dm-crypt.c 33 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438
  1. /*
  2. * Copyright (C) 2003 Christophe Saout <christophe@saout.de>
  3. * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
  4. * Copyright (C) 2006-2009 Red Hat, Inc. All rights reserved.
  5. *
  6. * This file is released under the GPL.
  7. */
  8. #include <linux/completion.h>
  9. #include <linux/err.h>
  10. #include <linux/module.h>
  11. #include <linux/init.h>
  12. #include <linux/kernel.h>
  13. #include <linux/bio.h>
  14. #include <linux/blkdev.h>
  15. #include <linux/mempool.h>
  16. #include <linux/slab.h>
  17. #include <linux/crypto.h>
  18. #include <linux/workqueue.h>
  19. #include <linux/backing-dev.h>
  20. #include <asm/atomic.h>
  21. #include <linux/scatterlist.h>
  22. #include <asm/page.h>
  23. #include <asm/unaligned.h>
  24. #include <linux/device-mapper.h>
  25. #define DM_MSG_PREFIX "crypt"
  26. #define MESG_STR(x) x, sizeof(x)
  27. /*
  28. * context holding the current state of a multi-part conversion
  29. */
  30. struct convert_context {
  31. struct completion restart;
  32. struct bio *bio_in;
  33. struct bio *bio_out;
  34. unsigned int offset_in;
  35. unsigned int offset_out;
  36. unsigned int idx_in;
  37. unsigned int idx_out;
  38. sector_t sector;
  39. atomic_t pending;
  40. };
  41. /*
  42. * per bio private data
  43. */
  44. struct dm_crypt_io {
  45. struct dm_target *target;
  46. struct bio *base_bio;
  47. struct work_struct work;
  48. struct convert_context ctx;
  49. atomic_t pending;
  50. int error;
  51. sector_t sector;
  52. struct dm_crypt_io *base_io;
  53. };
  54. struct dm_crypt_request {
  55. struct convert_context *ctx;
  56. struct scatterlist sg_in;
  57. struct scatterlist sg_out;
  58. };
  59. struct crypt_config;
  60. struct crypt_iv_operations {
  61. int (*ctr)(struct crypt_config *cc, struct dm_target *ti,
  62. const char *opts);
  63. void (*dtr)(struct crypt_config *cc);
  64. int (*init)(struct crypt_config *cc);
  65. int (*wipe)(struct crypt_config *cc);
  66. int (*generator)(struct crypt_config *cc, u8 *iv, sector_t sector);
  67. };
  68. struct iv_essiv_private {
  69. struct crypto_cipher *tfm;
  70. struct crypto_hash *hash_tfm;
  71. u8 *salt;
  72. };
  73. struct iv_benbi_private {
  74. int shift;
  75. };
  76. /*
  77. * Crypt: maps a linear range of a block device
  78. * and encrypts / decrypts at the same time.
  79. */
  80. enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID };
  81. struct crypt_config {
  82. struct dm_dev *dev;
  83. sector_t start;
  84. /*
  85. * pool for per bio private data, crypto requests and
  86. * encryption requeusts/buffer pages
  87. */
  88. mempool_t *io_pool;
  89. mempool_t *req_pool;
  90. mempool_t *page_pool;
  91. struct bio_set *bs;
  92. struct workqueue_struct *io_queue;
  93. struct workqueue_struct *crypt_queue;
  94. /*
  95. * crypto related data
  96. */
  97. struct crypt_iv_operations *iv_gen_ops;
  98. char *iv_mode;
  99. union {
  100. struct iv_essiv_private essiv;
  101. struct iv_benbi_private benbi;
  102. } iv_gen_private;
  103. sector_t iv_offset;
  104. unsigned int iv_size;
  105. /*
  106. * Layout of each crypto request:
  107. *
  108. * struct ablkcipher_request
  109. * context
  110. * padding
  111. * struct dm_crypt_request
  112. * padding
  113. * IV
  114. *
  115. * The padding is added so that dm_crypt_request and the IV are
  116. * correctly aligned.
  117. */
  118. unsigned int dmreq_start;
  119. struct ablkcipher_request *req;
  120. char cipher[CRYPTO_MAX_ALG_NAME];
  121. char chainmode[CRYPTO_MAX_ALG_NAME];
  122. struct crypto_ablkcipher *tfm;
  123. unsigned long flags;
  124. unsigned int key_size;
  125. u8 key[0];
  126. };
  127. #define MIN_IOS 16
  128. #define MIN_POOL_PAGES 32
  129. #define MIN_BIO_PAGES 8
  130. static struct kmem_cache *_crypt_io_pool;
  131. static void clone_init(struct dm_crypt_io *, struct bio *);
  132. static void kcryptd_queue_crypt(struct dm_crypt_io *io);
  133. /*
  134. * Different IV generation algorithms:
  135. *
  136. * plain: the initial vector is the 32-bit little-endian version of the sector
  137. * number, padded with zeros if necessary.
  138. *
  139. * plain64: the initial vector is the 64-bit little-endian version of the sector
  140. * number, padded with zeros if necessary.
  141. *
  142. * essiv: "encrypted sector|salt initial vector", the sector number is
  143. * encrypted with the bulk cipher using a salt as key. The salt
  144. * should be derived from the bulk cipher's key via hashing.
  145. *
  146. * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1
  147. * (needed for LRW-32-AES and possible other narrow block modes)
  148. *
  149. * null: the initial vector is always zero. Provides compatibility with
  150. * obsolete loop_fish2 devices. Do not use for new devices.
