input.c 49 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042
  1. /*
  2. * The input core
  3. *
  4. * Copyright (c) 1999-2002 Vojtech Pavlik
  5. */
  6. /*
  7. * This program is free software; you can redistribute it and/or modify it
  8. * under the terms of the GNU General Public License version 2 as published by
  9. * the Free Software Foundation.
  10. */
  11. #include <linux/init.h>
  12. #include <linux/types.h>
  13. #include <linux/input.h>
  14. #include <linux/module.h>
  15. #include <linux/slab.h>
  16. #include <linux/random.h>
  17. #include <linux/major.h>
  18. #include <linux/proc_fs.h>
  19. #include <linux/sched.h>
  20. #include <linux/seq_file.h>
  21. #include <linux/poll.h>
  22. #include <linux/device.h>
  23. #include <linux/mutex.h>
  24. #include <linux/rcupdate.h>
  25. #include <linux/smp_lock.h>
  26. #include "input-compat.h"
  27. MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>");
  28. MODULE_DESCRIPTION("Input core");
  29. MODULE_LICENSE("GPL");
  30. #define INPUT_DEVICES 256
  31. static LIST_HEAD(input_dev_list);
  32. static LIST_HEAD(input_handler_list);
  33. /*
  34. * input_mutex protects access to both input_dev_list and input_handler_list.
  35. * This also causes input_[un]register_device and input_[un]register_handler
  36. * be mutually exclusive which simplifies locking in drivers implementing
  37. * input handlers.
  38. */
  39. static DEFINE_MUTEX(input_mutex);
  40. static struct input_handler *input_table[8];
  41. static inline int is_event_supported(unsigned int code,
  42. unsigned long *bm, unsigned int max)
  43. {
  44. return code <= max && test_bit(code, bm);
  45. }
  46. static int input_defuzz_abs_event(int value, int old_val, int fuzz)
  47. {
  48. if (fuzz) {
  49. if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2)
  50. return old_val;
  51. if (value > old_val - fuzz && value < old_val + fuzz)
  52. return (old_val * 3 + value) / 4;
  53. if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2)
  54. return (old_val + value) / 2;
  55. }
  56. return value;
  57. }
  58. /*
  59. * Pass event first through all filters and then, if event has not been
  60. * filtered out, through all open handles. This function is called with
  61. * dev->event_lock held and interrupts disabled.
  62. */
  63. static void input_pass_event(struct input_dev *dev,
  64. unsigned int type, unsigned int code, int value)
  65. {
  66. struct input_handler *handler;
  67. struct input_handle *handle;
  68. rcu_read_lock();
  69. handle = rcu_dereference(dev->grab);
  70. if (handle)
  71. handle->handler->event(handle, type, code, value);
  72. else {
  73. bool filtered = false;
  74. list_for_each_entry_rcu(handle, &dev->h_list, d_node) {
  75. if (!handle->open)
  76. continue;
  77. handler = handle->handler;
  78. if (!handler->filter) {
  79. if (filtered)
  80. break;
  81. handler->event(handle, type, code, value);
  82. } else if (handler->filter(handle, type, code, value))
  83. filtered = true;
  84. }
  85. }
  86. rcu_read_unlock();
  87. }
  88. /*
  89. * Generate software autorepeat event. Note that we take
  90. * dev->event_lock here to avoid racing with input_event
  91. * which may cause keys get "stuck".
  92. */
  93. static void input_repeat_key(unsigned long data)
  94. {
  95. struct input_dev *dev = (void *) data;
  96. unsigned long flags;
  97. spin_lock_irqsave(&dev->event_lock, flags);
  98. if (test_bit(dev->repeat_key, dev->key) &&
  99. is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) {
  100. input_pass_event(dev, EV_KEY, dev->repeat_key, 2);
  101. if (dev->sync) {
  102. /*
  103. * Only send SYN_REPORT if we are not in a middle
  104. * of driver parsing a new hardware packet.
  105. * Otherwise assume that the driver will send
  106. * SYN_REPORT once it's done.
  107. */
  108. input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
  109. }
  110. if (dev->rep[REP_PERIOD])
  111. mod_timer(&dev->timer, jiffies +
  112. msecs_to_jiffies(dev->rep[REP_PERIOD]));
  113. }
  114. spin_unlock_irqrestore(&dev->event_lock, flags);
  115. }
  116. static void input_start_autorepeat(struct input_dev *dev, int code)
  117. {
  118. if (test_bit(EV_REP, dev->evbit) &&
  119. dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] &&
  120. dev->timer.data) {
  121. dev->repeat_key = code;
  122. mod_timer(&dev->timer,
  123. jiffies + msecs_to_jiffies(dev->rep[REP_DELAY]));
  124. }
  125. }
  126. static void input_stop_autorepeat(struct input_dev *dev)
  127. {
  128. del_timer(&dev->timer);
  129. }
  130. #define INPUT_IGNORE_EVENT 0
  131. #define INPUT_PASS_TO_HANDLERS 1
  132. #define INPUT_PASS_TO_DEVICE 2
  133. #define INPUT_PASS_TO_ALL (INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
  134. static int input_handle_abs_event(struct input_dev *dev,
  135. unsigned int code, int *pval)
  136. {
  137. bool is_mt_event;
  138. int *pold;
  139. if (code == ABS_MT_SLOT) {
  140. /*
  141. * "Stage" the event; we'll flush it later, when we
  142. * get actiual touch data.
  143. */
  144. if (*pval >= 0 && *pval < dev->mtsize)
  145. dev->slot = *pval;
  146. return INPUT_IGNORE_EVENT;
  147. }
  148. is_mt_event = code >= ABS_MT_FIRST && code <= ABS_MT_LAST;
  149. if (!is_mt_event) {
  150. pold = &dev->abs[code];
  151. } else if (dev->mt) {
  152. struct input_mt_slot *mtslot = &dev->mt[dev->slot];
  153. pold = &mtslot->abs[code - ABS_MT_FIRST];
  154. } else {
  155. /*
  156. * Bypass filtering for multitouch events when
  157. * not employing slots.
  158. */
  159. pold = NULL;
  160. }
  161. if (pold) {
  162. *pval = input_defuzz_abs_event(*pval, *pold,
  163. dev->absfuzz[code]);
  164. if (*pold == *pval)
  165. return INPUT_IGNORE_EVENT;
  166. *pold = *pval;
  167. }
  168. /* Flush pending "slot" event */
  169. if (is_mt_event && dev->slot != dev->abs[ABS_MT_SLOT]) {
  170. dev->abs[ABS_MT_SLOT] = dev->slot;
  171. input_pass_event(dev, EV_ABS, ABS_MT_SLOT, dev->slot);
  172. }
  173. return INPUT_PASS_TO_HANDLERS;
  174. }
  175. static void input_handle_event(struct input_dev *dev,
  176. unsigned int type, unsigned int code, int value)
  177. {
  178. int disposition = INPUT_IGNORE_EVENT;
  179. switch (type) {
  180. case EV_SYN:
  181. switch (code) {
  182. case SYN_CONFIG:
  183. disposition = INPUT_PASS_TO_ALL;
  184. break;
  185. case SYN_REPORT:
  186. if (!dev->sync) {
  187. dev->sync = true;
  188. disposition = INPUT_PASS_TO_HANDLERS;
  189. }
  190. break;
  191. case SYN_MT_REPORT:
  192. dev->sync = false;
  193. disposition = INPUT_PASS_TO_HANDLERS;
  194. break;
  195. }
  196. break;
  197. case EV_KEY:
  198. if (is_event_supported(code, dev->keybit, KEY_MAX) &&
  199. !!test_bit(code, dev->key) != value) {
  200. if (value != 2) {
  201. __change_bit(code, dev->key);
  202. if (value)
  203. input_start_autorepeat(dev, code);
  204. else
  205. input_stop_autorepeat(dev);
  206. }
  207. disposition = INPUT_PASS_TO_HANDLERS;
  208. }
  209. break;
  210. case EV_SW:
  211. if (is_event_supported(code, dev->swbit, SW_MAX) &&
  212. !!test_bit(code, dev->sw) != value) {
  213. __change_bit(code, dev->sw);
  214. disposition = INPUT_PASS_TO_HANDLERS;
  215. }
  216. break;
  217. case EV_ABS:
  218. if (is_event_supported(code, dev->absbit, ABS_MAX))
  219. disposition = input_handle_abs_event(dev, code, &value);
  220. break;
  221. case EV_REL:
  222. if (is_event_supported(code, dev->relbit, REL_MAX) && value)
  223. disposition = INPUT_PASS_TO_HANDLERS;
  224. break;
  225. case EV_MSC:
  226. if (is_event_supported(code, dev->mscbit, MSC_MAX))
  227. disposition = INPUT_PASS_TO_ALL;
  228. break;
  229. case EV_LED:
  230. if (is_event_supported(code, dev->ledbit, LED_MAX) &&
  231. !!test_bit(code, dev->led) != value) {
  232. __change_bit(code, dev->led);
  233. disposition = INPUT_PASS_TO_ALL;
  234. }
  235. break;
  236. case EV_SND:
  237. if (is_event_supported(code, dev->sndbit, SND_MAX)) {
  238. if (!!test_bit(code, dev->snd) != !!value)
  239. __change_bit(code, dev->snd);
  240. disposition = INPUT_PASS_TO_ALL;
  241. }
  242. break;
  243. case EV_REP:
  244. if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) {
  245. dev->rep[code] = value;
  246. disposition = INPUT_PASS_TO_ALL;
  247. }
  248. break;
  249. case EV_FF:
  250. if (value >= 0)
  251. disposition = INPUT_PASS_TO_ALL;
  252. break;
  253. case EV_PWR:
  254. disposition = INPUT_PASS_TO_ALL;
  255. break;
  256. }
  257. if (disposition != INPUT_IGNORE_EVENT && type != EV_SYN)
  258. dev->sync = false;
  259. if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event)
  260. dev->event(dev, type, code, value);
  261. if (disposition & INPUT_PASS_TO_HANDLERS)
  262. input_pass_event(dev, type, code, value);
  263. }
  264. /**
  265. * input_event() - report new input event
  266. * @dev: device that generated the event
  267. * @type: type of the event
  268. * @code: event code
  269. * @value: value of the event
  270. *
  271. * This function should be used by drivers implementing various input
  272. * devices to report input events. See also input_inject_event().
