txs);
  1627. if (ah->eep_ops->get_eeprom(ah, EEP_PAPRD))
  1628. pCap->hw_caps |= ATH9K_HW_CAP_PAPRD;
  1629. } else {
  1630. pCap->tx_desc_len = sizeof(struct ath_desc);
  1631. if (AR_SREV_9280_20(ah) &&
  1632. ((ah->eep_ops->get_eeprom(ah, EEP_MINOR_REV) <=
  1633. AR5416_EEP_MINOR_VER_16) ||
  1634. ah->eep_ops->get_eeprom(ah, EEP_FSTCLK_5G)))
  1635. pCap->hw_caps |= ATH9K_HW_CAP_FASTCLOCK;
  1636. }
  1637. if (AR_SREV_9300_20_OR_LATER(ah))
  1638. pCap->hw_caps |= ATH9K_HW_CAP_RAC_SUPPORTED;
  1639. if (AR_SREV_9287_11_OR_LATER(ah) || AR_SREV_9271(ah))
  1640. pCap->hw_caps |= ATH9K_HW_CAP_SGI_20;
  1641. if (AR_SREV_9285(ah))
  1642. if (ah->eep_ops->get_eeprom(ah, EEP_MODAL_VER) >= 3) {
  1643. ant_div_ctl1 =
  1644. ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
  1645. if ((ant_div_ctl1 & 0x1) && ((ant_div_ctl1 >> 3) & 0x1))
  1646. pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
  1647. }
  1648. return 0;
  1649. }
  1650. /****************************/
  1651. /* GPIO / RFKILL / Antennae */
  1652. /****************************/
  1653. static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah,
  1654. u32 gpio, u32 type)
  1655. {
  1656. int addr;
  1657. u32 gpio_shift, tmp;
  1658. if (gpio > 11)
  1659. addr = AR_GPIO_OUTPUT_MUX3;
  1660. else if (gpio > 5)
  1661. addr = AR_GPIO_OUTPUT_MUX2;
  1662. else
  1663. addr = AR_GPIO_OUTPUT_MUX1;
  1664. gpio_shift = (gpio % 6) * 5;
  1665. if (AR_SREV_9280_20_OR_LATER(ah)
  1666. || (addr != AR_GPIO_OUTPUT_MUX1)) {
  1667. REG_RMW(ah, addr, (type << gpio_shift),
  1668. (0x1f << gpio_shift));
  1669. } else {
  1670. tmp = REG_READ(ah, addr);
  1671. tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
  1672. tmp &= ~(0x1f << gpio_shift);
  1673. tmp |= (type << gpio_shift);
  1674. REG_WRITE(ah, addr, tmp);
  1675. }
  1676. }
  1677. void ath9k_hw_cfg_gpio_input(struct ath_hw *ah, u32 gpio)
  1678. {
  1679. u32 gpio_shift;
  1680. BUG_ON(gpio >= ah->caps.num_gpio_pins);
  1681. if (AR_DEVID_7010(ah)) {
  1682. gpio_shift = gpio;
  1683. REG_RMW(ah, AR7010_GPIO_OE,
  1684. (AR7010_GPIO_OE_AS_INPUT << gpio_shift),
  1685. (AR7010_GPIO_OE_MASK << gpio_shift));
  1686. return;
  1687. }
  1688. gpio_shift = gpio << 1;
  1689. REG_RMW(ah,
  1690. AR_GPIO_OE_OUT,
  1691. (AR_GPIO_OE_OUT_DRV_NO << gpio_shift),
  1692. (AR_GPIO_OE_OUT_DRV << gpio_shift));
  1693. }
  1694. EXPORT_SYMBOL(ath9k_hw_cfg_gpio_input);
  1695. u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
  1696. {
  1697. #define MS_REG_READ(x, y) \
  1698. (MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y)))
  1699. if (gpio >= ah->caps.num_gpio_pins)
  1700. return 0xffffffff;
  1701. if (AR_DEVID_7010(ah)) {
  1702. u32 val;
  1703. val = REG_READ(ah, AR7010_GPIO_IN);
  1704. return (MS(val, AR7010_GPIO_IN_VAL) & AR_GPIO_BIT(gpio)) == 0;
  1705. } else if (AR_SREV_9300_20_OR_LATER(ah))
  1706. return MS_REG_READ(AR9300, gpio) != 0;
  1707. else if (AR_SREV_9271(ah))
  1708. return MS_REG_READ(AR9271, gpio) != 0;
  1709. else if (AR_SREV_9287_11_OR_LATER(ah))
  1710. return MS_REG_READ(AR9287, gpio) != 0;
  1711. else if (AR_SREV_9285_12_OR_LATER(ah))
  1712. return MS_REG_READ(AR9285, gpio) != 0;
