1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134 |
- /*
- * NAND Flash Controller Device Driver
- * Copyright © 2009-2010, Intel Corporation and its suppliers.
- *
- * This program is free software; you can redistribute it and/or modify it
- * under the terms and conditions of the GNU General Public License,
- * version 2, as published by the Free Software Foundation.
- *
- * This program is distributed in the hope it will be useful, but WITHOUT
- * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
- * more details.
- *
- * You should have received a copy of the GNU General Public License along with
- * this program; if not, write to the Free Software Foundation, Inc.,
- * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
- *
- */
- #include <linux/interrupt.h>
- #include <linux/delay.h>
- #include <linux/wait.h>
- #include <linux/mutex.h>
- #include <linux/pci.h>
- #include <linux/mtd/mtd.h>
- #include <linux/module.h>
- #include "denali.h"
- MODULE_LICENSE("GPL");
- /* We define a module parameter that allows the user to override
- * the hardware and decide what timing mode should be used.
- */
- #define NAND_DEFAULT_TIMINGS -1
- static int onfi_timing_mode = NAND_DEFAULT_TIMINGS;
- module_param(onfi_timing_mode, int, S_IRUGO);
- MODULE_PARM_DESC(onfi_timing_mode, "Overrides default ONFI setting. -1 indicates"
- " use default timings");
- #define DENALI_NAND_NAME "denali-nand"
- /* We define a macro here that combines all interrupts this driver uses into
- * a single constant value, for convenience. */
- #define DENALI_IRQ_ALL (INTR_STATUS0__DMA_CMD_COMP | \
- INTR_STATUS0__ECC_TRANSACTION_DONE | \
- INTR_STATUS0__ECC_ERR | \
- INTR_STATUS0__PROGRAM_FAIL | \
- INTR_STATUS0__LOAD_COMP | \
- INTR_STATUS0__PROGRAM_COMP | \
- INTR_STATUS0__TIME_OUT | \
- INTR_STATUS0__ERASE_FAIL | \
- INTR_STATUS0__RST_COMP | \
- INTR_STATUS0__ERASE_COMP)
- /* indicates whether or not the internal value for the flash bank is
- valid or not */
- #define CHIP_SELECT_INVALID -1
- #define SUPPORT_8BITECC 1
- /* This macro divides two integers and rounds fractional values up
- * to the nearest integer value. */
- #define CEIL_DIV(X, Y) (((X)%(Y)) ? ((X)/(Y)+1) : ((X)/(Y)))
- /* this macro allows us to convert from an MTD structure to our own
- * device context (denali) structure.
- */
- #define mtd_to_denali(m) container_of(m, struct denali_nand_info, mtd)
- /* These constants are defined by the driver to enable common driver
- configuration options. */
- #define SPARE_ACCESS 0x41
- #define MAIN_ACCESS 0x42
- #define MAIN_SPARE_ACCESS 0x43
- #define DENALI_READ 0
- #define DENALI_WRITE 0x100
- /* types of device accesses. We can issue commands and get status */
- #define COMMAND_CYCLE 0
- #define ADDR_CYCLE 1
- #define STATUS_CYCLE 2
- /* this is a helper macro that allows us to
- * format the bank into the proper bits for the controller */
- #define BANK(x) ((x) << 24)
- /* List of platforms this NAND controller has be integrated into */
- static const struct pci_device_id denali_pci_ids[] = {
- { PCI_VDEVICE(INTEL, 0x0701), INTEL_CE4100 },
- { PCI_VDEVICE(INTEL, 0x0809), INTEL_MRST },
- { /* end: all zeroes */ }
- };
- /* these are static lookup tables that give us easy access to
- registers in the NAND controller.
- */
- static const uint32_t intr_status_addresses[4] = {INTR_STATUS0,
- INTR_STATUS1,
- INTR_STATUS2,
- INTR_STATUS3};
- static const uint32_t device_reset_banks[4] = {DEVICE_RESET__BANK0,
- DEVICE_RESET__BANK1,
- DEVICE_RESET__BANK2,
- DEVICE_RESET__BANK3};
- static const uint32_t operation_timeout[4] = {INTR_STATUS0__TIME_OUT,
- INTR_STATUS1__TIME_OUT,
- INTR_STATUS2__TIME_OUT,
- INTR_STATUS3__TIME_OUT};
- static const uint32_t reset_complete[4] = {INTR_STATUS0__RST_COMP,
- INTR_STATUS1__RST_COMP,
- INTR_STATUS2__RST_COMP,
- INTR_STATUS3__RST_COMP};
- /* specifies the debug level of the driver */
- static int nand_debug_level = 0;
- /* forward declarations */
- static void clear_interrupts(struct denali_nand_info *denali);
- static uint32_t wait_for_irq(struct denali_nand_info *denali, uint32_t irq_mask);
- static void denali_irq_enable(struct denali_nand_info *denali, uint32_t int_mask);
- static uint32_t read_interrupt_status(struct denali_nand_info *denali);
- #define DEBUG_DENALI 0
- /* This is a wrapper for writing to the denali registers.
- * this allows us to create debug information so we can
- * observe how the driver is programming the device.
- * it uses standard linux convention for (val, addr) */
- static void denali_write32(uint32_t value, void *addr)
- {
- iowrite32(value, addr);
- #if DEBUG_DENALI
- printk(KERN_ERR "wrote: 0x%x -> 0x%x\n", value, (uint32_t)((uint32_t)addr & 0x1fff));
- #endif
- }
- /* Certain operations for the denali NAND controller use an indexed mode to read/write
- data. The operation is performed by writing the address value of the command to
- the device memory followed by the data. This function abstracts this common
- operation.
- */
- static void index_addr(struct denali_nand_info *denali, uint32_t address, uint32_t data)
- {
- denali_write32(address, denali->flash_mem);
- denali_write32(data, denali->flash_mem + 0x10);
- }
- /* Perform an indexed read of the device */
- static void index_addr_read_data(struct denali_nand_info *denali,
- uint32_t address, uint32_t *pdata)
- {
- denali_write32(address, denali->flash_mem);
- *pdata = ioread32(denali->flash_mem + 0x10);
- }
- /* We need to buffer some data for some of the NAND core routines.
- * The operations manage buffering that data. */
- static void reset_buf(struct denali_nand_info *denali)
- {
- denali->buf.head = denali->buf.tail = 0;
- }
- static void write_byte_to_buf(struct denali_nand_info *denali, uint8_t byte)
- {
- BUG_ON(denali->buf.tail >= sizeof(denali->buf.buf));
- denali->buf.buf[denali->buf.tail++] = byte;
- }
- /* reads the status of the device */
- static void read_status(struct denali_nand_info *denali)
- {
- uint32_t cmd = 0x0;
- /* initialize the data buffer to store status */
- reset_buf(denali);
- /* initiate a device status read */
- cmd = MODE_11 | BANK(denali->flash_bank);
- index_addr(denali, cmd | COMMAND_CYCLE, 0x70);
- denali_write32(cmd | STATUS_CYCLE, denali->flash_mem);
- /* update buffer with status value */
- write_byte_to_buf(denali, ioread32(denali->flash_mem + 0x10));
- #if DEBUG_DENALI
- printk("device reporting status value of 0x%2x\n", denali->buf.buf[0]);
- #endif
- }
- /* resets a specific device connected to the core */
- static void reset_bank(struct denali_nand_info *denali)
- {
- uint32_t irq_status = 0;
- uint32_t irq_mask = reset_complete[denali->flash_bank] |
- operation_timeout[denali->flash_bank];
- int bank = 0;
- clear_interrupts(denali);
- bank = device_reset_banks[denali->flash_bank];
- denali_write32(bank, denali->flash_reg + DEVICE_RESET);
- irq_status = wait_for_irq(denali, irq_mask);
-
- if (irq_status & operation_timeout[denali->flash_bank])
- {
- printk(KERN_ERR "reset bank failed.\n");
- }
- }
- /* Reset the flash controller */
- static uint16_t NAND_Flash_Reset(struct denali_nand_info *denali)
- {
- uint32_t i;
- nand_dbg_print(NAND_DBG_TRACE, "%s, Line %d, Function: %s\n",
- __FILE__, __LINE__, __func__);
- for (i = 0 ; i < LLD_MAX_FLASH_BANKS; i++)
- denali_write32(reset_complete[i] | operation_timeout[i],
- denali->flash_reg + intr_status_addresses[i]);
- for (i = 0 ; i < LLD_MAX_FLASH_BANKS; i++) {
- denali_write32(device_reset_banks[i], denali->flash_reg + DEVICE_RESET);
- while (!(ioread32(denali->flash_reg + intr_status_addresses[i]) &
- (reset_complete[i] | operation_timeout[i])))
- ;
- if (ioread32(denali->flash_reg + intr_status_addresses[i]) &
- operation_timeout[i])
- nand_dbg_print(NAND_DBG_WARN,
- "NAND Reset operation timed out on bank %d\n", i);
- }
- for (i = 0; i < LLD_MAX_FLASH_BANKS; i++)
- denali_write32(reset_complete[i] | operation_timeout[i],
- denali->flash_reg + intr_status_addresses[i]);
- return PASS;
- }
- /* this routine calculates the ONFI timing values for a given mode and programs
- * the clocking register accordingly. The mode is determined by the get_onfi_nand_para
- routine.