  151. *
  152. * plumb: unimplemented, see:
  153. * http://article.gmane.org/gmane.linux.kernel.device-mapper.dm-crypt/454
  154. */
  155. static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv, sector_t sector)
  156. {
  157. memset(iv, 0, cc->iv_size);
  158. *(u32 *)iv = cpu_to_le32(sector & 0xffffffff);
  159. return 0;
  160. }
  161. static int crypt_iv_plain64_gen(struct crypt_config *cc, u8 *iv,
  162. sector_t sector)
  163. {
  164. memset(iv, 0, cc->iv_size);
  165. *(u64 *)iv = cpu_to_le64(sector);
  166. return 0;
  167. }
  168. /* Initialise ESSIV - compute salt but no local memory allocations */
  169. static int crypt_iv_essiv_init(struct crypt_config *cc)
  170. {
  171. struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
  172. struct hash_desc desc;
  173. struct scatterlist sg;
  174. int err;
  175. sg_init_one(&sg, cc->key, cc->key_size);
  176. desc.tfm = essiv->hash_tfm;
  177. desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
  178. err = crypto_hash_digest(&desc, &sg, cc->key_size, essiv->salt);
  179. if (err)
  180. return err;
  181. return crypto_cipher_setkey(essiv->tfm, essiv->salt,
  182. crypto_hash_digestsize(essiv->hash_tfm));
  183. }
  184. /* Wipe salt and reset key derived from volume key */
  185. static int crypt_iv_essiv_wipe(struct crypt_config *cc)
  186. {
  187. struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
  188. unsigned salt_size = crypto_hash_digestsize(essiv->hash_tfm);
  189. memset(essiv->salt, 0, salt_size);
  190. return crypto_cipher_setkey(essiv->tfm, essiv->salt, salt_size);
  191. }
  192. static void crypt_iv_essiv_dtr(struct crypt_config *cc)
  193. {
  194. struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
  195. crypto_free_cipher(essiv->tfm);
  196. essiv->tfm = NULL;
  197. crypto_free_hash(essiv->hash_tfm);
  198. essiv->hash_tfm = NULL;
  199. kzfree(essiv->salt);
  200. essiv->salt = NULL;
  201. }
  202. static int crypt_iv_essiv_ctr(struct crypt_config *cc, struct dm_target *ti,
  203. const char *opts)
  204. {
  205. struct crypto_cipher *essiv_tfm = NULL;
  206. struct crypto_hash *hash_tfm = NULL;
  207. u8 *salt = NULL;
  208. int err;
  209. if (!opts) {
  210. ti->error = "Digest algorithm missing for ESSIV mode";
  211. return -EINVAL;
  212. }
  213. /* Allocate hash algorithm */
  214. hash_tfm = crypto_alloc_hash(opts, 0, CRYPTO_ALG_ASYNC);
  215. if (IS_ERR(hash_tfm)) {
  216. ti->error = "Error initializing ESSIV hash";
  217. err = PTR_ERR(hash_tfm);
  218. goto bad;
  219. }
  220. salt = kzalloc(crypto_hash_digestsize(hash_tfm), GFP_KERNEL);
  221. if (!salt) {
  222. ti->error = "Error kmallocing salt storage in ESSIV";
  223. err = -ENOMEM;
  224. goto bad;
  225. }
  226. /* Allocate essiv_tfm */
  227. essiv_tfm = crypto_alloc_cipher(cc->cipher, 0, CRYPTO_ALG_ASYNC);
  228. if (IS_ERR(essiv_tfm)) {
  229. ti->error = "Error allocating crypto tfm for ESSIV";
  230. err = PTR_ERR(essiv_tfm);
  231. goto bad;
  232. }
  233. if (crypto_cipher_blocksize(essiv_tfm) !=
  234. crypto_ablkcipher_ivsize(cc->tfm)) {
  235. ti->error = "Block size of ESSIV cipher does "
  236. "not match IV size of block cipher";
  237. err = -EINVAL;
  238. goto bad;
  239. }
  240. cc->iv_gen_private.essiv.salt = salt;
  241. cc->iv_gen_private.essiv.tfm = essiv_tfm;
  242. cc->iv_gen_private.essiv.hash_tfm = hash_tfm;
  243. return 0;
  244. bad:
  245. if (essiv_tfm && !IS_ERR(essiv_tfm))
  246. crypto_free_cipher(essiv_tfm);
  247. if (hash_tfm && !IS_ERR(hash_tfm))
  248. crypto_free_hash(hash_tfm);
  249. kfree(salt);
  250. return err;
  251. }
  252. static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv, sector_t sector)
  253. {
  254. memset(iv, 0, cc->iv_size);
  255. *(u64 *)iv = cpu_to_le64(sector);
  256. crypto_cipher_encrypt_one(cc->iv_gen_private.essiv.tfm, iv, iv);
  257. return 0;
  258. }
  259. static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti,
  260. const char *opts)
  261. {
  262. unsigned bs = crypto_ablkcipher_blocksize(cc->tfm);
  263. int log = ilog2(bs);
  264. /* we need to calculate how far we must shift the sector count
  265. * to get the cipher block count, we use this shift in _gen */
  266. if (1 << log != bs) {
  267. ti->error = "cypher blocksize is not a power of 2";
  268. return -EINVAL;
  269. }
  270. if (log > 9) {
  271. ti->error = "cypher blocksize is > 512";
  272. return -EINVAL;
  273. }
  274. cc->iv_gen_private.benbi.shift = 9 - log;
  275. return 0;
  276. }
  277. static void crypt_iv_benbi_dtr(struct crypt_config *cc)
  278. {
  279. }
  280. static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv, sector_t sector)
  281. {
  282. __be64 val;
  283. memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */
  284. val = cpu_to_be64(((u64)sector << cc->iv_gen_private.benbi.shift) + 1);
  285. put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64)));
  286. return 0;
  287. }
  288. static int crypt_iv_null_gen(struct crypt_config *cc, u8 *iv, sector_t sector)
  289. {
  290. memset(iv, 0, cc->iv_size);
  291. return 0;
  292. }
  293. static struct crypt_iv_operations crypt_iv_plain_ops = {