  1713. else if (AR_SREV_9280_20_OR_LATER(ah))
  1714. return MS_REG_READ(AR928X, gpio) != 0;
  1715. else
  1716. return MS_REG_READ(AR, gpio) != 0;
  1717. }
  1718. EXPORT_SYMBOL(ath9k_hw_gpio_get);
  1719. void ath9k_hw_cfg_output(struct ath_hw *ah, u32 gpio,
  1720. u32 ah_signal_type)
  1721. {
  1722. u32 gpio_shift;
  1723. if (AR_DEVID_7010(ah)) {
  1724. gpio_shift = gpio;
  1725. REG_RMW(ah, AR7010_GPIO_OE,
  1726. (AR7010_GPIO_OE_AS_OUTPUT << gpio_shift),
  1727. (AR7010_GPIO_OE_MASK << gpio_shift));
  1728. return;
  1729. }
  1730. ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
  1731. gpio_shift = 2 * gpio;
  1732. REG_RMW(ah,
  1733. AR_GPIO_OE_OUT,
  1734. (AR_GPIO_OE_OUT_DRV_ALL << gpio_shift),
  1735. (AR_GPIO_OE_OUT_DRV << gpio_shift));
  1736. }
  1737. EXPORT_SYMBOL(ath9k_hw_cfg_output);
  1738. void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
  1739. {
  1740. if (AR_DEVID_7010(ah)) {
  1741. val = val ? 0 : 1;
  1742. REG_RMW(ah, AR7010_GPIO_OUT, ((val&1) << gpio),
  1743. AR_GPIO_BIT(gpio));
  1744. return;
  1745. }
  1746. if (AR_SREV_9271(ah))
  1747. val = ~val;
  1748. REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio),
  1749. AR_GPIO_BIT(gpio));
  1750. }
  1751. EXPORT_SYMBOL(ath9k_hw_set_gpio);
  1752. u32 ath9k_hw_getdefantenna(struct ath_hw *ah)
  1753. {
  1754. return REG_READ(ah, AR_DEF_ANTENNA) & 0x7;
  1755. }
  1756. EXPORT_SYMBOL(ath9k_hw_getdefantenna);
  1757. void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
  1758. {
  1759. REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
  1760. }
  1761. EXPORT_SYMBOL(ath9k_hw_setantenna);
  1762. /*********************/
  1763. /* General Operation */
  1764. /*********************/
  1765. u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
  1766. {
  1767. u32 bits = REG_READ(ah, AR_RX_FILTER);
  1768. u32 phybits = REG_READ(ah, AR_PHY_ERR);
  1769. if (phybits & AR_PHY_ERR_RADAR)
  1770. bits |= ATH9K_RX_FILTER_PHYRADAR;
  1771. if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
  1772. bits |= ATH9K_RX_FILTER_PHYERR;
  1773. return bits;
  1774. }
  1775. EXPORT_SYMBOL(ath9k_hw_getrxfilter);
  1776. void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
  1777. {
  1778. u32 phybits;
  1779. ENABLE_REGWRITE_BUFFER(ah);
  1780. REG_WRITE(ah, AR_RX_FILTER, bits);
  1781. phybits = 0;
  1782. if (bits & ATH9K_RX_FILTER_PHYRADAR)
  1783. phybits |= AR_PHY_ERR_RADAR;
  1784. if (bits & ATH9K_RX_FILTER_PHYERR)
  1785. phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
  1786. REG_WRITE(ah, AR_PHY_ERR, phybits);
  1787. if (phybits)
  1788. REG_WRITE(ah, AR_RXCFG,
  1789. REG_READ(ah, AR_RXCFG) | AR_RXCFG_ZLFDMA);
  1790. else
  1791. REG_WRITE(ah, AR_RXCFG,
  1792. REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_ZLFDMA);
  1793. REGWRITE_BUFFER_FLUSH(ah);
  1794. DISABLE_REGWRITE_BUFFER(ah);
  1795. }
  1796. EXPORT_SYMBOL(ath9k_hw_setrxfilter);
  1797. bool ath9k_hw_phy_disable(struct ath_hw *ah)
  1798. {
  1799. if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
  1800. return false;
  1801. ath9k_hw_init_pll(ah, NULL);
  1802. return true;
  1803. }
  1804. EXPORT_SYMBOL(ath9k_hw_phy_disable);
  1805. bool ath9k_hw_disable(struct ath_hw *ah)
