intel_dp.c 41 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Keith Packard <keithp@keithp.com>
  25. *
  26. */
  27. #include <linux/i2c.h>
  28. #include <linux/slab.h>
  29. #include "drmP.h"
  30. #include "drm.h"
  31. #include "drm_crtc.h"
  32. #include "drm_crtc_helper.h"
  33. #include "intel_drv.h"
  34. #include "i915_drm.h"
  35. #include "i915_drv.h"
  36. #include "drm_dp_helper.h"
  37. #define DP_LINK_STATUS_SIZE 6
  38. #define DP_LINK_CHECK_TIMEOUT (10 * 1000)
  39. #define DP_LINK_CONFIGURATION_SIZE 9
  40. #define IS_eDP(i) ((i)->type == INTEL_OUTPUT_EDP)
  41. struct intel_dp_priv {
  42. uint32_t output_reg;
  43. uint32_t DP;
  44. uint8_t link_configuration[DP_LINK_CONFIGURATION_SIZE];
  45. bool has_audio;
  46. int dpms_mode;
  47. uint8_t link_bw;
  48. uint8_t lane_count;
  49. uint8_t dpcd[4];
  50. struct intel_encoder *intel_encoder;
  51. struct i2c_adapter adapter;
  52. struct i2c_algo_dp_aux_data algo;
  53. };
  54. static void
  55. intel_dp_link_train(struct intel_encoder *intel_encoder, uint32_t DP,
  56. uint8_t link_configuration[DP_LINK_CONFIGURATION_SIZE]);
  57. static void
  58. intel_dp_link_down(struct intel_encoder *intel_encoder, uint32_t DP);
  59. void
  60. intel_edp_link_config (struct intel_encoder *intel_encoder,
  61. int *lane_num, int *link_bw)
  62. {
  63. struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
  64. *lane_num = dp_priv->lane_count;
  65. if (dp_priv->link_bw == DP_LINK_BW_1_62)
  66. *link_bw = 162000;
  67. else if (dp_priv->link_bw == DP_LINK_BW_2_7)
  68. *link_bw = 270000;
  69. }
  70. static int
  71. intel_dp_max_lane_count(struct intel_encoder *intel_encoder)
  72. {
  73. struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
  74. int max_lane_count = 4;
  75. if (dp_priv->dpcd[0] >= 0x11) {
  76. max_lane_count = dp_priv->dpcd[2] & 0x1f;
  77. switch (max_lane_count) {
  78. case 1: case 2: case 4:
  79. break;
  80. default:
  81. max_lane_count = 4;
  82. }
  83. }
  84. return max_lane_count;
  85. }
  86. static int
  87. intel_dp_max_link_bw(struct intel_encoder *intel_encoder)
  88. {
  89. struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
  90. int max_link_bw = dp_priv->dpcd[1];
  91. switch (max_link_bw) {
  92. case DP_LINK_BW_1_62:
  93. case DP_LINK_BW_2_7:
  94. break;
  95. default:
  96. max_link_bw = DP_LINK_BW_1_62;
  97. break;
  98. }
  99. return max_link_bw;
  100. }
  101. static int
  102. intel_dp_link_clock(uint8_t link_bw)
  103. {
  104. if (link_bw == DP_LINK_BW_2_7)
  105. return 270000;
  106. else
  107. return 162000;
  108. }
  109. /* I think this is a fiction */
  110. static int
  111. intel_dp_link_required(struct drm_device *dev,
  112. struct intel_encoder *intel_encoder, int pixel_clock)
  113. {
  114. struct drm_i915_private *dev_priv = dev->dev_private;
  115. if (IS_eDP(intel_encoder))
  116. return (pixel_clock * dev_priv->edp_bpp) / 8;
  117. else
  118. return pixel_clock * 3;
  119. }
  120. static int
  121. intel_dp_max_data_rate(int max_link_clock, int max_lanes)
  122. {
  123. return (max_link_clock * max_lanes * 8) / 10;
  124. }
  125. static int
  126. intel_dp_mode_valid(struct drm_connector *connector,
  127. struct drm_display_mode *mode)
  128. {
  129. struct drm_encoder *encoder = intel_attached_encoder(connector);
  130. struct intel_encoder *intel_encoder = enc_to_intel_encoder(encoder);
  131. int max_link_clock = intel_dp_link_clock(intel_dp_max_link_bw(intel_encoder));
  132. int max_lanes = intel_dp_max_lane_count(intel_encoder);
  133. /* only refuse the mode on non eDP since we have seen some wierd eDP panels
  134. which are outside spec tolerances but somehow work by magic */
  135. if (!IS_eDP(intel_encoder) &&
  136. (intel_dp_link_required(connector->dev, intel_encoder, mode->clock)
  137. > intel_dp_max_data_rate(max_link_clock, max_lanes)))
  138. return MODE_CLOCK_HIGH;
  139. if (mode->clock < 10000)
  140. return MODE_CLOCK_LOW;
  141. return MODE_OK;
  142. }
  143. static uint32_t
  144. pack_aux(uint8_t *src, int src_bytes)
  145. {
  146. int i;
  147. uint32_t v = 0;
  148. if (src_bytes > 4)
  149. src_bytes = 4;
  150. for (i = 0; i < src_bytes; i++)
  151. v |= ((uint32_t) src[i]) << ((3-i) * 8);
  152. return v;
  153. }
  154. static void
  155. unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
  156. {
  157. int i;
  158. if (dst_bytes > 4)
  159. dst_bytes = 4;
  160. for (i = 0; i < dst_bytes; i++)
  161. dst[i] = src >> ((3-i) * 8);
  162. }
  163. /* hrawclock is 1/4 the FSB frequency */
  164. static int
  165. intel_hrawclk(struct drm_device *dev)
  166. {
  167. struct drm_i915_private *dev_priv = dev->dev_private;
  168. uint32_t clkcfg;
  169. clkcfg = I915_READ(CLKCFG);
  170. switch (clkcfg & CLKCFG_FSB_MASK) {
  171. case CLKCFG_FSB_400:
  172. return 100;
  173. case CLKCFG_FSB_533:
  174. return 133;
  175. case CLKCFG_FSB_667:
  176. return 166;
  177. case CLKCFG_FSB_800:
  178. return 200;
  179. case CLKCFG_FSB_1067:
  180. return 266;
  181. case CLKCFG_FSB_1333:
  182. return 333;
  183. /* these two are just a guess; one of them might be right */
  184. case CLKCFG_FSB_1600:
  185. case CLKCFG_FSB_1600_ALT:
  186. return 400;
  187. default:
  188. return 133;
  189. }
  190. }
  191. static int
  192. intel_dp_aux_ch(struct intel_encoder *intel_encoder,
  193. uint8_t *send, int send_bytes,
  194. uint8_t *recv, int recv_size)
  195. {
  196. struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
  197. uint32_t output_reg = dp_priv->output_reg;
  198. struct drm_device *dev = intel_encoder->enc.dev;
  199. struct drm_i915_private *dev_priv = dev->dev_private;
  200. uint32_t ch_ctl = output_reg + 0x10;
  201. uint32_t ch_data = ch_ctl + 4;
  202. int i;
  203. int recv_bytes;
  204. uint32_t ctl;
  205. uint32_t status;
  206. uint32_t aux_clock_divider;