- */
- static void NAND_ONFi_Timing_Mode(struct denali_nand_info *denali, uint16_t mode)
- {
- uint16_t Trea[6] = {40, 30, 25, 20, 20, 16};
- uint16_t Trp[6] = {50, 25, 17, 15, 12, 10};
- uint16_t Treh[6] = {30, 15, 15, 10, 10, 7};
- uint16_t Trc[6] = {100, 50, 35, 30, 25, 20};
- uint16_t Trhoh[6] = {0, 15, 15, 15, 15, 15};
- uint16_t Trloh[6] = {0, 0, 0, 0, 5, 5};
- uint16_t Tcea[6] = {100, 45, 30, 25, 25, 25};
- uint16_t Tadl[6] = {200, 100, 100, 100, 70, 70};
- uint16_t Trhw[6] = {200, 100, 100, 100, 100, 100};
- uint16_t Trhz[6] = {200, 100, 100, 100, 100, 100};
- uint16_t Twhr[6] = {120, 80, 80, 60, 60, 60};
- uint16_t Tcs[6] = {70, 35, 25, 25, 20, 15};
- uint16_t TclsRising = 1;
- uint16_t data_invalid_rhoh, data_invalid_rloh, data_invalid;
- uint16_t dv_window = 0;
- uint16_t en_lo, en_hi;
- uint16_t acc_clks;
- uint16_t addr_2_data, re_2_we, re_2_re, we_2_re, cs_cnt;
- nand_dbg_print(NAND_DBG_TRACE, "%s, Line %d, Function: %s\n",
- __FILE__, __LINE__, __func__);
- en_lo = CEIL_DIV(Trp[mode], CLK_X);
- en_hi = CEIL_DIV(Treh[mode], CLK_X);
- #if ONFI_BLOOM_TIME
- if ((en_hi * CLK_X) < (Treh[mode] + 2))
- en_hi++;
- #endif
- if ((en_lo + en_hi) * CLK_X < Trc[mode])
- en_lo += CEIL_DIV((Trc[mode] - (en_lo + en_hi) * CLK_X), CLK_X);
- if ((en_lo + en_hi) < CLK_MULTI)
- en_lo += CLK_MULTI - en_lo - en_hi;
- while (dv_window < 8) {
- data_invalid_rhoh = en_lo * CLK_X + Trhoh[mode];
- data_invalid_rloh = (en_lo + en_hi) * CLK_X + Trloh[mode];
- data_invalid =
- data_invalid_rhoh <
- data_invalid_rloh ? data_invalid_rhoh : data_invalid_rloh;
- dv_window = data_invalid - Trea[mode];
- if (dv_window < 8)
- en_lo++;
- }
- acc_clks = CEIL_DIV(Trea[mode], CLK_X);
- while (((acc_clks * CLK_X) - Trea[mode]) < 3)
- acc_clks++;
- if ((data_invalid - acc_clks * CLK_X) < 2)
- nand_dbg_print(NAND_DBG_WARN, "%s, Line %d: Warning!\n",
- __FILE__, __LINE__);
- addr_2_data = CEIL_DIV(Tadl[mode], CLK_X);
- re_2_we = CEIL_DIV(Trhw[mode], CLK_X);
- re_2_re = CEIL_DIV(Trhz[mode], CLK_X);
- we_2_re = CEIL_DIV(Twhr[mode], CLK_X);
- cs_cnt = CEIL_DIV((Tcs[mode] - Trp[mode]), CLK_X);
- if (!TclsRising)
- cs_cnt = CEIL_DIV(Tcs[mode], CLK_X);
- if (cs_cnt == 0)
- cs_cnt = 1;
- if (Tcea[mode]) {
- while (((cs_cnt * CLK_X) + Trea[mode]) < Tcea[mode])
- cs_cnt++;
- }
- #if MODE5_WORKAROUND
- if (mode == 5)
- acc_clks = 5;
- #endif
- /* Sighting 3462430: Temporary hack for MT29F128G08CJABAWP:B */
- if ((ioread32(denali->flash_reg + MANUFACTURER_ID) == 0) &&
- (ioread32(denali->flash_reg + DEVICE_ID) == 0x88))
- acc_clks = 6;
- denali_write32(acc_clks, denali->flash_reg + ACC_CLKS);
- denali_write32(re_2_we, denali->flash_reg + RE_2_WE);
- denali_write32(re_2_re, denali->flash_reg + RE_2_RE);
- denali_write32(we_2_re, denali->flash_reg + WE_2_RE);
- denali_write32(addr_2_data, denali->flash_reg + ADDR_2_DATA);
- denali_write32(en_lo, denali->flash_reg + RDWR_EN_LO_CNT);
- denali_write32(en_hi, denali->flash_reg + RDWR_EN_HI_CNT);
- denali_write32(cs_cnt, denali->flash_reg + CS_SETUP_CNT);
- }
- /* configures the initial ECC settings for the controller */
- static void set_ecc_config(struct denali_nand_info *denali)
- {
- #if SUPPORT_8BITECC
- if ((ioread32(denali->flash_reg + DEVICE_MAIN_AREA_SIZE) < 4096) ||
- (ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE) <= 128))
- denali_write32(8, denali->flash_reg + ECC_CORRECTION);
- #endif
- if ((ioread32(denali->flash_reg + ECC_CORRECTION) & ECC_CORRECTION__VALUE)
- == 1) {
- denali->dev_info.wECCBytesPerSector = 4;
- denali->dev_info.wECCBytesPerSector *= denali->dev_info.wDevicesConnected;
- denali->dev_info.wNumPageSpareFlag =
- denali->dev_info.wPageSpareSize -
- denali->dev_info.wPageDataSize /
- (ECC_SECTOR_SIZE * denali->dev_info.wDevicesConnected) *
- denali->dev_info.wECCBytesPerSector
- - denali->dev_info.wSpareSkipBytes;
- } else {
- denali->dev_info.wECCBytesPerSector =
- (ioread32(denali->flash_reg + ECC_CORRECTION) &
- ECC_CORRECTION__VALUE) * 13 / 8;
- if ((denali->dev_info.wECCBytesPerSector) % 2 == 0)
- denali->dev_info.wECCBytesPerSector += 2;
- else
- denali->dev_info.wECCBytesPerSector += 1;
- denali->dev_info.wECCBytesPerSector *= denali->dev_info.wDevicesConnected;
- denali->dev_info.wNumPageSpareFlag = denali->dev_info.wPageSpareSize -
- denali->dev_info.wPageDataSize /
- (ECC_SECTOR_SIZE * denali->dev_info.wDevicesConnected) *
- denali->dev_info.wECCBytesPerSector
- - denali->dev_info.wSpareSkipBytes;
- }
- }
- /* queries the NAND device to see what ONFI modes it supports. */
- static uint16_t get_onfi_nand_para(struct denali_nand_info *denali)
- {
- int i;
- uint16_t blks_lun_l, blks_lun_h, n_of_luns;
- uint32_t blockperlun, id;
- denali_write32(DEVICE_RESET__BANK0, denali->flash_reg + DEVICE_RESET);
- while (!((ioread32(denali->flash_reg + INTR_STATUS0) &
- INTR_STATUS0__RST_COMP) |
- (ioread32(denali->flash_reg + INTR_STATUS0) &
- INTR_STATUS0__TIME_OUT)))
- ;
- if (ioread32(denali->flash_reg + INTR_STATUS0) & INTR_STATUS0__RST_COMP) {
- denali_write32(DEVICE_RESET__BANK1, denali->flash_reg + DEVICE_RESET);
- while (!((ioread32(denali->flash_reg + INTR_STATUS1) &
- INTR_STATUS1__RST_COMP) |
- (ioread32(denali->flash_reg + INTR_STATUS1) &
- INTR_STATUS1__TIME_OUT)))
- ;
- if (ioread32(denali->flash_reg + INTR_STATUS1) &
- INTR_STATUS1__RST_COMP) {
- denali_write32(DEVICE_RESET__BANK2,
- denali->flash_reg + DEVICE_RESET);
- while (!((ioread32(denali->flash_reg + INTR_STATUS2) &
- INTR_STATUS2__RST_COMP) |
- (ioread32(denali->flash_reg + INTR_STATUS2) &
- INTR_STATUS2__TIME_OUT)))
- ;
- if (ioread32(denali->flash_reg + INTR_STATUS2) &
- INTR_STATUS2__RST_COMP) {
- denali_write32(DEVICE_RESET__BANK3,
- denali->flash_reg + DEVICE_RESET);
- while (!((ioread32(denali->flash_reg + INTR_STATUS3) &
- INTR_STATUS3__RST_COMP) |
- (ioread32(denali->flash_reg + INTR_STATUS3) &
- INTR_STATUS3__TIME_OUT)))
- ;
- } else {
- printk(KERN_ERR "Getting a time out for bank 2!\n");
- }
- } else {
- printk(KERN_ERR "Getting a time out for bank 1!\n");
- }
- }
- denali_write32(INTR_STATUS0__TIME_OUT, denali->flash_reg + INTR_STATUS0);
- denali_write32(INTR_STATUS1__TIME_OUT, denali->flash_reg + INTR_STATUS1);
- denali_write32(INTR_STATUS2__TIME_OUT, denali->flash_reg + INTR_STATUS2);
- denali_write32(INTR_STATUS3__TIME_OUT, denali->flash_reg + INTR_STATUS3);
- denali->dev_info.wONFIDevFeatures =
- ioread32(denali->flash_reg + ONFI_DEVICE_FEATURES);
- denali->dev_info.wONFIOptCommands =
- ioread32(denali->flash_reg + ONFI_OPTIONAL_COMMANDS);
- denali->dev_info.wONFITimingMode =
- ioread32(denali->flash_reg + ONFI_TIMING_MODE);
- denali->dev_info.wONFIPgmCacheTimingMode =
- ioread32(denali->flash_reg + ONFI_PGM_CACHE_TIMING_MODE);
- n_of_luns = ioread32(denali->flash_reg + ONFI_DEVICE_NO_OF_LUNS) &
- ONFI_DEVICE_NO_OF_LUNS__NO_OF_LUNS;
- blks_lun_l = ioread32(denali->flash_reg + ONFI_DEVICE_NO_OF_BLOCKS_PER_LUN_L);
- blks_lun_h = ioread32(denali->flash_reg + ONFI_DEVICE_NO_OF_BLOCKS_PER_LUN_U);
- blockperlun = (blks_lun_h << 16) | blks_lun_l;
- denali->dev_info.wTotalBlocks = n_of_luns * blockperlun;
- if (!(ioread32(denali->flash_reg + ONFI_TIMING_MODE) &
- ONFI_TIMING_MODE__VALUE))
- return FAIL;
- for (i = 5; i > 0; i--) {
- if (ioread32(denali->flash_reg + ONFI_TIMING_MODE) & (0x01 << i))
- break;
- }
- NAND_ONFi_Timing_Mode(denali, i);
- index_addr(denali, MODE_11 | 0, 0x90);
- index_addr(denali, MODE_11 | 1, 0);
- for (i = 0; i < 3; i++)
- index_addr_read_data(denali, MODE_11 | 2, &id);
- nand_dbg_print(NAND_DBG_DEBUG, "3rd ID: 0x%x\n", id);
- denali->dev_info.MLCDevice = id & 0x0C;
- /* By now, all the ONFI devices we know support the page cache */