  1806. {
  1807. if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
  1808. return false;
  1809. if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD))
  1810. return false;
  1811. ath9k_hw_init_pll(ah, NULL);
  1812. return true;
  1813. }
  1814. EXPORT_SYMBOL(ath9k_hw_disable);
  1815. void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit)
  1816. {
  1817. struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
  1818. struct ath9k_channel *chan = ah->curchan;
  1819. struct ieee80211_channel *channel = chan->chan;
  1820. regulatory->power_limit = min(limit, (u32) MAX_RATE_POWER);
  1821. ah->eep_ops->set_txpower(ah, chan,
  1822. ath9k_regd_get_ctl(regulatory, chan),
  1823. channel->max_antenna_gain * 2,
  1824. channel->max_power * 2,
  1825. min((u32) MAX_RATE_POWER,
  1826. (u32) regulatory->power_limit));
  1827. }
  1828. EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit);
  1829. void ath9k_hw_setopmode(struct ath_hw *ah)
  1830. {
  1831. ath9k_hw_set_operating_mode(ah, ah->opmode);
  1832. }
  1833. EXPORT_SYMBOL(ath9k_hw_setopmode);
  1834. void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
  1835. {
  1836. REG_WRITE(ah, AR_MCAST_FIL0, filter0);
  1837. REG_WRITE(ah, AR_MCAST_FIL1, filter1);
  1838. }
  1839. EXPORT_SYMBOL(ath9k_hw_setmcastfilter);
  1840. void ath9k_hw_write_associd(struct ath_hw *ah)
  1841. {
  1842. struct ath_common *common = ath9k_hw_common(ah);
  1843. REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid));
  1844. REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) |
  1845. ((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
  1846. }
  1847. EXPORT_SYMBOL(ath9k_hw_write_associd);
  1848. #define ATH9K_MAX_TSF_READ 10
  1849. u64 ath9k_hw_gettsf64(struct ath_hw *ah)
  1850. {
  1851. u32 tsf_lower, tsf_upper1, tsf_upper2;
  1852. int i;
  1853. tsf_upper1 = REG_READ(ah, AR_TSF_U32);
  1854. for (i = 0; i < ATH9K_MAX_TSF_READ; i++) {
  1855. tsf_lower = REG_READ(ah, AR_TSF_L32);
  1856. tsf_upper2 = REG_READ(ah, AR_TSF_U32);
  1857. if (tsf_upper2 == tsf_upper1)
  1858. break;
  1859. tsf_upper1 = tsf_upper2;
  1860. }
  1861. WARN_ON( i == ATH9K_MAX_TSF_READ );
  1862. return (((u64)tsf_upper1 << 32) | tsf_lower);
  1863. }
  1864. EXPORT_SYMBOL(ath9k_hw_gettsf64);
  1865. void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
  1866. {
  1867. REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
  1868. REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
  1869. }
  1870. EXPORT_SYMBOL(ath9k_hw_settsf64);
  1871. void ath9k_hw_reset_tsf(struct ath_hw *ah)
  1872. {
  1873. if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0,
  1874. AH_TSF_WRITE_TIMEOUT))
  1875. ath_print(ath9k_hw_common(ah), ATH_DBG_RESET,
  1876. "AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
  1877. REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
  1878. }
  1879. EXPORT_SYMBOL(ath9k_hw_reset_tsf);
  1880. void ath9k_hw_set_tsfadjust(struct ath_hw *ah, u32 setting)
  1881. {
  1882. if (setting)
  1883. ah->misc_mode |= AR_PCU_TX_ADD_TSF;
  1884. else
  1885. ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
  1886. }
  1887. EXPORT_SYMBOL(ath9k_hw_set_tsfadjust);