  294. .generator = crypt_iv_plain_gen
  295. };
  296. static struct crypt_iv_operations crypt_iv_plain64_ops = {
  297. .generator = crypt_iv_plain64_gen
  298. };
  299. static struct crypt_iv_operations crypt_iv_essiv_ops = {
  300. .ctr = crypt_iv_essiv_ctr,
  301. .dtr = crypt_iv_essiv_dtr,
  302. .init = crypt_iv_essiv_init,
  303. .wipe = crypt_iv_essiv_wipe,
  304. .generator = crypt_iv_essiv_gen
  305. };
  306. static struct crypt_iv_operations crypt_iv_benbi_ops = {
  307. .ctr = crypt_iv_benbi_ctr,
  308. .dtr = crypt_iv_benbi_dtr,
  309. .generator = crypt_iv_benbi_gen
  310. };
  311. static struct crypt_iv_operations crypt_iv_null_ops = {
  312. .generator = crypt_iv_null_gen
  313. };
  314. static void crypt_convert_init(struct crypt_config *cc,
  315. struct convert_context *ctx,
  316. struct bio *bio_out, struct bio *bio_in,
  317. sector_t sector)
  318. {
  319. ctx->bio_in = bio_in;
  320. ctx->bio_out = bio_out;
  321. ctx->offset_in = 0;
  322. ctx->offset_out = 0;
  323. ctx->idx_in = bio_in ? bio_in->bi_idx : 0;
  324. ctx->idx_out = bio_out ? bio_out->bi_idx : 0;
  325. ctx->sector = sector + cc->iv_offset;
  326. init_completion(&ctx->restart);
  327. }
  328. static struct dm_crypt_request *dmreq_of_req(struct crypt_config *cc,
  329. struct ablkcipher_request *req)
  330. {
  331. return (struct dm_crypt_request *)((char *)req + cc->dmreq_start);
  332. }
  333. static struct ablkcipher_request *req_of_dmreq(struct crypt_config *cc,
  334. struct dm_crypt_request *dmreq)
  335. {
  336. return (struct ablkcipher_request *)((char *)dmreq - cc->dmreq_start);
  337. }
  338. static int crypt_convert_block(struct crypt_config *cc,
  339. struct convert_context *ctx,
  340. struct ablkcipher_request *req)
  341. {
  342. struct bio_vec *bv_in = bio_iovec_idx(ctx->bio_in, ctx->idx_in);
  343. struct bio_vec *bv_out = bio_iovec_idx(ctx->bio_out, ctx->idx_out);
  344. struct dm_crypt_request *dmreq;
  345. u8 *iv;
  346. int r = 0;
  347. dmreq = dmreq_of_req(cc, req);
  348. iv = (u8 *)ALIGN((unsigned long)(dmreq + 1),
  349. crypto_ablkcipher_alignmask(cc->tfm) + 1);
  350. dmreq->ctx = ctx;
  351. sg_init_table(&dmreq->sg_in, 1);
  352. sg_set_page(&dmreq->sg_in, bv_in->bv_page, 1 << SECTOR_SHIFT,
  353. bv_in->bv_offset + ctx->offset_in);
  354. sg_init_table(&dmreq->sg_out, 1);
  355. sg_set_page(&dmreq->sg_out, bv_out->bv_page, 1 << SECTOR_SHIFT,
  356. bv_out->bv_offset + ctx->offset_out);
  357. ctx->offset_in += 1 << SECTOR_SHIFT;
  358. if (ctx->offset_in >= bv_in->bv_len) {
  359. ctx->offset_in = 0;
  360. ctx->idx_in++;
  361. }
  362. ctx->offset_out += 1 << SECTOR_SHIFT;
  363. if (ctx->offset_out >= bv_out->bv_len) {
  364. ctx->offset_out = 0;
  365. ctx->idx_out++;
  366. }
  367. if (cc->iv_gen_ops) {
  368. r = cc->iv_gen_ops->generator(cc, iv, ctx->sector);
  369. if (r < 0)
  370. return r;
  371. }
  372. ablkcipher_request_set_crypt(req, &dmreq->sg_in, &dmreq->sg_out,
  373. 1 << SECTOR_SHIFT, iv);
  374. if (bio_data_dir(ctx->bio_in) == WRITE)
  375. r = crypto_ablkcipher_encrypt(req);
  376. else
  377. r = crypto_ablkcipher_decrypt(req);
  378. return r;
  379. }
  380. static void kcryptd_async_done(struct crypto_async_request *async_req,
  381. int error);
  382. static void crypt_alloc_req(struct crypt_config *cc,
  383. struct convert_context *ctx)
  384. {
  385. if (!cc->req)
  386. cc->req = mempool_alloc(cc->req_pool, GFP_NOIO);
  387. ablkcipher_request_set_tfm(cc->req, cc->tfm);
  388. ablkcipher_request_set_callback(cc->req, CRYPTO_TFM_REQ_MAY_BACKLOG |
  389. CRYPTO_TFM_REQ_MAY_SLEEP,
  390. kcryptd_async_done,
  391. dmreq_of_req(cc, cc->req));
  392. }
  393. /*
  394. * Encrypt / decrypt data from one bio to another one (can be the same one)
  395. */
  396. static int crypt_convert(struct crypt_config *cc,
  397. struct convert_context *ctx)
  398. {
  399. int r;
  400. atomic_set(&ctx->pending, 1);
  401. while(ctx->idx_in < ctx->bio_in->bi_vcnt &&
  402. ctx->idx_out < ctx->bio_out->bi_vcnt) {
  403. crypt_alloc_req(cc, ctx);
  404. atomic_inc(&ctx->pending);
  405. r = crypt_convert_block(cc, ctx, cc->req);
  406. switch (r) {
  407. /* async */
  408. case -EBUSY:
  409. wait_for_completion(&ctx->restart);
  410. INIT_COMPLETION(ctx->restart);
  411. /* fall through*/
  412. case -EINPROGRESS:
  413. cc->req = NULL;
  414. ctx->sector++;
  415. continue;
  416. /* sync */
  417. case 0:
  418. atomic_dec(&ctx->pending);
  419. ctx->sector++;
  420. cond_resched();
  421. continue;
  422. /* error */
  423. default:
  424. atomic_dec(&ctx->pending);
  425. return r;
  426. }
  427. }
  428. return 0;
  429. }
  430. static void dm_crypt_bio_destructor(struct bio *bio)
  431. {
  432. struct dm_crypt_io *io = bio->bi_private;
  433. struct crypt_config *cc = io->target->private;
  434. bio_free(bio, cc->bs);
  435. }
  436. /*
  437. * Generate a new unfragmented bio with the given size
  438. * This should never violate the device limitations
  439. * May return a smaller bio when running out of pages, indicated by
  440. * *out_of_pages set to 1.