  273. *
  274. * NOTE: input_event() may be safely used right after input device was
  275. * allocated with input_allocate_device(), even before it is registered
  276. * with input_register_device(), but the event will not reach any of the
  277. * input handlers. Such early invocation of input_event() may be used
  278. * to 'seed' initial state of a switch or initial position of absolute
  279. * axis, etc.
  280. */
  281. void input_event(struct input_dev *dev,
  282. unsigned int type, unsigned int code, int value)
  283. {
  284. unsigned long flags;
  285. if (is_event_supported(type, dev->evbit, EV_MAX)) {
  286. spin_lock_irqsave(&dev->event_lock, flags);
  287. add_input_randomness(type, code, value);
  288. input_handle_event(dev, type, code, value);
  289. spin_unlock_irqrestore(&dev->event_lock, flags);
  290. }
  291. }
  292. EXPORT_SYMBOL(input_event);
  293. /**
  294. * input_inject_event() - send input event from input handler
  295. * @handle: input handle to send event through
  296. * @type: type of the event
  297. * @code: event code
  298. * @value: value of the event
  299. *
  300. * Similar to input_event() but will ignore event if device is
  301. * "grabbed" and handle injecting event is not the one that owns
  302. * the device.
  303. */
  304. void input_inject_event(struct input_handle *handle,
  305. unsigned int type, unsigned int code, int value)
  306. {
  307. struct input_dev *dev = handle->dev;
  308. struct input_handle *grab;
  309. unsigned long flags;
  310. if (is_event_supported(type, dev->evbit, EV_MAX)) {
  311. spin_lock_irqsave(&dev->event_lock, flags);
  312. rcu_read_lock();
  313. grab = rcu_dereference(dev->grab);
  314. if (!grab || grab == handle)
  315. input_handle_event(dev, type, code, value);
  316. rcu_read_unlock();
  317. spin_unlock_irqrestore(&dev->event_lock, flags);
  318. }
  319. }
  320. EXPORT_SYMBOL(input_inject_event);
  321. /**
  322. * input_grab_device - grabs device for exclusive use
  323. * @handle: input handle that wants to own the device
  324. *
  325. * When a device is grabbed by an input handle all events generated by
  326. * the device are delivered only to this handle. Also events injected
  327. * by other input handles are ignored while device is grabbed.
  328. */
  329. int input_grab_device(struct input_handle *handle)
  330. {
  331. struct input_dev *dev = handle->dev;
  332. int retval;
  333. retval = mutex_lock_interruptible(&dev->mutex);
  334. if (retval)
  335. return retval;
  336. if (dev->grab) {
  337. retval = -EBUSY;
  338. goto out;
  339. }
  340. rcu_assign_pointer(dev->grab, handle);
  341. synchronize_rcu();
  342. out:
  343. mutex_unlock(&dev->mutex);
  344. return retval;
  345. }
  346. EXPORT_SYMBOL(input_grab_device);
  347. static void __input_release_device(struct input_handle *handle)
  348. {
  349. struct input_dev *dev = handle->dev;
  350. if (dev->grab == handle) {
  351. rcu_assign_pointer(dev->grab, NULL);
  352. /* Make sure input_pass_event() notices that grab is gone */
  353. synchronize_rcu();
  354. list_for_each_entry(handle, &dev->h_list, d_node)
  355. if (handle->open && handle->handler->start)
  356. handle->handler->start(handle);
  357. }
  358. }
  359. /**
  360. * input_release_device - release previously grabbed device
  361. * @handle: input handle that owns the device
  362. *
  363. * Releases previously grabbed device so that other input handles can
  364. * start receiving input events. Upon release all handlers attached
  365. * to the device have their start() method called so they have a change
  366. * to synchronize device state with the rest of the system.
  367. */
  368. void input_release_device(struct input_handle *handle)
  369. {
  370. struct input_dev *dev = handle->dev;
  371. mutex_lock(&dev->mutex);
  372. __input_release_device(handle);
  373. mutex_unlock(&dev->mutex);
  374. }
  375. EXPORT_SYMBOL(input_release_device);
  376. /**
  377. * input_open_device - open input device
  378. * @handle: handle through which device is being accessed
  379. *
  380. * This function should be called by input handlers when they
  381. * want to start receive events from given input device.
  382. */
  383. int input_open_device(struct input_handle *handle)
  384. {
  385. struct input_dev *dev = handle->dev;
  386. int retval;
  387. retval = mutex_lock_interruptible(&dev->mutex);
  388. if (retval)
  389. return retval;
  390. if (dev->going_away) {
  391. retval = -ENODEV;
  392. goto out;
  393. }
  394. handle->open++;
  395. if (!dev->users++ && dev->open)
  396. retval = dev->open(dev);
  397. if (retval) {
  398. dev->users--;
  399. if (!--handle->open) {
  400. /*
  401. * Make sure we are not delivering any more events
  402. * through this handle
  403. */
  404. synchronize_rcu();
  405. }
  406. }
  407. out:
  408. mutex_unlock(&dev->mutex);
  409. return retval;
  410. }
  411. EXPORT_SYMBOL(input_open_device);
  412. int input_flush_device(struct input_handle *handle, struct file *file)
  413. {
  414. struct input_dev *dev = handle->dev;
  415. int retval;
  416. retval = mutex_lock_interruptible(&dev->mutex);
  417. if (retval)
  418. return retval;
  419. if (dev->flush)
  420. retval = dev->flush(dev, file);
  421. mutex_unlock(&dev->mutex);
  422. return retval;
  423. }
  424. EXPORT_SYMBOL(input_flush_device);
  425. /**
  426. * input_close_device - close input device
  427. * @handle: handle through which device is being accessed
  428. *
  429. * This function should be called by input handlers when they
  430. * want to stop receive events from given input device.
  431. */
  432. void input_close_device(struct input_handle *handle)
  433. {
  434. struct input_dev *dev = handle->dev;
  435. mutex_lock(&dev->mutex);
  436. __input_release_device(handle);
  437. if (!--dev->users && dev->close)
  438. dev->close(dev);
  439. if (!--handle->open) {
  440. /*
  441. * synchronize_rcu() makes sure that input_pass_event()
  442. * completed and that no more input events are delivered
  443. * through this handle
  444. */
  445. synchronize_rcu();
  446. }
  447. mutex_unlock(&dev->mutex);
  448. }
  449. EXPORT_SYMBOL(input_close_device);
  450. /*
  451. * Simulate keyup events for all keys that are marked as pressed.