  1888. void ath9k_hw_set11nmac2040(struct ath_hw *ah)
  1889. {
  1890. struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
  1891. u32 macmode;
  1892. if (conf_is_ht40(conf) && !ah->config.cwm_ignore_extcca)
  1893. macmode = AR_2040_JOINED_RX_CLEAR;
  1894. else
  1895. macmode = 0;
  1896. REG_WRITE(ah, AR_2040_MODE, macmode);
  1897. }
  1898. /* HW Generic timers configuration */
  1899. static const struct ath_gen_timer_configuration gen_tmr_configuration[] =
  1900. {
  1901. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  1902. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  1903. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  1904. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  1905. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  1906. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  1907. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  1908. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  1909. {AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001},
  1910. {AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4,
  1911. AR_NDP2_TIMER_MODE, 0x0002},
  1912. {AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4,
  1913. AR_NDP2_TIMER_MODE, 0x0004},
  1914. {AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4,
  1915. AR_NDP2_TIMER_MODE, 0x0008},
  1916. {AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4,
  1917. AR_NDP2_TIMER_MODE, 0x0010},
  1918. {AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4,
  1919. AR_NDP2_TIMER_MODE, 0x0020},
  1920. {AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4,
  1921. AR_NDP2_TIMER_MODE, 0x0040},
  1922. {AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4,
  1923. AR_NDP2_TIMER_MODE, 0x0080}
  1924. };
  1925. /* HW generic timer primitives */
  1926. /* compute and clear index of rightmost 1 */
  1927. static u32 rightmost_index(struct ath_gen_timer_table *timer_table, u32 *mask)
  1928. {
  1929. u32 b;
  1930. b = *mask;
  1931. b &= (0-b);
  1932. *mask &= ~b;
  1933. b *= debruijn32;
  1934. b >>= 27;
  1935. return timer_table->gen_timer_index[b];
  1936. }
  1937. u32 ath9k_hw_gettsf32(struct ath_hw *ah)
  1938. {
  1939. return REG_READ(ah, AR_TSF_L32);
  1940. }
  1941. EXPORT_SYMBOL(ath9k_hw_gettsf32);
  1942. struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah,
  1943. void (*trigger)(void *),
  1944. void (*overflow)(void *),
  1945. void *arg,
  1946. u8 timer_index)
  1947. {
  1948. struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
  1949. struct ath_gen_timer *timer;
  1950. timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL);
  1951. if (timer == NULL) {
  1952. ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
  1953. "Failed to allocate memory"
  1954. "for hw timer[%d]\n", timer_index);
  1955. return NULL;
  1956. }
  1957. /* allocate a hardware generic timer slot */
  1958. timer_table->timers[timer_index] = timer;
  1959. timer->index = timer_index;
  1960. timer->trigger = trigger;
  1961. timer->overflow = overflow;
  1962. timer->arg = arg;
  1963. return timer;
  1964. }
  1965. EXPORT_SYMBOL(ath_gen_timer_alloc);
  1966. void ath9k_hw_gen_timer_start(struct ath_hw *ah,
