eeprom.c 49 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821
  1. /*
  2. * Copyright (c) 2004-2008 Reyk Floeter <reyk@openbsd.org>
  3. * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com>
  4. * Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org>
  5. *
  6. * Permission to use, copy, modify, and distribute this software for any
  7. * purpose with or without fee is hereby granted, provided that the above
  8. * copyright notice and this permission notice appear in all copies.
  9. *
  10. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  11. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  12. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  13. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  14. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  15. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  16. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  17. *
  18. */
  19. /*************************************\
  20. * EEPROM access functions and helpers *
  21. \*************************************/
  22. #include <linux/slab.h>
  23. #include "ath5k.h"
  24. #include "reg.h"
  25. #include "debug.h"
  26. #include "base.h"
  27. /*
  28. * Read from eeprom
  29. */
  30. static int ath5k_hw_eeprom_read(struct ath5k_hw *ah, u32 offset, u16 *data)
  31. {
  32. u32 status, timeout;
  33. /*
  34. * Initialize EEPROM access
  35. */
  36. if (ah->ah_version == AR5K_AR5210) {
  37. AR5K_REG_ENABLE_BITS(ah, AR5K_PCICFG, AR5K_PCICFG_EEAE);
  38. (void)ath5k_hw_reg_read(ah, AR5K_EEPROM_BASE + (4 * offset));
  39. } else {
  40. ath5k_hw_reg_write(ah, offset, AR5K_EEPROM_BASE);
  41. AR5K_REG_ENABLE_BITS(ah, AR5K_EEPROM_CMD,
  42. AR5K_EEPROM_CMD_READ);
  43. }
  44. for (timeout = AR5K_TUNE_REGISTER_TIMEOUT; timeout > 0; timeout--) {
  45. status = ath5k_hw_reg_read(ah, AR5K_EEPROM_STATUS);
  46. if (status & AR5K_EEPROM_STAT_RDDONE) {
  47. if (status & AR5K_EEPROM_STAT_RDERR)
  48. return -EIO;
  49. *data = (u16)(ath5k_hw_reg_read(ah, AR5K_EEPROM_DATA) &
  50. 0xffff);
  51. return 0;
  52. }
  53. udelay(15);
  54. }
  55. return -ETIMEDOUT;
  56. }
  57. /*
  58. * Translate binary channel representation in EEPROM to frequency
  59. */
  60. static u16 ath5k_eeprom_bin2freq(struct ath5k_eeprom_info *ee, u16 bin,
  61. unsigned int mode)
  62. {
  63. u16 val;
  64. if (bin == AR5K_EEPROM_CHANNEL_DIS)
  65. return bin;
  66. if (mode == AR5K_EEPROM_MODE_11A) {
  67. if (ee->ee_version > AR5K_EEPROM_VERSION_3_2)
  68. val = (5 * bin) + 4800;
  69. else
  70. val = bin > 62 ? (10 * 62) + (5 * (bin - 62)) + 5100 :
  71. (bin * 10) + 5100;
  72. } else {
  73. if (ee->ee_version > AR5K_EEPROM_VERSION_3_2)
  74. val = bin + 2300;
  75. else
  76. val = bin + 2400;
  77. }
  78. return val;
  79. }
  80. /*
  81. * Initialize eeprom & capabilities structs
  82. */
  83. static int
  84. ath5k_eeprom_init_header(struct ath5k_hw *ah)
  85. {
  86. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  87. int ret;
  88. u16 val;
  89. u32 cksum, offset, eep_max = AR5K_EEPROM_INFO_MAX;
  90. /*
  91. * Read values from EEPROM and store them in the capability structure
  92. */
  93. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MAGIC, ee_magic);
  94. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_PROTECT, ee_protect);
  95. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_REG_DOMAIN, ee_regdomain);
  96. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_VERSION, ee_version);
  97. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_HDR, ee_header);
  98. /* Return if we have an old EEPROM */
  99. if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_0)
  100. return 0;
  101. /*
  102. * Validate the checksum of the EEPROM date. There are some
  103. * devices with invalid EEPROMs.
  104. */
  105. AR5K_EEPROM_READ(AR5K_EEPROM_SIZE_UPPER, val);
  106. if (val) {
  107. eep_max = (val & AR5K_EEPROM_SIZE_UPPER_MASK) <<
  108. AR5K_EEPROM_SIZE_ENDLOC_SHIFT;
  109. AR5K_EEPROM_READ(AR5K_EEPROM_SIZE_LOWER, val);
  110. eep_max = (eep_max | val) - AR5K_EEPROM_INFO_BASE;
  111. /*
  112. * Fail safe check to prevent stupid loops due
  113. * to busted EEPROMs. XXX: This value is likely too
  114. * big still, waiting on a better value.
  115. */
  116. if (eep_max > (3 * AR5K_EEPROM_INFO_MAX)) {
  117. ATH5K_ERR(ah->ah_sc, "Invalid max custom EEPROM size: "
  118. "%d (0x%04x) max expected: %d (0x%04x)\n",
  119. eep_max, eep_max,
  120. 3 * AR5K_EEPROM_INFO_MAX,
  121. 3 * AR5K_EEPROM_INFO_MAX);
  122. return -EIO;
  123. }
  124. }
  125. for (cksum = 0, offset = 0; offset < eep_max; offset++) {
  126. AR5K_EEPROM_READ(AR5K_EEPROM_INFO(offset), val);
  127. cksum ^= val;
  128. }
  129. if (cksum != AR5K_EEPROM_INFO_CKSUM) {
  130. ATH5K_ERR(ah->ah_sc, "Invalid EEPROM "
  131. "checksum: 0x%04x eep_max: 0x%04x (%s)\n",
  132. cksum, eep_max,
  133. eep_max == AR5K_EEPROM_INFO_MAX ?
  134. "default size" : "custom size");
  135. return -EIO;
  136. }
  137. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_ANT_GAIN(ah->ah_ee_version),
  138. ee_ant_gain);
  139. if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) {
  140. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC0, ee_misc0);
  141. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC1, ee_misc1);
  142. /* XXX: Don't know which versions include these two */
  143. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC2, ee_misc2);
  144. if (ee->ee_version >= AR5K_EEPROM_VERSION_4_3)
  145. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC3, ee_misc3);
  146. if (ee->ee_version >= AR5K_EEPROM_VERSION_5_0) {
  147. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC4, ee_misc4);
  148. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC5, ee_misc5);
  149. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC6, ee_misc6);
  150. }
  151. }
  152. if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_3) {
  153. AR5K_EEPROM_READ(AR5K_EEPROM_OBDB0_2GHZ, val);
  154. ee->ee_ob[AR5K_EEPROM_MODE_11B][0] = val & 0x7;
  155. ee->ee_db[AR5K_EEPROM_MODE_11B][0] = (val >> 3) & 0x7;
  156. AR5K_EEPROM_READ(AR5K_EEPROM_OBDB1_2GHZ, val);
  157. ee->ee_ob[AR5K_EEPROM_MODE_11G][0] = val & 0x7;
  158. ee->ee_db[AR5K_EEPROM_MODE_11G][0] = (val >> 3) & 0x7;
  159. }
  160. AR5K_EEPROM_READ(AR5K_EEPROM_IS_HB63, val);
  161. if ((ah->ah_mac_version == (AR5K_SREV_AR2425 >> 4)) && val)
  162. ee->ee_is_hb63 = true;
  163. else
  164. ee->ee_is_hb63 = false;
  165. AR5K_EEPROM_READ(AR5K_EEPROM_RFKILL, val);
  166. ee->ee_rfkill_pin = (u8) AR5K_REG_MS(val, AR5K_EEPROM_RFKILL_GPIO_SEL);
  167. ee->ee_rfkill_pol = val & AR5K_EEPROM_RFKILL_POLARITY ? true : false;
  168. /* Check if PCIE_OFFSET points to PCIE_SERDES_SECTION
  169. * and enable serdes programming if needed.
  170. *
  171. * XXX: Serdes values seem to be fixed so
  172. * no need to read them here, we write them
  173. * during ath5k_hw_attach */
  174. AR5K_EEPROM_READ(AR5K_EEPROM_PCIE_OFFSET, val);
  175. ee->ee_serdes = (val == AR5K_EEPROM_PCIE_SERDES_SECTION) ?