  452. * The function must be called with dev->event_lock held.
  453. */
  454. static void input_dev_release_keys(struct input_dev *dev)
  455. {
  456. int code;
  457. if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) {
  458. for (code = 0; code <= KEY_MAX; code++) {
  459. if (is_event_supported(code, dev->keybit, KEY_MAX) &&
  460. __test_and_clear_bit(code, dev->key)) {
  461. input_pass_event(dev, EV_KEY, code, 0);
  462. }
  463. }
  464. input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
  465. }
  466. }
  467. /*
  468. * Prepare device for unregistering
  469. */
  470. static void input_disconnect_device(struct input_dev *dev)
  471. {
  472. struct input_handle *handle;
  473. /*
  474. * Mark device as going away. Note that we take dev->mutex here
  475. * not to protect access to dev->going_away but rather to ensure
  476. * that there are no threads in the middle of input_open_device()
  477. */
  478. mutex_lock(&dev->mutex);
  479. dev->going_away = true;
  480. mutex_unlock(&dev->mutex);
  481. spin_lock_irq(&dev->event_lock);
  482. /*
  483. * Simulate keyup events for all pressed keys so that handlers
  484. * are not left with "stuck" keys. The driver may continue
  485. * generate events even after we done here but they will not
  486. * reach any handlers.
  487. */
  488. input_dev_release_keys(dev);
  489. list_for_each_entry(handle, &dev->h_list, d_node)
  490. handle->open = 0;
  491. spin_unlock_irq(&dev->event_lock);
  492. }
  493. static int input_fetch_keycode(struct input_dev *dev, int scancode)
  494. {
  495. switch (dev->keycodesize) {
  496. case 1:
  497. return ((u8 *)dev->keycode)[scancode];
  498. case 2:
  499. return ((u16 *)dev->keycode)[scancode];
  500. default:
  501. return ((u32 *)dev->keycode)[scancode];
  502. }
  503. }
  504. static int input_default_getkeycode(struct input_dev *dev,
  505. unsigned int scancode,
  506. unsigned int *keycode)
  507. {
  508. if (!dev->keycodesize)
  509. return -EINVAL;
  510. if (scancode >= dev->keycodemax)
  511. return -EINVAL;
  512. *keycode = input_fetch_keycode(dev, scancode);
  513. return 0;
  514. }
  515. static int input_default_setkeycode(struct input_dev *dev,
  516. unsigned int scancode,
  517. unsigned int keycode)
  518. {
  519. int old_keycode;
  520. int i;
  521. if (scancode >= dev->keycodemax)
  522. return -EINVAL;
  523. if (!dev->keycodesize)
  524. return -EINVAL;
  525. if (dev->keycodesize < sizeof(keycode) && (keycode >> (dev->keycodesize * 8)))
  526. return -EINVAL;
  527. switch (dev->keycodesize) {
  528. case 1: {
  529. u8 *k = (u8 *)dev->keycode;
  530. old_keycode = k[scancode];
  531. k[scancode] = keycode;
  532. break;
  533. }
  534. case 2: {
  535. u16 *k = (u16 *)dev->keycode;
  536. old_keycode = k[scancode];
  537. k[scancode] = keycode;
  538. break;
  539. }
  540. default: {
  541. u32 *k = (u32 *)dev->keycode;
  542. old_keycode = k[scancode];
  543. k[scancode] = keycode;
  544. break;
  545. }
  546. }
  547. __clear_bit(old_keycode, dev->keybit);
  548. __set_bit(keycode, dev->keybit);
  549. for (i = 0; i < dev->keycodemax; i++) {
  550. if (input_fetch_keycode(dev, i) == old_keycode) {
  551. __set_bit(old_keycode, dev->keybit);
  552. break; /* Setting the bit twice is useless, so break */
  553. }
  554. }
  555. return 0;
  556. }
  557. /**
  558. * input_get_keycode - retrieve keycode currently mapped to a given scancode
  559. * @dev: input device which keymap is being queried
  560. * @scancode: scancode (or its equivalent for device in question) for which
  561. * keycode is needed
  562. * @keycode: result
  563. *
  564. * This function should be called by anyone interested in retrieving current
  565. * keymap. Presently keyboard and evdev handlers use it.
  566. */
  567. int input_get_keycode(struct input_dev *dev,
  568. unsigned int scancode, unsigned int *keycode)
  569. {
  570. unsigned long flags;
  571. int retval;
  572. spin_lock_irqsave(&dev->event_lock, flags);
  573. retval = dev->getkeycode(dev, scancode, keycode);
  574. spin_unlock_irqrestore(&dev->event_lock, flags);
  575. return retval;
  576. }
  577. EXPORT_SYMBOL(input_get_keycode);
  578. /**
  579. * input_get_keycode - assign new keycode to a given scancode
  580. * @dev: input device which keymap is being updated
  581. * @scancode: scancode (or its equivalent for device in question)
  582. * @keycode: new keycode to be assigned to the scancode
  583. *
  584. * This function should be called by anyone needing to update current
  585. * keymap. Presently keyboard and evdev handlers use it.
  586. */
  587. int input_set_keycode(struct input_dev *dev,
  588. unsigned int scancode, unsigned int keycode)
  589. {
  590. unsigned long flags;
  591. unsigned int old_keycode;
  592. int retval;
  593. if (keycode > KEY_MAX)
  594. return -EINVAL;
  595. spin_lock_irqsave(&dev->event_lock, flags);
  596. retval = dev->getkeycode(dev, scancode, &old_keycode);
  597. if (retval)
  598. goto out;
  599. retval = dev->setkeycode(dev, scancode, keycode);
  600. if (retval)
  601. goto out;
  602. /* Make sure KEY_RESERVED did not get enabled. */
  603. __clear_bit(KEY_RESERVED, dev->keybit);
  604. /*
  605. * Simulate keyup event if keycode is not present
  606. * in the keymap anymore
  607. */
  608. if (test_bit(EV_KEY, dev->evbit) &&
  609. !is_event_supported(old_keycode, dev->keybit, KEY_MAX) &&
  610. __test_and_clear_bit(old_keycode, dev->key)) {
  611. input_pass_event(dev, EV_KEY, old_keycode, 0);
  612. if (dev->sync)
  613. input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
  614. }
  615. out:
  616. spin_unlock_irqrestore(&dev->event_lock, flags);
  617. return retval;
  618. }
  619. EXPORT_SYMBOL(input_set_keycode);
  620. #define MATCH_BIT(bit, max) \
  621. for (i = 0; i < BITS_TO_LONGS(max); i++) \
  622. if ((id->bit[i] & dev->bit[i]) != id->bit[i]) \
  623. break; \
  624. if (i != BITS_TO_LONGS(max)) \
  625. continue;
  626. static const struct input_device_id *input_match_device(struct input_handler *handler,
  627. struct input_dev *dev)
  628. {
  629. const struct input_device_id *id;
  630. int i;
  631. for (id = handler->id_table; id->flags || id->driver_info; id++) {
  632. if (id->flags & INPUT_DEVICE_ID_MATCH_BUS)
  633. if (id->bustype != dev->id.bustype)
  634. continue;
  635. if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR)
  636. if (id->vendor != dev->id.vendor)
  637. continue;
  638. if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT)
  639. if (id->product != dev->id.product)
  640. continue;
  641. if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION)
  642. if (id->version != dev->id.version)
  643. continue;
  644. MATCH_BIT(evbit, EV_MAX);
  645. MATCH_BIT(keybit, KEY_MAX);
  646. MATCH_BIT(relbit, REL_MAX);
  647. MATCH_BIT(absbit, ABS_MAX);
  648. MATCH_BIT(mscbit, MSC_MAX);
  649. MATCH_BIT(ledbit, LED_MAX);
  650. MATCH_BIT(sndbit, SND_MAX);
  651. MATCH_BIT(ffbit, FF_MAX);
  652. MATCH_BIT(swbit, SW_MAX);
  653. if (!handler->match || handler->match(handler, dev))
  654. return id;
  655. }
  656. return NULL;
  657. }
  658. static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)
  659. {
  660. const struct input_device_id *id;
  661. int error;
  662. id = input_match_device(handler, dev);
  663. if (!id)
  664. return -ENODEV;
  665. error = handler->connect(handler, dev, id);
  666. if (error && error != -ENODEV)
  667. printk(KERN_ERR
  668. "input: failed to attach handler %s to device %s, "
  669. "error: %d\n",
  670. handler->name, kobject_name(&dev->dev.kobj), error);
  671. return error;
  672. }
  673. #ifdef CONFIG_COMPAT
  674. static int input_bits_to_string(char *buf, int buf_size,
  675. unsigned long bits, bool skip_empty)
  676. {
  677. int len = 0;
  678. if (INPUT_COMPAT_TEST) {
  679. u32 dword = bits >> 32;
  680. if (dword || !skip_empty)
  681. len += snprintf(buf, buf_size, "%x ", dword);
  682. dword = bits & 0xffffffffUL;
  683. if (dword || !skip_empty || len)
  684. len += snprintf(buf + len, max(buf_size - len, 0),
  685. "%x", dword);
  686. } else {
  687. if (bits || !skip_empty)
  688. len += snprintf(buf, buf_size, "%lx", bits);
  689. }
  690. return len;
  691. }
  692. #else /* !CONFIG_COMPAT */
  693. static int input_bits_to_string(char *buf, int buf_size,
  694. unsigned long bits, bool skip_empty)
  695. {
  696. return bits || !skip_empty ?