  207. int try, precharge;
  208. /* The clock divider is based off the hrawclk,
  209. * and would like to run at 2MHz. So, take the
  210. * hrawclk value and divide by 2 and use that
  211. */
  212. if (IS_eDP(intel_encoder)) {
  213. if (IS_GEN6(dev))
  214. aux_clock_divider = 200; /* SNB eDP input clock at 400Mhz */
  215. else
  216. aux_clock_divider = 225; /* eDP input clock at 450Mhz */
  217. } else if (HAS_PCH_SPLIT(dev))
  218. aux_clock_divider = 62; /* IRL input clock fixed at 125Mhz */
  219. else
  220. aux_clock_divider = intel_hrawclk(dev) / 2;
  221. if (IS_GEN6(dev))
  222. precharge = 3;
  223. else
  224. precharge = 5;
  225. /* Must try at least 3 times according to DP spec */
  226. for (try = 0; try < 5; try++) {
  227. /* Load the send data into the aux channel data registers */
  228. for (i = 0; i < send_bytes; i += 4) {
  229. uint32_t d = pack_aux(send + i, send_bytes - i);
  230. I915_WRITE(ch_data + i, d);
  231. }
  232. ctl = (DP_AUX_CH_CTL_SEND_BUSY |
  233. DP_AUX_CH_CTL_TIME_OUT_400us |
  234. (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
  235. (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
  236. (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
  237. DP_AUX_CH_CTL_DONE |
  238. DP_AUX_CH_CTL_TIME_OUT_ERROR |
  239. DP_AUX_CH_CTL_RECEIVE_ERROR);
  240. /* Send the command and wait for it to complete */
  241. I915_WRITE(ch_ctl, ctl);
  242. (void) I915_READ(ch_ctl);
  243. for (;;) {
  244. udelay(100);
  245. status = I915_READ(ch_ctl);
  246. if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
  247. break;
  248. }
  249. /* Clear done status and any errors */
  250. I915_WRITE(ch_ctl, (status |
  251. DP_AUX_CH_CTL_DONE |
  252. DP_AUX_CH_CTL_TIME_OUT_ERROR |
  253. DP_AUX_CH_CTL_RECEIVE_ERROR));
  254. (void) I915_READ(ch_ctl);
  255. if ((status & DP_AUX_CH_CTL_TIME_OUT_ERROR) == 0)
  256. break;
  257. }
  258. if ((status & DP_AUX_CH_CTL_DONE) == 0) {
  259. DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
  260. return -EBUSY;
  261. }
  262. /* Check for timeout or receive error.
  263. * Timeouts occur when the sink is not connected
  264. */
  265. if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
  266. DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
  267. return -EIO;
  268. }
  269. /* Timeouts occur when the device isn't connected, so they're
  270. * "normal" -- don't fill the kernel log with these */
  271. if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
  272. DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
  273. return -ETIMEDOUT;
  274. }
  275. /* Unload any bytes sent back from the other side */
  276. recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
  277. DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
  278. if (recv_bytes > recv_size)
  279. recv_bytes = recv_size;
  280. for (i = 0; i < recv_bytes; i += 4) {
  281. uint32_t d = I915_READ(ch_data + i);
  282. unpack_aux(d, recv + i, recv_bytes - i);
  283. }
  284. return recv_bytes;
  285. }
  286. /* Write data to the aux channel in native mode */
  287. static int
  288. intel_dp_aux_native_write(struct intel_encoder *intel_encoder,
  289. uint16_t address, uint8_t *send, int send_bytes)
  290. {
  291. int ret;
  292. uint8_t msg[20];
  293. int msg_bytes;
  294. uint8_t ack;
  295. if (send_bytes > 16)
  296. return -1;
  297. msg[0] = AUX_NATIVE_WRITE << 4;
  298. msg[1] = address >> 8;
  299. msg[2] = address & 0xff;
  300. msg[3] = send_bytes - 1;
  301. memcpy(&msg[4], send, send_bytes);
  302. msg_bytes = send_bytes + 4;
  303. for (;;) {
  304. ret = intel_dp_aux_ch(intel_encoder, msg, msg_bytes, &ack, 1);
  305. if (ret < 0)
  306. return ret;
  307. if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
  308. break;
  309. else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
  310. udelay(100);
  311. else
  312. return -EIO;
  313. }
  314. return send_bytes;
  315. }
  316. /* Write a single byte to the aux channel in native mode */
  317. static int
  318. intel_dp_aux_native_write_1(struct intel_encoder *intel_encoder,
  319. uint16_t address, uint8_t byte)
  320. {
  321. return intel_dp_aux_native_write(intel_encoder, address, &byte, 1);
  322. }
  323. /* read bytes from a native aux channel */
  324. static int
  325. intel_dp_aux_native_read(struct intel_encoder *intel_encoder,
  326. uint16_t address, uint8_t *recv, int recv_bytes)
  327. {
  328. uint8_t msg[4];
  329. int msg_bytes;
  330. uint8_t reply[20];
  331. int reply_bytes;
  332. uint8_t ack;
  333. int ret;
  334. msg[0] = AUX_NATIVE_READ << 4;
  335. msg[1] = address >> 8;
  336. msg[2] = address & 0xff;
  337. msg[3] = recv_bytes - 1;
  338. msg_bytes = 4;
  339. reply_bytes = recv_bytes + 1;
  340. for (;;) {
  341. ret = intel_dp_aux_ch(intel_encoder, msg, msg_bytes,
  342. reply, reply_bytes);
  343. if (ret == 0)
  344. return -EPROTO;
  345. if (ret < 0)
  346. return ret;
  347. ack = reply[0];
  348. if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
  349. memcpy(recv, reply + 1, ret - 1);
  350. return ret - 1;
  351. }
  352. else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
  353. udelay(100);
  354. else
  355. return -EIO;
  356. }
  357. }
  358. static int
  359. intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
  360. uint8_t write_byte, uint8_t *read_byte)
  361. {
  362. struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
  363. struct intel_dp_priv *dp_priv = container_of(adapter,
  364. struct intel_dp_priv,
  365. adapter);
  366. struct intel_encoder *intel_encoder = dp_priv->intel_encoder;
  367. uint16_t address = algo_data->address;
  368. uint8_t msg[5];
  369. uint8_t reply[2];
  370. int msg_bytes;
  371. int reply_bytes;
  372. int ret;
  373. /* Set up the command byte */
  374. if (mode & MODE_I2C_READ)