- /* rw feature. So here we enable the pipeline_rw_ahead feature */
- /* iowrite32(1, denali->flash_reg + CACHE_WRITE_ENABLE); */
- /* iowrite32(1, denali->flash_reg + CACHE_READ_ENABLE); */
- return PASS;
- }
- static void get_samsung_nand_para(struct denali_nand_info *denali)
- {
- uint8_t no_of_planes;
- uint32_t blk_size;
- uint64_t plane_size, capacity;
- uint32_t id_bytes[5];
- int i;
- index_addr(denali, (uint32_t)(MODE_11 | 0), 0x90);
- index_addr(denali, (uint32_t)(MODE_11 | 1), 0);
- for (i = 0; i < 5; i++)
- index_addr_read_data(denali, (uint32_t)(MODE_11 | 2), &id_bytes[i]);
- nand_dbg_print(NAND_DBG_DEBUG,
- "ID bytes: 0x%x, 0x%x, 0x%x, 0x%x, 0x%x\n",
- id_bytes[0], id_bytes[1], id_bytes[2],
- id_bytes[3], id_bytes[4]);
- if ((id_bytes[1] & 0xff) == 0xd3) { /* Samsung K9WAG08U1A */
- /* Set timing register values according to datasheet */
- denali_write32(5, denali->flash_reg + ACC_CLKS);
- denali_write32(20, denali->flash_reg + RE_2_WE);
- denali_write32(12, denali->flash_reg + WE_2_RE);
- denali_write32(14, denali->flash_reg + ADDR_2_DATA);
- denali_write32(3, denali->flash_reg + RDWR_EN_LO_CNT);
- denali_write32(2, denali->flash_reg + RDWR_EN_HI_CNT);
- denali_write32(2, denali->flash_reg + CS_SETUP_CNT);
- }
- no_of_planes = 1 << ((id_bytes[4] & 0x0c) >> 2);
- plane_size = (uint64_t)64 << ((id_bytes[4] & 0x70) >> 4);
- blk_size = 64 << ((ioread32(denali->flash_reg + DEVICE_PARAM_1) & 0x30) >> 4);
- capacity = (uint64_t)128 * plane_size * no_of_planes;
- do_div(capacity, blk_size);
- denali->dev_info.wTotalBlocks = capacity;
- }
- static void get_toshiba_nand_para(struct denali_nand_info *denali)
- {
- void __iomem *scratch_reg;
- uint32_t tmp;
- /* Workaround to fix a controller bug which reports a wrong */
- /* spare area size for some kind of Toshiba NAND device */
- if ((ioread32(denali->flash_reg + DEVICE_MAIN_AREA_SIZE) == 4096) &&
- (ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE) == 64)) {
- denali_write32(216, denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
- tmp = ioread32(denali->flash_reg + DEVICES_CONNECTED) *
- ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
- denali_write32(tmp, denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE);
- #if SUPPORT_15BITECC
- denali_write32(15, denali->flash_reg + ECC_CORRECTION);
- #elif SUPPORT_8BITECC
- denali_write32(8, denali->flash_reg + ECC_CORRECTION);
- #endif
- }
- /* As Toshiba NAND can not provide it's block number, */
- /* so here we need user to provide the correct block */
- /* number in a scratch register before the Linux NAND */
- /* driver is loaded. If no valid value found in the scratch */
- /* register, then we use default block number value */
- scratch_reg = ioremap_nocache(SCRATCH_REG_ADDR, SCRATCH_REG_SIZE);
- if (!scratch_reg) {
- printk(KERN_ERR "Spectra: ioremap failed in %s, Line %d",
- __FILE__, __LINE__);
- denali->dev_info.wTotalBlocks = GLOB_HWCTL_DEFAULT_BLKS;
- } else {
- nand_dbg_print(NAND_DBG_WARN,
- "Spectra: ioremap reg address: 0x%p\n", scratch_reg);
- denali->dev_info.wTotalBlocks = 1 << ioread8(scratch_reg);
- if (denali->dev_info.wTotalBlocks < 512)
- denali->dev_info.wTotalBlocks = GLOB_HWCTL_DEFAULT_BLKS;
- iounmap(scratch_reg);
- }
- }
- static void get_hynix_nand_para(struct denali_nand_info *denali)
- {
- void __iomem *scratch_reg;
- uint32_t main_size, spare_size;
- switch (denali->dev_info.wDeviceID) {
- case 0xD5: /* Hynix H27UAG8T2A, H27UBG8U5A or H27UCG8VFA */
- case 0xD7: /* Hynix H27UDG8VEM, H27UCG8UDM or H27UCG8V5A */
- denali_write32(128, denali->flash_reg + PAGES_PER_BLOCK);
- denali_write32(4096, denali->flash_reg + DEVICE_MAIN_AREA_SIZE);
- denali_write32(224, denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
- main_size = 4096 * ioread32(denali->flash_reg + DEVICES_CONNECTED);
- spare_size = 224 * ioread32(denali->flash_reg + DEVICES_CONNECTED);
- denali_write32(main_size, denali->flash_reg + LOGICAL_PAGE_DATA_SIZE);
- denali_write32(spare_size, denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE);
- denali_write32(0, denali->flash_reg + DEVICE_WIDTH);
- #if SUPPORT_15BITECC
- denali_write32(15, denali->flash_reg + ECC_CORRECTION);
- #elif SUPPORT_8BITECC
- denali_write32(8, denali->flash_reg + ECC_CORRECTION);
- #endif
- denali->dev_info.MLCDevice = 1;
- break;
- default:
- nand_dbg_print(NAND_DBG_WARN,
- "Spectra: Unknown Hynix NAND (Device ID: 0x%x)."
- "Will use default parameter values instead.\n",
- denali->dev_info.wDeviceID);
- }
- scratch_reg = ioremap_nocache(SCRATCH_REG_ADDR, SCRATCH_REG_SIZE);
- if (!scratch_reg) {
- printk(KERN_ERR "Spectra: ioremap failed in %s, Line %d",
- __FILE__, __LINE__);
- denali->dev_info.wTotalBlocks = GLOB_HWCTL_DEFAULT_BLKS;
- } else {
- nand_dbg_print(NAND_DBG_WARN,
- "Spectra: ioremap reg address: 0x%p\n", scratch_reg);
- denali->dev_info.wTotalBlocks = 1 << ioread8(scratch_reg);
- if (denali->dev_info.wTotalBlocks < 512)
- denali->dev_info.wTotalBlocks = GLOB_HWCTL_DEFAULT_BLKS;
- iounmap(scratch_reg);
- }
- }
- /* determines how many NAND chips are connected to the controller. Note for
- Intel CE4100 devices we don't support more than one device.
- */
- static void find_valid_banks(struct denali_nand_info *denali)
- {
- uint32_t id[LLD_MAX_FLASH_BANKS];
- int i;
- denali->total_used_banks = 1;
- for (i = 0; i < LLD_MAX_FLASH_BANKS; i++) {
- index_addr(denali, (uint32_t)(MODE_11 | (i << 24) | 0), 0x90);
- index_addr(denali, (uint32_t)(MODE_11 | (i << 24) | 1), 0);
- index_addr_read_data(denali, (uint32_t)(MODE_11 | (i << 24) | 2), &id[i]);
- nand_dbg_print(NAND_DBG_DEBUG,
- "Return 1st ID for bank[%d]: %x\n", i, id[i]);
- if (i == 0) {
- if (!(id[i] & 0x0ff))
- break; /* WTF? */
- } else {
- if ((id[i] & 0x0ff) == (id[0] & 0x0ff))
- denali->total_used_banks++;
- else
- break;
- }
- }
- if (denali->platform == INTEL_CE4100)
- {
- /* Platform limitations of the CE4100 device limit
- * users to a single chip solution for NAND.
- * Multichip support is not enabled.
- */
- if (denali->total_used_banks != 1)
- {
- printk(KERN_ERR "Sorry, Intel CE4100 only supports "
- "a single NAND device.\n");
- BUG();
- }
- }
- nand_dbg_print(NAND_DBG_DEBUG,
- "denali->total_used_banks: %d\n", denali->total_used_banks);
- }
- static void detect_partition_feature(struct denali_nand_info *denali)
- {
- if (ioread32(denali->flash_reg + FEATURES) & FEATURES__PARTITION) {
- if ((ioread32(denali->flash_reg + PERM_SRC_ID_1) &
- PERM_SRC_ID_1__SRCID) == SPECTRA_PARTITION_ID) {
- denali->dev_info.wSpectraStartBlock =
- ((ioread32(denali->flash_reg + MIN_MAX_BANK_1) &
- MIN_MAX_BANK_1__MIN_VALUE) *
- denali->dev_info.wTotalBlocks)
- +
- (ioread32(denali->flash_reg + MIN_BLK_ADDR_1) &
- MIN_BLK_ADDR_1__VALUE);
- denali->dev_info.wSpectraEndBlock =
- (((ioread32(denali->flash_reg + MIN_MAX_BANK_1) &
- MIN_MAX_BANK_1__MAX_VALUE) >> 2) *
- denali->dev_info.wTotalBlocks)
- +
- (ioread32(denali->flash_reg + MAX_BLK_ADDR_1) &
- MAX_BLK_ADDR_1__VALUE);
- denali->dev_info.wTotalBlocks *= denali->total_used_banks;
- if (denali->dev_info.wSpectraEndBlock >=
- denali->dev_info.wTotalBlocks) {
- denali->dev_info.wSpectraEndBlock =
- denali->dev_info.wTotalBlocks - 1;
- }
- denali->dev_info.wDataBlockNum =
- denali->dev_info.wSpectraEndBlock -
- denali->dev_info.wSpectraStartBlock + 1;
- } else {
- denali->dev_info.wTotalBlocks *= denali->total_used_banks;
- denali->dev_info.wSpectraStartBlock = SPECTRA_START_BLOCK;
- denali->dev_info.wSpectraEndBlock =
- denali->dev_info.wTotalBlocks - 1;
- denali->dev_info.wDataBlockNum =
- denali->dev_info.wSpectraEndBlock -