  697. snprintf(buf, buf_size, "%lx", bits) : 0;
  698. }
  699. #endif
  700. #ifdef CONFIG_PROC_FS
  701. static struct proc_dir_entry *proc_bus_input_dir;
  702. static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait);
  703. static int input_devices_state;
  704. static inline void input_wakeup_procfs_readers(void)
  705. {
  706. input_devices_state++;
  707. wake_up(&input_devices_poll_wait);
  708. }
  709. static unsigned int input_proc_devices_poll(struct file *file, poll_table *wait)
  710. {
  711. poll_wait(file, &input_devices_poll_wait, wait);
  712. if (file->f_version != input_devices_state) {
  713. file->f_version = input_devices_state;
  714. return POLLIN | POLLRDNORM;
  715. }
  716. return 0;
  717. }
  718. union input_seq_state {
  719. struct {
  720. unsigned short pos;
  721. bool mutex_acquired;
  722. };
  723. void *p;
  724. };
  725. static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos)
  726. {
  727. union input_seq_state *state = (union input_seq_state *)&seq->private;
  728. int error;
  729. /* We need to fit into seq->private pointer */
  730. BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
  731. error = mutex_lock_interruptible(&input_mutex);
  732. if (error) {
  733. state->mutex_acquired = false;
  734. return ERR_PTR(error);
  735. }
  736. state->mutex_acquired = true;
  737. return seq_list_start(&input_dev_list, *pos);
  738. }
  739. static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  740. {
  741. return seq_list_next(v, &input_dev_list, pos);
  742. }
  743. static void input_seq_stop(struct seq_file *seq, void *v)
  744. {
  745. union input_seq_state *state = (union input_seq_state *)&seq->private;
  746. if (state->mutex_acquired)
  747. mutex_unlock(&input_mutex);
  748. }
  749. static void input_seq_print_bitmap(struct seq_file *seq, const char *name,
  750. unsigned long *bitmap, int max)
  751. {
  752. int i;
  753. bool skip_empty = true;
  754. char buf[18];
  755. seq_printf(seq, "B: %s=", name);
  756. for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
  757. if (input_bits_to_string(buf, sizeof(buf),
  758. bitmap[i], skip_empty)) {
  759. skip_empty = false;
  760. seq_printf(seq, "%s%s", buf, i > 0 ? " " : "");
  761. }
  762. }
  763. /*
  764. * If no output was produced print a single 0.
  765. */
  766. if (skip_empty)
  767. seq_puts(seq, "0");
  768. seq_putc(seq, '\n');
  769. }
  770. static int input_devices_seq_show(struct seq_file *seq, void *v)
  771. {
  772. struct input_dev *dev = container_of(v, struct input_dev, node);
  773. const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
  774. struct input_handle *handle;
  775. seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
  776. dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version);
  777. seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : "");
  778. seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : "");
  779. seq_printf(seq, "S: Sysfs=%s\n", path ? path : "");
  780. seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : "");
  781. seq_printf(seq, "H: Handlers=");
  782. list_for_each_entry(handle, &dev->h_list, d_node)
  783. seq_printf(seq, "%s ", handle->name);
  784. seq_putc(seq, '\n');
  785. input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX);
  786. if (test_bit(EV_KEY, dev->evbit))
  787. input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX);
  788. if (test_bit(EV_REL, dev->evbit))
  789. input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX);
  790. if (test_bit(EV_ABS, dev->evbit))
  791. input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX);
  792. if (test_bit(EV_MSC, dev->evbit))
  793. input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX);
  794. if (test_bit(EV_LED, dev->evbit))
  795. input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX);
  796. if (test_bit(EV_SND, dev->evbit))
  797. input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX);
  798. if (test_bit(EV_FF, dev->evbit))
  799. input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX);
  800. if (test_bit(EV_SW, dev->evbit))
  801. input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX);
  802. seq_putc(seq, '\n');
  803. kfree(path);
  804. return 0;
  805. }
  806. static const struct seq_operations input_devices_seq_ops = {
  807. .start = input_devices_seq_start,
  808. .next = input_devices_seq_next,
  809. .stop = input_seq_stop,
  810. .show = input_devices_seq_show,
  811. };
  812. static int input_proc_devices_open(struct inode *inode, struct file *file)
  813. {
  814. return seq_open(file, &input_devices_seq_ops);
  815. }
  816. static const struct file_operations input_devices_fileops = {
  817. .owner = THIS_MODULE,
  818. .open = input_proc_devices_open,
  819. .poll = input_proc_devices_poll,
  820. .read = seq_read,
  821. .llseek = seq_lseek,
  822. .release = seq_release,
  823. };
  824. static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos)
  825. {
  826. union input_seq_state *state = (union input_seq_state *)&seq->private;
  827. int error;
  828. /* We need to fit into seq->private pointer */
  829. BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
  830. error = mutex_lock_interruptible(&input_mutex);
  831. if (error) {
  832. state->mutex_acquired = false;
  833. return ERR_PTR(error);
  834. }
  835. state->mutex_acquired = true;
  836. state->pos = *pos;
  837. return seq_list_start(&input_handler_list, *pos);
  838. }
  839. static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  840. {
  841. union input_seq_state *state = (union input_seq_state *)&seq->private;
  842. state->pos = *pos + 1;
  843. return seq_list_next(v, &input_handler_list, pos);
  844. }
  845. static int input_handlers_seq_show(struct seq_file *seq, void *v)
  846. {
  847. struct input_handler *handler = container_of(v, struct input_handler, node);
  848. union input_seq_state *state = (union input_seq_state *)&seq->private;
  849. seq_printf(seq, "N: Number=%u Name=%s", state->pos, handler->name);
  850. if (handler->filter)
  851. seq_puts(seq, " (filter)");
  852. if (handler->fops)
  853. seq_printf(seq, " Minor=%d", handler->minor);
  854. seq_putc(seq, '\n');
  855. return 0;
  856. }
  857. static const struct seq_operations input_handlers_seq_ops = {
  858. .start = input_handlers_seq_start,
  859. .next = input_handlers_seq_next,
  860. .stop = input_seq_stop,
  861. .show = input_handlers_seq_show,
  862. };
  863. static int input_proc_handlers_open(struct inode *inode, struct file *file)
  864. {
  865. return seq_open(file, &input_handlers_seq_ops);
  866. }
  867. static const struct file_operations input_handlers_fileops = {
  868. .owner = THIS_MODULE,
  869. .open = input_proc_handlers_open,
  870. .read = seq_read,
  871. .llseek = seq_lseek,
  872. .release = seq_release,
  873. };
  874. static int __init input_proc_init(void)
  875. {
  876. struct proc_dir_entry *entry;
  877. proc_bus_input_dir = proc_mkdir("bus/input", NULL);
  878. if (!proc_bus_input_dir)
  879. return -ENOMEM;
  880. entry = proc_create("devices", 0, proc_bus_input_dir,
  881. &input_devices_fileops);
  882. if (!entry)