  375. msg[0] = AUX_I2C_READ << 4;
  376. else
  377. msg[0] = AUX_I2C_WRITE << 4;
  378. if (!(mode & MODE_I2C_STOP))
  379. msg[0] |= AUX_I2C_MOT << 4;
  380. msg[1] = address >> 8;
  381. msg[2] = address;
  382. switch (mode) {
  383. case MODE_I2C_WRITE:
  384. msg[3] = 0;
  385. msg[4] = write_byte;
  386. msg_bytes = 5;
  387. reply_bytes = 1;
  388. break;
  389. case MODE_I2C_READ:
  390. msg[3] = 0;
  391. msg_bytes = 4;
  392. reply_bytes = 2;
  393. break;
  394. default:
  395. msg_bytes = 3;
  396. reply_bytes = 1;
  397. break;
  398. }
  399. for (;;) {
  400. ret = intel_dp_aux_ch(intel_encoder,
  401. msg, msg_bytes,
  402. reply, reply_bytes);
  403. if (ret < 0) {
  404. DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
  405. return ret;
  406. }
  407. switch (reply[0] & AUX_I2C_REPLY_MASK) {
  408. case AUX_I2C_REPLY_ACK:
  409. if (mode == MODE_I2C_READ) {
  410. *read_byte = reply[1];
  411. }
  412. return reply_bytes - 1;
  413. case AUX_I2C_REPLY_NACK:
  414. DRM_DEBUG_KMS("aux_ch nack\n");
  415. return -EREMOTEIO;
  416. case AUX_I2C_REPLY_DEFER:
  417. DRM_DEBUG_KMS("aux_ch defer\n");
  418. udelay(100);
  419. break;
  420. default:
  421. DRM_ERROR("aux_ch invalid reply 0x%02x\n", reply[0]);
  422. return -EREMOTEIO;
  423. }
  424. }
  425. }
  426. static int
  427. intel_dp_i2c_init(struct intel_encoder *intel_encoder,
  428. struct intel_connector *intel_connector, const char *name)
  429. {
  430. struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
  431. DRM_DEBUG_KMS("i2c_init %s\n", name);
  432. dp_priv->algo.running = false;
  433. dp_priv->algo.address = 0;
  434. dp_priv->algo.aux_ch = intel_dp_i2c_aux_ch;
  435. memset(&dp_priv->adapter, '\0', sizeof (dp_priv->adapter));
  436. dp_priv->adapter.owner = THIS_MODULE;
  437. dp_priv->adapter.class = I2C_CLASS_DDC;
  438. strncpy (dp_priv->adapter.name, name, sizeof(dp_priv->adapter.name) - 1);
  439. dp_priv->adapter.name[sizeof(dp_priv->adapter.name) - 1] = '\0';
  440. dp_priv->adapter.algo_data = &dp_priv->algo;
  441. dp_priv->adapter.dev.parent = &intel_connector->base.kdev;
  442. return i2c_dp_aux_add_bus(&dp_priv->adapter);
  443. }
  444. static bool
  445. intel_dp_mode_fixup(struct drm_encoder *encoder, struct drm_display_mode *mode,
  446. struct drm_display_mode *adjusted_mode)
  447. {
  448. struct intel_encoder *intel_encoder = enc_to_intel_encoder(encoder);
  449. struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
  450. int lane_count, clock;
  451. int max_lane_count = intel_dp_max_lane_count(intel_encoder);
  452. int max_clock = intel_dp_max_link_bw(intel_encoder) == DP_LINK_BW_2_7 ? 1 : 0;
  453. static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
  454. for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
  455. for (clock = 0; clock <= max_clock; clock++) {
  456. int link_avail = intel_dp_max_data_rate(intel_dp_link_clock(bws[clock]), lane_count);
  457. if (intel_dp_link_required(encoder->dev, intel_encoder, mode->clock)
  458. <= link_avail) {
  459. dp_priv->link_bw = bws[clock];
  460. dp_priv->lane_count = lane_count;
  461. adjusted_mode->clock = intel_dp_link_clock(dp_priv->link_bw);
  462. DRM_DEBUG_KMS("Display port link bw %02x lane "
  463. "count %d clock %d\n",
  464. dp_priv->link_bw, dp_priv->lane_count,
  465. adjusted_mode->clock);
  466. return true;
  467. }
  468. }
  469. }
  470. if (IS_eDP(intel_encoder)) {
  471. /* okay we failed just pick the highest */
  472. dp_priv->lane_count = max_lane_count;
  473. dp_priv->link_bw = bws[max_clock];
  474. adjusted_mode->clock = intel_dp_link_clock(dp_priv->link_bw);
  475. DRM_DEBUG_KMS("Force picking display port link bw %02x lane "
  476. "count %d clock %d\n",
  477. dp_priv->link_bw, dp_priv->lane_count,
  478. adjusted_mode->clock);
  479. return true;
  480. }
  481. return false;
  482. }
  483. struct intel_dp_m_n {
  484. uint32_t tu;
  485. uint32_t gmch_m;
  486. uint32_t gmch_n;
  487. uint32_t link_m;
  488. uint32_t link_n;
  489. };
  490. static void
  491. intel_reduce_ratio(uint32_t *num, uint32_t *den)
  492. {
  493. while (*num > 0xffffff || *den > 0xffffff) {
  494. *num >>= 1;
  495. *den >>= 1;
  496. }
  497. }
  498. static void
  499. intel_dp_compute_m_n(int bytes_per_pixel,
  500. int nlanes,
  501. int pixel_clock,
  502. int link_clock,
  503. struct intel_dp_m_n *m_n)
  504. {
  505. m_n->tu = 64;
  506. m_n->gmch_m = pixel_clock * bytes_per_pixel;
  507. m_n->gmch_n = link_clock * nlanes;
  508. intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
  509. m_n->link_m = pixel_clock;
  510. m_n->link_n = link_clock;
  511. intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
  512. }
  513. void
  514. intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
  515. struct drm_display_mode *adjusted_mode)
  516. {
  517. struct drm_device *dev = crtc->dev;
  518. struct drm_mode_config *mode_config = &dev->mode_config;
  519. struct drm_encoder *encoder;
  520. struct drm_i915_private *dev_priv = dev->dev_private;
  521. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  522. int lane_count = 4;
  523. struct intel_dp_m_n m_n;
  524. /*
  525. * Find the lane count in the intel_encoder private
  526. */
  527. list_for_each_entry(encoder, &mode_config->encoder_list, head) {
  528. struct intel_encoder *intel_encoder;
  529. struct intel_dp_priv *dp_priv;
  530. if (encoder->crtc != crtc)
  531. continue;
  532. intel_encoder = enc_to_intel_encoder(encoder);
  533. dp_priv = intel_encoder->dev_priv;
  534. if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT) {
  535. lane_count = dp_priv->lane_count;
  536. break;
  537. }
  538. }
  539. /*
  540. * Compute the GMCH and Link ratios. The '3' here is
  541. * the number of bytes_per_pixel post-LUT, which we always
  542. * set up for 8-bits of R/G/B, or 3 bytes total.