- denali->dev_info.wSpectraStartBlock + 1;
- }
- } else {
- denali->dev_info.wTotalBlocks *= denali->total_used_banks;
- denali->dev_info.wSpectraStartBlock = SPECTRA_START_BLOCK;
- denali->dev_info.wSpectraEndBlock = denali->dev_info.wTotalBlocks - 1;
- denali->dev_info.wDataBlockNum =
- denali->dev_info.wSpectraEndBlock -
- denali->dev_info.wSpectraStartBlock + 1;
- }
- }
- static void dump_device_info(struct denali_nand_info *denali)
- {
- nand_dbg_print(NAND_DBG_DEBUG, "denali->dev_info:\n");
- nand_dbg_print(NAND_DBG_DEBUG, "DeviceMaker: 0x%x\n",
- denali->dev_info.wDeviceMaker);
- nand_dbg_print(NAND_DBG_DEBUG, "DeviceID: 0x%x\n",
- denali->dev_info.wDeviceID);
- nand_dbg_print(NAND_DBG_DEBUG, "DeviceType: 0x%x\n",
- denali->dev_info.wDeviceType);
- nand_dbg_print(NAND_DBG_DEBUG, "SpectraStartBlock: %d\n",
- denali->dev_info.wSpectraStartBlock);
- nand_dbg_print(NAND_DBG_DEBUG, "SpectraEndBlock: %d\n",
- denali->dev_info.wSpectraEndBlock);
- nand_dbg_print(NAND_DBG_DEBUG, "TotalBlocks: %d\n",
- denali->dev_info.wTotalBlocks);
- nand_dbg_print(NAND_DBG_DEBUG, "PagesPerBlock: %d\n",
- denali->dev_info.wPagesPerBlock);
- nand_dbg_print(NAND_DBG_DEBUG, "PageSize: %d\n",
- denali->dev_info.wPageSize);
- nand_dbg_print(NAND_DBG_DEBUG, "PageDataSize: %d\n",
- denali->dev_info.wPageDataSize);
- nand_dbg_print(NAND_DBG_DEBUG, "PageSpareSize: %d\n",
- denali->dev_info.wPageSpareSize);
- nand_dbg_print(NAND_DBG_DEBUG, "NumPageSpareFlag: %d\n",
- denali->dev_info.wNumPageSpareFlag);
- nand_dbg_print(NAND_DBG_DEBUG, "ECCBytesPerSector: %d\n",
- denali->dev_info.wECCBytesPerSector);
- nand_dbg_print(NAND_DBG_DEBUG, "BlockSize: %d\n",
- denali->dev_info.wBlockSize);
- nand_dbg_print(NAND_DBG_DEBUG, "BlockDataSize: %d\n",
- denali->dev_info.wBlockDataSize);
- nand_dbg_print(NAND_DBG_DEBUG, "DataBlockNum: %d\n",
- denali->dev_info.wDataBlockNum);
- nand_dbg_print(NAND_DBG_DEBUG, "PlaneNum: %d\n",
- denali->dev_info.bPlaneNum);
- nand_dbg_print(NAND_DBG_DEBUG, "DeviceMainAreaSize: %d\n",
- denali->dev_info.wDeviceMainAreaSize);
- nand_dbg_print(NAND_DBG_DEBUG, "DeviceSpareAreaSize: %d\n",
- denali->dev_info.wDeviceSpareAreaSize);
- nand_dbg_print(NAND_DBG_DEBUG, "DevicesConnected: %d\n",
- denali->dev_info.wDevicesConnected);
- nand_dbg_print(NAND_DBG_DEBUG, "DeviceWidth: %d\n",
- denali->dev_info.wDeviceWidth);
- nand_dbg_print(NAND_DBG_DEBUG, "HWRevision: 0x%x\n",
- denali->dev_info.wHWRevision);
- nand_dbg_print(NAND_DBG_DEBUG, "HWFeatures: 0x%x\n",
- denali->dev_info.wHWFeatures);
- nand_dbg_print(NAND_DBG_DEBUG, "ONFIDevFeatures: 0x%x\n",
- denali->dev_info.wONFIDevFeatures);
- nand_dbg_print(NAND_DBG_DEBUG, "ONFIOptCommands: 0x%x\n",
- denali->dev_info.wONFIOptCommands);
- nand_dbg_print(NAND_DBG_DEBUG, "ONFITimingMode: 0x%x\n",
- denali->dev_info.wONFITimingMode);
- nand_dbg_print(NAND_DBG_DEBUG, "ONFIPgmCacheTimingMode: 0x%x\n",
- denali->dev_info.wONFIPgmCacheTimingMode);
- nand_dbg_print(NAND_DBG_DEBUG, "MLCDevice: %s\n",
- denali->dev_info.MLCDevice ? "Yes" : "No");
- nand_dbg_print(NAND_DBG_DEBUG, "SpareSkipBytes: %d\n",
- denali->dev_info.wSpareSkipBytes);
- nand_dbg_print(NAND_DBG_DEBUG, "BitsInPageNumber: %d\n",
- denali->dev_info.nBitsInPageNumber);
- nand_dbg_print(NAND_DBG_DEBUG, "BitsInPageDataSize: %d\n",
- denali->dev_info.nBitsInPageDataSize);
- nand_dbg_print(NAND_DBG_DEBUG, "BitsInBlockDataSize: %d\n",
- denali->dev_info.nBitsInBlockDataSize);
- }
- static uint16_t NAND_Read_Device_ID(struct denali_nand_info *denali)
- {
- uint16_t status = PASS;
- uint8_t no_of_planes;
- nand_dbg_print(NAND_DBG_TRACE, "%s, Line %d, Function: %s\n",
- __FILE__, __LINE__, __func__);
- denali->dev_info.wDeviceMaker = ioread32(denali->flash_reg + MANUFACTURER_ID);
- denali->dev_info.wDeviceID = ioread32(denali->flash_reg + DEVICE_ID);
- denali->dev_info.bDeviceParam0 = ioread32(denali->flash_reg + DEVICE_PARAM_0);
- denali->dev_info.bDeviceParam1 = ioread32(denali->flash_reg + DEVICE_PARAM_1);
- denali->dev_info.bDeviceParam2 = ioread32(denali->flash_reg + DEVICE_PARAM_2);
- denali->dev_info.MLCDevice = ioread32(denali->flash_reg + DEVICE_PARAM_0) & 0x0c;
- if (ioread32(denali->flash_reg + ONFI_DEVICE_NO_OF_LUNS) &
- ONFI_DEVICE_NO_OF_LUNS__ONFI_DEVICE) { /* ONFI 1.0 NAND */
- if (FAIL == get_onfi_nand_para(denali))
- return FAIL;
- } else if (denali->dev_info.wDeviceMaker == 0xEC) { /* Samsung NAND */
- get_samsung_nand_para(denali);
- } else if (denali->dev_info.wDeviceMaker == 0x98) { /* Toshiba NAND */
- get_toshiba_nand_para(denali);
- } else if (denali->dev_info.wDeviceMaker == 0xAD) { /* Hynix NAND */
- get_hynix_nand_para(denali);
- } else {
- denali->dev_info.wTotalBlocks = GLOB_HWCTL_DEFAULT_BLKS;
- }
- nand_dbg_print(NAND_DBG_DEBUG, "Dump timing register values:"
- "acc_clks: %d, re_2_we: %d, we_2_re: %d,"
- "addr_2_data: %d, rdwr_en_lo_cnt: %d, "
- "rdwr_en_hi_cnt: %d, cs_setup_cnt: %d\n",
- ioread32(denali->flash_reg + ACC_CLKS),
- ioread32(denali->flash_reg + RE_2_WE),
- ioread32(denali->flash_reg + WE_2_RE),
- ioread32(denali->flash_reg + ADDR_2_DATA),
- ioread32(denali->flash_reg + RDWR_EN_LO_CNT),
- ioread32(denali->flash_reg + RDWR_EN_HI_CNT),
- ioread32(denali->flash_reg + CS_SETUP_CNT));
- denali->dev_info.wHWRevision = ioread32(denali->flash_reg + REVISION);
- denali->dev_info.wHWFeatures = ioread32(denali->flash_reg + FEATURES);
- denali->dev_info.wDeviceMainAreaSize =
- ioread32(denali->flash_reg + DEVICE_MAIN_AREA_SIZE);
- denali->dev_info.wDeviceSpareAreaSize =
- ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
- denali->dev_info.wPageDataSize =
- ioread32(denali->flash_reg + LOGICAL_PAGE_DATA_SIZE);
- /* Note: When using the Micon 4K NAND device, the controller will report
- * Page Spare Size as 216 bytes. But Micron's Spec say it's 218 bytes.
- * And if force set it to 218 bytes, the controller can not work
- * correctly. So just let it be. But keep in mind that this bug may
- * cause
- * other problems in future. - Yunpeng 2008-10-10
- */
- denali->dev_info.wPageSpareSize =
- ioread32(denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE);
- denali->dev_info.wPagesPerBlock = ioread32(denali->flash_reg + PAGES_PER_BLOCK);
- denali->dev_info.wPageSize =
- denali->dev_info.wPageDataSize + denali->dev_info.wPageSpareSize;
- denali->dev_info.wBlockSize =
- denali->dev_info.wPageSize * denali->dev_info.wPagesPerBlock;
- denali->dev_info.wBlockDataSize =
- denali->dev_info.wPagesPerBlock * denali->dev_info.wPageDataSize;
- denali->dev_info.wDeviceWidth = ioread32(denali->flash_reg + DEVICE_WIDTH);
- denali->dev_info.wDeviceType =
- ((ioread32(denali->flash_reg + DEVICE_WIDTH) > 0) ? 16 : 8);
- denali->dev_info.wDevicesConnected = ioread32(denali->flash_reg + DEVICES_CONNECTED);
- denali->dev_info.wSpareSkipBytes =
- ioread32(denali->flash_reg + SPARE_AREA_SKIP_BYTES) *
- denali->dev_info.wDevicesConnected;
- denali->dev_info.nBitsInPageNumber =
- ilog2(denali->dev_info.wPagesPerBlock);
- denali->dev_info.nBitsInPageDataSize =
- ilog2(denali->dev_info.wPageDataSize);
- denali->dev_info.nBitsInBlockDataSize =
- ilog2(denali->dev_info.wBlockDataSize);
- set_ecc_config(denali);
- no_of_planes = ioread32(denali->flash_reg + NUMBER_OF_PLANES) &
- NUMBER_OF_PLANES__VALUE;
- switch (no_of_planes) {
- case 0:
- case 1:
- case 3:
- case 7:
- denali->dev_info.bPlaneNum = no_of_planes + 1;
- break;
- default:
- status = FAIL;
- break;
- }
- find_valid_banks(denali);
- detect_partition_feature(denali);
- dump_device_info(denali);
- /* If the user specified to override the default timings
- * with a specific ONFI mode, we apply those changes here.