  176. true : false;
  177. return 0;
  178. }
  179. /*
  180. * Read antenna infos from eeprom
  181. */
  182. static int ath5k_eeprom_read_ants(struct ath5k_hw *ah, u32 *offset,
  183. unsigned int mode)
  184. {
  185. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  186. u32 o = *offset;
  187. u16 val;
  188. int ret, i = 0;
  189. AR5K_EEPROM_READ(o++, val);
  190. ee->ee_switch_settling[mode] = (val >> 8) & 0x7f;
  191. ee->ee_atn_tx_rx[mode] = (val >> 2) & 0x3f;
  192. ee->ee_ant_control[mode][i] = (val << 4) & 0x3f;
  193. AR5K_EEPROM_READ(o++, val);
  194. ee->ee_ant_control[mode][i++] |= (val >> 12) & 0xf;
  195. ee->ee_ant_control[mode][i++] = (val >> 6) & 0x3f;
  196. ee->ee_ant_control[mode][i++] = val & 0x3f;
  197. AR5K_EEPROM_READ(o++, val);
  198. ee->ee_ant_control[mode][i++] = (val >> 10) & 0x3f;
  199. ee->ee_ant_control[mode][i++] = (val >> 4) & 0x3f;
  200. ee->ee_ant_control[mode][i] = (val << 2) & 0x3f;
  201. AR5K_EEPROM_READ(o++, val);
  202. ee->ee_ant_control[mode][i++] |= (val >> 14) & 0x3;
  203. ee->ee_ant_control[mode][i++] = (val >> 8) & 0x3f;
  204. ee->ee_ant_control[mode][i++] = (val >> 2) & 0x3f;
  205. ee->ee_ant_control[mode][i] = (val << 4) & 0x3f;
  206. AR5K_EEPROM_READ(o++, val);
  207. ee->ee_ant_control[mode][i++] |= (val >> 12) & 0xf;
  208. ee->ee_ant_control[mode][i++] = (val >> 6) & 0x3f;
  209. ee->ee_ant_control[mode][i++] = val & 0x3f;
  210. /* Get antenna switch tables */
  211. ah->ah_ant_ctl[mode][AR5K_ANT_CTL] =
  212. (ee->ee_ant_control[mode][0] << 4);
  213. ah->ah_ant_ctl[mode][AR5K_ANT_SWTABLE_A] =
  214. ee->ee_ant_control[mode][1] |
  215. (ee->ee_ant_control[mode][2] << 6) |
  216. (ee->ee_ant_control[mode][3] << 12) |
  217. (ee->ee_ant_control[mode][4] << 18) |
  218. (ee->ee_ant_control[mode][5] << 24);
  219. ah->ah_ant_ctl[mode][AR5K_ANT_SWTABLE_B] =
  220. ee->ee_ant_control[mode][6] |
  221. (ee->ee_ant_control[mode][7] << 6) |
  222. (ee->ee_ant_control[mode][8] << 12) |
  223. (ee->ee_ant_control[mode][9] << 18) |
  224. (ee->ee_ant_control[mode][10] << 24);
  225. /* return new offset */
  226. *offset = o;
  227. return 0;
  228. }
  229. /*
  230. * Read supported modes and some mode-specific calibration data
  231. * from eeprom
  232. */
  233. static int ath5k_eeprom_read_modes(struct ath5k_hw *ah, u32 *offset,
  234. unsigned int mode)
  235. {
  236. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  237. u32 o = *offset;
  238. u16 val;
  239. int ret;
  240. ee->ee_n_piers[mode] = 0;
  241. AR5K_EEPROM_READ(o++, val);
  242. ee->ee_adc_desired_size[mode] = (s8)((val >> 8) & 0xff);
  243. switch(mode) {
  244. case AR5K_EEPROM_MODE_11A:
  245. ee->ee_ob[mode][3] = (val >> 5) & 0x7;
  246. ee->ee_db[mode][3] = (val >> 2) & 0x7;
  247. ee->ee_ob[mode][2] = (val << 1) & 0x7;
  248. AR5K_EEPROM_READ(o++, val);
  249. ee->ee_ob[mode][2] |= (val >> 15) & 0x1;
  250. ee->ee_db[mode][2] = (val >> 12) & 0x7;
  251. ee->ee_ob[mode][1] = (val >> 9) & 0x7;
  252. ee->ee_db[mode][1] = (val >> 6) & 0x7;
  253. ee->ee_ob[mode][0] = (val >> 3) & 0x7;
  254. ee->ee_db[mode][0] = val & 0x7;
  255. break;
  256. case AR5K_EEPROM_MODE_11G:
  257. case AR5K_EEPROM_MODE_11B:
  258. ee->ee_ob[mode][1] = (val >> 4) & 0x7;
  259. ee->ee_db[mode][1] = val & 0x7;
  260. break;
  261. }
  262. AR5K_EEPROM_READ(o++, val);
  263. ee->ee_tx_end2xlna_enable[mode] = (val >> 8) & 0xff;
  264. ee->ee_thr_62[mode] = val & 0xff;
  265. if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2)
  266. ee->ee_thr_62[mode] = mode == AR5K_EEPROM_MODE_11A ? 15 : 28;
  267. AR5K_EEPROM_READ(o++, val);
  268. ee->ee_tx_end2xpa_disable[mode] = (val >> 8) & 0xff;
  269. ee->ee_tx_frm2xpa_enable[mode] = val & 0xff;
  270. AR5K_EEPROM_READ(o++, val);
  271. ee->ee_pga_desired_size[mode] = (val >> 8) & 0xff;
  272. if ((val & 0xff) & 0x80)
  273. ee->ee_noise_floor_thr[mode] = -((((val & 0xff) ^ 0xff)) + 1);
  274. else
  275. ee->ee_noise_floor_thr[mode] = val & 0xff;
  276. if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2)
  277. ee->ee_noise_floor_thr[mode] =
  278. mode == AR5K_EEPROM_MODE_11A ? -54 : -1;
  279. AR5K_EEPROM_READ(o++, val);
  280. ee->ee_xlna_gain[mode] = (val >> 5) & 0xff;
  281. ee->ee_x_gain[mode] = (val >> 1) & 0xf;
  282. ee->ee_xpd[mode] = val & 0x1;
  283. if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0 &&
  284. mode != AR5K_EEPROM_MODE_11B)
  285. ee->ee_fixed_bias[mode] = (val >> 13) & 0x1;
  286. if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_3_3) {
  287. AR5K_EEPROM_READ(o++, val);
  288. ee->ee_false_detect[mode] = (val >> 6) & 0x7f;
  289. if (mode == AR5K_EEPROM_MODE_11A)
  290. ee->ee_xr_power[mode] = val & 0x3f;
  291. else {
  292. /* b_DB_11[bg] and b_OB_11[bg] */
  293. ee->ee_ob[mode][0] = val & 0x7;
  294. ee->ee_db[mode][0] = (val >> 3) & 0x7;
  295. }
  296. }
  297. if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_4) {
  298. ee->ee_i_gain[mode] = AR5K_EEPROM_I_GAIN;
  299. ee->ee_cck_ofdm_power_delta = AR5K_EEPROM_CCK_OFDM_DELTA;
  300. } else {
  301. ee->ee_i_gain[mode] = (val >> 13) & 0x7;
  302. AR5K_EEPROM_READ(o++, val);
  303. ee->ee_i_gain[mode] |= (val << 3) & 0x38;
  304. if (mode == AR5K_EEPROM_MODE_11G) {
  305. ee->ee_cck_ofdm_power_delta = (val >> 3) & 0xff;
  306. if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_6)
  307. ee->ee_scaled_cck_delta = (val >> 11) & 0x1f;
  308. }
  309. }
  310. if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0 &&
  311. mode == AR5K_EEPROM_MODE_11A) {
  312. ee->ee_i_cal[mode] = (val >> 8) & 0x3f;
  313. ee->ee_q_cal[mode] = (val >> 3) & 0x1f;
  314. }
  315. if (ah->ah_ee_version < AR5K_EEPROM_VERSION_4_0)
  316. goto done;
  317. /* Note: >= v5 have bg freq piers on another location
  318. * so these freq piers are ignored for >= v5 (should be 0xff
  319. * anyway) */
  320. switch(mode) {
  321. case AR5K_EEPROM_MODE_11A:
  322. if (ah->ah_ee_version < AR5K_EEPROM_VERSION_4_1)
  323. break;
  324. AR5K_EEPROM_READ(o++, val);
  325. ee->ee_margin_tx_rx[mode] = val & 0x3f;
  326. break;
  327. case AR5K_EEPROM_MODE_11B:
  328. AR5K_EEPROM_READ(o++, val);
  329. ee->ee_pwr_cal_b[0].freq =
  330. ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
  331. if (ee->ee_pwr_cal_b[0].freq != AR5K_EEPROM_CHANNEL_DIS)
  332. ee->ee_n_piers[mode]++;
  333. ee->ee_pwr_cal_b[1].freq =
  334. ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
  335. if (ee->ee_pwr_cal_b[1].freq != AR5K_EEPROM_CHANNEL_DIS)
  336. ee->ee_n_piers[mode]++;
  337. AR5K_EEPROM_READ(o++, val);
  338. ee->ee_pwr_cal_b[2].freq =
  339. ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
  340. if (ee->ee_pwr_cal_b[2].freq != AR5K_EEPROM_CHANNEL_DIS)
  341. ee->ee_n_piers[mode]++;
  342. if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1)
  343. ee->ee_margin_tx_rx[mode] = (val >> 8) & 0x3f;
  344. break;
  345. case AR5K_EEPROM_MODE_11G:
  346. AR5K_EEPROM_READ(o++, val);
  347. ee->ee_pwr_cal_g[0].freq =
  348. ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
  349. if (ee->ee_pwr_cal_g[0].freq != AR5K_EEPROM_CHANNEL_DIS)
  350. ee->ee_n_piers[mode]++;
  351. ee->ee_pwr_cal_g[1].freq =
  352. ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
  353. if (ee->ee_pwr_cal_g[1].freq != AR5K_EEPROM_CHANNEL_DIS)
  354. ee->ee_n_piers[mode]++;
  355. AR5K_EEPROM_READ(o++, val);
  356. ee->ee_turbo_max_power[mode] = val & 0x7f;
  357. ee->ee_xr_power[mode] = (val >> 7) & 0x3f;
  358. AR5K_EEPROM_READ(o++, val);
  359. ee->ee_pwr_cal_g[2].freq =
  360. ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