  883. goto fail1;
  884. entry = proc_create("handlers", 0, proc_bus_input_dir,
  885. &input_handlers_fileops);
  886. if (!entry)
  887. goto fail2;
  888. return 0;
  889. fail2: remove_proc_entry("devices", proc_bus_input_dir);
  890. fail1: remove_proc_entry("bus/input", NULL);
  891. return -ENOMEM;
  892. }
  893. static void input_proc_exit(void)
  894. {
  895. remove_proc_entry("devices", proc_bus_input_dir);
  896. remove_proc_entry("handlers", proc_bus_input_dir);
  897. remove_proc_entry("bus/input", NULL);
  898. }
  899. #else /* !CONFIG_PROC_FS */
  900. static inline void input_wakeup_procfs_readers(void) { }
  901. static inline int input_proc_init(void) { return 0; }
  902. static inline void input_proc_exit(void) { }
  903. #endif
  904. #define INPUT_DEV_STRING_ATTR_SHOW(name) \
  905. static ssize_t input_dev_show_##name(struct device *dev, \
  906. struct device_attribute *attr, \
  907. char *buf) \
  908. { \
  909. struct input_dev *input_dev = to_input_dev(dev); \
  910. \
  911. return scnprintf(buf, PAGE_SIZE, "%s\n", \
  912. input_dev->name ? input_dev->name : ""); \
  913. } \
  914. static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
  915. INPUT_DEV_STRING_ATTR_SHOW(name);
  916. INPUT_DEV_STRING_ATTR_SHOW(phys);
  917. INPUT_DEV_STRING_ATTR_SHOW(uniq);
  918. static int input_print_modalias_bits(char *buf, int size,
  919. char name, unsigned long *bm,
  920. unsigned int min_bit, unsigned int max_bit)
  921. {
  922. int len = 0, i;
  923. len += snprintf(buf, max(size, 0), "%c", name);
  924. for (i = min_bit; i < max_bit; i++)
  925. if (bm[BIT_WORD(i)] & BIT_MASK(i))
  926. len += snprintf(buf + len, max(size - len, 0), "%X,", i);
  927. return len;
  928. }
  929. static int input_print_modalias(char *buf, int size, struct input_dev *id,
  930. int add_cr)
  931. {
  932. int len;
  933. len = snprintf(buf, max(size, 0),
  934. "input:b%04Xv%04Xp%04Xe%04X-",
  935. id->id.bustype, id->id.vendor,
  936. id->id.product, id->id.version);
  937. len += input_print_modalias_bits(buf + len, size - len,
  938. 'e', id->evbit, 0, EV_MAX);
  939. len += input_print_modalias_bits(buf + len, size - len,
  940. 'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX);
  941. len += input_print_modalias_bits(buf + len, size - len,
  942. 'r', id->relbit, 0, REL_MAX);
  943. len += input_print_modalias_bits(buf + len, size - len,
  944. 'a', id->absbit, 0, ABS_MAX);
  945. len += input_print_modalias_bits(buf + len, size - len,
  946. 'm', id->mscbit, 0, MSC_MAX);
  947. len += input_print_modalias_bits(buf + len, size - len,
  948. 'l', id->ledbit, 0, LED_MAX);
  949. len += input_print_modalias_bits(buf + len, size - len,
  950. 's', id->sndbit, 0, SND_MAX);
  951. len += input_print_modalias_bits(buf + len, size - len,
  952. 'f', id->ffbit, 0, FF_MAX);
  953. len += input_print_modalias_bits(buf + len, size - len,
  954. 'w', id->swbit, 0, SW_MAX);
  955. if (add_cr)
  956. len += snprintf(buf + len, max(size - len, 0), "\n");
  957. return len;
  958. }
  959. static ssize_t input_dev_show_modalias(struct device *dev,
  960. struct device_attribute *attr,
  961. char *buf)
  962. {
  963. struct input_dev *id = to_input_dev(dev);
  964. ssize_t len;
  965. len = input_print_modalias(buf, PAGE_SIZE, id, 1);
  966. return min_t(int, len, PAGE_SIZE);
  967. }
  968. static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL);
  969. static struct attribute *input_dev_attrs[] = {
  970. &dev_attr_name.attr,
  971. &dev_attr_phys.attr,
  972. &dev_attr_uniq.attr,
  973. &dev_attr_modalias.attr,
  974. NULL
  975. };
  976. static struct attribute_group input_dev_attr_group = {
  977. .attrs = input_dev_attrs,
  978. };
  979. #define INPUT_DEV_ID_ATTR(name) \
  980. static ssize_t input_dev_show_id_##name(struct device *dev, \
  981. struct device_attribute *attr, \
  982. char *buf) \
  983. { \
  984. struct input_dev *input_dev = to_input_dev(dev); \
  985. return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name); \
  986. } \
  987. static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
  988. INPUT_DEV_ID_ATTR(bustype);
  989. INPUT_DEV_ID_ATTR(vendor);
  990. INPUT_DEV_ID_ATTR(product);
  991. INPUT_DEV_ID_ATTR(version);
  992. static struct attribute *input_dev_id_attrs[] = {
  993. &dev_attr_bustype.attr,
  994. &dev_attr_vendor.attr,
  995. &dev_attr_product.attr,
  996. &dev_attr_version.attr,
  997. NULL
  998. };
  999. static struct attribute_group input_dev_id_attr_group = {
  1000. .name = "id",
  1001. .attrs = input_dev_id_attrs,
  1002. };
  1003. static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
  1004. int max, int add_cr)
  1005. {
  1006. int i;
  1007. int len = 0;
  1008. bool skip_empty = true;
  1009. for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
  1010. len += input_bits_to_string(buf + len, max(buf_size - len, 0),
  1011. bitmap[i], skip_empty);
  1012. if (len) {
  1013. skip_empty = false;
  1014. if (i > 0)
  1015. len += snprintf(buf + len, max(buf_size - len, 0), " ");
  1016. }
  1017. }
  1018. /*
  1019. * If no output was produced print a single 0.
  1020. */
  1021. if (len == 0)
  1022. len = snprintf(buf, buf_size, "%d", 0);
  1023. if (add_cr)
  1024. len += snprintf(buf + len, max(buf_size - len, 0), "\n");
  1025. return len;
  1026. }
  1027. #define INPUT_DEV_CAP_ATTR(ev, bm) \
  1028. static ssize_t input_dev_show_cap_##bm(struct device *dev, \
  1029. struct device_attribute *attr, \
  1030. char *buf) \
  1031. { \
  1032. struct input_dev *input_dev = to_input_dev(dev); \
  1033. int len = input_print_bitmap(buf, PAGE_SIZE, \
  1034. input_dev->bm##bit, ev##_MAX, \
  1035. true); \
  1036. return min_t(int, len, PAGE_SIZE); \
  1037. } \
  1038. static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
  1039. INPUT_DEV_CAP_ATTR(EV, ev);
  1040. INPUT_DEV_CAP_ATTR(KEY, key);
  1041. INPUT_DEV_CAP_ATTR(REL, rel);
  1042. INPUT_DEV_CAP_ATTR(ABS, abs);
  1043. INPUT_DEV_CAP_ATTR(MSC, msc);
  1044. INPUT_DEV_CAP_ATTR(LED, led);
  1045. INPUT_DEV_CAP_ATTR(SND, snd);
  1046. INPUT_DEV_CAP_ATTR(FF, ff);
  1047. INPUT_DEV_CAP_ATTR(SW, sw);
  1048. static struct attribute *input_dev_caps_attrs[] = {
  1049. &dev_attr_ev.attr,
  1050. &dev_attr_key.attr,
  1051. &dev_attr_rel.attr,
  1052. &dev_attr_abs.attr,
  1053. &dev_attr_msc.attr,
  1054. &dev_attr_led.attr,
  1055. &dev_attr_snd.attr,
  1056. &dev_attr_ff.attr,
  1057. &dev_attr_sw.attr,
  1058. NULL
  1059. };
  1060. static struct attribute_group input_dev_caps_attr_group = {
  1061. .name = "capabilities",
  1062. .attrs = input_dev_caps_attrs,
  1063. };
  1064. static const struct attribute_group *input_dev_attr_groups[] = {
  1065. &input_dev_attr_group,
  1066. &input_dev_id_attr_group,
  1067. &input_dev_caps_attr_group,
  1068. NULL
  1069. };
  1070. static void input_dev_release(struct device *device)
  1071. {
  1072. struct input_dev *dev = to_input_dev(device);
  1073. input_ff_destroy(dev);
  1074. input_mt_destroy_slots(dev);
  1075. kfree(dev);
  1076. module_put(THIS_MODULE);
  1077. }
  1078. /*
  1079. * Input uevent interface - loading event handlers based on
  1080. * device bitfields.