  441. */
  442. static struct bio *crypt_alloc_buffer(struct dm_crypt_io *io, unsigned size,
  443. unsigned *out_of_pages)
  444. {
  445. struct crypt_config *cc = io->target->private;
  446. struct bio *clone;
  447. unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
  448. gfp_t gfp_mask = GFP_NOIO | __GFP_HIGHMEM;
  449. unsigned i, len;
  450. struct page *page;
  451. clone = bio_alloc_bioset(GFP_NOIO, nr_iovecs, cc->bs);
  452. if (!clone)
  453. return NULL;
  454. clone_init(io, clone);
  455. *out_of_pages = 0;
  456. for (i = 0; i < nr_iovecs; i++) {
  457. page = mempool_alloc(cc->page_pool, gfp_mask);
  458. if (!page) {
  459. *out_of_pages = 1;
  460. break;
  461. }
  462. /*
  463. * if additional pages cannot be allocated without waiting,
  464. * return a partially allocated bio, the caller will then try
  465. * to allocate additional bios while submitting this partial bio
  466. */
  467. if (i == (MIN_BIO_PAGES - 1))
  468. gfp_mask = (gfp_mask | __GFP_NOWARN) & ~__GFP_WAIT;
  469. len = (size > PAGE_SIZE) ? PAGE_SIZE : size;
  470. if (!bio_add_page(clone, page, len, 0)) {
  471. mempool_free(page, cc->page_pool);
  472. break;
  473. }
  474. size -= len;
  475. }
  476. if (!clone->bi_size) {
  477. bio_put(clone);
  478. return NULL;
  479. }
  480. return clone;
  481. }
  482. static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone)
  483. {
  484. unsigned int i;
  485. struct bio_vec *bv;
  486. for (i = 0; i < clone->bi_vcnt; i++) {
  487. bv = bio_iovec_idx(clone, i);
  488. BUG_ON(!bv->bv_page);
  489. mempool_free(bv->bv_page, cc->page_pool);
  490. bv->bv_page = NULL;
  491. }
  492. }
  493. static struct dm_crypt_io *crypt_io_alloc(struct dm_target *ti,
  494. struct bio *bio, sector_t sector)
  495. {
  496. struct crypt_config *cc = ti->private;
  497. struct dm_crypt_io *io;
  498. io = mempool_alloc(cc->io_pool, GFP_NOIO);
  499. io->target = ti;
  500. io->base_bio = bio;
  501. io->sector = sector;
  502. io->error = 0;
  503. io->base_io = NULL;
  504. atomic_set(&io->pending, 0);
  505. return io;
  506. }
  507. static void crypt_inc_pending(struct dm_crypt_io *io)
  508. {
  509. atomic_inc(&io->pending);
  510. }
  511. /*
  512. * One of the bios was finished. Check for completion of
  513. * the whole request and correctly clean up the buffer.
  514. * If base_io is set, wait for the last fragment to complete.
  515. */
  516. static void crypt_dec_pending(struct dm_crypt_io *io)
  517. {
  518. struct crypt_config *cc = io->target->private;
  519. struct bio *base_bio = io->base_bio;
  520. struct dm_crypt_io *base_io = io->base_io;
  521. int error = io->error;
  522. if (!atomic_dec_and_test(&io->pending))
  523. return;
  524. mempool_free(io, cc->io_pool);
  525. if (likely(!base_io))
  526. bio_endio(base_bio, error);
  527. else {
  528. if (error && !base_io->error)
  529. base_io->error = error;
  530. crypt_dec_pending(base_io);
  531. }
  532. }
  533. /*
  534. * kcryptd/kcryptd_io:
  535. *
  536. * Needed because it would be very unwise to do decryption in an
  537. * interrupt context.
  538. *
  539. * kcryptd performs the actual encryption or decryption.
  540. *
  541. * kcryptd_io performs the IO submission.
  542. *
  543. * They must be separated as otherwise the final stages could be
  544. * starved by new requests which can block in the first stages due
  545. * to memory allocation.
  546. */
  547. static void crypt_endio(struct bio *clone, int error)
  548. {
  549. struct dm_crypt_io *io = clone->bi_private;
  550. struct crypt_config *cc = io->target->private;
  551. unsigned rw = bio_data_dir(clone);
  552. if (unlikely(!bio_flagged(clone, BIO_UPTODATE) && !error))
  553. error = -EIO;
  554. /*
  555. * free the processed pages
  556. */
  557. if (rw == WRITE)
  558. crypt_free_buffer_pages(cc, clone);
  559. bio_put(clone);
  560. if (rw == READ && !error) {
  561. kcryptd_queue_crypt(io);
  562. return;
  563. }
  564. if (unlikely(error))
  565. io->error = error;
  566. crypt_dec_pending(io);
  567. }
  568. static void clone_init(struct dm_crypt_io *io, struct bio *clone)
  569. {
  570. struct crypt_config *cc = io->target->private;
  571. clone->bi_private = io;
  572. clone->bi_end_io = crypt_endio;
  573. clone->bi_bdev = cc->dev->bdev;
  574. clone->bi_rw = io->base_bio->bi_rw;
  575. clone->bi_destructor = dm_crypt_bio_destructor;
  576. }
  577. static void kcryptd_io_read(struct dm_crypt_io *io)
  578. {
  579. struct crypt_config *cc = io->target->private;
  580. struct bio *base_bio = io->base_bio;
  581. struct bio *clone;
  582. crypt_inc_pending(io);
  583. /*
  584. * The block layer might modify the bvec array, so always
  585. * copy the required bvecs because we need the original
  586. * one in order to decrypt the whole bio data *afterwards*.