- */
- if (onfi_timing_mode != NAND_DEFAULT_TIMINGS)
- {
- NAND_ONFi_Timing_Mode(denali, onfi_timing_mode);
- }
- return status;
- }
- static void NAND_LLD_Enable_Disable_Interrupts(struct denali_nand_info *denali,
- uint16_t INT_ENABLE)
- {
- nand_dbg_print(NAND_DBG_TRACE, "%s, Line %d, Function: %s\n",
- __FILE__, __LINE__, __func__);
- if (INT_ENABLE)
- denali_write32(1, denali->flash_reg + GLOBAL_INT_ENABLE);
- else
- denali_write32(0, denali->flash_reg + GLOBAL_INT_ENABLE);
- }
- /* validation function to verify that the controlling software is making
- a valid request
- */
- static inline bool is_flash_bank_valid(int flash_bank)
- {
- return (flash_bank >= 0 && flash_bank < 4);
- }
- static void denali_irq_init(struct denali_nand_info *denali)
- {
- uint32_t int_mask = 0;
- /* Disable global interrupts */
- NAND_LLD_Enable_Disable_Interrupts(denali, false);
- int_mask = DENALI_IRQ_ALL;
- /* Clear all status bits */
- denali_write32(0xFFFF, denali->flash_reg + INTR_STATUS0);
- denali_write32(0xFFFF, denali->flash_reg + INTR_STATUS1);
- denali_write32(0xFFFF, denali->flash_reg + INTR_STATUS2);
- denali_write32(0xFFFF, denali->flash_reg + INTR_STATUS3);
- denali_irq_enable(denali, int_mask);
- }
- static void denali_irq_cleanup(int irqnum, struct denali_nand_info *denali)
- {
- NAND_LLD_Enable_Disable_Interrupts(denali, false);
- free_irq(irqnum, denali);
- }
- static void denali_irq_enable(struct denali_nand_info *denali, uint32_t int_mask)
- {
- denali_write32(int_mask, denali->flash_reg + INTR_EN0);
- denali_write32(int_mask, denali->flash_reg + INTR_EN1);
- denali_write32(int_mask, denali->flash_reg + INTR_EN2);
- denali_write32(int_mask, denali->flash_reg + INTR_EN3);
- }
- /* This function only returns when an interrupt that this driver cares about
- * occurs. This is to reduce the overhead of servicing interrupts
- */
- static inline uint32_t denali_irq_detected(struct denali_nand_info *denali)
- {
- return (read_interrupt_status(denali) & DENALI_IRQ_ALL);
- }
- /* Interrupts are cleared by writing a 1 to the appropriate status bit */
- static inline void clear_interrupt(struct denali_nand_info *denali, uint32_t irq_mask)
- {
- uint32_t intr_status_reg = 0;
- intr_status_reg = intr_status_addresses[denali->flash_bank];
- denali_write32(irq_mask, denali->flash_reg + intr_status_reg);
- }
- static void clear_interrupts(struct denali_nand_info *denali)
- {
- uint32_t status = 0x0;
- spin_lock_irq(&denali->irq_lock);
- status = read_interrupt_status(denali);
- #if DEBUG_DENALI
- denali->irq_debug_array[denali->idx++] = 0x30000000 | status;
- denali->idx %= 32;
- #endif
- denali->irq_status = 0x0;
- spin_unlock_irq(&denali->irq_lock);
- }
- static uint32_t read_interrupt_status(struct denali_nand_info *denali)
- {
- uint32_t intr_status_reg = 0;
- intr_status_reg = intr_status_addresses[denali->flash_bank];
- return ioread32(denali->flash_reg + intr_status_reg);
- }
- #if DEBUG_DENALI
- static void print_irq_log(struct denali_nand_info *denali)
- {
- int i = 0;
- printk("ISR debug log index = %X\n", denali->idx);
- for (i = 0; i < 32; i++)
- {
- printk("%08X: %08X\n", i, denali->irq_debug_array[i]);
- }
- }
- #endif
- /* This is the interrupt service routine. It handles all interrupts
- * sent to this device. Note that on CE4100, this is a shared
- * interrupt.
- */
- static irqreturn_t denali_isr(int irq, void *dev_id)
- {
- struct denali_nand_info *denali = dev_id;
- uint32_t irq_status = 0x0;
- irqreturn_t result = IRQ_NONE;
- spin_lock(&denali->irq_lock);
- /* check to see if a valid NAND chip has
- * been selected.
- */
- if (is_flash_bank_valid(denali->flash_bank))
- {
- /* check to see if controller generated
- * the interrupt, since this is a shared interrupt */
- if ((irq_status = denali_irq_detected(denali)) != 0)
- {
- #if DEBUG_DENALI
- denali->irq_debug_array[denali->idx++] = 0x10000000 | irq_status;
- denali->idx %= 32;
- printk("IRQ status = 0x%04x\n", irq_status);
- #endif
- /* handle interrupt */
- /* first acknowledge it */
- clear_interrupt(denali, irq_status);
- /* store the status in the device context for someone
- to read */
- denali->irq_status |= irq_status;
- /* notify anyone who cares that it happened */
- complete(&denali->complete);
- /* tell the OS that we've handled this */
- result = IRQ_HANDLED;
- }
- }
- spin_unlock(&denali->irq_lock);
- return result;
- }
- #define BANK(x) ((x) << 24)
- static uint32_t wait_for_irq(struct denali_nand_info *denali, uint32_t irq_mask)
- {
- unsigned long comp_res = 0;
- uint32_t intr_status = 0;
- bool retry = false;
- unsigned long timeout = msecs_to_jiffies(1000);
- do
- {
- #if DEBUG_DENALI
- printk("waiting for 0x%x\n", irq_mask);
- #endif
- comp_res = wait_for_completion_timeout(&denali->complete, timeout);
- spin_lock_irq(&denali->irq_lock);
- intr_status = denali->irq_status;
- #if DEBUG_DENALI
- denali->irq_debug_array[denali->idx++] = 0x20000000 | (irq_mask << 16) | intr_status;
- denali->idx %= 32;
- #endif
- if (intr_status & irq_mask)
- {
- denali->irq_status &= ~irq_mask;
- spin_unlock_irq(&denali->irq_lock);
- #if DEBUG_DENALI
- if (retry) printk("status on retry = 0x%x\n", intr_status);
- #endif
- /* our interrupt was detected */
- break;
- }
- else
- {
- /* these are not the interrupts you are looking for -
- need to wait again */
- spin_unlock_irq(&denali->irq_lock);
- #if DEBUG_DENALI
- print_irq_log(denali);
- printk("received irq nobody cared: irq_status = 0x%x,"
- " irq_mask = 0x%x, timeout = %ld\n", intr_status, irq_mask, comp_res);
- #endif
- retry = true;
- }
- } while (comp_res != 0);
- if (comp_res == 0)
- {
- /* timeout */
- printk(KERN_ERR "timeout occurred, status = 0x%x, mask = 0x%x\n",
- intr_status, irq_mask);
- intr_status = 0;
- }
- return intr_status;
- }
- /* This helper function setups the registers for ECC and whether or not
- the spare area will be transfered. */
- static void setup_ecc_for_xfer(struct denali_nand_info *denali, bool ecc_en,
- bool transfer_spare)
- {
- int ecc_en_flag = 0, transfer_spare_flag = 0;
- /* set ECC, transfer spare bits if needed */
- ecc_en_flag = ecc_en ? ECC_ENABLE__FLAG : 0;
- transfer_spare_flag = transfer_spare ? TRANSFER_SPARE_REG__FLAG : 0;
- /* Enable spare area/ECC per user's request. */
- denali_write32(ecc_en_flag, denali->flash_reg + ECC_ENABLE);
- denali_write32(transfer_spare_flag, denali->flash_reg + TRANSFER_SPARE_REG);
- }
- /* sends a pipeline command operation to the controller. See the Denali NAND
- controller's user guide for more information (section 4.2.3.6).
- */
- static int denali_send_pipeline_cmd(struct denali_nand_info *denali, bool ecc_en,
- bool transfer_spare, int access_type,
- int op)
- {
- int status = PASS;
- uint32_t addr = 0x0, cmd = 0x0, page_count = 1, irq_status = 0,
- irq_mask = 0;
- if (op == DENALI_READ) irq_mask = INTR_STATUS0__LOAD_COMP;
- else if (op == DENALI_WRITE) irq_mask = 0;
- else BUG();
- setup_ecc_for_xfer(denali, ecc_en, transfer_spare);
- #if DEBUG_DENALI
- spin_lock_irq(&denali->irq_lock);
- denali->irq_debug_array[denali->idx++] = 0x40000000 | ioread32(denali->flash_reg + ECC_ENABLE) | (access_type << 4);
- denali->idx %= 32;
- spin_unlock_irq(&denali->irq_lock);
- #endif
- /* clear interrupts */
- clear_interrupts(denali);
- addr = BANK(denali->flash_bank) | denali->page;
- if (op == DENALI_WRITE && access_type != SPARE_ACCESS)
- {
- cmd = MODE_01 | addr;
- denali_write32(cmd, denali->flash_mem);
- }
- else if (op == DENALI_WRITE && access_type == SPARE_ACCESS)
- {
- /* read spare area */
- cmd = MODE_10 | addr;
- index_addr(denali, (uint32_t)cmd, access_type);
- cmd = MODE_01 | addr;
- denali_write32(cmd, denali->flash_mem);
- }
- else if (op == DENALI_READ)
- {
- /* setup page read request for access type */
- cmd = MODE_10 | addr;
- index_addr(denali, (uint32_t)cmd, access_type);
- /* page 33 of the NAND controller spec indicates we should not
- use the pipeline commands in Spare area only mode. So we
- don't.
- */
- if (access_type == SPARE_ACCESS)
- {
- cmd = MODE_01 | addr;
- denali_write32(cmd, denali->flash_mem);
- }
- else
- {
- index_addr(denali, (uint32_t)cmd, 0x2000 | op | page_count);
-
- /* wait for command to be accepted
- * can always use status0 bit as the mask is identical for each
- * bank. */
- irq_status = wait_for_irq(denali, irq_mask);
- if (irq_status == 0)
- {
- printk(KERN_ERR "cmd, page, addr on timeout "
- "(0x%x, 0x%x, 0x%x)\n", cmd, denali->page, addr);
- status = FAIL;
- }
- else
- {
- cmd = MODE_01 | addr;
- denali_write32(cmd, denali->flash_mem);
- }
- }
- }
- return status;
- }
- /* helper function that simply writes a buffer to the flash */
- static int write_data_to_flash_mem(struct denali_nand_info *denali, const uint8_t *buf,
- int len)
- {
- uint32_t i = 0, *buf32;
- /* verify that the len is a multiple of 4. see comment in
- * read_data_from_flash_mem() */
- BUG_ON((len % 4) != 0);
- /* write the data to the flash memory */
- buf32 = (uint32_t *)buf;
- for (i = 0; i < len / 4; i++)
- {
- denali_write32(*buf32++, denali->flash_mem + 0x10);
- }
- return i*4; /* intent is to return the number of bytes read */
- }
- /* helper function that simply reads a buffer from the flash */
- static int read_data_from_flash_mem(struct denali_nand_info *denali, uint8_t *buf,
- int len)
- {
- uint32_t i = 0, *buf32;
- /* we assume that len will be a multiple of 4, if not
- * it would be nice to know about it ASAP rather than
- * have random failures...