  1081. */
  1082. static int input_add_uevent_bm_var(struct kobj_uevent_env *env,
  1083. const char *name, unsigned long *bitmap, int max)
  1084. {
  1085. int len;
  1086. if (add_uevent_var(env, "%s=", name))
  1087. return -ENOMEM;
  1088. len = input_print_bitmap(&env->buf[env->buflen - 1],
  1089. sizeof(env->buf) - env->buflen,
  1090. bitmap, max, false);
  1091. if (len >= (sizeof(env->buf) - env->buflen))
  1092. return -ENOMEM;
  1093. env->buflen += len;
  1094. return 0;
  1095. }
  1096. static int input_add_uevent_modalias_var(struct kobj_uevent_env *env,
  1097. struct input_dev *dev)
  1098. {
  1099. int len;
  1100. if (add_uevent_var(env, "MODALIAS="))
  1101. return -ENOMEM;
  1102. len = input_print_modalias(&env->buf[env->buflen - 1],
  1103. sizeof(env->buf) - env->buflen,
  1104. dev, 0);
  1105. if (len >= (sizeof(env->buf) - env->buflen))
  1106. return -ENOMEM;
  1107. env->buflen += len;
  1108. return 0;
  1109. }
  1110. #define INPUT_ADD_HOTPLUG_VAR(fmt, val...) \
  1111. do { \
  1112. int err = add_uevent_var(env, fmt, val); \
  1113. if (err) \
  1114. return err; \
  1115. } while (0)
  1116. #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max) \
  1117. do { \
  1118. int err = input_add_uevent_bm_var(env, name, bm, max); \
  1119. if (err) \
  1120. return err; \
  1121. } while (0)
  1122. #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev) \
  1123. do { \
  1124. int err = input_add_uevent_modalias_var(env, dev); \
  1125. if (err) \
  1126. return err; \
  1127. } while (0)
  1128. static int input_dev_uevent(struct device *device, struct kobj_uevent_env *env)
  1129. {
  1130. struct input_dev *dev = to_input_dev(device);
  1131. INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
  1132. dev->id.bustype, dev->id.vendor,
  1133. dev->id.product, dev->id.version);
  1134. if (dev->name)
  1135. INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name);
  1136. if (dev->phys)
  1137. INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys);
  1138. if (dev->uniq)
  1139. INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq);
  1140. INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX);
  1141. if (test_bit(EV_KEY, dev->evbit))
  1142. INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX);
  1143. if (test_bit(EV_REL, dev->evbit))
  1144. INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX);
  1145. if (test_bit(EV_ABS, dev->evbit))
  1146. INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX);
  1147. if (test_bit(EV_MSC, dev->evbit))
  1148. INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX);
  1149. if (test_bit(EV_LED, dev->evbit))
  1150. INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX);
  1151. if (test_bit(EV_SND, dev->evbit))
  1152. INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX);
  1153. if (test_bit(EV_FF, dev->evbit))
  1154. INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX);
  1155. if (test_bit(EV_SW, dev->evbit))
  1156. INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX);
  1157. INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev);
  1158. return 0;
  1159. }
  1160. #define INPUT_DO_TOGGLE(dev, type, bits, on) \
  1161. do { \
  1162. int i; \
  1163. bool active; \
  1164. \
  1165. if (!test_bit(EV_##type, dev->evbit)) \
  1166. break; \
  1167. \
  1168. for (i = 0; i < type##_MAX; i++) { \
  1169. if (!test_bit(i, dev->bits##bit)) \
  1170. continue; \
  1171. \
  1172. active = test_bit(i, dev->bits); \
  1173. if (!active && !on) \
  1174. continue; \
  1175. \
  1176. dev->event(dev, EV_##type, i, on ? active : 0); \
  1177. } \
  1178. } while (0)
  1179. #ifdef CONFIG_PM
  1180. static void input_dev_reset(struct input_dev *dev, bool activate)
  1181. {
  1182. if (!dev->event)
  1183. return;
  1184. INPUT_DO_TOGGLE(dev, LED, led, activate);
  1185. INPUT_DO_TOGGLE(dev, SND, snd, activate);
  1186. if (activate && test_bit(EV_REP, dev->evbit)) {
  1187. dev->event(dev, EV_REP, REP_PERIOD, dev->rep[REP_PERIOD]);
  1188. dev->event(dev, EV_REP, REP_DELAY, dev->rep[REP_DELAY]);
  1189. }
  1190. }
  1191. static int input_dev_suspend(struct device *dev)
  1192. {
  1193. struct input_dev *input_dev = to_input_dev(dev);
  1194. mutex_lock(&input_dev->mutex);
  1195. input_dev_reset(input_dev, false);
  1196. mutex_unlock(&input_dev->mutex);
  1197. return 0;
  1198. }
  1199. static int input_dev_resume(struct device *dev)
  1200. {
  1201. struct input_dev *input_dev = to_input_dev(dev);
  1202. mutex_lock(&input_dev->mutex);
  1203. input_dev_reset(input_dev, true);
  1204. /*
  1205. * Keys that have been pressed at suspend time are unlikely
  1206. * to be still pressed when we resume.
  1207. */
  1208. spin_lock_irq(&input_dev->event_lock);
  1209. input_dev_release_keys(input_dev);
  1210. spin_unlock_irq(&input_dev->event_lock);
  1211. mutex_unlock(&input_dev->mutex);
  1212. return 0;
  1213. }
  1214. static const struct dev_pm_ops input_dev_pm_ops = {
  1215. .suspend = input_dev_suspend,
  1216. .resume = input_dev_resume,
  1217. .poweroff = input_dev_suspend,
  1218. .restore = input_dev_resume,
  1219. };
  1220. #endif /* CONFIG_PM */
  1221. static struct device_type input_dev_type = {
  1222. .groups = input_dev_attr_groups,
  1223. .release = input_dev_release,
  1224. .uevent = input_dev_uevent,
  1225. #ifdef CONFIG_PM
  1226. .pm = &input_dev_pm_ops,
  1227. #endif
  1228. };
  1229. static char *input_devnode(struct device *dev, mode_t *mode)
  1230. {
  1231. return kasprintf(GFP_KERNEL, "input/%s", dev_name(dev));
  1232. }
  1233. struct class input_class = {
  1234. .name = "input",
  1235. .devnode = input_devnode,
  1236. };
  1237. EXPORT_SYMBOL_GPL(input_class);
  1238. /**
  1239. * input_allocate_device - allocate memory for new input device
  1240. *
  1241. * Returns prepared struct input_dev or NULL.
  1242. *
  1243. * NOTE: Use input_free_device() to free devices that have not been
  1244. * registered; input_unregister_device() should be used for already
  1245. * registered devices.
  1246. */
  1247. struct input_dev *input_allocate_device(void)
  1248. {
  1249. struct input_dev *dev;
  1250. dev = kzalloc(sizeof(struct input_dev), GFP_KERNEL);
  1251. if (dev) {
  1252. dev->dev.type = &input_dev_type;
  1253. dev->dev.class = &input_class;
  1254. device_initialize(&dev->dev);
  1255. mutex_init(&dev->mutex);
  1256. spin_lock_init(&dev->event_lock);
  1257. INIT_LIST_HEAD(&dev->h_list);
  1258. INIT_LIST_HEAD(&dev->node);
  1259. __module_get(THIS_MODULE);
  1260. }
  1261. return dev;
  1262. }
  1263. EXPORT_SYMBOL(input_allocate_device);
  1264. /**
  1265. * input_free_device - free memory occupied by input_dev structure
  1266. * @dev: input device to free
  1267. *
  1268. * This function should only be used if input_register_device()
  1269. * was not called yet or if it failed. Once device was registered
  1270. * use input_unregister_device() and memory will be freed once last
  1271. * reference to the device is dropped.