  587. */
  588. clone = bio_alloc_bioset(GFP_NOIO, bio_segments(base_bio), cc->bs);
  589. if (unlikely(!clone)) {
  590. io->error = -ENOMEM;
  591. crypt_dec_pending(io);
  592. return;
  593. }
  594. clone_init(io, clone);
  595. clone->bi_idx = 0;
  596. clone->bi_vcnt = bio_segments(base_bio);
  597. clone->bi_size = base_bio->bi_size;
  598. clone->bi_sector = cc->start + io->sector;
  599. memcpy(clone->bi_io_vec, bio_iovec(base_bio),
  600. sizeof(struct bio_vec) * clone->bi_vcnt);
  601. generic_make_request(clone);
  602. }
  603. static void kcryptd_io_write(struct dm_crypt_io *io)
  604. {
  605. struct bio *clone = io->ctx.bio_out;
  606. generic_make_request(clone);
  607. }
  608. static void kcryptd_io(struct work_struct *work)
  609. {
  610. struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
  611. if (bio_data_dir(io->base_bio) == READ)
  612. kcryptd_io_read(io);
  613. else
  614. kcryptd_io_write(io);
  615. }
  616. static void kcryptd_queue_io(struct dm_crypt_io *io)
  617. {
  618. struct crypt_config *cc = io->target->private;
  619. INIT_WORK(&io->work, kcryptd_io);
  620. queue_work(cc->io_queue, &io->work);
  621. }
  622. static void kcryptd_crypt_write_io_submit(struct dm_crypt_io *io,
  623. int error, int async)
  624. {
  625. struct bio *clone = io->ctx.bio_out;
  626. struct crypt_config *cc = io->target->private;
  627. if (unlikely(error < 0)) {
  628. crypt_free_buffer_pages(cc, clone);
  629. bio_put(clone);
  630. io->error = -EIO;
  631. crypt_dec_pending(io);
  632. return;
  633. }
  634. /* crypt_convert should have filled the clone bio */
  635. BUG_ON(io->ctx.idx_out < clone->bi_vcnt);
  636. clone->bi_sector = cc->start + io->sector;
  637. if (async)
  638. kcryptd_queue_io(io);
  639. else
  640. generic_make_request(clone);
  641. }
  642. static void kcryptd_crypt_write_convert(struct dm_crypt_io *io)
  643. {
  644. struct crypt_config *cc = io->target->private;
  645. struct bio *clone;
  646. struct dm_crypt_io *new_io;
  647. int crypt_finished;
  648. unsigned out_of_pages = 0;
  649. unsigned remaining = io->base_bio->bi_size;
  650. sector_t sector = io->sector;
  651. int r;
  652. /*
  653. * Prevent io from disappearing until this function completes.
  654. */
  655. crypt_inc_pending(io);
  656. crypt_convert_init(cc, &io->ctx, NULL, io->base_bio, sector);
  657. /*
  658. * The allocated buffers can be smaller than the whole bio,
  659. * so repeat the whole process until all the data can be handled.
  660. */
  661. while (remaining) {
  662. clone = crypt_alloc_buffer(io, remaining, &out_of_pages);
  663. if (unlikely(!clone)) {
  664. io->error = -ENOMEM;
  665. break;
  666. }
  667. io->ctx.bio_out = clone;
  668. io->ctx.idx_out = 0;
  669. remaining -= clone->bi_size;
  670. sector += bio_sectors(clone);
  671. crypt_inc_pending(io);
  672. r = crypt_convert(cc, &io->ctx);
  673. crypt_finished = atomic_dec_and_test(&io->ctx.pending);
  674. /* Encryption was already finished, submit io now */
  675. if (crypt_finished) {
  676. kcryptd_crypt_write_io_submit(io, r, 0);
  677. /*
  678. * If there was an error, do not try next fragments.
  679. * For async, error is processed in async handler.
  680. */
  681. if (unlikely(r < 0))
  682. break;
  683. io->sector = sector;
  684. }
  685. /*
  686. * Out of memory -> run queues
  687. * But don't wait if split was due to the io size restriction
  688. */
  689. if (unlikely(out_of_pages))
  690. congestion_wait(BLK_RW_ASYNC, HZ/100);
  691. /*
  692. * With async crypto it is unsafe to share the crypto context
  693. * between fragments, so switch to a new dm_crypt_io structure.
  694. */
  695. if (unlikely(!crypt_finished && remaining)) {
  696. new_io = crypt_io_alloc(io->target, io->base_bio,
  697. sector);
  698. crypt_inc_pending(new_io);
  699. crypt_convert_init(cc, &new_io->ctx, NULL,
  700. io->base_bio, sector);
  701. new_io->ctx.idx_in = io->ctx.idx_in;
  702. new_io->ctx.offset_in = io->ctx.offset_in;
  703. /*
  704. * Fragments after the first use the base_io
  705. * pending count.
  706. */
  707. if (!io->base_io)
  708. new_io->base_io = io;
  709. else {
  710. new_io->base_io = io->base_io;
  711. crypt_inc_pending(io->base_io);
  712. crypt_dec_pending(io);
  713. }
  714. io = new_io;
  715. }
  716. }
  717. crypt_dec_pending(io);
  718. }
  719. static void kcryptd_crypt_read_done(struct dm_crypt_io *io, int error)
  720. {
  721. if (unlikely(error < 0))
  722. io->error = -EIO;
  723. crypt_dec_pending(io);
  724. }
  725. static void kcryptd_crypt_read_convert(struct dm_crypt_io *io)
  726. {
  727. struct crypt_config *cc = io->target->private;
  728. int r = 0;
  729. crypt_inc_pending(io);
  730. crypt_convert_init(cc, &io->ctx, io->base_bio, io->base_bio,
  731. io->sector);
  732. r = crypt_convert(cc, &io->ctx);
  733. if (atomic_dec_and_test(&io->ctx.pending))
  734. kcryptd_crypt_read_done(io, r);