  361. if (ee->ee_pwr_cal_g[2].freq != AR5K_EEPROM_CHANNEL_DIS)
  362. ee->ee_n_piers[mode]++;
  363. if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1)
  364. ee->ee_margin_tx_rx[mode] = (val >> 8) & 0x3f;
  365. AR5K_EEPROM_READ(o++, val);
  366. ee->ee_i_cal[mode] = (val >> 5) & 0x3f;
  367. ee->ee_q_cal[mode] = val & 0x1f;
  368. if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_2) {
  369. AR5K_EEPROM_READ(o++, val);
  370. ee->ee_cck_ofdm_gain_delta = val & 0xff;
  371. }
  372. break;
  373. }
  374. /*
  375. * Read turbo mode information on newer EEPROM versions
  376. */
  377. if (ee->ee_version < AR5K_EEPROM_VERSION_5_0)
  378. goto done;
  379. switch (mode){
  380. case AR5K_EEPROM_MODE_11A:
  381. ee->ee_switch_settling_turbo[mode] = (val >> 6) & 0x7f;
  382. ee->ee_atn_tx_rx_turbo[mode] = (val >> 13) & 0x7;
  383. AR5K_EEPROM_READ(o++, val);
  384. ee->ee_atn_tx_rx_turbo[mode] |= (val & 0x7) << 3;
  385. ee->ee_margin_tx_rx_turbo[mode] = (val >> 3) & 0x3f;
  386. ee->ee_adc_desired_size_turbo[mode] = (val >> 9) & 0x7f;
  387. AR5K_EEPROM_READ(o++, val);
  388. ee->ee_adc_desired_size_turbo[mode] |= (val & 0x1) << 7;
  389. ee->ee_pga_desired_size_turbo[mode] = (val >> 1) & 0xff;
  390. if (AR5K_EEPROM_EEMAP(ee->ee_misc0) >=2)
  391. ee->ee_pd_gain_overlap = (val >> 9) & 0xf;
  392. break;
  393. case AR5K_EEPROM_MODE_11G:
  394. ee->ee_switch_settling_turbo[mode] = (val >> 8) & 0x7f;
  395. ee->ee_atn_tx_rx_turbo[mode] = (val >> 15) & 0x7;
  396. AR5K_EEPROM_READ(o++, val);
  397. ee->ee_atn_tx_rx_turbo[mode] |= (val & 0x1f) << 1;
  398. ee->ee_margin_tx_rx_turbo[mode] = (val >> 5) & 0x3f;
  399. ee->ee_adc_desired_size_turbo[mode] = (val >> 11) & 0x7f;
  400. AR5K_EEPROM_READ(o++, val);
  401. ee->ee_adc_desired_size_turbo[mode] |= (val & 0x7) << 5;
  402. ee->ee_pga_desired_size_turbo[mode] = (val >> 3) & 0xff;
  403. break;
  404. }
  405. done:
  406. /* return new offset */
  407. *offset = o;
  408. return 0;
  409. }
  410. /* Read mode-specific data (except power calibration data) */
  411. static int
  412. ath5k_eeprom_init_modes(struct ath5k_hw *ah)
  413. {
  414. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  415. u32 mode_offset[3];
  416. unsigned int mode;
  417. u32 offset;
  418. int ret;
  419. /*
  420. * Get values for all modes
  421. */
  422. mode_offset[AR5K_EEPROM_MODE_11A] = AR5K_EEPROM_MODES_11A(ah->ah_ee_version);
  423. mode_offset[AR5K_EEPROM_MODE_11B] = AR5K_EEPROM_MODES_11B(ah->ah_ee_version);
  424. mode_offset[AR5K_EEPROM_MODE_11G] = AR5K_EEPROM_MODES_11G(ah->ah_ee_version);
  425. ee->ee_turbo_max_power[AR5K_EEPROM_MODE_11A] =
  426. AR5K_EEPROM_HDR_T_5GHZ_DBM(ee->ee_header);
  427. for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G; mode++) {
  428. offset = mode_offset[mode];
  429. ret = ath5k_eeprom_read_ants(ah, &offset, mode);
  430. if (ret)
  431. return ret;
  432. ret = ath5k_eeprom_read_modes(ah, &offset, mode);
  433. if (ret)
  434. return ret;
  435. }
  436. /* override for older eeprom versions for better performance */
  437. if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2) {
  438. ee->ee_thr_62[AR5K_EEPROM_MODE_11A] = 15;
  439. ee->ee_thr_62[AR5K_EEPROM_MODE_11B] = 28;
  440. ee->ee_thr_62[AR5K_EEPROM_MODE_11G] = 28;
  441. }
  442. return 0;
  443. }
  444. /* Read the frequency piers for each mode (mostly used on newer eeproms with 0xff
  445. * frequency mask) */
  446. static inline int
  447. ath5k_eeprom_read_freq_list(struct ath5k_hw *ah, int *offset, int max,
  448. struct ath5k_chan_pcal_info *pc, unsigned int mode)
  449. {
  450. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  451. int o = *offset;
  452. int i = 0;
  453. u8 freq1, freq2;
  454. int ret;
  455. u16 val;
  456. ee->ee_n_piers[mode] = 0;
  457. while(i < max) {
  458. AR5K_EEPROM_READ(o++, val);
  459. freq1 = val & 0xff;
  460. if (!freq1)
  461. break;
  462. pc[i++].freq = ath5k_eeprom_bin2freq(ee,
  463. freq1, mode);
  464. ee->ee_n_piers[mode]++;
  465. freq2 = (val >> 8) & 0xff;
  466. if (!freq2)
  467. break;
  468. pc[i++].freq = ath5k_eeprom_bin2freq(ee,
  469. freq2, mode);
  470. ee->ee_n_piers[mode]++;
  471. }
  472. /* return new offset */
  473. *offset = o;
  474. return 0;
  475. }
  476. /* Read frequency piers for 802.11a */
  477. static int
  478. ath5k_eeprom_init_11a_pcal_freq(struct ath5k_hw *ah, int offset)
  479. {
  480. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  481. struct ath5k_chan_pcal_info *pcal = ee->ee_pwr_cal_a;
  482. int i, ret;
  483. u16 val;
  484. u8 mask;
  485. if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3) {
  486. ath5k_eeprom_read_freq_list(ah, &offset,
  487. AR5K_EEPROM_N_5GHZ_CHAN, pcal,
  488. AR5K_EEPROM_MODE_11A);
  489. } else {
  490. mask = AR5K_EEPROM_FREQ_M(ah->ah_ee_version);
  491. AR5K_EEPROM_READ(offset++, val);
  492. pcal[0].freq = (val >> 9) & mask;
  493. pcal[1].freq = (val >> 2) & mask;
  494. pcal[2].freq = (val << 5) & mask;
  495. AR5K_EEPROM_READ(offset++, val);
  496. pcal[2].freq |= (val >> 11) & 0x1f;
  497. pcal[3].freq = (val >> 4) & mask;
  498. pcal[4].freq = (val << 3) & mask;
  499. AR5K_EEPROM_READ(offset++, val);
  500. pcal[4].freq |= (val >> 13) & 0x7;
  501. pcal[5].freq = (val >> 6) & mask;
  502. pcal[6].freq = (val << 1) & mask;
  503. AR5K_EEPROM_READ(offset++, val);
  504. pcal[6].freq |= (val >> 15) & 0x1;
  505. pcal[7].freq = (val >> 8) & mask;
  506. pcal[8].freq = (val >> 1) & mask;
  507. pcal[9].freq = (val << 6) & mask;
  508. AR5K_EEPROM_READ(offset++, val);
  509. pcal[9].freq |= (val >> 10) & 0x3f;
  510. /* Fixed number of piers */
  511. ee->ee_n_piers[AR5K_EEPROM_MODE_11A] = 10;
  512. for (i = 0; i < AR5K_EEPROM_N_5GHZ_CHAN; i++) {
  513. pcal[i].freq = ath5k_eeprom_bin2freq(ee,
  514. pcal[i].freq, AR5K_EEPROM_MODE_11A);
  515. }
  516. }
  517. return 0;
  518. }
  519. /* Read frequency piers for 802.11bg on eeprom versions >= 5 and eemap >= 2 */
  520. static inline int
  521. ath5k_eeprom_init_11bg_2413(struct ath5k_hw *ah, unsigned int mode, int offset)
  522. {
  523. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  524. struct ath5k_chan_pcal_info *pcal;
  525. switch(mode) {
  526. case AR5K_EEPROM_MODE_11B:
  527. pcal = ee->ee_pwr_cal_b;
  528. break;
  529. case AR5K_EEPROM_MODE_11G:
  530. pcal = ee->ee_pwr_cal_g;
  531. break;
  532. default:
  533. return -EINVAL;
  534. }
  535. ath5k_eeprom_read_freq_list(ah, &offset,
  536. AR5K_EEPROM_N_2GHZ_CHAN_2413, pcal,
  537. mode);
  538. return 0;
  539. }
  540. /*
  541. * Read power calibration for RF5111 chips
  542. *
  543. * For RF5111 we have an XPD -eXternal Power Detector- curve
  544. * for each calibrated channel. Each curve has 0,5dB Power steps
  545. * on x axis and PCDAC steps (offsets) on y axis and looks like an
  546. * exponential function. To recreate the curve we read 11 points
  547. * here and interpolate later.
  548. */
  549. /* Used to match PCDAC steps with power values on RF5111 chips
  550. * (eeprom versions < 4). For RF5111 we have 11 pre-defined PCDAC
  551. * steps that match with the power values we read from eeprom. On
  552. * older eeprom versions (< 3.2) these steps are equaly spaced at
  553. * 10% of the pcdac curve -until the curve reaches its maximum-
  554. * (11 steps from 0 to 100%) but on newer eeprom versions (>= 3.2)
  555. * these 11 steps are spaced in a different way. This function returns
  556. * the pcdac steps based on eeprom version and curve min/max so that we
  557. * can have pcdac/pwr points.