  543. */
  544. intel_dp_compute_m_n(3, lane_count,
  545. mode->clock, adjusted_mode->clock, &m_n);
  546. if (HAS_PCH_SPLIT(dev)) {
  547. if (intel_crtc->pipe == 0) {
  548. I915_WRITE(TRANSA_DATA_M1,
  549. ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
  550. m_n.gmch_m);
  551. I915_WRITE(TRANSA_DATA_N1, m_n.gmch_n);
  552. I915_WRITE(TRANSA_DP_LINK_M1, m_n.link_m);
  553. I915_WRITE(TRANSA_DP_LINK_N1, m_n.link_n);
  554. } else {
  555. I915_WRITE(TRANSB_DATA_M1,
  556. ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
  557. m_n.gmch_m);
  558. I915_WRITE(TRANSB_DATA_N1, m_n.gmch_n);
  559. I915_WRITE(TRANSB_DP_LINK_M1, m_n.link_m);
  560. I915_WRITE(TRANSB_DP_LINK_N1, m_n.link_n);
  561. }
  562. } else {
  563. if (intel_crtc->pipe == 0) {
  564. I915_WRITE(PIPEA_GMCH_DATA_M,
  565. ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
  566. m_n.gmch_m);
  567. I915_WRITE(PIPEA_GMCH_DATA_N,
  568. m_n.gmch_n);
  569. I915_WRITE(PIPEA_DP_LINK_M, m_n.link_m);
  570. I915_WRITE(PIPEA_DP_LINK_N, m_n.link_n);
  571. } else {
  572. I915_WRITE(PIPEB_GMCH_DATA_M,
  573. ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
  574. m_n.gmch_m);
  575. I915_WRITE(PIPEB_GMCH_DATA_N,
  576. m_n.gmch_n);
  577. I915_WRITE(PIPEB_DP_LINK_M, m_n.link_m);
  578. I915_WRITE(PIPEB_DP_LINK_N, m_n.link_n);
  579. }
  580. }
  581. }
  582. static void
  583. intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
  584. struct drm_display_mode *adjusted_mode)
  585. {
  586. struct drm_device *dev = encoder->dev;
  587. struct intel_encoder *intel_encoder = enc_to_intel_encoder(encoder);
  588. struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
  589. struct drm_crtc *crtc = intel_encoder->enc.crtc;
  590. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  591. dp_priv->DP = (DP_VOLTAGE_0_4 |
  592. DP_PRE_EMPHASIS_0);
  593. if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
  594. dp_priv->DP |= DP_SYNC_HS_HIGH;
  595. if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
  596. dp_priv->DP |= DP_SYNC_VS_HIGH;
  597. if (HAS_PCH_CPT(dev) && !IS_eDP(intel_encoder))
  598. dp_priv->DP |= DP_LINK_TRAIN_OFF_CPT;
  599. else
  600. dp_priv->DP |= DP_LINK_TRAIN_OFF;
  601. switch (dp_priv->lane_count) {
  602. case 1:
  603. dp_priv->DP |= DP_PORT_WIDTH_1;
  604. break;
  605. case 2:
  606. dp_priv->DP |= DP_PORT_WIDTH_2;
  607. break;
  608. case 4:
  609. dp_priv->DP |= DP_PORT_WIDTH_4;
  610. break;
  611. }
  612. if (dp_priv->has_audio)
  613. dp_priv->DP |= DP_AUDIO_OUTPUT_ENABLE;
  614. memset(dp_priv->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
  615. dp_priv->link_configuration[0] = dp_priv->link_bw;
  616. dp_priv->link_configuration[1] = dp_priv->lane_count;
  617. /*
  618. * Check for DPCD version > 1.1 and enhanced framing support
  619. */
  620. if (dp_priv->dpcd[0] >= 0x11 && (dp_priv->dpcd[2] & DP_ENHANCED_FRAME_CAP)) {
  621. dp_priv->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
  622. dp_priv->DP |= DP_ENHANCED_FRAMING;
  623. }
  624. /* CPT DP's pipe select is decided in TRANS_DP_CTL */
  625. if (intel_crtc->pipe == 1 && !HAS_PCH_CPT(dev))
  626. dp_priv->DP |= DP_PIPEB_SELECT;
  627. if (IS_eDP(intel_encoder)) {
  628. /* don't miss out required setting for eDP */
  629. dp_priv->DP |= DP_PLL_ENABLE;
  630. if (adjusted_mode->clock < 200000)
  631. dp_priv->DP |= DP_PLL_FREQ_160MHZ;
  632. else
  633. dp_priv->DP |= DP_PLL_FREQ_270MHZ;
  634. }
  635. }
  636. static void ironlake_edp_panel_on (struct drm_device *dev)
  637. {
  638. struct drm_i915_private *dev_priv = dev->dev_private;
  639. unsigned long timeout = jiffies + msecs_to_jiffies(5000);
  640. u32 pp, pp_status;
  641. pp_status = I915_READ(PCH_PP_STATUS);
  642. if (pp_status & PP_ON)
  643. return;
  644. pp = I915_READ(PCH_PP_CONTROL);
  645. pp |= PANEL_UNLOCK_REGS | POWER_TARGET_ON;
  646. I915_WRITE(PCH_PP_CONTROL, pp);
  647. do {
  648. pp_status = I915_READ(PCH_PP_STATUS);
  649. } while (((pp_status & PP_ON) == 0) && !time_after(jiffies, timeout));
  650. if (time_after(jiffies, timeout))
  651. DRM_DEBUG_KMS("panel on wait timed out: 0x%08x\n", pp_status);
  652. pp &= ~(PANEL_UNLOCK_REGS | EDP_FORCE_VDD);
  653. I915_WRITE(PCH_PP_CONTROL, pp);
  654. }
  655. static void ironlake_edp_panel_off (struct drm_device *dev)
  656. {
  657. struct drm_i915_private *dev_priv = dev->dev_private;
  658. unsigned long timeout = jiffies + msecs_to_jiffies(5000);
  659. u32 pp, pp_status;
  660. pp = I915_READ(PCH_PP_CONTROL);
  661. pp &= ~POWER_TARGET_ON;
  662. I915_WRITE(PCH_PP_CONTROL, pp);
  663. do {
  664. pp_status = I915_READ(PCH_PP_STATUS);
  665. } while ((pp_status & PP_ON) && !time_after(jiffies, timeout));
  666. if (time_after(jiffies, timeout))
  667. DRM_DEBUG_KMS("panel off wait timed out\n");
  668. /* Make sure VDD is enabled so DP AUX will work */
  669. pp |= EDP_FORCE_VDD;
  670. I915_WRITE(PCH_PP_CONTROL, pp);
  671. }
  672. static void ironlake_edp_backlight_on (struct drm_device *dev)
  673. {
  674. struct drm_i915_private *dev_priv = dev->dev_private;
  675. u32 pp;
  676. DRM_DEBUG_KMS("\n");
  677. pp = I915_READ(PCH_PP_CONTROL);
  678. pp |= EDP_BLC_ENABLE;
  679. I915_WRITE(PCH_PP_CONTROL, pp);
  680. }
  681. static void ironlake_edp_backlight_off (struct drm_device *dev)
  682. {
  683. struct drm_i915_private *dev_priv = dev->dev_private;
  684. u32 pp;
  685. DRM_DEBUG_KMS("\n");
  686. pp = I915_READ(PCH_PP_CONTROL);
  687. pp &= ~EDP_BLC_ENABLE;
  688. I915_WRITE(PCH_PP_CONTROL, pp);
  689. }
  690. static void
  691. intel_dp_dpms(struct drm_encoder *encoder, int mode)
  692. {
  693. struct intel_encoder *intel_encoder = enc_to_intel_encoder(encoder);
  694. struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
  695. struct drm_device *dev = encoder->dev;
  696. struct drm_i915_private *dev_priv = dev->dev_private;
  697. uint32_t dp_reg = I915_READ(dp_priv->output_reg);
  698. if (mode != DRM_MODE_DPMS_ON) {
  699. if (dp_reg & DP_PORT_EN) {
  700. intel_dp_link_down(intel_encoder, dp_priv->DP);
  701. if (IS_eDP(intel_encoder)) {
  702. ironlake_edp_backlight_off(dev);
  703. ironlake_edp_panel_off(dev);
  704. }
  705. }
  706. } else {
  707. if (!(dp_reg & DP_PORT_EN)) {
  708. intel_dp_link_train(intel_encoder, dp_priv->DP, dp_priv->link_configuration);
  709. if (IS_eDP(intel_encoder)) {
  710. ironlake_edp_panel_on(dev);
  711. ironlake_edp_backlight_on(dev);
  712. }
  713. }
  714. }
  715. dp_priv->dpms_mode = mode;
  716. }
  717. /*
  718. * Fetch AUX CH registers 0x202 - 0x207 which contain
  719. * link status information
  720. */
  721. static bool
  722. intel_dp_get_link_status(struct intel_encoder *intel_encoder,
  723. uint8_t link_status[DP_LINK_STATUS_SIZE])
  724. {
  725. int ret;
  726. ret = intel_dp_aux_native_read(intel_encoder,
  727. DP_LANE0_1_STATUS,
  728. link_status, DP_LINK_STATUS_SIZE);
  729. if (ret != DP_LINK_STATUS_SIZE)
  730. return false;
  731. return true;
  732. }
  733. static uint8_t
  734. intel_dp_link_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
  735. int r)
  736. {
  737. return link_status[r - DP_LANE0_1_STATUS];
  738. }
  739. static uint8_t
  740. intel_get_adjust_request_voltage(uint8_t link_status[DP_LINK_STATUS_SIZE],
  741. int lane)
  742. {
  743. int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
  744. int s = ((lane & 1) ?