  735. crypt_dec_pending(io);
  736. }
  737. static void kcryptd_async_done(struct crypto_async_request *async_req,
  738. int error)
  739. {
  740. struct dm_crypt_request *dmreq = async_req->data;
  741. struct convert_context *ctx = dmreq->ctx;
  742. struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
  743. struct crypt_config *cc = io->target->private;
  744. if (error == -EINPROGRESS) {
  745. complete(&ctx->restart);
  746. return;
  747. }
  748. mempool_free(req_of_dmreq(cc, dmreq), cc->req_pool);
  749. if (!atomic_dec_and_test(&ctx->pending))
  750. return;
  751. if (bio_data_dir(io->base_bio) == READ)
  752. kcryptd_crypt_read_done(io, error);
  753. else
  754. kcryptd_crypt_write_io_submit(io, error, 1);
  755. }
  756. static void kcryptd_crypt(struct work_struct *work)
  757. {
  758. struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
  759. if (bio_data_dir(io->base_bio) == READ)
  760. kcryptd_crypt_read_convert(io);
  761. else
  762. kcryptd_crypt_write_convert(io);
  763. }
  764. static void kcryptd_queue_crypt(struct dm_crypt_io *io)
  765. {
  766. struct crypt_config *cc = io->target->private;
  767. INIT_WORK(&io->work, kcryptd_crypt);
  768. queue_work(cc->crypt_queue, &io->work);
  769. }
  770. /*
  771. * Decode key from its hex representation
  772. */
  773. static int crypt_decode_key(u8 *key, char *hex, unsigned int size)
  774. {
  775. char buffer[3];
  776. char *endp;
  777. unsigned int i;
  778. buffer[2] = '\0';
  779. for (i = 0; i < size; i++) {
  780. buffer[0] = *hex++;
  781. buffer[1] = *hex++;
  782. key[i] = (u8)simple_strtoul(buffer, &endp, 16);
  783. if (endp != &buffer[2])
  784. return -EINVAL;
  785. }
  786. if (*hex != '\0')
  787. return -EINVAL;
  788. return 0;
  789. }
  790. /*
  791. * Encode key into its hex representation
  792. */
  793. static void crypt_encode_key(char *hex, u8 *key, unsigned int size)
  794. {
  795. unsigned int i;
  796. for (i = 0; i < size; i++) {
  797. sprintf(hex, "%02x", *key);
  798. hex += 2;
  799. key++;
  800. }
  801. }
  802. static int crypt_set_key(struct crypt_config *cc, char *key)
  803. {
  804. unsigned key_size = strlen(key) >> 1;
  805. if (cc->key_size && cc->key_size != key_size)
  806. return -EINVAL;
  807. cc->key_size = key_size; /* initial settings */
  808. if ((!key_size && strcmp(key, "-")) ||
  809. (key_size && crypt_decode_key(cc->key, key, key_size) < 0))
  810. return -EINVAL;
  811. set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
  812. return crypto_ablkcipher_setkey(cc->tfm, cc->key, cc->key_size);
  813. }
  814. static int crypt_wipe_key(struct crypt_config *cc)
  815. {
  816. clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
  817. memset(&cc->key, 0, cc->key_size * sizeof(u8));
  818. return crypto_ablkcipher_setkey(cc->tfm, cc->key, cc->key_size);
  819. }
  820. /*
  821. * Construct an encryption mapping:
  822. * <cipher> <key> <iv_offset> <dev_path> <start>
  823. */
  824. static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv)
  825. {
  826. struct crypt_config *cc;
  827. struct crypto_ablkcipher *tfm;
  828. char *tmp;
  829. char *cipher;
  830. char *chainmode;
  831. char *ivmode;
  832. char *ivopts;
  833. unsigned int key_size;
  834. unsigned long long tmpll;
  835. if (argc != 5) {
  836. ti->error = "Not enough arguments";
  837. return -EINVAL;
  838. }
  839. tmp = argv[0];
  840. cipher = strsep(&tmp, "-");
  841. chainmode = strsep(&tmp, "-");
  842. ivopts = strsep(&tmp, "-");
  843. ivmode = strsep(&ivopts, ":");
  844. if (tmp)
  845. DMWARN("Unexpected additional cipher options");
  846. key_size = strlen(argv[1]) >> 1;
  847. cc = kzalloc(sizeof(*cc) + key_size * sizeof(u8), GFP_KERNEL);
  848. if (cc == NULL) {
  849. ti->error =
  850. "Cannot allocate transparent encryption context";
  851. return -ENOMEM;
  852. }
  853. /* Compatibility mode for old dm-crypt cipher strings */
  854. if (!chainmode || (strcmp(chainmode, "plain") == 0 && !ivmode)) {
  855. chainmode = "cbc";
  856. ivmode = "plain";
  857. }
  858. if (strcmp(chainmode, "ecb") && !ivmode) {
  859. ti->error = "This chaining mode requires an IV mechanism";
  860. goto bad_cipher;
  861. }
  862. if (snprintf(cc->cipher, CRYPTO_MAX_ALG_NAME, "%s(%s)",
  863. chainmode, cipher) >= CRYPTO_MAX_ALG_NAME) {
  864. ti->error = "Chain mode + cipher name is too long";
  865. goto bad_cipher;
  866. }
  867. tfm = crypto_alloc_ablkcipher(cc->cipher, 0, 0);
  868. if (IS_ERR(tfm)) {
  869. ti->error = "Error allocating crypto tfm";
  870. goto bad_cipher;
  871. }
  872. strcpy(cc->cipher, cipher);
  873. strcpy(cc->chainmode, chainmode);
  874. cc->tfm = tfm;
  875. if (crypt_set_key(cc, argv[1]) < 0) {
  876. ti->error = "Error decoding and setting key";
  877. goto bad_ivmode;
  878. }
  879. /*
  880. * Choose ivmode. Valid modes: "plain", "essiv:<esshash>", "benbi".