  558. */
  559. static inline void
  560. ath5k_get_pcdac_intercepts(struct ath5k_hw *ah, u8 min, u8 max, u8 *vp)
  561. {
  562. static const u16 intercepts3[] =
  563. { 0, 5, 10, 20, 30, 50, 70, 85, 90, 95, 100 };
  564. static const u16 intercepts3_2[] =
  565. { 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 };
  566. const u16 *ip;
  567. int i;
  568. if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_3_2)
  569. ip = intercepts3_2;
  570. else
  571. ip = intercepts3;
  572. for (i = 0; i < ARRAY_SIZE(intercepts3); i++)
  573. vp[i] = (ip[i] * max + (100 - ip[i]) * min) / 100;
  574. }
  575. /* Convert RF5111 specific data to generic raw data
  576. * used by interpolation code */
  577. static int
  578. ath5k_eeprom_convert_pcal_info_5111(struct ath5k_hw *ah, int mode,
  579. struct ath5k_chan_pcal_info *chinfo)
  580. {
  581. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  582. struct ath5k_chan_pcal_info_rf5111 *pcinfo;
  583. struct ath5k_pdgain_info *pd;
  584. u8 pier, point, idx;
  585. u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
  586. /* Fill raw data for each calibration pier */
  587. for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
  588. pcinfo = &chinfo[pier].rf5111_info;
  589. /* Allocate pd_curves for this cal pier */
  590. chinfo[pier].pd_curves =
  591. kcalloc(AR5K_EEPROM_N_PD_CURVES,
  592. sizeof(struct ath5k_pdgain_info),
  593. GFP_KERNEL);
  594. if (!chinfo[pier].pd_curves)
  595. return -ENOMEM;
  596. /* Only one curve for RF5111
  597. * find out which one and place
  598. * in pd_curves.
  599. * Note: ee_x_gain is reversed here */
  600. for (idx = 0; idx < AR5K_EEPROM_N_PD_CURVES; idx++) {
  601. if (!((ee->ee_x_gain[mode] >> idx) & 0x1)) {
  602. pdgain_idx[0] = idx;
  603. break;
  604. }
  605. }
  606. ee->ee_pd_gains[mode] = 1;
  607. pd = &chinfo[pier].pd_curves[idx];
  608. pd->pd_points = AR5K_EEPROM_N_PWR_POINTS_5111;
  609. /* Allocate pd points for this curve */
  610. pd->pd_step = kcalloc(AR5K_EEPROM_N_PWR_POINTS_5111,
  611. sizeof(u8), GFP_KERNEL);
  612. if (!pd->pd_step)
  613. return -ENOMEM;
  614. pd->pd_pwr = kcalloc(AR5K_EEPROM_N_PWR_POINTS_5111,
  615. sizeof(s16), GFP_KERNEL);
  616. if (!pd->pd_pwr)
  617. return -ENOMEM;
  618. /* Fill raw dataset
  619. * (convert power to 0.25dB units
  620. * for RF5112 combatibility) */
  621. for (point = 0; point < pd->pd_points; point++) {
  622. /* Absolute values */
  623. pd->pd_pwr[point] = 2 * pcinfo->pwr[point];
  624. /* Already sorted */
  625. pd->pd_step[point] = pcinfo->pcdac[point];
  626. }
  627. /* Set min/max pwr */
  628. chinfo[pier].min_pwr = pd->pd_pwr[0];
  629. chinfo[pier].max_pwr = pd->pd_pwr[10];
  630. }
  631. return 0;
  632. }
  633. /* Parse EEPROM data */
  634. static int
  635. ath5k_eeprom_read_pcal_info_5111(struct ath5k_hw *ah, int mode)
  636. {
  637. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  638. struct ath5k_chan_pcal_info *pcal;
  639. int offset, ret;
  640. int i;
  641. u16 val;
  642. offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
  643. switch(mode) {
  644. case AR5K_EEPROM_MODE_11A:
  645. if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
  646. return 0;
  647. ret = ath5k_eeprom_init_11a_pcal_freq(ah,
  648. offset + AR5K_EEPROM_GROUP1_OFFSET);
  649. if (ret < 0)
  650. return ret;
  651. offset += AR5K_EEPROM_GROUP2_OFFSET;
  652. pcal = ee->ee_pwr_cal_a;
  653. break;
  654. case AR5K_EEPROM_MODE_11B:
  655. if (!AR5K_EEPROM_HDR_11B(ee->ee_header) &&
  656. !AR5K_EEPROM_HDR_11G(ee->ee_header))
  657. return 0;
  658. pcal = ee->ee_pwr_cal_b;
  659. offset += AR5K_EEPROM_GROUP3_OFFSET;
  660. /* fixed piers */
  661. pcal[0].freq = 2412;
  662. pcal[1].freq = 2447;
  663. pcal[2].freq = 2484;
  664. ee->ee_n_piers[mode] = 3;
  665. break;
  666. case AR5K_EEPROM_MODE_11G:
  667. if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
  668. return 0;
  669. pcal = ee->ee_pwr_cal_g;
  670. offset += AR5K_EEPROM_GROUP4_OFFSET;
  671. /* fixed piers */
  672. pcal[0].freq = 2312;
  673. pcal[1].freq = 2412;
  674. pcal[2].freq = 2484;
  675. ee->ee_n_piers[mode] = 3;
  676. break;
  677. default:
  678. return -EINVAL;
  679. }
  680. for (i = 0; i < ee->ee_n_piers[mode]; i++) {
  681. struct ath5k_chan_pcal_info_rf5111 *cdata =
  682. &pcal[i].rf5111_info;
  683. AR5K_EEPROM_READ(offset++, val);
  684. cdata->pcdac_max = ((val >> 10) & AR5K_EEPROM_PCDAC_M);
  685. cdata->pcdac_min = ((val >> 4) & AR5K_EEPROM_PCDAC_M);
  686. cdata->pwr[0] = ((val << 2) & AR5K_EEPROM_POWER_M);
  687. AR5K_EEPROM_READ(offset++, val);
  688. cdata->pwr[0] |= ((val >> 14) & 0x3);
  689. cdata->pwr[1] = ((val >> 8) & AR5K_EEPROM_POWER_M);
  690. cdata->pwr[2] = ((val >> 2) & AR5K_EEPROM_POWER_M);
  691. cdata->pwr[3] = ((val << 4) & AR5K_EEPROM_POWER_M);
  692. AR5K_EEPROM_READ(offset++, val);
  693. cdata->pwr[3] |= ((val >> 12) & 0xf);
  694. cdata->pwr[4] = ((val >> 6) & AR5K_EEPROM_POWER_M);
  695. cdata->pwr[5] = (val & AR5K_EEPROM_POWER_M);
  696. AR5K_EEPROM_READ(offset++, val);
  697. cdata->pwr[6] = ((val >> 10) & AR5K_EEPROM_POWER_M);
  698. cdata->pwr[7] = ((val >> 4) & AR5K_EEPROM_POWER_M);
  699. cdata->pwr[8] = ((val << 2) & AR5K_EEPROM_POWER_M);
  700. AR5K_EEPROM_READ(offset++, val);
  701. cdata->pwr[8] |= ((val >> 14) & 0x3);
  702. cdata->pwr[9] = ((val >> 8) & AR5K_EEPROM_POWER_M);
  703. cdata->pwr[10] = ((val >> 2) & AR5K_EEPROM_POWER_M);
  704. ath5k_get_pcdac_intercepts(ah, cdata->pcdac_min,
  705. cdata->pcdac_max, cdata->pcdac);
  706. }
  707. return ath5k_eeprom_convert_pcal_info_5111(ah, mode, pcal);
  708. }
  709. /*
  710. * Read power calibration for RF5112 chips
  711. *
  712. * For RF5112 we have 4 XPD -eXternal Power Detector- curves
  713. * for each calibrated channel on 0, -6, -12 and -18dbm but we only
  714. * use the higher (3) and the lower (0) curves. Each curve has 0.5dB
  715. * power steps on x axis and PCDAC steps on y axis and looks like a
  716. * linear function. To recreate the curve and pass the power values
  717. * on hw, we read 4 points for xpd 0 (lower gain -> max power)
  718. * and 3 points for xpd 3 (higher gain -> lower power) here and
  719. * interpolate later.
  720. *
  721. * Note: Many vendors just use xpd 0 so xpd 3 is zeroed.