- *
- * This assumption is based on the fact that this
- * function is designed to be used to read flash pages,
- * which are typically multiples of 4...
- */
- BUG_ON((len % 4) != 0);
- /* transfer the data from the flash */
- buf32 = (uint32_t *)buf;
- for (i = 0; i < len / 4; i++)
- {
- *buf32++ = ioread32(denali->flash_mem + 0x10);
- }
- return i*4; /* intent is to return the number of bytes read */
- }
- /* writes OOB data to the device */
- static int write_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
- {
- struct denali_nand_info *denali = mtd_to_denali(mtd);
- uint32_t irq_status = 0;
- uint32_t irq_mask = INTR_STATUS0__PROGRAM_COMP |
- INTR_STATUS0__PROGRAM_FAIL;
- int status = 0;
- denali->page = page;
- if (denali_send_pipeline_cmd(denali, false, false, SPARE_ACCESS,
- DENALI_WRITE) == PASS)
- {
- write_data_to_flash_mem(denali, buf, mtd->oobsize);
- #if DEBUG_DENALI
- spin_lock_irq(&denali->irq_lock);
- denali->irq_debug_array[denali->idx++] = 0x80000000 | mtd->oobsize;
- denali->idx %= 32;
- spin_unlock_irq(&denali->irq_lock);
- #endif
-
- /* wait for operation to complete */
- irq_status = wait_for_irq(denali, irq_mask);
- if (irq_status == 0)
- {
- printk(KERN_ERR "OOB write failed\n");
- status = -EIO;
- }
- }
- else
- {
- printk(KERN_ERR "unable to send pipeline command\n");
- status = -EIO;
- }
- return status;
- }
- /* reads OOB data from the device */
- static void read_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
- {
- struct denali_nand_info *denali = mtd_to_denali(mtd);
- uint32_t irq_mask = INTR_STATUS0__LOAD_COMP, irq_status = 0, addr = 0x0, cmd = 0x0;
- denali->page = page;
- #if DEBUG_DENALI
- printk("read_oob %d\n", page);
- #endif
- if (denali_send_pipeline_cmd(denali, false, true, SPARE_ACCESS,
- DENALI_READ) == PASS)
- {
- read_data_from_flash_mem(denali, buf, mtd->oobsize);
- /* wait for command to be accepted
- * can always use status0 bit as the mask is identical for each
- * bank. */
- irq_status = wait_for_irq(denali, irq_mask);
- if (irq_status == 0)
- {
- printk(KERN_ERR "page on OOB timeout %d\n", denali->page);
- }
- /* We set the device back to MAIN_ACCESS here as I observed
- * instability with the controller if you do a block erase
- * and the last transaction was a SPARE_ACCESS. Block erase
- * is reliable (according to the MTD test infrastructure)
- * if you are in MAIN_ACCESS.
- */
- addr = BANK(denali->flash_bank) | denali->page;
- cmd = MODE_10 | addr;
- index_addr(denali, (uint32_t)cmd, MAIN_ACCESS);
- #if DEBUG_DENALI
- spin_lock_irq(&denali->irq_lock);
- denali->irq_debug_array[denali->idx++] = 0x60000000 | mtd->oobsize;
- denali->idx %= 32;
- spin_unlock_irq(&denali->irq_lock);
- #endif
- }
- }
- /* this function examines buffers to see if they contain data that
- * indicate that the buffer is part of an erased region of flash.
- */
- bool is_erased(uint8_t *buf, int len)
- {
- int i = 0;
- for (i = 0; i < len; i++)
- {
- if (buf[i] != 0xFF)
- {
- return false;
- }
- }
- return true;
- }
- #define ECC_SECTOR_SIZE 512
- #define ECC_SECTOR(x) (((x) & ECC_ERROR_ADDRESS__SECTOR_NR) >> 12)
- #define ECC_BYTE(x) (((x) & ECC_ERROR_ADDRESS__OFFSET))
- #define ECC_CORRECTION_VALUE(x) ((x) & ERR_CORRECTION_INFO__BYTEMASK)
- #define ECC_ERROR_CORRECTABLE(x) (!((x) & ERR_CORRECTION_INFO))
- #define ECC_ERR_DEVICE(x) ((x) & ERR_CORRECTION_INFO__DEVICE_NR >> 8)
- #define ECC_LAST_ERR(x) ((x) & ERR_CORRECTION_INFO__LAST_ERR_INFO)
- static bool handle_ecc(struct denali_nand_info *denali, uint8_t *buf,
- uint8_t *oobbuf, uint32_t irq_status)
- {
- bool check_erased_page = false;
- if (irq_status & INTR_STATUS0__ECC_ERR)
- {
- /* read the ECC errors. we'll ignore them for now */
- uint32_t err_address = 0, err_correction_info = 0;
- uint32_t err_byte = 0, err_sector = 0, err_device = 0;
- uint32_t err_correction_value = 0;
- do
- {
- err_address = ioread32(denali->flash_reg +
- ECC_ERROR_ADDRESS);
- err_sector = ECC_SECTOR(err_address);
- err_byte = ECC_BYTE(err_address);
- err_correction_info = ioread32(denali->flash_reg +
- ERR_CORRECTION_INFO);
- err_correction_value =
- ECC_CORRECTION_VALUE(err_correction_info);
- err_device = ECC_ERR_DEVICE(err_correction_info);
- if (ECC_ERROR_CORRECTABLE(err_correction_info))
- {
- /* offset in our buffer is computed as:
- sector number * sector size + offset in
- sector
- */
- int offset = err_sector * ECC_SECTOR_SIZE +
- err_byte;
- if (offset < denali->mtd.writesize)
- {
- /* correct the ECC error */
- buf[offset] ^= err_correction_value;
- denali->mtd.ecc_stats.corrected++;
- }
- else
- {
- /* bummer, couldn't correct the error */
- printk(KERN_ERR "ECC offset invalid\n");
- denali->mtd.ecc_stats.failed++;
- }
- }
- else
- {
- /* if the error is not correctable, need to
- * look at the page to see if it is an erased page.
- * if so, then it's not a real ECC error */
- check_erased_page = true;
- }
- #if DEBUG_DENALI
- printk("Detected ECC error in page %d: err_addr = 0x%08x,"
- " info to fix is 0x%08x\n", denali->page, err_address,
- err_correction_info);
- #endif
- } while (!ECC_LAST_ERR(err_correction_info));
- }
- return check_erased_page;
- }
- /* programs the controller to either enable/disable DMA transfers */
- static void denali_enable_dma(struct denali_nand_info *denali, bool en)
- {
- uint32_t reg_val = 0x0;
- if (en) reg_val = DMA_ENABLE__FLAG;
- denali_write32(reg_val, denali->flash_reg + DMA_ENABLE);
- ioread32(denali->flash_reg + DMA_ENABLE);
- }
- /* setups the HW to perform the data DMA */
- static void denali_setup_dma(struct denali_nand_info *denali, int op)
- {
- uint32_t mode = 0x0;
- const int page_count = 1;
- dma_addr_t addr = denali->buf.dma_buf;
- mode = MODE_10 | BANK(denali->flash_bank);
- /* DMA is a four step process */
- /* 1. setup transfer type and # of pages */
- index_addr(denali, mode | denali->page, 0x2000 | op | page_count);
- /* 2. set memory high address bits 23:8 */
- index_addr(denali, mode | ((uint16_t)(addr >> 16) << 8), 0x2200);
- /* 3. set memory low address bits 23:8 */
- index_addr(denali, mode | ((uint16_t)addr << 8), 0x2300);
- /* 4. interrupt when complete, burst len = 64 bytes*/
- index_addr(denali, mode | 0x14000, 0x2400);
- }
- /* writes a page. user specifies type, and this function handles the
- configuration details. */
- static void write_page(struct mtd_info *mtd, struct nand_chip *chip,
- const uint8_t *buf, bool raw_xfer)
- {
- struct denali_nand_info *denali = mtd_to_denali(mtd);
- struct pci_dev *pci_dev = denali->dev;
- dma_addr_t addr = denali->buf.dma_buf;
- size_t size = denali->mtd.writesize + denali->mtd.oobsize;
- uint32_t irq_status = 0;
- uint32_t irq_mask = INTR_STATUS0__DMA_CMD_COMP |
- INTR_STATUS0__PROGRAM_FAIL;
- /* if it is a raw xfer, we want to disable ecc, and send
- * the spare area.
- * !raw_xfer - enable ecc
- * raw_xfer - transfer spare
- */
- setup_ecc_for_xfer(denali, !raw_xfer, raw_xfer);
- /* copy buffer into DMA buffer */
- memcpy(denali->buf.buf, buf, mtd->writesize);
- if (raw_xfer)
- {
- /* transfer the data to the spare area */
- memcpy(denali->buf.buf + mtd->writesize,
- chip->oob_poi,
- mtd->oobsize);
- }
- pci_dma_sync_single_for_device(pci_dev, addr, size, PCI_DMA_TODEVICE);
- clear_interrupts(denali);
- denali_enable_dma(denali, true);
- denali_setup_dma(denali, DENALI_WRITE);
- /* wait for operation to complete */
- irq_status = wait_for_irq(denali, irq_mask);
- if (irq_status == 0)
- {
- printk(KERN_ERR "timeout on write_page (type = %d)\n", raw_xfer);
- denali->status =
- (irq_status & INTR_STATUS0__PROGRAM_FAIL) ? NAND_STATUS_FAIL :
- PASS;
- }
- denali_enable_dma(denali, false);
- pci_dma_sync_single_for_cpu(pci_dev, addr, size, PCI_DMA_TODEVICE);
- }
- /* NAND core entry points */
- /* this is the callback that the NAND core calls to write a page. Since
- writing a page with ECC or without is similar, all the work is done
- by write_page above. */
- static void denali_write_page(struct mtd_info *mtd, struct nand_chip *chip,
- const uint8_t *buf)
- {
- /* for regular page writes, we let HW handle all the ECC
- * data written to the device. */
- write_page(mtd, chip, buf, false);
- }
- /* This is the callback that the NAND core calls to write a page without ECC.
- raw access is similiar to ECC page writes, so all the work is done in the
- write_page() function above.