  881. * See comments at iv code
  882. */
  883. if (ivmode == NULL)
  884. cc->iv_gen_ops = NULL;
  885. else if (strcmp(ivmode, "plain") == 0)
  886. cc->iv_gen_ops = &crypt_iv_plain_ops;
  887. else if (strcmp(ivmode, "plain64") == 0)
  888. cc->iv_gen_ops = &crypt_iv_plain64_ops;
  889. else if (strcmp(ivmode, "essiv") == 0)
  890. cc->iv_gen_ops = &crypt_iv_essiv_ops;
  891. else if (strcmp(ivmode, "benbi") == 0)
  892. cc->iv_gen_ops = &crypt_iv_benbi_ops;
  893. else if (strcmp(ivmode, "null") == 0)
  894. cc->iv_gen_ops = &crypt_iv_null_ops;
  895. else {
  896. ti->error = "Invalid IV mode";
  897. goto bad_ivmode;
  898. }
  899. if (cc->iv_gen_ops && cc->iv_gen_ops->ctr &&
  900. cc->iv_gen_ops->ctr(cc, ti, ivopts) < 0)
  901. goto bad_ivmode;
  902. if (cc->iv_gen_ops && cc->iv_gen_ops->init &&
  903. cc->iv_gen_ops->init(cc) < 0) {
  904. ti->error = "Error initialising IV";
  905. goto bad_slab_pool;
  906. }
  907. cc->iv_size = crypto_ablkcipher_ivsize(tfm);
  908. if (cc->iv_size)
  909. /* at least a 64 bit sector number should fit in our buffer */
  910. cc->iv_size = max(cc->iv_size,
  911. (unsigned int)(sizeof(u64) / sizeof(u8)));
  912. else {
  913. if (cc->iv_gen_ops) {
  914. DMWARN("Selected cipher does not support IVs");
  915. if (cc->iv_gen_ops->dtr)
  916. cc->iv_gen_ops->dtr(cc);
  917. cc->iv_gen_ops = NULL;
  918. }
  919. }
  920. cc->io_pool = mempool_create_slab_pool(MIN_IOS, _crypt_io_pool);
  921. if (!cc->io_pool) {
  922. ti->error = "Cannot allocate crypt io mempool";
  923. goto bad_slab_pool;
  924. }
  925. cc->dmreq_start = sizeof(struct ablkcipher_request);
  926. cc->dmreq_start += crypto_ablkcipher_reqsize(tfm);
  927. cc->dmreq_start = ALIGN(cc->dmreq_start, crypto_tfm_ctx_alignment());
  928. cc->dmreq_start += crypto_ablkcipher_alignmask(tfm) &
  929. ~(crypto_tfm_ctx_alignment() - 1);
  930. cc->req_pool = mempool_create_kmalloc_pool(MIN_IOS, cc->dmreq_start +
  931. sizeof(struct dm_crypt_request) + cc->iv_size);
  932. if (!cc->req_pool) {
  933. ti->error = "Cannot allocate crypt request mempool";
  934. goto bad_req_pool;
  935. }
  936. cc->req = NULL;
  937. cc->page_pool = mempool_create_page_pool(MIN_POOL_PAGES, 0);
  938. if (!cc->page_pool) {
  939. ti->error = "Cannot allocate page mempool";
  940. goto bad_page_pool;
  941. }
  942. cc->bs = bioset_create(MIN_IOS, 0);
  943. if (!cc->bs) {
  944. ti->error = "Cannot allocate crypt bioset";
  945. goto bad_bs;
  946. }
  947. if (sscanf(argv[2], "%llu", &tmpll) != 1) {
  948. ti->error = "Invalid iv_offset sector";
  949. goto bad_device;
  950. }
  951. cc->iv_offset = tmpll;
  952. if (sscanf(argv[4], "%llu", &tmpll) != 1) {
  953. ti->error = "Invalid device sector";
  954. goto bad_device;
  955. }
  956. cc->start = tmpll;
  957. if (dm_get_device(ti, argv[3], dm_table_get_mode(ti->table), &cc->dev)) {
  958. ti->error = "Device lookup failed";
  959. goto bad_device;
  960. }
  961. if (ivmode && cc->iv_gen_ops) {
  962. if (ivopts)
  963. *(ivopts - 1) = ':';
  964. cc->iv_mode = kmalloc(strlen(ivmode) + 1, GFP_KERNEL);
  965. if (!cc->iv_mode) {
  966. ti->error = "Error kmallocing iv_mode string";
  967. goto bad_ivmode_string;
  968. }
  969. strcpy(cc->iv_mode, ivmode);
  970. } else
  971. cc->iv_mode = NULL;
  972. cc->io_queue = create_singlethread_workqueue("kcryptd_io");
  973. if (!cc->io_queue) {
  974. ti->error = "Couldn't create kcryptd io queue";
  975. goto bad_io_queue;
  976. }
  977. cc->crypt_queue = create_singlethread_workqueue("kcryptd");
  978. if (!cc->crypt_queue) {
  979. ti->error = "Couldn't create kcryptd queue";
  980. goto bad_crypt_queue;
  981. }
  982. ti->num_flush_requests = 1;
  983. ti->private = cc;
  984. return 0;
  985. bad_crypt_queue:
  986. destroy_workqueue(cc->io_queue);
  987. bad_io_queue:
  988. kfree(cc->iv_mode);
  989. bad_ivmode_string:
  990. dm_put_device(ti, cc->dev);
  991. bad_device:
  992. bioset_free(cc->bs);
  993. bad_bs:
  994. mempool_destroy(cc->page_pool);
  995. bad_page_pool:
  996. mempool_destroy(cc->req_pool);
  997. bad_req_pool:
  998. mempool_destroy(cc->io_pool);
  999. bad_slab_pool:
  1000. if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
  1001. cc->iv_gen_ops->dtr(cc);
  1002. bad_ivmode:
  1003. crypto_free_ablkcipher(tfm);
  1004. bad_cipher:
  1005. /* Must zero key material before freeing */
  1006. kzfree(cc);
  1007. return -EINVAL;
  1008. }
  1009. static void crypt_dtr(struct dm_target *ti)
  1010. {
  1011. struct crypt_config *cc = (struct crypt_config *) ti->private;
  1012. destroy_workqueue(cc->io_queue);
  1013. destroy_workqueue(cc->crypt_queue);
  1014. if (cc->req)
  1015. mempool_free(cc->req, cc->req_pool);
  1016. bioset_free(cc->bs);
  1017. mempool_destroy(cc->page_pool);
  1018. mempool_destroy(cc->req_pool);
  1019. mempool_destroy(cc->io_pool);
  1020. kfree(cc->iv_mode);
  1021. if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
  1022. cc->iv_gen_ops->dtr(cc);
  1023. crypto_free_ablkcipher(cc->tfm);
  1024. dm_put_device(ti, cc->dev);
  1025. /* Must zero key material before freeing */
  1026. kzfree(cc);
  1027. }
  1028. static int crypt_map(struct dm_target *ti, struct bio *bio,