  722. */
  723. /* Convert RF5112 specific data to generic raw data
  724. * used by interpolation code */
  725. static int
  726. ath5k_eeprom_convert_pcal_info_5112(struct ath5k_hw *ah, int mode,
  727. struct ath5k_chan_pcal_info *chinfo)
  728. {
  729. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  730. struct ath5k_chan_pcal_info_rf5112 *pcinfo;
  731. u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
  732. unsigned int pier, pdg, point;
  733. /* Fill raw data for each calibration pier */
  734. for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
  735. pcinfo = &chinfo[pier].rf5112_info;
  736. /* Allocate pd_curves for this cal pier */
  737. chinfo[pier].pd_curves =
  738. kcalloc(AR5K_EEPROM_N_PD_CURVES,
  739. sizeof(struct ath5k_pdgain_info),
  740. GFP_KERNEL);
  741. if (!chinfo[pier].pd_curves)
  742. return -ENOMEM;
  743. /* Fill pd_curves */
  744. for (pdg = 0; pdg < ee->ee_pd_gains[mode]; pdg++) {
  745. u8 idx = pdgain_idx[pdg];
  746. struct ath5k_pdgain_info *pd =
  747. &chinfo[pier].pd_curves[idx];
  748. /* Lowest gain curve (max power) */
  749. if (pdg == 0) {
  750. /* One more point for better accuracy */
  751. pd->pd_points = AR5K_EEPROM_N_XPD0_POINTS;
  752. /* Allocate pd points for this curve */
  753. pd->pd_step = kcalloc(pd->pd_points,
  754. sizeof(u8), GFP_KERNEL);
  755. if (!pd->pd_step)
  756. return -ENOMEM;
  757. pd->pd_pwr = kcalloc(pd->pd_points,
  758. sizeof(s16), GFP_KERNEL);
  759. if (!pd->pd_pwr)
  760. return -ENOMEM;
  761. /* Fill raw dataset
  762. * (all power levels are in 0.25dB units) */
  763. pd->pd_step[0] = pcinfo->pcdac_x0[0];
  764. pd->pd_pwr[0] = pcinfo->pwr_x0[0];
  765. for (point = 1; point < pd->pd_points;
  766. point++) {
  767. /* Absolute values */
  768. pd->pd_pwr[point] =
  769. pcinfo->pwr_x0[point];
  770. /* Deltas */
  771. pd->pd_step[point] =
  772. pd->pd_step[point - 1] +
  773. pcinfo->pcdac_x0[point];
  774. }
  775. /* Set min power for this frequency */
  776. chinfo[pier].min_pwr = pd->pd_pwr[0];
  777. /* Highest gain curve (min power) */
  778. } else if (pdg == 1) {
  779. pd->pd_points = AR5K_EEPROM_N_XPD3_POINTS;
  780. /* Allocate pd points for this curve */
  781. pd->pd_step = kcalloc(pd->pd_points,
  782. sizeof(u8), GFP_KERNEL);
  783. if (!pd->pd_step)
  784. return -ENOMEM;
  785. pd->pd_pwr = kcalloc(pd->pd_points,
  786. sizeof(s16), GFP_KERNEL);
  787. if (!pd->pd_pwr)
  788. return -ENOMEM;
  789. /* Fill raw dataset
  790. * (all power levels are in 0.25dB units) */
  791. for (point = 0; point < pd->pd_points;
  792. point++) {
  793. /* Absolute values */
  794. pd->pd_pwr[point] =
  795. pcinfo->pwr_x3[point];
  796. /* Fixed points */
  797. pd->pd_step[point] =
  798. pcinfo->pcdac_x3[point];
  799. }
  800. /* Since we have a higher gain curve
  801. * override min power */
  802. chinfo[pier].min_pwr = pd->pd_pwr[0];
  803. }
  804. }
  805. }
  806. return 0;
  807. }
  808. /* Parse EEPROM data */
  809. static int
  810. ath5k_eeprom_read_pcal_info_5112(struct ath5k_hw *ah, int mode)
  811. {
  812. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  813. struct ath5k_chan_pcal_info_rf5112 *chan_pcal_info;
  814. struct ath5k_chan_pcal_info *gen_chan_info;
  815. u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
  816. u32 offset;
  817. u8 i, c;
  818. u16 val;
  819. int ret;
  820. u8 pd_gains = 0;
  821. /* Count how many curves we have and
  822. * identify them (which one of the 4
  823. * available curves we have on each count).
  824. * Curves are stored from lower (x0) to
  825. * higher (x3) gain */
  826. for (i = 0; i < AR5K_EEPROM_N_PD_CURVES; i++) {
  827. /* ee_x_gain[mode] is x gain mask */
  828. if ((ee->ee_x_gain[mode] >> i) & 0x1)
  829. pdgain_idx[pd_gains++] = i;
  830. }
  831. ee->ee_pd_gains[mode] = pd_gains;
  832. if (pd_gains == 0 || pd_gains > 2)
  833. return -EINVAL;
  834. switch (mode) {
  835. case AR5K_EEPROM_MODE_11A:
  836. /*
  837. * Read 5GHz EEPROM channels
  838. */
  839. offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
  840. ath5k_eeprom_init_11a_pcal_freq(ah, offset);
  841. offset += AR5K_EEPROM_GROUP2_OFFSET;
  842. gen_chan_info = ee->ee_pwr_cal_a;
  843. break;
  844. case AR5K_EEPROM_MODE_11B:
  845. offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
  846. if (AR5K_EEPROM_HDR_11A(ee->ee_header))
  847. offset += AR5K_EEPROM_GROUP3_OFFSET;
  848. /* NB: frequency piers parsed during mode init */
  849. gen_chan_info = ee->ee_pwr_cal_b;
  850. break;
  851. case AR5K_EEPROM_MODE_11G:
  852. offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
  853. if (AR5K_EEPROM_HDR_11A(ee->ee_header))
  854. offset += AR5K_EEPROM_GROUP4_OFFSET;
  855. else if (AR5K_EEPROM_HDR_11B(ee->ee_header))
  856. offset += AR5K_EEPROM_GROUP2_OFFSET;
  857. /* NB: frequency piers parsed during mode init */
  858. gen_chan_info = ee->ee_pwr_cal_g;
  859. break;
  860. default:
  861. return -EINVAL;
  862. }
  863. for (i = 0; i < ee->ee_n_piers[mode]; i++) {
  864. chan_pcal_info = &gen_chan_info[i].rf5112_info;
  865. /* Power values in quarter dB
  866. * for the lower xpd gain curve
  867. * (0 dBm -> higher output power) */
  868. for (c = 0; c < AR5K_EEPROM_N_XPD0_POINTS; c++) {
  869. AR5K_EEPROM_READ(offset++, val);
  870. chan_pcal_info->pwr_x0[c] = (s8) (val & 0xff);
  871. chan_pcal_info->pwr_x0[++c] = (s8) ((val >> 8) & 0xff);
  872. }
  873. /* PCDAC steps
  874. * corresponding to the above power
  875. * measurements */
  876. AR5K_EEPROM_READ(offset++, val);
  877. chan_pcal_info->pcdac_x0[1] = (val & 0x1f);
  878. chan_pcal_info->pcdac_x0[2] = ((val >> 5) & 0x1f);
  879. chan_pcal_info->pcdac_x0[3] = ((val >> 10) & 0x1f);
  880. /* Power values in quarter dB
  881. * for the higher xpd gain curve
  882. * (18 dBm -> lower output power) */
  883. AR5K_EEPROM_READ(offset++, val);
  884. chan_pcal_info->pwr_x3[0] = (s8) (val & 0xff);
  885. chan_pcal_info->pwr_x3[1] = (s8) ((val >> 8) & 0xff);
  886. AR5K_EEPROM_READ(offset++, val);
  887. chan_pcal_info->pwr_x3[2] = (val & 0xff);
  888. /* PCDAC steps
  889. * corresponding to the above power
  890. * measurements (fixed) */
  891. chan_pcal_info->pcdac_x3[0] = 20;
  892. chan_pcal_info->pcdac_x3[1] = 35;
  893. chan_pcal_info->pcdac_x3[2] = 63;
  894. if (ee->ee_version >= AR5K_EEPROM_VERSION_4_3) {
  895. chan_pcal_info->pcdac_x0[0] = ((val >> 8) & 0x3f);
  896. /* Last xpd0 power level is also channel maximum */
  897. gen_chan_info[i].max_pwr = chan_pcal_info->pwr_x0[3];
  898. } else {
  899. chan_pcal_info->pcdac_x0[0] = 1;
  900. gen_chan_info[i].max_pwr = (s8) ((val >> 8) & 0xff);
  901. }
  902. }
  903. return ath5k_eeprom_convert_pcal_info_5112(ah, mode, gen_chan_info);
  904. }
  905. /*
  906. * Read power calibration for RF2413 chips
  907. *
  908. * For RF2413 we have a Power to PDDAC table (Power Detector)
  909. * instead of a PCDAC and 4 pd gain curves for each calibrated channel.
  910. * Each curve has power on x axis in 0.5 db steps and PDDADC steps on y
  911. * axis and looks like an exponential function like the RF5111 curve.
  912. *
  913. * To recreate the curves we read here the points and interpolate
  914. * later. Note that in most cases only 2 (higher and lower) curves are
  915. * used (like RF5112) but vendors have the oportunity to include all
  916. * 4 curves on eeprom. The final curve (higher power) has an extra
  917. * point for better accuracy like RF5112.
  918. */
  919. /* For RF2413 power calibration data doesn't start on a fixed location and
  920. * if a mode is not supported, its section is missing -not zeroed-.