  1967. struct ath_gen_timer *timer,
  1968. u32 timer_next,
  1969. u32 timer_period)
  1970. {
  1971. struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
  1972. u32 tsf;
  1973. BUG_ON(!timer_period);
  1974. set_bit(timer->index, &timer_table->timer_mask.timer_bits);
  1975. tsf = ath9k_hw_gettsf32(ah);
  1976. ath_print(ath9k_hw_common(ah), ATH_DBG_HWTIMER,
  1977. "curent tsf %x period %x"
  1978. "timer_next %x\n", tsf, timer_period, timer_next);
  1979. /*
  1980. * Pull timer_next forward if the current TSF already passed it
  1981. * because of software latency
  1982. */
  1983. if (timer_next < tsf)
  1984. timer_next = tsf + timer_period;
  1985. /*
  1986. * Program generic timer registers
  1987. */
  1988. REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr,
  1989. timer_next);
  1990. REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr,
  1991. timer_period);
  1992. REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
  1993. gen_tmr_configuration[timer->index].mode_mask);
  1994. /* Enable both trigger and thresh interrupt masks */
  1995. REG_SET_BIT(ah, AR_IMR_S5,
  1996. (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
  1997. SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
  1998. }
  1999. EXPORT_SYMBOL(ath9k_hw_gen_timer_start);
  2000. void ath9k_hw_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer)
  2001. {
  2002. struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
  2003. if ((timer->index < AR_FIRST_NDP_TIMER) ||
  2004. (timer->index >= ATH_MAX_GEN_TIMER)) {
  2005. return;
  2006. }
  2007. /* Clear generic timer enable bits. */
  2008. REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
  2009. gen_tmr_configuration[timer->index].mode_mask);
  2010. /* Disable both trigger and thresh interrupt masks */
  2011. REG_CLR_BIT(ah, AR_IMR_S5,
  2012. (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
  2013. SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
  2014. clear_bit(timer->index, &timer_table->timer_mask.timer_bits);
  2015. }
  2016. EXPORT_SYMBOL(ath9k_hw_gen_timer_stop);
  2017. void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer)
  2018. {
  2019. struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
  2020. /* free the hardware generic timer slot */
  2021. timer_table->timers[timer->index] = NULL;
  2022. kfree(timer);
  2023. }
  2024. EXPORT_SYMBOL(ath_gen_timer_free);
  2025. /*
  2026. * Generic Timer Interrupts handling
  2027. */
  2028. void ath_gen_timer_isr(struct ath_hw *ah)
  2029. {
  2030. struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
  2031. struct ath_gen_timer *timer;
  2032. struct ath_common *common = ath9k_hw_common(ah);
  2033. u32 trigger_mask, thresh_mask, index;
  2034. /* get hardware generic timer interrupt status */
  2035. trigger_mask = ah->intr_gen_timer_trigger;
  2036. thresh_mask = ah->intr_gen_timer_thresh;
  2037. trigger_mask &= timer_table->timer_mask.val;
  2038. thresh_mask &= timer_table->timer_mask.val;
  2039. trigger_mask &= ~thresh_mask;
  2040. while (thresh_mask) {
  2041. index = rightmost_index(timer_table, &thresh_mask);
  2042. timer = timer_table->timers[index];
  2043. BUG_ON(!timer);
  2044. ath_print(common, ATH_DBG_HWTIMER,