  745. DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
  746. DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
  747. uint8_t l = intel_dp_link_status(link_status, i);
  748. return ((l >> s) & 3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
  749. }
  750. static uint8_t
  751. intel_get_adjust_request_pre_emphasis(uint8_t link_status[DP_LINK_STATUS_SIZE],
  752. int lane)
  753. {
  754. int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
  755. int s = ((lane & 1) ?
  756. DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
  757. DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
  758. uint8_t l = intel_dp_link_status(link_status, i);
  759. return ((l >> s) & 3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
  760. }
  761. #if 0
  762. static char *voltage_names[] = {
  763. "0.4V", "0.6V", "0.8V", "1.2V"
  764. };
  765. static char *pre_emph_names[] = {
  766. "0dB", "3.5dB", "6dB", "9.5dB"
  767. };
  768. static char *link_train_names[] = {
  769. "pattern 1", "pattern 2", "idle", "off"
  770. };
  771. #endif
  772. /*
  773. * These are source-specific values; current Intel hardware supports
  774. * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
  775. */
  776. #define I830_DP_VOLTAGE_MAX DP_TRAIN_VOLTAGE_SWING_800
  777. static uint8_t
  778. intel_dp_pre_emphasis_max(uint8_t voltage_swing)
  779. {
  780. switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
  781. case DP_TRAIN_VOLTAGE_SWING_400:
  782. return DP_TRAIN_PRE_EMPHASIS_6;
  783. case DP_TRAIN_VOLTAGE_SWING_600:
  784. return DP_TRAIN_PRE_EMPHASIS_6;
  785. case DP_TRAIN_VOLTAGE_SWING_800:
  786. return DP_TRAIN_PRE_EMPHASIS_3_5;
  787. case DP_TRAIN_VOLTAGE_SWING_1200:
  788. default:
  789. return DP_TRAIN_PRE_EMPHASIS_0;
  790. }
  791. }
  792. static void
  793. intel_get_adjust_train(struct intel_encoder *intel_encoder,
  794. uint8_t link_status[DP_LINK_STATUS_SIZE],
  795. int lane_count,
  796. uint8_t train_set[4])
  797. {
  798. uint8_t v = 0;
  799. uint8_t p = 0;
  800. int lane;
  801. for (lane = 0; lane < lane_count; lane++) {
  802. uint8_t this_v = intel_get_adjust_request_voltage(link_status, lane);
  803. uint8_t this_p = intel_get_adjust_request_pre_emphasis(link_status, lane);
  804. if (this_v > v)
  805. v = this_v;
  806. if (this_p > p)
  807. p = this_p;
  808. }
  809. if (v >= I830_DP_VOLTAGE_MAX)
  810. v = I830_DP_VOLTAGE_MAX | DP_TRAIN_MAX_SWING_REACHED;
  811. if (p >= intel_dp_pre_emphasis_max(v))
  812. p = intel_dp_pre_emphasis_max(v) | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
  813. for (lane = 0; lane < 4; lane++)
  814. train_set[lane] = v | p;
  815. }
  816. static uint32_t
  817. intel_dp_signal_levels(uint8_t train_set, int lane_count)
  818. {
  819. uint32_t signal_levels = 0;
  820. switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
  821. case DP_TRAIN_VOLTAGE_SWING_400:
  822. default:
  823. signal_levels |= DP_VOLTAGE_0_4;
  824. break;
  825. case DP_TRAIN_VOLTAGE_SWING_600:
  826. signal_levels |= DP_VOLTAGE_0_6;
  827. break;
  828. case DP_TRAIN_VOLTAGE_SWING_800:
  829. signal_levels |= DP_VOLTAGE_0_8;
  830. break;
  831. case DP_TRAIN_VOLTAGE_SWING_1200:
  832. signal_levels |= DP_VOLTAGE_1_2;
  833. break;
  834. }
  835. switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
  836. case DP_TRAIN_PRE_EMPHASIS_0:
  837. default:
  838. signal_levels |= DP_PRE_EMPHASIS_0;
  839. break;
  840. case DP_TRAIN_PRE_EMPHASIS_3_5:
  841. signal_levels |= DP_PRE_EMPHASIS_3_5;
  842. break;
  843. case DP_TRAIN_PRE_EMPHASIS_6:
  844. signal_levels |= DP_PRE_EMPHASIS_6;
  845. break;
  846. case DP_TRAIN_PRE_EMPHASIS_9_5:
  847. signal_levels |= DP_PRE_EMPHASIS_9_5;
  848. break;
  849. }
  850. return signal_levels;
  851. }
  852. /* Gen6's DP voltage swing and pre-emphasis control */
  853. static uint32_t
  854. intel_gen6_edp_signal_levels(uint8_t train_set)
  855. {
  856. switch (train_set & (DP_TRAIN_VOLTAGE_SWING_MASK|DP_TRAIN_PRE_EMPHASIS_MASK)) {
  857. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
  858. return EDP_LINK_TRAIN_400MV_0DB_SNB_B;
  859. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
  860. return EDP_LINK_TRAIN_400MV_6DB_SNB_B;
  861. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
  862. return EDP_LINK_TRAIN_600MV_3_5DB_SNB_B;
  863. case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
  864. return EDP_LINK_TRAIN_800MV_0DB_SNB_B;
  865. default:
  866. DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level\n");
  867. return EDP_LINK_TRAIN_400MV_0DB_SNB_B;
  868. }
  869. }
  870. static uint8_t
  871. intel_get_lane_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
  872. int lane)
  873. {
  874. int i = DP_LANE0_1_STATUS + (lane >> 1);
  875. int s = (lane & 1) * 4;
  876. uint8_t l = intel_dp_link_status(link_status, i);
  877. return (l >> s) & 0xf;
  878. }
  879. /* Check for clock recovery is done on all channels */
  880. static bool
  881. intel_clock_recovery_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
  882. {
  883. int lane;
  884. uint8_t lane_status;
  885. for (lane = 0; lane < lane_count; lane++) {
  886. lane_status = intel_get_lane_status(link_status, lane);
  887. if ((lane_status & DP_LANE_CR_DONE) == 0)
  888. return false;
  889. }
  890. return true;
  891. }
  892. /* Check to see if channel eq is done on all channels */
  893. #define CHANNEL_EQ_BITS (DP_LANE_CR_DONE|\
  894. DP_LANE_CHANNEL_EQ_DONE|\
  895. DP_LANE_SYMBOL_LOCKED)
  896. static bool
  897. intel_channel_eq_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
  898. {
  899. uint8_t lane_align;
  900. uint8_t lane_status;
  901. int lane;
  902. lane_align = intel_dp_link_status(link_status,