  1029. union map_info *map_context)
  1030. {
  1031. struct dm_crypt_io *io;
  1032. struct crypt_config *cc;
  1033. if (unlikely(bio_empty_barrier(bio))) {
  1034. cc = ti->private;
  1035. bio->bi_bdev = cc->dev->bdev;
  1036. return DM_MAPIO_REMAPPED;
  1037. }
  1038. io = crypt_io_alloc(ti, bio, bio->bi_sector - ti->begin);
  1039. if (bio_data_dir(io->base_bio) == READ)
  1040. kcryptd_queue_io(io);
  1041. else
  1042. kcryptd_queue_crypt(io);
  1043. return DM_MAPIO_SUBMITTED;
  1044. }
  1045. static int crypt_status(struct dm_target *ti, status_type_t type,
  1046. char *result, unsigned int maxlen)
  1047. {
  1048. struct crypt_config *cc = (struct crypt_config *) ti->private;
  1049. unsigned int sz = 0;
  1050. switch (type) {
  1051. case STATUSTYPE_INFO:
  1052. result[0] = '\0';
  1053. break;
  1054. case STATUSTYPE_TABLE:
  1055. if (cc->iv_mode)
  1056. DMEMIT("%s-%s-%s ", cc->cipher, cc->chainmode,
  1057. cc->iv_mode);
  1058. else
  1059. DMEMIT("%s-%s ", cc->cipher, cc->chainmode);
  1060. if (cc->key_size > 0) {
  1061. if ((maxlen - sz) < ((cc->key_size << 1) + 1))
  1062. return -ENOMEM;
  1063. crypt_encode_key(result + sz, cc->key, cc->key_size);
  1064. sz += cc->key_size << 1;
  1065. } else {
  1066. if (sz >= maxlen)
  1067. return -ENOMEM;
  1068. result[sz++] = '-';
  1069. }
  1070. DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset,
  1071. cc->dev->name, (unsigned long long)cc->start);
  1072. break;
  1073. }
  1074. return 0;
  1075. }
  1076. static void crypt_postsuspend(struct dm_target *ti)
  1077. {
  1078. struct crypt_config *cc = ti->private;
  1079. set_bit(DM_CRYPT_SUSPENDED, &cc->flags);
  1080. }
  1081. static int crypt_preresume(struct dm_target *ti)
  1082. {
  1083. struct crypt_config *cc = ti->private;
  1084. if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) {
  1085. DMERR("aborting resume - crypt key is not set.");
  1086. return -EAGAIN;
  1087. }
  1088. return 0;
  1089. }
  1090. static void crypt_resume(struct dm_target *ti)
  1091. {
  1092. struct crypt_config *cc = ti->private;
  1093. clear_bit(DM_CRYPT_SUSPENDED, &cc->flags);
  1094. }
  1095. /* Message interface
  1096. * key set <key>
  1097. * key wipe
  1098. */
  1099. static int crypt_message(struct dm_target *ti, unsigned argc, char **argv)
  1100. {
  1101. struct crypt_config *cc = ti->private;
  1102. int ret = -EINVAL;
  1103. if (argc < 2)
  1104. goto error;
  1105. if (!strnicmp(argv[0], MESG_STR("key"))) {
  1106. if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) {
  1107. DMWARN("not suspended during key manipulation.");
  1108. return -EINVAL;
  1109. }
  1110. if (argc == 3 && !strnicmp(argv[1], MESG_STR("set"))) {
  1111. ret = crypt_set_key(cc, argv[2]);
  1112. if (ret)
  1113. return ret;
  1114. if (cc->iv_gen_ops && cc->iv_gen_ops->init)
  1115. ret = cc->iv_gen_ops->init(cc);
  1116. return ret;
  1117. }
  1118. if (argc == 2 && !strnicmp(argv[1], MESG_STR("wipe"))) {
  1119. if (cc->iv_gen_ops && cc->iv_gen_ops->wipe) {
  1120. ret = cc->iv_gen_ops->wipe(cc);
  1121. if (ret)
  1122. return ret;
  1123. }
  1124. return crypt_wipe_key(cc);
  1125. }
  1126. }
  1127. error:
  1128. DMWARN("unrecognised message received.");
  1129. return -EINVAL;
  1130. }
  1131. static int crypt_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
  1132. struct bio_vec *biovec, int max_size)
  1133. {
  1134. struct crypt_config *cc = ti->private;
  1135. struct request_queue *q = bdev_get_queue(cc->dev->bdev);
  1136. if (!q->merge_bvec_fn)
  1137. return max_size;
  1138. bvm->bi_bdev = cc->dev->bdev;
  1139. bvm->bi_sector = cc->start + bvm->bi_sector - ti->begin;
  1140. return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
  1141. }
  1142. static int crypt_iterate_devices(struct dm_target *ti,
  1143. iterate_devices_callout_fn fn, void *data)
  1144. {
  1145. struct crypt_config *cc = ti->private;
  1146. return fn(ti, cc->dev, cc->start, ti->len, data);
  1147. }
  1148. static struct target_type crypt_target = {
  1149. .name = "crypt",
  1150. .version = {1, 7, 0},
  1151. .module = THIS_MODULE,
  1152. .ctr = crypt_ctr,
  1153. .dtr = crypt_dtr,
  1154. .map = crypt_map,
  1155. .status = crypt_status,
  1156. .postsuspend = crypt_postsuspend,
  1157. .preresume = crypt_preresume,
  1158. .resume = crypt_resume,
  1159. .message = crypt_message,
  1160. .merge = crypt_merge,
  1161. .iterate_devices = crypt_iterate_devices,
  1162. };
  1163. static int __init dm_crypt_init(void)
  1164. {
  1165. int r;
  1166. _crypt_io_pool = KMEM_CACHE(dm_crypt_io, 0);
  1167. if (!_crypt_io_pool)
  1168. return -ENOMEM;
  1169. r = dm_register_target(&crypt_target);
  1170. if (r < 0) {
  1171. DMERR("register failed %d", r);
  1172. kmem_cache_destroy(_crypt_io_pool);
  1173. }
  1174. return r;
  1175. }
  1176. static void __exit dm_crypt_exit(void)
  1177. {
  1178. dm_unregister_target(&crypt_target);
  1179. kmem_cache_destroy(_crypt_io_pool);
  1180. }
  1181. module_init(dm_crypt_init);
  1182. module_exit(dm_crypt_exit);
  1183. MODULE_AUTHOR("Christophe Saout <christophe@saout.de>");
  1184. MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption");
  1185. MODULE_LICENSE("GPL");