  2045. "TSF overflow for Gen timer %d\n", index);
  2046. timer->overflow(timer->arg);
  2047. }
  2048. while (trigger_mask) {
  2049. index = rightmost_index(timer_table, &trigger_mask);
  2050. timer = timer_table->timers[index];
  2051. BUG_ON(!timer);
  2052. ath_print(common, ATH_DBG_HWTIMER,
  2053. "Gen timer[%d] trigger\n", index);
  2054. timer->trigger(timer->arg);
  2055. }
  2056. }
  2057. EXPORT_SYMBOL(ath_gen_timer_isr);
  2058. /********/
  2059. /* HTC */
  2060. /********/
  2061. void ath9k_hw_htc_resetinit(struct ath_hw *ah)
  2062. {
  2063. ah->htc_reset_init = true;
  2064. }
  2065. EXPORT_SYMBOL(ath9k_hw_htc_resetinit);
  2066. static struct {
  2067. u32 version;
  2068. const char * name;
  2069. } ath_mac_bb_names[] = {
  2070. /* Devices with external radios */
  2071. { AR_SREV_VERSION_5416_PCI, "5416" },
  2072. { AR_SREV_VERSION_5416_PCIE, "5418" },
  2073. { AR_SREV_VERSION_9100, "9100" },
  2074. { AR_SREV_VERSION_9160, "9160" },
  2075. /* Single-chip solutions */
  2076. { AR_SREV_VERSION_9280, "9280" },
  2077. { AR_SREV_VERSION_9285, "9285" },
  2078. { AR_SREV_VERSION_9287, "9287" },
  2079. { AR_SREV_VERSION_9271, "9271" },
  2080. { AR_SREV_VERSION_9300, "9300" },
  2081. };
  2082. /* For devices with external radios */
  2083. static struct {
  2084. u16 version;
  2085. const char * name;
  2086. } ath_rf_names[] = {
  2087. { 0, "5133" },
  2088. { AR_RAD5133_SREV_MAJOR, "5133" },
  2089. { AR_RAD5122_SREV_MAJOR, "5122" },
  2090. { AR_RAD2133_SREV_MAJOR, "2133" },
  2091. { AR_RAD2122_SREV_MAJOR, "2122" }
  2092. };
  2093. /*
  2094. * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
  2095. */
  2096. static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version)
  2097. {
  2098. int i;
  2099. for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
  2100. if (ath_mac_bb_names[i].version == mac_bb_version) {
  2101. return ath_mac_bb_names[i].name;
  2102. }
  2103. }
  2104. return "????";
  2105. }
  2106. /*
  2107. * Return the RF name. "????" is returned if the RF is unknown.
  2108. * Used for devices with external radios.
  2109. */
  2110. static const char *ath9k_hw_rf_name(u16 rf_version)
  2111. {
  2112. int i;
  2113. for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
  2114. if (ath_rf_names[i].version == rf_version) {
  2115. return ath_rf_names[i].name;
  2116. }
  2117. }
  2118. return "????";
  2119. }
  2120. void ath9k_hw_name(struct ath_hw *ah, char *hw_name, size_t len)
  2121. {
  2122. int used;
  2123. /* chipsets >= AR9280 are single-chip */
  2124. if (AR_SREV_9280_20_OR_LATER(ah)) {
  2125. used = snprintf(hw_name, len,
  2126. "Atheros AR%s Rev:%x",
  2127. ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
  2128. ah->hw_version.macRev);
  2129. }
  2130. else {
  2131. used = snprintf(hw_name, len,
  2132. "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x",
  2133. ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
  2134. ah->hw_version.macRev,
  2135. ath9k_hw_rf_name((ah->hw_version.analog5GhzRev &
  2136. AR_RADIO_SREV_MAJOR)),
  2137. ah->hw_version.phyRev);
  2138. }
  2139. hw_name[used] = '\0';
  2140. }
  2141. EXPORT_SYMBOL(ath9k_hw_name);