  903. DP_LANE_ALIGN_STATUS_UPDATED);
  904. if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
  905. return false;
  906. for (lane = 0; lane < lane_count; lane++) {
  907. lane_status = intel_get_lane_status(link_status, lane);
  908. if ((lane_status & CHANNEL_EQ_BITS) != CHANNEL_EQ_BITS)
  909. return false;
  910. }
  911. return true;
  912. }
  913. static bool
  914. intel_dp_set_link_train(struct intel_encoder *intel_encoder,
  915. uint32_t dp_reg_value,
  916. uint8_t dp_train_pat,
  917. uint8_t train_set[4],
  918. bool first)
  919. {
  920. struct drm_device *dev = intel_encoder->enc.dev;
  921. struct drm_i915_private *dev_priv = dev->dev_private;
  922. struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
  923. int ret;
  924. I915_WRITE(dp_priv->output_reg, dp_reg_value);
  925. POSTING_READ(dp_priv->output_reg);
  926. if (first)
  927. intel_wait_for_vblank(dev);
  928. intel_dp_aux_native_write_1(intel_encoder,
  929. DP_TRAINING_PATTERN_SET,
  930. dp_train_pat);
  931. ret = intel_dp_aux_native_write(intel_encoder,
  932. DP_TRAINING_LANE0_SET, train_set, 4);
  933. if (ret != 4)
  934. return false;
  935. return true;
  936. }
  937. static void
  938. intel_dp_link_train(struct intel_encoder *intel_encoder, uint32_t DP,
  939. uint8_t link_configuration[DP_LINK_CONFIGURATION_SIZE])
  940. {
  941. struct drm_device *dev = intel_encoder->enc.dev;
  942. struct drm_i915_private *dev_priv = dev->dev_private;
  943. struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
  944. uint8_t train_set[4];
  945. uint8_t link_status[DP_LINK_STATUS_SIZE];
  946. int i;
  947. uint8_t voltage;
  948. bool clock_recovery = false;
  949. bool channel_eq = false;
  950. bool first = true;
  951. int tries;
  952. u32 reg;
  953. /* Write the link configuration data */
  954. intel_dp_aux_native_write(intel_encoder, DP_LINK_BW_SET,
  955. link_configuration, DP_LINK_CONFIGURATION_SIZE);
  956. DP |= DP_PORT_EN;
  957. if (HAS_PCH_CPT(dev) && !IS_eDP(intel_encoder))
  958. DP &= ~DP_LINK_TRAIN_MASK_CPT;
  959. else
  960. DP &= ~DP_LINK_TRAIN_MASK;
  961. memset(train_set, 0, 4);
  962. voltage = 0xff;
  963. tries = 0;
  964. clock_recovery = false;
  965. for (;;) {
  966. /* Use train_set[0] to set the voltage and pre emphasis values */
  967. uint32_t signal_levels;
  968. if (IS_GEN6(dev) && IS_eDP(intel_encoder)) {
  969. signal_levels = intel_gen6_edp_signal_levels(train_set[0]);
  970. DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
  971. } else {
  972. signal_levels = intel_dp_signal_levels(train_set[0], dp_priv->lane_count);
  973. DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
  974. }
  975. if (HAS_PCH_CPT(dev) && !IS_eDP(intel_encoder))
  976. reg = DP | DP_LINK_TRAIN_PAT_1_CPT;
  977. else
  978. reg = DP | DP_LINK_TRAIN_PAT_1;
  979. if (!intel_dp_set_link_train(intel_encoder, reg,
  980. DP_TRAINING_PATTERN_1, train_set, first))
  981. break;
  982. first = false;
  983. /* Set training pattern 1 */
  984. udelay(100);
  985. if (!intel_dp_get_link_status(intel_encoder, link_status))
  986. break;
  987. if (intel_clock_recovery_ok(link_status, dp_priv->lane_count)) {
  988. clock_recovery = true;
  989. break;
  990. }
  991. /* Check to see if we've tried the max voltage */
  992. for (i = 0; i < dp_priv->lane_count; i++)
  993. if ((train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
  994. break;
  995. if (i == dp_priv->lane_count)
  996. break;
  997. /* Check to see if we've tried the same voltage 5 times */
  998. if ((train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
  999. ++tries;
  1000. if (tries == 5)
  1001. break;
  1002. } else
  1003. tries = 0;
  1004. voltage = train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
  1005. /* Compute new train_set as requested by target */
  1006. intel_get_adjust_train(intel_encoder, link_status, dp_priv->lane_count, train_set);
  1007. }
  1008. /* channel equalization */
  1009. tries = 0;
  1010. channel_eq = false;
  1011. for (;;) {
  1012. /* Use train_set[0] to set the voltage and pre emphasis values */
  1013. uint32_t signal_levels;
  1014. if (IS_GEN6(dev) && IS_eDP(intel_encoder)) {
  1015. signal_levels = intel_gen6_edp_signal_levels(train_set[0]);
  1016. DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
  1017. } else {
  1018. signal_levels = intel_dp_signal_levels(train_set[0], dp_priv->lane_count);
  1019. DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
  1020. }
  1021. if (HAS_PCH_CPT(dev) && !IS_eDP(intel_encoder))
  1022. reg = DP | DP_LINK_TRAIN_PAT_2_CPT;
  1023. else
  1024. reg = DP | DP_LINK_TRAIN_PAT_2;
  1025. /* channel eq pattern */
  1026. if (!intel_dp_set_link_train(intel_encoder, reg,
  1027. DP_TRAINING_PATTERN_2, train_set,
  1028. false))
  1029. break;
  1030. udelay(400);
  1031. if (!intel_dp_get_link_status(intel_encoder, link_status))
  1032. break;
  1033. if (intel_channel_eq_ok(link_status, dp_priv->lane_count)) {
  1034. channel_eq = true;
  1035. break;
  1036. }
  1037. /* Try 5 times */
  1038. if (tries > 5)
  1039. break;
  1040. /* Compute new train_set as requested by target */
  1041. intel_get_adjust_train(intel_encoder, link_status, dp_priv->lane_count, train_set);
  1042. ++tries;
  1043. }
  1044. if (HAS_PCH_CPT(dev) && !IS_eDP(intel_encoder))
  1045. reg = DP | DP_LINK_TRAIN_OFF_CPT;
  1046. else
  1047. reg = DP | DP_LINK_TRAIN_OFF;
  1048. I915_WRITE(dp_priv->output_reg, reg);
  1049. POSTING_READ(dp_priv->output_reg);
  1050. intel_dp_aux_native_write_1(intel_encoder,
  1051. DP_TRAINING_PATTERN_SET, DP_TRAINING_PATTERN_DISABLE);
  1052. }
  1053. static void
  1054. intel_dp_link_down(struct intel_encoder *intel_encoder, uint32_t DP)