- */
- static void denali_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
- const uint8_t *buf)
- {
- /* for raw page writes, we want to disable ECC and simply write
- whatever data is in the buffer. */
- write_page(mtd, chip, buf, true);
- }
- static int denali_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
- int page)
- {
- return write_oob_data(mtd, chip->oob_poi, page);
- }
- static int denali_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
- int page, int sndcmd)
- {
- read_oob_data(mtd, chip->oob_poi, page);
- return 0; /* notify NAND core to send command to
- * NAND device. */
- }
- static int denali_read_page(struct mtd_info *mtd, struct nand_chip *chip,
- uint8_t *buf, int page)
- {
- struct denali_nand_info *denali = mtd_to_denali(mtd);
- struct pci_dev *pci_dev = denali->dev;
- dma_addr_t addr = denali->buf.dma_buf;
- size_t size = denali->mtd.writesize + denali->mtd.oobsize;
- uint32_t irq_status = 0;
- uint32_t irq_mask = INTR_STATUS0__ECC_TRANSACTION_DONE |
- INTR_STATUS0__ECC_ERR;
- bool check_erased_page = false;
- setup_ecc_for_xfer(denali, true, false);
- denali_enable_dma(denali, true);
- pci_dma_sync_single_for_device(pci_dev, addr, size, PCI_DMA_FROMDEVICE);
- clear_interrupts(denali);
- denali_setup_dma(denali, DENALI_READ);
- /* wait for operation to complete */
- irq_status = wait_for_irq(denali, irq_mask);
- pci_dma_sync_single_for_cpu(pci_dev, addr, size, PCI_DMA_FROMDEVICE);
- memcpy(buf, denali->buf.buf, mtd->writesize);
-
- check_erased_page = handle_ecc(denali, buf, chip->oob_poi, irq_status);
- denali_enable_dma(denali, false);
- if (check_erased_page)
- {
- read_oob_data(&denali->mtd, chip->oob_poi, denali->page);
- /* check ECC failures that may have occurred on erased pages */
- if (check_erased_page)
- {
- if (!is_erased(buf, denali->mtd.writesize))
- {
- denali->mtd.ecc_stats.failed++;
- }
- if (!is_erased(buf, denali->mtd.oobsize))
- {
- denali->mtd.ecc_stats.failed++;
- }
- }
- }
- return 0;
- }
- static int denali_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
- uint8_t *buf, int page)
- {
- struct denali_nand_info *denali = mtd_to_denali(mtd);
- struct pci_dev *pci_dev = denali->dev;
- dma_addr_t addr = denali->buf.dma_buf;
- size_t size = denali->mtd.writesize + denali->mtd.oobsize;
- uint32_t irq_status = 0;
- uint32_t irq_mask = INTR_STATUS0__DMA_CMD_COMP;
-
- setup_ecc_for_xfer(denali, false, true);
- denali_enable_dma(denali, true);
- pci_dma_sync_single_for_device(pci_dev, addr, size, PCI_DMA_FROMDEVICE);
- clear_interrupts(denali);
- denali_setup_dma(denali, DENALI_READ);
- /* wait for operation to complete */
- irq_status = wait_for_irq(denali, irq_mask);
- pci_dma_sync_single_for_cpu(pci_dev, addr, size, PCI_DMA_FROMDEVICE);
- denali_enable_dma(denali, false);
- memcpy(buf, denali->buf.buf, mtd->writesize);
- memcpy(chip->oob_poi, denali->buf.buf + mtd->writesize, mtd->oobsize);
- return 0;
- }
- static uint8_t denali_read_byte(struct mtd_info *mtd)
- {
- struct denali_nand_info *denali = mtd_to_denali(mtd);
- uint8_t result = 0xff;
- if (denali->buf.head < denali->buf.tail)
- {
- result = denali->buf.buf[denali->buf.head++];
- }
- #if DEBUG_DENALI
- printk("read byte -> 0x%02x\n", result);
- #endif
- return result;
- }
- static void denali_select_chip(struct mtd_info *mtd, int chip)
- {
- struct denali_nand_info *denali = mtd_to_denali(mtd);
- #if DEBUG_DENALI
- printk("denali select chip %d\n", chip);
- #endif
- spin_lock_irq(&denali->irq_lock);
- denali->flash_bank = chip;
- spin_unlock_irq(&denali->irq_lock);
- }
- static int denali_waitfunc(struct mtd_info *mtd, struct nand_chip *chip)
- {
- struct denali_nand_info *denali = mtd_to_denali(mtd);
- int status = denali->status;
- denali->status = 0;
- #if DEBUG_DENALI
- printk("waitfunc %d\n", status);
- #endif
- return status;
- }
- static void denali_erase(struct mtd_info *mtd, int page)
- {
- struct denali_nand_info *denali = mtd_to_denali(mtd);
- uint32_t cmd = 0x0, irq_status = 0;
- #if DEBUG_DENALI
- printk("erase page: %d\n", page);
- #endif
- /* clear interrupts */
- clear_interrupts(denali);
- /* setup page read request for access type */
- cmd = MODE_10 | BANK(denali->flash_bank) | page;
- index_addr(denali, (uint32_t)cmd, 0x1);
- /* wait for erase to complete or failure to occur */
- irq_status = wait_for_irq(denali, INTR_STATUS0__ERASE_COMP |
- INTR_STATUS0__ERASE_FAIL);
- denali->status = (irq_status & INTR_STATUS0__ERASE_FAIL) ? NAND_STATUS_FAIL :
- PASS;
- }
- static void denali_cmdfunc(struct mtd_info *mtd, unsigned int cmd, int col,
- int page)
- {
- struct denali_nand_info *denali = mtd_to_denali(mtd);
- #if DEBUG_DENALI
- printk("cmdfunc: 0x%x %d %d\n", cmd, col, page);
- #endif
- switch (cmd)
- {
- case NAND_CMD_PAGEPROG:
- break;
- case NAND_CMD_STATUS:
- read_status(denali);
- break;
- case NAND_CMD_READID:
- reset_buf(denali);
- if (denali->flash_bank < denali->total_used_banks)
- {
- /* write manufacturer information into nand
- buffer for NAND subsystem to fetch.
- */
- write_byte_to_buf(denali, denali->dev_info.wDeviceMaker);
- write_byte_to_buf(denali, denali->dev_info.wDeviceID);
- write_byte_to_buf(denali, denali->dev_info.bDeviceParam0);
- write_byte_to_buf(denali, denali->dev_info.bDeviceParam1);
- write_byte_to_buf(denali, denali->dev_info.bDeviceParam2);
- }
- else
- {
- int i;
- for (i = 0; i < 5; i++)
- write_byte_to_buf(denali, 0xff);
- }
- break;
- case NAND_CMD_READ0:
- case NAND_CMD_SEQIN:
- denali->page = page;
- break;
- case NAND_CMD_RESET:
- reset_bank(denali);
- break;
- case NAND_CMD_READOOB:
- /* TODO: Read OOB data */
- break;
- default:
- printk(KERN_ERR ": unsupported command received 0x%x\n", cmd);
- break;
- }
- }
- /* stubs for ECC functions not used by the NAND core */
- static int denali_ecc_calculate(struct mtd_info *mtd, const uint8_t *data,
- uint8_t *ecc_code)
- {
- printk(KERN_ERR "denali_ecc_calculate called unexpectedly\n");
- BUG();
- return -EIO;
- }
- static int denali_ecc_correct(struct mtd_info *mtd, uint8_t *data,
- uint8_t *read_ecc, uint8_t *calc_ecc)
- {
- printk(KERN_ERR "denali_ecc_correct called unexpectedly\n");
- BUG();
- return -EIO;
- }
- static void denali_ecc_hwctl(struct mtd_info *mtd, int mode)
- {
- printk(KERN_ERR "denali_ecc_hwctl called unexpectedly\n");
- BUG();
- }
- /* end NAND core entry points */
- /* Initialization code to bring the device up to a known good state */
- static void denali_hw_init(struct denali_nand_info *denali)
- {
- denali_irq_init(denali);
- NAND_Flash_Reset(denali);
- denali_write32(0x0F, denali->flash_reg + RB_PIN_ENABLED);
- denali_write32(CHIP_EN_DONT_CARE__FLAG, denali->flash_reg + CHIP_ENABLE_DONT_CARE);
- denali_write32(0x0, denali->flash_reg + SPARE_AREA_SKIP_BYTES);
- denali_write32(0xffff, denali->flash_reg + SPARE_AREA_MARKER);
- /* Should set value for these registers when init */
- denali_write32(0, denali->flash_reg + TWO_ROW_ADDR_CYCLES);
- denali_write32(1, denali->flash_reg + ECC_ENABLE);
- }
- /* ECC layout for SLC devices. Denali spec indicates SLC fixed at 4 bytes */
- #define ECC_BYTES_SLC 4 * (2048 / ECC_SECTOR_SIZE)
- static struct nand_ecclayout nand_oob_slc = {
- .eccbytes = 4,
- .eccpos = { 0, 1, 2, 3 }, /* not used */
- .oobfree = {{
- .offset = ECC_BYTES_SLC,
- .length = 64 - ECC_BYTES_SLC
- }}
- };
- #define ECC_BYTES_MLC 14 * (2048 / ECC_SECTOR_SIZE)
- static struct nand_ecclayout nand_oob_mlc_14bit = {
- .eccbytes = 14,
- .eccpos = { 0, 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13 }, /* not used */
- .oobfree = {{
- .offset = ECC_BYTES_MLC,
- .length = 64 - ECC_BYTES_MLC
- }}
- };
- static uint8_t bbt_pattern[] = {'B', 'b', 't', '0' };
- static uint8_t mirror_pattern[] = {'1', 't', 'b', 'B' };
- static struct nand_bbt_descr bbt_main_descr = {
- .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
- | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
- .offs = 8,
- .len = 4,
- .veroffs = 12,
- .maxblocks = 4,
- .pattern = bbt_pattern,
- };
- static struct nand_bbt_descr bbt_mirror_descr = {
- .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
- | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
- .offs = 8,
- .len = 4,
- .veroffs = 12,
- .maxblocks = 4,
- .pattern = mirror_pattern,
- };
- /* initialize driver data structures */
- void denali_drv_init(struct denali_nand_info *denali)
- {
- denali->idx = 0;
- /* setup interrupt handler */
- /* the completion object will be used to notify
- * the callee that the interrupt is done */
- init_completion(&denali->complete);
- /* the spinlock will be used to synchronize the ISR
- * with any element that might be access shared
- * data (interrupt status) */
- spin_lock_init(&denali->irq_lock);
- /* indicate that MTD has not selected a valid bank yet */
- denali->flash_bank = CHIP_SELECT_INVALID;
- /* initialize our irq_status variable to indicate no interrupts */
- denali->irq_status = 0;
- }
- /* driver entry point */
- static int denali_pci_probe(struct pci_dev *dev, const struct pci_device_id *id)
- {
- int ret = -ENODEV;
- resource_size_t csr_base, mem_base;
- unsigned long csr_len, mem_len;
- struct denali_nand_info *denali;
- nand_dbg_print(NAND_DBG_TRACE, "%s, Line %d, Function: %s\n",
- __FILE__, __LINE__, __func__);
- denali = kzalloc(sizeof(*denali), GFP_KERNEL);
- if (!denali)
- return -ENOMEM;
- ret = pci_enable_device(dev);
- if (ret) {
- printk(KERN_ERR "Spectra: pci_enable_device failed.\n");
- goto failed_enable;
- }
- if (id->driver_data == INTEL_CE4100) {
- /* Due to a silicon limitation, we can only support
- * ONFI timing mode 1 and below.