  921. * So we need to calculate the starting offset for each section by using
  922. * these two functions */
  923. /* Return the size of each section based on the mode and the number of pd
  924. * gains available (maximum 4). */
  925. static inline unsigned int
  926. ath5k_pdgains_size_2413(struct ath5k_eeprom_info *ee, unsigned int mode)
  927. {
  928. static const unsigned int pdgains_size[] = { 4, 6, 9, 12 };
  929. unsigned int sz;
  930. sz = pdgains_size[ee->ee_pd_gains[mode] - 1];
  931. sz *= ee->ee_n_piers[mode];
  932. return sz;
  933. }
  934. /* Return the starting offset for a section based on the modes supported
  935. * and each section's size. */
  936. static unsigned int
  937. ath5k_cal_data_offset_2413(struct ath5k_eeprom_info *ee, int mode)
  938. {
  939. u32 offset = AR5K_EEPROM_CAL_DATA_START(ee->ee_misc4);
  940. switch(mode) {
  941. case AR5K_EEPROM_MODE_11G:
  942. if (AR5K_EEPROM_HDR_11B(ee->ee_header))
  943. offset += ath5k_pdgains_size_2413(ee,
  944. AR5K_EEPROM_MODE_11B) +
  945. AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
  946. /* fall through */
  947. case AR5K_EEPROM_MODE_11B:
  948. if (AR5K_EEPROM_HDR_11A(ee->ee_header))
  949. offset += ath5k_pdgains_size_2413(ee,
  950. AR5K_EEPROM_MODE_11A) +
  951. AR5K_EEPROM_N_5GHZ_CHAN / 2;
  952. /* fall through */
  953. case AR5K_EEPROM_MODE_11A:
  954. break;
  955. default:
  956. break;
  957. }
  958. return offset;
  959. }
  960. /* Convert RF2413 specific data to generic raw data
  961. * used by interpolation code */
  962. static int
  963. ath5k_eeprom_convert_pcal_info_2413(struct ath5k_hw *ah, int mode,
  964. struct ath5k_chan_pcal_info *chinfo)
  965. {
  966. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  967. struct ath5k_chan_pcal_info_rf2413 *pcinfo;
  968. u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
  969. unsigned int pier, pdg, point;
  970. /* Fill raw data for each calibration pier */
  971. for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
  972. pcinfo = &chinfo[pier].rf2413_info;
  973. /* Allocate pd_curves for this cal pier */
  974. chinfo[pier].pd_curves =
  975. kcalloc(AR5K_EEPROM_N_PD_CURVES,
  976. sizeof(struct ath5k_pdgain_info),
  977. GFP_KERNEL);
  978. if (!chinfo[pier].pd_curves)
  979. return -ENOMEM;
  980. /* Fill pd_curves */
  981. for (pdg = 0; pdg < ee->ee_pd_gains[mode]; pdg++) {
  982. u8 idx = pdgain_idx[pdg];
  983. struct ath5k_pdgain_info *pd =
  984. &chinfo[pier].pd_curves[idx];
  985. /* One more point for the highest power
  986. * curve (lowest gain) */
  987. if (pdg == ee->ee_pd_gains[mode] - 1)
  988. pd->pd_points = AR5K_EEPROM_N_PD_POINTS;
  989. else
  990. pd->pd_points = AR5K_EEPROM_N_PD_POINTS - 1;
  991. /* Allocate pd points for this curve */
  992. pd->pd_step = kcalloc(pd->pd_points,
  993. sizeof(u8), GFP_KERNEL);
  994. if (!pd->pd_step)
  995. return -ENOMEM;
  996. pd->pd_pwr = kcalloc(pd->pd_points,
  997. sizeof(s16), GFP_KERNEL);
  998. if (!pd->pd_pwr)
  999. return -ENOMEM;
  1000. /* Fill raw dataset
  1001. * convert all pwr levels to
  1002. * quarter dB for RF5112 combatibility */
  1003. pd->pd_step[0] = pcinfo->pddac_i[pdg];
  1004. pd->pd_pwr[0] = 4 * pcinfo->pwr_i[pdg];
  1005. for (point = 1; point < pd->pd_points; point++) {
  1006. pd->pd_pwr[point] = pd->pd_pwr[point - 1] +
  1007. 2 * pcinfo->pwr[pdg][point - 1];
  1008. pd->pd_step[point] = pd->pd_step[point - 1] +
  1009. pcinfo->pddac[pdg][point - 1];
  1010. }
  1011. /* Highest gain curve -> min power */
  1012. if (pdg == 0)
  1013. chinfo[pier].min_pwr = pd->pd_pwr[0];
  1014. /* Lowest gain curve -> max power */
  1015. if (pdg == ee->ee_pd_gains[mode] - 1)
  1016. chinfo[pier].max_pwr =
  1017. pd->pd_pwr[pd->pd_points - 1];
  1018. }
  1019. }
  1020. return 0;
  1021. }
  1022. /* Parse EEPROM data */
  1023. static int
  1024. ath5k_eeprom_read_pcal_info_2413(struct ath5k_hw *ah, int mode)
  1025. {
  1026. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  1027. struct ath5k_chan_pcal_info_rf2413 *pcinfo;
  1028. struct ath5k_chan_pcal_info *chinfo;
  1029. u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
  1030. u32 offset;
  1031. int idx, i, ret;
  1032. u16 val;
  1033. u8 pd_gains = 0;
  1034. /* Count how many curves we have and
  1035. * identify them (which one of the 4
  1036. * available curves we have on each count).
  1037. * Curves are stored from higher to
  1038. * lower gain so we go backwards */
  1039. for (idx = AR5K_EEPROM_N_PD_CURVES - 1; idx >= 0; idx--) {
  1040. /* ee_x_gain[mode] is x gain mask */
  1041. if ((ee->ee_x_gain[mode] >> idx) & 0x1)
  1042. pdgain_idx[pd_gains++] = idx;
  1043. }
  1044. ee->ee_pd_gains[mode] = pd_gains;
  1045. if (pd_gains == 0)
  1046. return -EINVAL;
  1047. offset = ath5k_cal_data_offset_2413(ee, mode);
  1048. switch (mode) {
  1049. case AR5K_EEPROM_MODE_11A:
  1050. if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
  1051. return 0;
  1052. ath5k_eeprom_init_11a_pcal_freq(ah, offset);
  1053. offset += AR5K_EEPROM_N_5GHZ_CHAN / 2;
  1054. chinfo = ee->ee_pwr_cal_a;
  1055. break;
  1056. case AR5K_EEPROM_MODE_11B:
  1057. if (!AR5K_EEPROM_HDR_11B(ee->ee_header))
  1058. return 0;
  1059. ath5k_eeprom_init_11bg_2413(ah, mode, offset);
  1060. offset += AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
  1061. chinfo = ee->ee_pwr_cal_b;
  1062. break;
  1063. case AR5K_EEPROM_MODE_11G:
  1064. if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
  1065. return 0;
  1066. ath5k_eeprom_init_11bg_2413(ah, mode, offset);
  1067. offset += AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
  1068. chinfo = ee->ee_pwr_cal_g;
  1069. break;
  1070. default:
  1071. return -EINVAL;
  1072. }
  1073. for (i = 0; i < ee->ee_n_piers[mode]; i++) {
  1074. pcinfo = &chinfo[i].rf2413_info;
  1075. /*
  1076. * Read pwr_i, pddac_i and the first
  1077. * 2 pd points (pwr, pddac)
  1078. */
  1079. AR5K_EEPROM_READ(offset++, val);
  1080. pcinfo->pwr_i[0] = val & 0x1f;
  1081. pcinfo->pddac_i[0] = (val >> 5) & 0x7f;
  1082. pcinfo->pwr[0][0] = (val >> 12) & 0xf;
  1083. AR5K_EEPROM_READ(offset++, val);
  1084. pcinfo->pddac[0][0] = val & 0x3f;
  1085. pcinfo->pwr[0][1] = (val >> 6) & 0xf;
  1086. pcinfo->pddac[0][1] = (val >> 10) & 0x3f;
  1087. AR5K_EEPROM_READ(offset++, val);
  1088. pcinfo->pwr[0][2] = val & 0xf;
  1089. pcinfo->pddac[0][2] = (val >> 4) & 0x3f;
  1090. pcinfo->pwr[0][3] = 0;
  1091. pcinfo->pddac[0][3] = 0;
  1092. if (pd_gains > 1) {
  1093. /*
  1094. * Pd gain 0 is not the last pd gain
  1095. * so it only has 2 pd points.
  1096. * Continue wih pd gain 1.
  1097. */
  1098. pcinfo->pwr_i[1] = (val >> 10) & 0x1f;
  1099. pcinfo->pddac_i[1] = (val >> 15) & 0x1;
  1100. AR5K_EEPROM_READ(offset++, val);
  1101. pcinfo->pddac_i[1] |= (val & 0x3F) << 1;
  1102. pcinfo->pwr[1][0] = (val >> 6) & 0xf;
  1103. pcinfo->pddac[1][0] = (val >> 10) & 0x3f;
  1104. AR5K_EEPROM_READ(offset++, val);
  1105. pcinfo->pwr[1][1] = val & 0xf;
  1106. pcinfo->pddac[1][1] = (val >> 4) & 0x3f;
  1107. pcinfo->pwr[1][2] = (val >> 10) & 0xf;
  1108. pcinfo->pddac[1][2] = (val >> 14) & 0x3;
  1109. AR5K_EEPROM_READ(offset++, val);
  1110. pcinfo->pddac[1][2] |= (val & 0xF) << 2;
  1111. pcinfo->pwr[1][3] = 0;
  1112. pcinfo->pddac[1][3] = 0;
  1113. } else if (pd_gains == 1) {
  1114. /*
  1115. * Pd gain 0 is the last one so
  1116. * read the extra point.
  1117. */
  1118. pcinfo->pwr[0][3] = (val >> 10) & 0xf;
  1119. pcinfo->pddac[0][3] = (val >> 14) & 0x3;
  1120. AR5K_EEPROM_READ(offset++, val);
  1121. pcinfo->pddac[0][3] |= (val & 0xF) << 2;
  1122. }
  1123. /*
  1124. * Proceed with the other pd_gains
  1125. * as above.