  1272. *
  1273. * Device should be allocated by input_allocate_device().
  1274. *
  1275. * NOTE: If there are references to the input device then memory
  1276. * will not be freed until last reference is dropped.
  1277. */
  1278. void input_free_device(struct input_dev *dev)
  1279. {
  1280. if (dev)
  1281. input_put_device(dev);
  1282. }
  1283. EXPORT_SYMBOL(input_free_device);
  1284. /**
  1285. * input_mt_create_slots() - create MT input slots
  1286. * @dev: input device supporting MT events and finger tracking
  1287. * @num_slots: number of slots used by the device
  1288. *
  1289. * This function allocates all necessary memory for MT slot handling
  1290. * in the input device, and adds ABS_MT_SLOT to the device capabilities.
  1291. */
  1292. int input_mt_create_slots(struct input_dev *dev, unsigned int num_slots)
  1293. {
  1294. if (!num_slots)
  1295. return 0;
  1296. dev->mt = kcalloc(num_slots, sizeof(struct input_mt_slot), GFP_KERNEL);
  1297. if (!dev->mt)
  1298. return -ENOMEM;
  1299. dev->mtsize = num_slots;
  1300. input_set_abs_params(dev, ABS_MT_SLOT, 0, num_slots - 1, 0, 0);
  1301. return 0;
  1302. }
  1303. EXPORT_SYMBOL(input_mt_create_slots);
  1304. /**
  1305. * input_mt_destroy_slots() - frees the MT slots of the input device
  1306. * @dev: input device with allocated MT slots
  1307. *
  1308. * This function is only needed in error path as the input core will
  1309. * automatically free the MT slots when the device is destroyed.
  1310. */
  1311. void input_mt_destroy_slots(struct input_dev *dev)
  1312. {
  1313. kfree(dev->mt);
  1314. dev->mt = NULL;
  1315. dev->mtsize = 0;
  1316. }
  1317. EXPORT_SYMBOL(input_mt_destroy_slots);
  1318. /**
  1319. * input_set_capability - mark device as capable of a certain event
  1320. * @dev: device that is capable of emitting or accepting event
  1321. * @type: type of the event (EV_KEY, EV_REL, etc...)
  1322. * @code: event code
  1323. *
  1324. * In addition to setting up corresponding bit in appropriate capability
  1325. * bitmap the function also adjusts dev->evbit.
  1326. */
  1327. void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code)
  1328. {
  1329. switch (type) {
  1330. case EV_KEY:
  1331. __set_bit(code, dev->keybit);
  1332. break;
  1333. case EV_REL:
  1334. __set_bit(code, dev->relbit);
  1335. break;
  1336. case EV_ABS:
  1337. __set_bit(code, dev->absbit);
  1338. break;
  1339. case EV_MSC:
  1340. __set_bit(code, dev->mscbit);
  1341. break;
  1342. case EV_SW:
  1343. __set_bit(code, dev->swbit);
  1344. break;
  1345. case EV_LED:
  1346. __set_bit(code, dev->ledbit);
  1347. break;
  1348. case EV_SND:
  1349. __set_bit(code, dev->sndbit);
  1350. break;
  1351. case EV_FF:
  1352. __set_bit(code, dev->ffbit);
  1353. break;
  1354. case EV_PWR:
  1355. /* do nothing */
  1356. break;
  1357. default:
  1358. printk(KERN_ERR
  1359. "input_set_capability: unknown type %u (code %u)\n",
  1360. type, code);
  1361. dump_stack();
  1362. return;
  1363. }
  1364. __set_bit(type, dev->evbit);
  1365. }
  1366. EXPORT_SYMBOL(input_set_capability);
  1367. #define INPUT_CLEANSE_BITMASK(dev, type, bits) \
  1368. do { \
  1369. if (!test_bit(EV_##type, dev->evbit)) \
  1370. memset(dev->bits##bit, 0, \
  1371. sizeof(dev->bits##bit)); \
  1372. } while (0)
  1373. static void input_cleanse_bitmasks(struct input_dev *dev)
  1374. {
  1375. INPUT_CLEANSE_BITMASK(dev, KEY, key);
  1376. INPUT_CLEANSE_BITMASK(dev, REL, rel);
  1377. INPUT_CLEANSE_BITMASK(dev, ABS, abs);
  1378. INPUT_CLEANSE_BITMASK(dev, MSC, msc);
  1379. INPUT_CLEANSE_BITMASK(dev, LED, led);
  1380. INPUT_CLEANSE_BITMASK(dev, SND, snd);
  1381. INPUT_CLEANSE_BITMASK(dev, FF, ff);
  1382. INPUT_CLEANSE_BITMASK(dev, SW, sw);
  1383. }
  1384. /**
  1385. * input_register_device - register device with input core
  1386. * @dev: device to be registered
  1387. *
  1388. * This function registers device with input core. The device must be
  1389. * allocated with input_allocate_device() and all it's capabilities
  1390. * set up before registering.
  1391. * If function fails the device must be freed with input_free_device().
  1392. * Once device has been successfully registered it can be unregistered
  1393. * with input_unregister_device(); input_free_device() should not be
  1394. * called in this case.
  1395. */
  1396. int input_register_device(struct input_dev *dev)
  1397. {
  1398. static atomic_t input_no = ATOMIC_INIT(0);
  1399. struct input_handler *handler;
  1400. const char *path;
  1401. int error;
  1402. /* Every input device generates EV_SYN/SYN_REPORT events. */
  1403. __set_bit(EV_SYN, dev->evbit);
  1404. /* KEY_RESERVED is not supposed to be transmitted to userspace. */
  1405. __clear_bit(KEY_RESERVED, dev->keybit);
  1406. /* Make sure that bitmasks not mentioned in dev->evbit are clean. */
  1407. input_cleanse_bitmasks(dev);
  1408. /*
  1409. * If delay and period are pre-set by the driver, then autorepeating
  1410. * is handled by the driver itself and we don't do it in input.c.
  1411. */
  1412. init_timer(&dev->timer);
  1413. if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD]) {
  1414. dev->timer.data = (long) dev;
  1415. dev->timer.function = input_repeat_key;
  1416. dev->rep[REP_DELAY] = 250;
  1417. dev->rep[REP_PERIOD] = 33;
  1418. }
  1419. if (!dev->getkeycode)
  1420. dev->getkeycode = input_default_getkeycode;
  1421. if (!dev->setkeycode)
  1422. dev->setkeycode = input_default_setkeycode;
  1423. dev_set_name(&dev->dev, "input%ld",
  1424. (unsigned long) atomic_inc_return(&input_no) - 1);
  1425. error = device_add(&dev->dev);
  1426. if (error)
  1427. return error;
  1428. path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
  1429. printk(KERN_INFO "input: %s as %s\n",
  1430. dev->name ? dev->name : "Unspecified device", path ? path : "N/A");
  1431. kfree(path);
  1432. error = mutex_lock_interruptible(&input_mutex);
  1433. if (error) {
  1434. device_del(&dev->dev);
  1435. return error;
  1436. }
  1437. list_add_tail(&dev->node, &input_dev_list);
  1438. list_for_each_entry(handler, &input_handler_list, node)
  1439. input_attach_handler(dev, handler);
  1440. input_wakeup_procfs_readers();
  1441. mutex_unlock(&input_mutex);
  1442. return 0;
  1443. }
  1444. EXPORT_SYMBOL(input_register_device);
  1445. /**
  1446. * input_unregister_device - unregister previously registered device
  1447. * @dev: device to be unregistered
  1448. *
  1449. * This function unregisters an input device. Once device is unregistered
  1450. * the caller should not try to access it as it may get freed at any moment.
  1451. */
  1452. void input_unregister_device(struct input_dev *dev)
  1453. {
  1454. struct input_handle *handle, *next;
  1455. input_disconnect_device(dev);
  1456. mutex_lock(&input_mutex);
  1457. list_for_each_entry_safe(handle, next, &dev->h_list, d_node)
  1458. handle->handler->disconnect(handle);
  1459. WARN_ON(!list_empty(&dev->h_list));
  1460. del_timer_sync(&dev->timer);
  1461. list_del_init(&dev->node);
  1462. input_wakeup_procfs_readers();
  1463. mutex_unlock(&input_mutex);
  1464. device_unregister(&dev->dev);
  1465. }
  1466. EXPORT_SYMBOL(input_unregister_device);
  1467. /**
  1468. * input_register_handler - register a new input handler
  1469. * @handler: handler to be registered
  1470. *
  1471. * This function registers a new input handler (interface) for input
  1472. * devices in the system and attaches it to all input devices that
  1473. * are compatible with the handler.