- */
- if (onfi_timing_mode < -1 || onfi_timing_mode > 1)
- {
- printk("Intel CE4100 only supports ONFI timing mode 1 "
- "or below\n");
- ret = -EINVAL;
- goto failed_enable;
- }
- denali->platform = INTEL_CE4100;
- mem_base = pci_resource_start(dev, 0);
- mem_len = pci_resource_len(dev, 1);
- csr_base = pci_resource_start(dev, 1);
- csr_len = pci_resource_len(dev, 1);
- } else {
- denali->platform = INTEL_MRST;
- csr_base = pci_resource_start(dev, 0);
- csr_len = pci_resource_start(dev, 0);
- mem_base = pci_resource_start(dev, 1);
- mem_len = pci_resource_len(dev, 1);
- if (!mem_len) {
- mem_base = csr_base + csr_len;
- mem_len = csr_len;
- nand_dbg_print(NAND_DBG_WARN,
- "Spectra: No second BAR for PCI device; assuming %08Lx\n",
- (uint64_t)csr_base);
- }
- }
- /* Is 32-bit DMA supported? */
- ret = pci_set_dma_mask(dev, DMA_BIT_MASK(32));
- if (ret)
- {
- printk(KERN_ERR "Spectra: no usable DMA configuration\n");
- goto failed_enable;
- }
- denali->buf.dma_buf = pci_map_single(dev, denali->buf.buf, DENALI_BUF_SIZE,
- PCI_DMA_BIDIRECTIONAL);
- if (pci_dma_mapping_error(dev, denali->buf.dma_buf))
- {
- printk(KERN_ERR "Spectra: failed to map DMA buffer\n");
- goto failed_enable;
- }
- pci_set_master(dev);
- denali->dev = dev;
- ret = pci_request_regions(dev, DENALI_NAND_NAME);
- if (ret) {
- printk(KERN_ERR "Spectra: Unable to request memory regions\n");
- goto failed_req_csr;
- }
- denali->flash_reg = ioremap_nocache(csr_base, csr_len);
- if (!denali->flash_reg) {
- printk(KERN_ERR "Spectra: Unable to remap memory region\n");
- ret = -ENOMEM;
- goto failed_remap_csr;
- }
- nand_dbg_print(NAND_DBG_DEBUG, "Spectra: CSR 0x%08Lx -> 0x%p (0x%lx)\n",
- (uint64_t)csr_base, denali->flash_reg, csr_len);
- denali->flash_mem = ioremap_nocache(mem_base, mem_len);
- if (!denali->flash_mem) {
- printk(KERN_ERR "Spectra: ioremap_nocache failed!");
- iounmap(denali->flash_reg);
- ret = -ENOMEM;
- goto failed_remap_csr;
- }
- nand_dbg_print(NAND_DBG_WARN,
- "Spectra: Remapped flash base address: "
- "0x%p, len: %ld\n",
- denali->flash_mem, csr_len);
- denali_hw_init(denali);
- denali_drv_init(denali);
- nand_dbg_print(NAND_DBG_DEBUG, "Spectra: IRQ %d\n", dev->irq);
- if (request_irq(dev->irq, denali_isr, IRQF_SHARED,
- DENALI_NAND_NAME, denali)) {
- printk(KERN_ERR "Spectra: Unable to allocate IRQ\n");
- ret = -ENODEV;
- goto failed_request_irq;
- }
- /* now that our ISR is registered, we can enable interrupts */
- NAND_LLD_Enable_Disable_Interrupts(denali, true);
- pci_set_drvdata(dev, denali);
- NAND_Read_Device_ID(denali);
- /* MTD supported page sizes vary by kernel. We validate our
- kernel supports the device here.
- */
- if (denali->dev_info.wPageSize > NAND_MAX_PAGESIZE + NAND_MAX_OOBSIZE)
- {
- ret = -ENODEV;
- printk(KERN_ERR "Spectra: device size not supported by this "
- "version of MTD.");
- goto failed_nand;
- }
- nand_dbg_print(NAND_DBG_DEBUG, "Dump timing register values:"
- "acc_clks: %d, re_2_we: %d, we_2_re: %d,"
- "addr_2_data: %d, rdwr_en_lo_cnt: %d, "
- "rdwr_en_hi_cnt: %d, cs_setup_cnt: %d\n",
- ioread32(denali->flash_reg + ACC_CLKS),
- ioread32(denali->flash_reg + RE_2_WE),
- ioread32(denali->flash_reg + WE_2_RE),
- ioread32(denali->flash_reg + ADDR_2_DATA),
- ioread32(denali->flash_reg + RDWR_EN_LO_CNT),
- ioread32(denali->flash_reg + RDWR_EN_HI_CNT),
- ioread32(denali->flash_reg + CS_SETUP_CNT));
- denali->mtd.name = "Denali NAND";
- denali->mtd.owner = THIS_MODULE;
- denali->mtd.priv = &denali->nand;
- /* register the driver with the NAND core subsystem */
- denali->nand.select_chip = denali_select_chip;
- denali->nand.cmdfunc = denali_cmdfunc;
- denali->nand.read_byte = denali_read_byte;
- denali->nand.waitfunc = denali_waitfunc;
- /* scan for NAND devices attached to the controller
- * this is the first stage in a two step process to register
- * with the nand subsystem */
- if (nand_scan_ident(&denali->mtd, LLD_MAX_FLASH_BANKS, NULL))
- {
- ret = -ENXIO;
- goto failed_nand;
- }
-
- /* second stage of the NAND scan
- * this stage requires information regarding ECC and
- * bad block management. */
- /* Bad block management */
- denali->nand.bbt_td = &bbt_main_descr;
- denali->nand.bbt_md = &bbt_mirror_descr;
- /* skip the scan for now until we have OOB read and write support */
- denali->nand.options |= NAND_USE_FLASH_BBT | NAND_SKIP_BBTSCAN;
- denali->nand.ecc.mode = NAND_ECC_HW_SYNDROME;
- if (denali->dev_info.MLCDevice)
- {
- denali->nand.ecc.layout = &nand_oob_mlc_14bit;
- denali->nand.ecc.bytes = ECC_BYTES_MLC;
- }
- else /* SLC */
- {
- denali->nand.ecc.layout = &nand_oob_slc;
- denali->nand.ecc.bytes = ECC_BYTES_SLC;
- }
- /* These functions are required by the NAND core framework, otherwise,
- the NAND core will assert. However, we don't need them, so we'll stub
- them out. */
- denali->nand.ecc.calculate = denali_ecc_calculate;
- denali->nand.ecc.correct = denali_ecc_correct;
- denali->nand.ecc.hwctl = denali_ecc_hwctl;
- /* override the default read operations */
- denali->nand.ecc.size = denali->mtd.writesize;
- denali->nand.ecc.read_page = denali_read_page;
- denali->nand.ecc.read_page_raw = denali_read_page_raw;
- denali->nand.ecc.write_page = denali_write_page;
- denali->nand.ecc.write_page_raw = denali_write_page_raw;
- denali->nand.ecc.read_oob = denali_read_oob;
- denali->nand.ecc.write_oob = denali_write_oob;
- denali->nand.erase_cmd = denali_erase;
- if (nand_scan_tail(&denali->mtd))
- {
- ret = -ENXIO;
- goto failed_nand;
- }
- ret = add_mtd_device(&denali->mtd);
- if (ret) {
- printk(KERN_ERR "Spectra: Failed to register MTD device: %d\n", ret);
- goto failed_nand;
- }
- return 0;
- failed_nand:
- denali_irq_cleanup(dev->irq, denali);
- failed_request_irq:
- iounmap(denali->flash_reg);
- iounmap(denali->flash_mem);
- failed_remap_csr:
- pci_release_regions(dev);
- failed_req_csr:
- pci_unmap_single(dev, denali->buf.dma_buf, DENALI_BUF_SIZE,
- PCI_DMA_BIDIRECTIONAL);
- failed_enable:
- kfree(denali);
- return ret;
- }
- /* driver exit point */
- static void denali_pci_remove(struct pci_dev *dev)
- {
- struct denali_nand_info *denali = pci_get_drvdata(dev);
- nand_dbg_print(NAND_DBG_WARN, "%s, Line %d, Function: %s\n",
- __FILE__, __LINE__, __func__);
- nand_release(&denali->mtd);
- del_mtd_device(&denali->mtd);
- denali_irq_cleanup(dev->irq, denali);
- iounmap(denali->flash_reg);
- iounmap(denali->flash_mem);
- pci_release_regions(dev);
- pci_disable_device(dev);
- pci_unmap_single(dev, denali->buf.dma_buf, DENALI_BUF_SIZE,
- PCI_DMA_BIDIRECTIONAL);
- pci_set_drvdata(dev, NULL);
- kfree(denali);
- }
- MODULE_DEVICE_TABLE(pci, denali_pci_ids);
- static struct pci_driver denali_pci_driver = {
- .name = DENALI_NAND_NAME,
- .id_table = denali_pci_ids,
- .probe = denali_pci_probe,
- .remove = denali_pci_remove,
- };
- static int __devinit denali_init(void)
- {
- printk(KERN_INFO "Spectra MTD driver built on %s @ %s\n", __DATE__, __TIME__);
- return pci_register_driver(&denali_pci_driver);
- }
- /* Free memory */
- static void __devexit denali_exit(void)
- {
- pci_unregister_driver(&denali_pci_driver);
- }
- module_init(denali_init);
- module_exit(denali_exit);
|