  1126. */
  1127. if (pd_gains > 2) {
  1128. pcinfo->pwr_i[2] = (val >> 4) & 0x1f;
  1129. pcinfo->pddac_i[2] = (val >> 9) & 0x7f;
  1130. AR5K_EEPROM_READ(offset++, val);
  1131. pcinfo->pwr[2][0] = (val >> 0) & 0xf;
  1132. pcinfo->pddac[2][0] = (val >> 4) & 0x3f;
  1133. pcinfo->pwr[2][1] = (val >> 10) & 0xf;
  1134. pcinfo->pddac[2][1] = (val >> 14) & 0x3;
  1135. AR5K_EEPROM_READ(offset++, val);
  1136. pcinfo->pddac[2][1] |= (val & 0xF) << 2;
  1137. pcinfo->pwr[2][2] = (val >> 4) & 0xf;
  1138. pcinfo->pddac[2][2] = (val >> 8) & 0x3f;
  1139. pcinfo->pwr[2][3] = 0;
  1140. pcinfo->pddac[2][3] = 0;
  1141. } else if (pd_gains == 2) {
  1142. pcinfo->pwr[1][3] = (val >> 4) & 0xf;
  1143. pcinfo->pddac[1][3] = (val >> 8) & 0x3f;
  1144. }
  1145. if (pd_gains > 3) {
  1146. pcinfo->pwr_i[3] = (val >> 14) & 0x3;
  1147. AR5K_EEPROM_READ(offset++, val);
  1148. pcinfo->pwr_i[3] |= ((val >> 0) & 0x7) << 2;
  1149. pcinfo->pddac_i[3] = (val >> 3) & 0x7f;
  1150. pcinfo->pwr[3][0] = (val >> 10) & 0xf;
  1151. pcinfo->pddac[3][0] = (val >> 14) & 0x3;
  1152. AR5K_EEPROM_READ(offset++, val);
  1153. pcinfo->pddac[3][0] |= (val & 0xF) << 2;
  1154. pcinfo->pwr[3][1] = (val >> 4) & 0xf;
  1155. pcinfo->pddac[3][1] = (val >> 8) & 0x3f;
  1156. pcinfo->pwr[3][2] = (val >> 14) & 0x3;
  1157. AR5K_EEPROM_READ(offset++, val);
  1158. pcinfo->pwr[3][2] |= ((val >> 0) & 0x3) << 2;
  1159. pcinfo->pddac[3][2] = (val >> 2) & 0x3f;
  1160. pcinfo->pwr[3][3] = (val >> 8) & 0xf;
  1161. pcinfo->pddac[3][3] = (val >> 12) & 0xF;
  1162. AR5K_EEPROM_READ(offset++, val);
  1163. pcinfo->pddac[3][3] |= ((val >> 0) & 0x3) << 4;
  1164. } else if (pd_gains == 3) {
  1165. pcinfo->pwr[2][3] = (val >> 14) & 0x3;
  1166. AR5K_EEPROM_READ(offset++, val);
  1167. pcinfo->pwr[2][3] |= ((val >> 0) & 0x3) << 2;
  1168. pcinfo->pddac[2][3] = (val >> 2) & 0x3f;
  1169. }
  1170. }
  1171. return ath5k_eeprom_convert_pcal_info_2413(ah, mode, chinfo);
  1172. }
  1173. /*
  1174. * Read per rate target power (this is the maximum tx power
  1175. * supported by the card). This info is used when setting
  1176. * tx power, no matter the channel.
  1177. *
  1178. * This also works for v5 EEPROMs.
  1179. */
  1180. static int
  1181. ath5k_eeprom_read_target_rate_pwr_info(struct ath5k_hw *ah, unsigned int mode)
  1182. {
  1183. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  1184. struct ath5k_rate_pcal_info *rate_pcal_info;
  1185. u8 *rate_target_pwr_num;
  1186. u32 offset;
  1187. u16 val;
  1188. int ret, i;
  1189. offset = AR5K_EEPROM_TARGET_PWRSTART(ee->ee_misc1);
  1190. rate_target_pwr_num = &ee->ee_rate_target_pwr_num[mode];
  1191. switch (mode) {
  1192. case AR5K_EEPROM_MODE_11A:
  1193. offset += AR5K_EEPROM_TARGET_PWR_OFF_11A(ee->ee_version);
  1194. rate_pcal_info = ee->ee_rate_tpwr_a;
  1195. ee->ee_rate_target_pwr_num[mode] = AR5K_EEPROM_N_5GHZ_CHAN;
  1196. break;
  1197. case AR5K_EEPROM_MODE_11B:
  1198. offset += AR5K_EEPROM_TARGET_PWR_OFF_11B(ee->ee_version);
  1199. rate_pcal_info = ee->ee_rate_tpwr_b;
  1200. ee->ee_rate_target_pwr_num[mode] = 2; /* 3rd is g mode's 1st */
  1201. break;
  1202. case AR5K_EEPROM_MODE_11G:
  1203. offset += AR5K_EEPROM_TARGET_PWR_OFF_11G(ee->ee_version);
  1204. rate_pcal_info = ee->ee_rate_tpwr_g;
  1205. ee->ee_rate_target_pwr_num[mode] = AR5K_EEPROM_N_2GHZ_CHAN;
  1206. break;
  1207. default:
  1208. return -EINVAL;
  1209. }
  1210. /* Different freq mask for older eeproms (<= v3.2) */
  1211. if (ee->ee_version <= AR5K_EEPROM_VERSION_3_2) {
  1212. for (i = 0; i < (*rate_target_pwr_num); i++) {
  1213. AR5K_EEPROM_READ(offset++, val);
  1214. rate_pcal_info[i].freq =
  1215. ath5k_eeprom_bin2freq(ee, (val >> 9) & 0x7f, mode);
  1216. rate_pcal_info[i].target_power_6to24 = ((val >> 3) & 0x3f);
  1217. rate_pcal_info[i].target_power_36 = (val << 3) & 0x3f;
  1218. AR5K_EEPROM_READ(offset++, val);
  1219. if (rate_pcal_info[i].freq == AR5K_EEPROM_CHANNEL_DIS ||
  1220. val == 0) {
  1221. (*rate_target_pwr_num) = i;
  1222. break;
  1223. }
  1224. rate_pcal_info[i].target_power_36 |= ((val >> 13) & 0x7);
  1225. rate_pcal_info[i].target_power_48 = ((val >> 7) & 0x3f);
  1226. rate_pcal_info[i].target_power_54 = ((val >> 1) & 0x3f);
  1227. }
  1228. } else {
  1229. for (i = 0; i < (*rate_target_pwr_num); i++) {
  1230. AR5K_EEPROM_READ(offset++, val);
  1231. rate_pcal_info[i].freq =
  1232. ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
  1233. rate_pcal_info[i].target_power_6to24 = ((val >> 2) & 0x3f);
  1234. rate_pcal_info[i].target_power_36 = (val << 4) & 0x3f;
  1235. AR5K_EEPROM_READ(offset++, val);
  1236. if (rate_pcal_info[i].freq == AR5K_EEPROM_CHANNEL_DIS ||
  1237. val == 0) {
  1238. (*rate_target_pwr_num) = i;
  1239. break;
  1240. }
  1241. rate_pcal_info[i].target_power_36 |= (val >> 12) & 0xf;
  1242. rate_pcal_info[i].target_power_48 = ((val >> 6) & 0x3f);
  1243. rate_pcal_info[i].target_power_54 = (val & 0x3f);
  1244. }
  1245. }
  1246. return 0;
  1247. }
  1248. /*
  1249. * Read per channel calibration info from EEPROM
  1250. *
  1251. * This info is used to calibrate the baseband power table. Imagine
  1252. * that for each channel there is a power curve that's hw specific
  1253. * (depends on amplifier etc) and we try to "correct" this curve using
  1254. * offsets we pass on to phy chip (baseband -> before amplifier) so that
  1255. * it can use accurate power values when setting tx power (takes amplifier's
  1256. * performance on each channel into account).
  1257. *
  1258. * EEPROM provides us with the offsets for some pre-calibrated channels
  1259. * and we have to interpolate to create the full table for these channels and
  1260. * also the table for any channel.