  1474. */
  1475. int input_register_handler(struct input_handler *handler)
  1476. {
  1477. struct input_dev *dev;
  1478. int retval;
  1479. retval = mutex_lock_interruptible(&input_mutex);
  1480. if (retval)
  1481. return retval;
  1482. INIT_LIST_HEAD(&handler->h_list);
  1483. if (handler->fops != NULL) {
  1484. if (input_table[handler->minor >> 5]) {
  1485. retval = -EBUSY;
  1486. goto out;
  1487. }
  1488. input_table[handler->minor >> 5] = handler;
  1489. }
  1490. list_add_tail(&handler->node, &input_handler_list);
  1491. list_for_each_entry(dev, &input_dev_list, node)
  1492. input_attach_handler(dev, handler);
  1493. input_wakeup_procfs_readers();
  1494. out:
  1495. mutex_unlock(&input_mutex);
  1496. return retval;
  1497. }
  1498. EXPORT_SYMBOL(input_register_handler);
  1499. /**
  1500. * input_unregister_handler - unregisters an input handler
  1501. * @handler: handler to be unregistered
  1502. *
  1503. * This function disconnects a handler from its input devices and
  1504. * removes it from lists of known handlers.
  1505. */
  1506. void input_unregister_handler(struct input_handler *handler)
  1507. {
  1508. struct input_handle *handle, *next;
  1509. mutex_lock(&input_mutex);
  1510. list_for_each_entry_safe(handle, next, &handler->h_list, h_node)
  1511. handler->disconnect(handle);
  1512. WARN_ON(!list_empty(&handler->h_list));
  1513. list_del_init(&handler->node);
  1514. if (handler->fops != NULL)
  1515. input_table[handler->minor >> 5] = NULL;
  1516. input_wakeup_procfs_readers();
  1517. mutex_unlock(&input_mutex);
  1518. }
  1519. EXPORT_SYMBOL(input_unregister_handler);
  1520. /**
  1521. * input_handler_for_each_handle - handle iterator
  1522. * @handler: input handler to iterate
  1523. * @data: data for the callback
  1524. * @fn: function to be called for each handle
  1525. *
  1526. * Iterate over @bus's list of devices, and call @fn for each, passing
  1527. * it @data and stop when @fn returns a non-zero value. The function is
  1528. * using RCU to traverse the list and therefore may be usind in atonic
  1529. * contexts. The @fn callback is invoked from RCU critical section and
  1530. * thus must not sleep.
  1531. */
  1532. int input_handler_for_each_handle(struct input_handler *handler, void *data,
  1533. int (*fn)(struct input_handle *, void *))
  1534. {
  1535. struct input_handle *handle;
  1536. int retval = 0;
  1537. rcu_read_lock();
  1538. list_for_each_entry_rcu(handle, &handler->h_list, h_node) {
  1539. retval = fn(handle, data);
  1540. if (retval)
  1541. break;
  1542. }
  1543. rcu_read_unlock();
  1544. return retval;
  1545. }
  1546. EXPORT_SYMBOL(input_handler_for_each_handle);
  1547. /**
  1548. * input_register_handle - register a new input handle
  1549. * @handle: handle to register
  1550. *
  1551. * This function puts a new input handle onto device's
  1552. * and handler's lists so that events can flow through
  1553. * it once it is opened using input_open_device().
  1554. *
  1555. * This function is supposed to be called from handler's
  1556. * connect() method.
  1557. */
  1558. int input_register_handle(struct input_handle *handle)
  1559. {
  1560. struct input_handler *handler = handle->handler;
  1561. struct input_dev *dev = handle->dev;
  1562. int error;
  1563. /*
  1564. * We take dev->mutex here to prevent race with
  1565. * input_release_device().
  1566. */
  1567. error = mutex_lock_interruptible(&dev->mutex);
  1568. if (error)
  1569. return error;
  1570. /*
  1571. * Filters go to the head of the list, normal handlers
  1572. * to the tail.
  1573. */
  1574. if (handler->filter)
  1575. list_add_rcu(&handle->d_node, &dev->h_list);
  1576. else
  1577. list_add_tail_rcu(&handle->d_node, &dev->h_list);
  1578. mutex_unlock(&dev->mutex);
  1579. /*
  1580. * Since we are supposed to be called from ->connect()
  1581. * which is mutually exclusive with ->disconnect()
  1582. * we can't be racing with input_unregister_handle()
  1583. * and so separate lock is not needed here.
  1584. */
  1585. list_add_tail_rcu(&handle->h_node, &handler->h_list);
  1586. if (handler->start)
  1587. handler->start(handle);
  1588. return 0;
  1589. }
  1590. EXPORT_SYMBOL(input_register_handle);
  1591. /**
  1592. * input_unregister_handle - unregister an input handle
  1593. * @handle: handle to unregister
  1594. *
  1595. * This function removes input handle from device's
  1596. * and handler's lists.
  1597. *
  1598. * This function is supposed to be called from handler's
  1599. * disconnect() method.
  1600. */
  1601. void input_unregister_handle(struct input_handle *handle)
  1602. {
  1603. struct input_dev *dev = handle->dev;
  1604. list_del_rcu(&handle->h_node);
  1605. /*
  1606. * Take dev->mutex to prevent race with input_release_device().
  1607. */
  1608. mutex_lock(&dev->mutex);
  1609. list_del_rcu(&handle->d_node);
  1610. mutex_unlock(&dev->mutex);
  1611. synchronize_rcu();
  1612. }
  1613. EXPORT_SYMBOL(input_unregister_handle);
  1614. static int input_open_file(struct inode *inode, struct file *file)
  1615. {
  1616. struct input_handler *handler;
  1617. const struct file_operations *old_fops, *new_fops = NULL;
  1618. int err;
  1619. err = mutex_lock_interruptible(&input_mutex);
  1620. if (err)
  1621. return err;
  1622. /* No load-on-demand here? */
  1623. handler = input_table[iminor(inode) >> 5];
  1624. if (handler)
  1625. new_fops = fops_get(handler->fops);
  1626. mutex_unlock(&input_mutex);
  1627. /*
  1628. * That's _really_ odd. Usually NULL ->open means "nothing special",
  1629. * not "no device". Oh, well...
  1630. */
  1631. if (!new_fops || !new_fops->open) {
  1632. fops_put(new_fops);
  1633. err = -ENODEV;
  1634. goto out;
  1635. }
  1636. old_fops = file->f_op;
  1637. file->f_op = new_fops;
  1638. err = new_fops->open(inode, file);
  1639. if (err) {
  1640. fops_put(file->f_op);
  1641. file->f_op = fops_get(old_fops);
  1642. }
  1643. fops_put(old_fops);
  1644. out:
  1645. return err;
  1646. }
  1647. static const struct file_operations input_fops = {
  1648. .owner = THIS_MODULE,
  1649. .open = input_open_file,
  1650. };
  1651. static int __init input_init(void)
  1652. {
  1653. int err;
  1654. err = class_register(&input_class);
  1655. if (err) {
  1656. printk(KERN_ERR "input: unable to register input_dev class\n");
  1657. return err;
  1658. }
  1659. err = input_proc_init();
  1660. if (err)
  1661. goto fail1;
  1662. err = register_chrdev(INPUT_MAJOR, "input", &input_fops);
  1663. if (err) {
  1664. printk(KERN_ERR "input: unable to register char major %d", INPUT_MAJOR);
  1665. goto fail2;
  1666. }
  1667. return 0;
  1668. fail2: input_proc_exit();
  1669. fail1: class_unregister(&input_class);
  1670. return err;
  1671. }
  1672. static void __exit input_exit(void)
  1673. {
  1674. input_proc_exit();
  1675. unregister_chrdev(INPUT_MAJOR, "input");
  1676. class_unregister(&input_class);
  1677. }
  1678. subsys_initcall(input_init);
  1679. module_exit(input_exit);