  1055. {
  1056. struct drm_device *dev = intel_encoder->enc.dev;
  1057. struct drm_i915_private *dev_priv = dev->dev_private;
  1058. struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
  1059. DRM_DEBUG_KMS("\n");
  1060. if (IS_eDP(intel_encoder)) {
  1061. DP &= ~DP_PLL_ENABLE;
  1062. I915_WRITE(dp_priv->output_reg, DP);
  1063. POSTING_READ(dp_priv->output_reg);
  1064. udelay(100);
  1065. }
  1066. if (HAS_PCH_CPT(dev) && !IS_eDP(intel_encoder)) {
  1067. DP &= ~DP_LINK_TRAIN_MASK_CPT;
  1068. I915_WRITE(dp_priv->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
  1069. POSTING_READ(dp_priv->output_reg);
  1070. } else {
  1071. DP &= ~DP_LINK_TRAIN_MASK;
  1072. I915_WRITE(dp_priv->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
  1073. POSTING_READ(dp_priv->output_reg);
  1074. }
  1075. udelay(17000);
  1076. if (IS_eDP(intel_encoder))
  1077. DP |= DP_LINK_TRAIN_OFF;
  1078. I915_WRITE(dp_priv->output_reg, DP & ~DP_PORT_EN);
  1079. POSTING_READ(dp_priv->output_reg);
  1080. }
  1081. /*
  1082. * According to DP spec
  1083. * 5.1.2:
  1084. * 1. Read DPCD
  1085. * 2. Configure link according to Receiver Capabilities
  1086. * 3. Use Link Training from 2.5.3.3 and 3.5.1.3
  1087. * 4. Check link status on receipt of hot-plug interrupt
  1088. */
  1089. static void
  1090. intel_dp_check_link_status(struct intel_encoder *intel_encoder)
  1091. {
  1092. struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
  1093. uint8_t link_status[DP_LINK_STATUS_SIZE];
  1094. if (!intel_encoder->enc.crtc)
  1095. return;
  1096. if (!intel_dp_get_link_status(intel_encoder, link_status)) {
  1097. intel_dp_link_down(intel_encoder, dp_priv->DP);
  1098. return;
  1099. }
  1100. if (!intel_channel_eq_ok(link_status, dp_priv->lane_count))
  1101. intel_dp_link_train(intel_encoder, dp_priv->DP, dp_priv->link_configuration);
  1102. }
  1103. static enum drm_connector_status
  1104. ironlake_dp_detect(struct drm_connector *connector)
  1105. {
  1106. struct drm_encoder *encoder = intel_attached_encoder(connector);
  1107. struct intel_encoder *intel_encoder = enc_to_intel_encoder(encoder);
  1108. struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
  1109. enum drm_connector_status status;
  1110. status = connector_status_disconnected;
  1111. if (intel_dp_aux_native_read(intel_encoder,
  1112. 0x000, dp_priv->dpcd,
  1113. sizeof (dp_priv->dpcd)) == sizeof (dp_priv->dpcd))
  1114. {
  1115. if (dp_priv->dpcd[0] != 0)
  1116. status = connector_status_connected;
  1117. }
  1118. DRM_DEBUG_KMS("DPCD: %hx%hx%hx%hx\n", dp_priv->dpcd[0],
  1119. dp_priv->dpcd[1], dp_priv->dpcd[2], dp_priv->dpcd[3]);
  1120. return status;
  1121. }
  1122. /**
  1123. * Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection.
  1124. *
  1125. * \return true if DP port is connected.
  1126. * \return false if DP port is disconnected.
  1127. */
  1128. static enum drm_connector_status
  1129. intel_dp_detect(struct drm_connector *connector)
  1130. {
  1131. struct drm_encoder *encoder = intel_attached_encoder(connector);
  1132. struct intel_encoder *intel_encoder = enc_to_intel_encoder(encoder);
  1133. struct drm_device *dev = intel_encoder->enc.dev;
  1134. struct drm_i915_private *dev_priv = dev->dev_private;
  1135. struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
  1136. uint32_t temp, bit;
  1137. enum drm_connector_status status;
  1138. dp_priv->has_audio = false;
  1139. if (HAS_PCH_SPLIT(dev))
  1140. return ironlake_dp_detect(connector);
  1141. switch (dp_priv->output_reg) {
  1142. case DP_B:
  1143. bit = DPB_HOTPLUG_INT_STATUS;
  1144. break;
  1145. case DP_C:
  1146. bit = DPC_HOTPLUG_INT_STATUS;
  1147. break;
  1148. case DP_D:
  1149. bit = DPD_HOTPLUG_INT_STATUS;
  1150. break;
  1151. default:
  1152. return connector_status_unknown;
  1153. }
  1154. temp = I915_READ(PORT_HOTPLUG_STAT);
  1155. if ((temp & bit) == 0)
  1156. return connector_status_disconnected;
  1157. status = connector_status_disconnected;
  1158. if (intel_dp_aux_native_read(intel_encoder,
  1159. 0x000, dp_priv->dpcd,
  1160. sizeof (dp_priv->dpcd)) == sizeof (dp_priv->dpcd))
  1161. {
  1162. if (dp_priv->dpcd[0] != 0)
  1163. status = connector_status_connected;
  1164. }
  1165. return status;
  1166. }
  1167. static int intel_dp_get_modes(struct drm_connector *connector)
  1168. {
  1169. struct drm_encoder *encoder = intel_attached_encoder(connector);
  1170. struct intel_encoder *intel_encoder = enc_to_intel_encoder(encoder);
  1171. struct drm_device *dev = intel_encoder->enc.dev;
  1172. struct drm_i915_private *dev_priv = dev->dev_private;
  1173. int ret;
  1174. /* We should parse the EDID data and find out if it has an audio sink
  1175. */
  1176. ret = intel_ddc_get_modes(connector, intel_encoder->ddc_bus);
  1177. if (ret)
  1178. return ret;
  1179. /* if eDP has no EDID, try to use fixed panel mode from VBT */
  1180. if (IS_eDP(intel_encoder)) {
  1181. if (dev_priv->panel_fixed_mode != NULL) {
  1182. struct drm_display_mode *mode;
  1183. mode = drm_mode_duplicate(dev, dev_priv->panel_fixed_mode);
  1184. drm_mode_probed_add(connector, mode);
  1185. return 1;
  1186. }
  1187. }
  1188. return 0;
  1189. }
  1190. static void
  1191. intel_dp_destroy (struct drm_connector *connector)
  1192. {
  1193. drm_sysfs_connector_remove(connector);
  1194. drm_connector_cleanup(connector);
  1195. kfree(connector);
  1196. }
  1197. static const struct drm_encoder_helper_funcs intel_dp_helper_funcs = {
  1198. .dpms = intel_dp_dpms,
  1199. .mode_fixup = intel_dp_mode_fixup,
  1200. .prepare = intel_encoder_prepare,
  1201. .mode_set = intel_dp_mode_set,
  1202. .commit = intel_encoder_commit,