  1261. */
  1262. static int
  1263. ath5k_eeprom_read_pcal_info(struct ath5k_hw *ah)
  1264. {
  1265. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  1266. int (*read_pcal)(struct ath5k_hw *hw, int mode);
  1267. int mode;
  1268. int err;
  1269. if ((ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) &&
  1270. (AR5K_EEPROM_EEMAP(ee->ee_misc0) == 1))
  1271. read_pcal = ath5k_eeprom_read_pcal_info_5112;
  1272. else if ((ah->ah_ee_version >= AR5K_EEPROM_VERSION_5_0) &&
  1273. (AR5K_EEPROM_EEMAP(ee->ee_misc0) == 2))
  1274. read_pcal = ath5k_eeprom_read_pcal_info_2413;
  1275. else
  1276. read_pcal = ath5k_eeprom_read_pcal_info_5111;
  1277. for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G;
  1278. mode++) {
  1279. err = read_pcal(ah, mode);
  1280. if (err)
  1281. return err;
  1282. err = ath5k_eeprom_read_target_rate_pwr_info(ah, mode);
  1283. if (err < 0)
  1284. return err;
  1285. }
  1286. return 0;
  1287. }
  1288. static int
  1289. ath5k_eeprom_free_pcal_info(struct ath5k_hw *ah, int mode)
  1290. {
  1291. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  1292. struct ath5k_chan_pcal_info *chinfo;
  1293. u8 pier, pdg;
  1294. switch (mode) {
  1295. case AR5K_EEPROM_MODE_11A:
  1296. if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
  1297. return 0;
  1298. chinfo = ee->ee_pwr_cal_a;
  1299. break;
  1300. case AR5K_EEPROM_MODE_11B:
  1301. if (!AR5K_EEPROM_HDR_11B(ee->ee_header))
  1302. return 0;
  1303. chinfo = ee->ee_pwr_cal_b;
  1304. break;
  1305. case AR5K_EEPROM_MODE_11G:
  1306. if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
  1307. return 0;
  1308. chinfo = ee->ee_pwr_cal_g;
  1309. break;
  1310. default:
  1311. return -EINVAL;
  1312. }
  1313. for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
  1314. if (!chinfo[pier].pd_curves)
  1315. continue;
  1316. for (pdg = 0; pdg < ee->ee_pd_gains[mode]; pdg++) {
  1317. struct ath5k_pdgain_info *pd =
  1318. &chinfo[pier].pd_curves[pdg];
  1319. if (pd != NULL) {
  1320. kfree(pd->pd_step);
  1321. kfree(pd->pd_pwr);
  1322. }
  1323. }
  1324. kfree(chinfo[pier].pd_curves);
  1325. }
  1326. return 0;
  1327. }
  1328. void
  1329. ath5k_eeprom_detach(struct ath5k_hw *ah)
  1330. {
  1331. u8 mode;
  1332. for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G; mode++)
  1333. ath5k_eeprom_free_pcal_info(ah, mode);
  1334. }
  1335. /* Read conformance test limits used for regulatory control */
  1336. static int
  1337. ath5k_eeprom_read_ctl_info(struct ath5k_hw *ah)
  1338. {
  1339. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  1340. struct ath5k_edge_power *rep;
  1341. unsigned int fmask, pmask;
  1342. unsigned int ctl_mode;
  1343. int ret, i, j;
  1344. u32 offset;
  1345. u16 val;
  1346. pmask = AR5K_EEPROM_POWER_M;
  1347. fmask = AR5K_EEPROM_FREQ_M(ee->ee_version);
  1348. offset = AR5K_EEPROM_CTL(ee->ee_version);
  1349. ee->ee_ctls = AR5K_EEPROM_N_CTLS(ee->ee_version);
  1350. for (i = 0; i < ee->ee_ctls; i += 2) {
  1351. AR5K_EEPROM_READ(offset++, val);
  1352. ee->ee_ctl[i] = (val >> 8) & 0xff;
  1353. ee->ee_ctl[i + 1] = val & 0xff;
  1354. }
  1355. offset = AR5K_EEPROM_GROUP8_OFFSET;
  1356. if (ee->ee_version >= AR5K_EEPROM_VERSION_4_0)
  1357. offset += AR5K_EEPROM_TARGET_PWRSTART(ee->ee_misc1) -
  1358. AR5K_EEPROM_GROUP5_OFFSET;
  1359. else
  1360. offset += AR5K_EEPROM_GROUPS_START(ee->ee_version);
  1361. rep = ee->ee_ctl_pwr;
  1362. for(i = 0; i < ee->ee_ctls; i++) {
  1363. switch(ee->ee_ctl[i] & AR5K_CTL_MODE_M) {
  1364. case AR5K_CTL_11A:
  1365. case AR5K_CTL_TURBO:
  1366. ctl_mode = AR5K_EEPROM_MODE_11A;
  1367. break;
  1368. default:
  1369. ctl_mode = AR5K_EEPROM_MODE_11G;
  1370. break;
  1371. }
  1372. if (ee->ee_ctl[i] == 0) {
  1373. if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3)
  1374. offset += 8;
  1375. else
  1376. offset += 7;
  1377. rep += AR5K_EEPROM_N_EDGES;
  1378. continue;
  1379. }
  1380. if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3) {
  1381. for (j = 0; j < AR5K_EEPROM_N_EDGES; j += 2) {
  1382. AR5K_EEPROM_READ(offset++, val);
  1383. rep[j].freq = (val >> 8) & fmask;
  1384. rep[j + 1].freq = val & fmask;
  1385. }
  1386. for (j = 0; j < AR5K_EEPROM_N_EDGES; j += 2) {
  1387. AR5K_EEPROM_READ(offset++, val);
  1388. rep[j].edge = (val >> 8) & pmask;
  1389. rep[j].flag = (val >> 14) & 1;
  1390. rep[j + 1].edge = val & pmask;
  1391. rep[j + 1].flag = (val >> 6) & 1;
  1392. }
  1393. } else {
  1394. AR5K_EEPROM_READ(offset++, val);
  1395. rep[0].freq = (val >> 9) & fmask;
  1396. rep[1].freq = (val >> 2) & fmask;
  1397. rep[2].freq = (val << 5) & fmask;
  1398. AR5K_EEPROM_READ(offset++, val);
  1399. rep[2].freq |= (val >> 11) & 0x1f;
  1400. rep[3].freq = (val >> 4) & fmask;
  1401. rep[4].freq = (val << 3) & fmask;
  1402. AR5K_EEPROM_READ(offset++, val);
  1403. rep[4].freq |= (val >> 13) & 0x7;
  1404. rep[5].freq = (val >> 6) & fmask;
  1405. rep[6].freq = (val << 1) & fmask;
  1406. AR5K_EEPROM_READ(offset++, val);
  1407. rep[6].freq |= (val >> 15) & 0x1;
  1408. rep[7].freq = (val >> 8) & fmask;
  1409. rep[0].edge = (val >> 2) & pmask;
  1410. rep[1].edge = (val << 4) & pmask;
  1411. AR5K_EEPROM_READ(offset++, val);
  1412. rep[1].edge |= (val >> 12) & 0xf;
  1413. rep[2].edge = (val >> 6) & pmask;
  1414. rep[3].edge = val & pmask;
  1415. AR5K_EEPROM_READ(offset++, val);
  1416. rep[4].edge = (val >> 10) & pmask;
  1417. rep[5].edge = (val >> 4) & pmask;
  1418. rep[6].edge = (val << 2) & pmask;
  1419. AR5K_EEPROM_READ(offset++, val);
  1420. rep[6].edge |= (val >> 14) & 0x3;
  1421. rep[7].edge = (val >> 8) & pmask;
  1422. }
  1423. for (j = 0; j < AR5K_EEPROM_N_EDGES; j++) {
  1424. rep[j].freq = ath5k_eeprom_bin2freq(ee,
  1425. rep[j].freq, ctl_mode);
  1426. }
  1427. rep += AR5K_EEPROM_N_EDGES;
  1428. }
  1429. return 0;
  1430. }
  1431. static int
  1432. ath5k_eeprom_read_spur_chans(struct ath5k_hw *ah)
  1433. {
  1434. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  1435. u32 offset;
  1436. u16 val;
  1437. int ret = 0, i;
  1438. offset = AR5K_EEPROM_CTL(ee->ee_version) +
  1439. AR5K_EEPROM_N_CTLS(ee->ee_version);
  1440. if (ee->ee_version < AR5K_EEPROM_VERSION_5_3) {
  1441. /* No spur info for 5GHz */
  1442. ee->ee_spur_chans[0][0] = AR5K_EEPROM_NO_SPUR;
  1443. /* 2 channels for 2GHz (2464/2420) */
  1444. ee->ee_spur_chans[0][1] = AR5K_EEPROM_5413_SPUR_CHAN_1;
  1445. ee->ee_spur_chans[1][1] = AR5K_EEPROM_5413_SPUR_CHAN_2;
  1446. ee->ee_spur_chans[2][1] = AR5K_EEPROM_NO_SPUR;
  1447. } else if (ee->ee_version >= AR5K_EEPROM_VERSION_5_3) {
  1448. for (i = 0; i < AR5K_EEPROM_N_SPUR_CHANS; i++) {
  1449. AR5K_EEPROM_READ(offset, val);
  1450. ee->ee_spur_chans[i][0] = val;
  1451. AR5K_EEPROM_READ(offset + AR5K_EEPROM_N_SPUR_CHANS,
  1452. val);
  1453. ee->ee_spur_chans[i][1] = val;
  1454. offset++;
  1455. }
  1456. }
  1457. return ret;
  1458. }
  1459. /*
  1460. * Initialize eeprom data structure
  1461. */
  1462. int
  1463. ath5k_eeprom_init(struct ath5k_hw *ah)
  1464. {
  1465. int err;
  1466. err = ath5k_eeprom_init_header(ah);
  1467. if (err < 0)
  1468. return err;
  1469. err = ath5k_eeprom_init_modes(ah);
  1470. if (err < 0)
  1471. return err;
  1472. err = ath5k_eeprom_read_pcal_info(ah);
  1473. if (err < 0)
  1474. return err;
  1475. err = ath5k_eeprom_read_ctl_info(ah);
  1476. if (err < 0)
  1477. return err;
  1478. err = ath5k_eeprom_read_spur_chans(ah);
  1479. if (err < 0)
  1480. return err;
  1481. return 0;
  1482. }
  1483. /*
  1484. * Read the MAC address from eeprom
  1485. */
  1486. int ath5k_eeprom_read_mac(struct ath5k_hw *ah, u8 *mac)
  1487. {
  1488. u8 mac_d[ETH_ALEN] = {};
  1489. u32 total, offset;
  1490. u16 data;
  1491. int octet, ret;
  1492. ret = ath5k_hw_eeprom_read(ah, 0x20, &data);
  1493. if (ret)
  1494. return ret;
  1495. for (offset = 0x1f, octet = 0, total = 0; offset >= 0x1d; offset--) {
  1496. ret = ath5k_hw_eeprom_read(ah, offset, &data);
  1497. if (ret)
  1498. return ret;
  1499. total += data;
  1500. mac_d[octet + 1] = data & 0xff;
  1501. mac_d[octet] = data >> 8;
  1502. octet += 2;
  1503. }
  1504. if (!total || total == 3 * 0xffff)
  1505. return -EINVAL;
  1506. memcpy(mac, mac_d, ETH_ALEN);
  1507. return 0;
  1508. }