  1203. };
  1204. static const struct drm_connector_funcs intel_dp_connector_funcs = {
  1205. .dpms = drm_helper_connector_dpms,
  1206. .detect = intel_dp_detect,
  1207. .fill_modes = drm_helper_probe_single_connector_modes,
  1208. .destroy = intel_dp_destroy,
  1209. };
  1210. static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
  1211. .get_modes = intel_dp_get_modes,
  1212. .mode_valid = intel_dp_mode_valid,
  1213. .best_encoder = intel_attached_encoder,
  1214. };
  1215. static void intel_dp_enc_destroy(struct drm_encoder *encoder)
  1216. {
  1217. struct intel_encoder *intel_encoder = enc_to_intel_encoder(encoder);
  1218. if (intel_encoder->i2c_bus)
  1219. intel_i2c_destroy(intel_encoder->i2c_bus);
  1220. drm_encoder_cleanup(encoder);
  1221. kfree(intel_encoder);
  1222. }
  1223. static const struct drm_encoder_funcs intel_dp_enc_funcs = {
  1224. .destroy = intel_dp_enc_destroy,
  1225. };
  1226. void
  1227. intel_dp_hot_plug(struct intel_encoder *intel_encoder)
  1228. {
  1229. struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
  1230. if (dp_priv->dpms_mode == DRM_MODE_DPMS_ON)
  1231. intel_dp_check_link_status(intel_encoder);
  1232. }
  1233. /* Return which DP Port should be selected for Transcoder DP control */
  1234. int
  1235. intel_trans_dp_port_sel (struct drm_crtc *crtc)
  1236. {
  1237. struct drm_device *dev = crtc->dev;
  1238. struct drm_mode_config *mode_config = &dev->mode_config;
  1239. struct drm_encoder *encoder;
  1240. struct intel_encoder *intel_encoder = NULL;
  1241. list_for_each_entry(encoder, &mode_config->encoder_list, head) {
  1242. if (encoder->crtc != crtc)
  1243. continue;
  1244. intel_encoder = enc_to_intel_encoder(encoder);
  1245. if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT) {
  1246. struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
  1247. return dp_priv->output_reg;
  1248. }
  1249. }
  1250. return -1;
  1251. }
  1252. void
  1253. intel_dp_init(struct drm_device *dev, int output_reg)
  1254. {
  1255. struct drm_i915_private *dev_priv = dev->dev_private;
  1256. struct drm_connector *connector;
  1257. struct intel_encoder *intel_encoder;
  1258. struct intel_connector *intel_connector;
  1259. struct intel_dp_priv *dp_priv;
  1260. const char *name = NULL;
  1261. intel_encoder = kcalloc(sizeof(struct intel_encoder) +
  1262. sizeof(struct intel_dp_priv), 1, GFP_KERNEL);
  1263. if (!intel_encoder)
  1264. return;
  1265. intel_connector = kzalloc(sizeof(struct intel_connector), GFP_KERNEL);
  1266. if (!intel_connector) {
  1267. kfree(intel_encoder);
  1268. return;
  1269. }
  1270. dp_priv = (struct intel_dp_priv *)(intel_encoder + 1);
  1271. connector = &intel_connector->base;
  1272. drm_connector_init(dev, connector, &intel_dp_connector_funcs,
  1273. DRM_MODE_CONNECTOR_DisplayPort);
  1274. drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
  1275. connector->polled = DRM_CONNECTOR_POLL_HPD;
  1276. if (output_reg == DP_A)
  1277. intel_encoder->type = INTEL_OUTPUT_EDP;
  1278. else
  1279. intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
  1280. if (output_reg == DP_B || output_reg == PCH_DP_B)
  1281. intel_encoder->clone_mask = (1 << INTEL_DP_B_CLONE_BIT);
  1282. else if (output_reg == DP_C || output_reg == PCH_DP_C)
  1283. intel_encoder->clone_mask = (1 << INTEL_DP_C_CLONE_BIT);
  1284. else if (output_reg == DP_D || output_reg == PCH_DP_D)
  1285. intel_encoder->clone_mask = (1 << INTEL_DP_D_CLONE_BIT);
  1286. if (IS_eDP(intel_encoder))
  1287. intel_encoder->clone_mask = (1 << INTEL_EDP_CLONE_BIT);
  1288. intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
  1289. connector->interlace_allowed = true;
  1290. connector->doublescan_allowed = 0;
  1291. dp_priv->intel_encoder = intel_encoder;
  1292. dp_priv->output_reg = output_reg;
  1293. dp_priv->has_audio = false;
  1294. dp_priv->dpms_mode = DRM_MODE_DPMS_ON;
  1295. intel_encoder->dev_priv = dp_priv;
  1296. drm_encoder_init(dev, &intel_encoder->enc, &intel_dp_enc_funcs,
  1297. DRM_MODE_ENCODER_TMDS);
  1298. drm_encoder_helper_add(&intel_encoder->enc, &intel_dp_helper_funcs);
  1299. drm_mode_connector_attach_encoder(&intel_connector->base,
  1300. &intel_encoder->enc);
  1301. drm_sysfs_connector_add(connector);
  1302. /* Set up the DDC bus. */
  1303. switch (output_reg) {
  1304. case DP_A:
  1305. name = "DPDDC-A";
  1306. break;
  1307. case DP_B:
  1308. case PCH_DP_B:
  1309. dev_priv->hotplug_supported_mask |=
  1310. HDMIB_HOTPLUG_INT_STATUS;
  1311. name = "DPDDC-B";
  1312. break;
  1313. case DP_C:
  1314. case PCH_DP_C:
  1315. dev_priv->hotplug_supported_mask |=
  1316. HDMIC_HOTPLUG_INT_STATUS;
  1317. name = "DPDDC-C";
  1318. break;
  1319. case DP_D:
  1320. case PCH_DP_D:
  1321. dev_priv->hotplug_supported_mask |=
  1322. HDMID_HOTPLUG_INT_STATUS;
  1323. name = "DPDDC-D";
  1324. break;
  1325. }
  1326. intel_dp_i2c_init(intel_encoder, intel_connector, name);
  1327. intel_encoder->ddc_bus = &dp_priv->adapter;
  1328. intel_encoder->hot_plug = intel_dp_hot_plug;
  1329. if (output_reg == DP_A) {
  1330. /* initialize panel mode from VBT if available for eDP */
  1331. if (dev_priv->lfp_lvds_vbt_mode) {
  1332. dev_priv->panel_fixed_mode =
  1333. drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
  1334. if (dev_priv->panel_fixed_mode) {
  1335. dev_priv->panel_fixed_mode->type |=
  1336. DRM_MODE_TYPE_PREFERRED;
  1337. }
  1338. }
  1339. }
  1340. /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
  1341. * 0xd. Failure to do so will result in spurious interrupts being
  1342. * generated on the port when a cable is not attached.
  1343. */
  1344. if (IS_G4X(dev) && !IS_GM45(dev)) {
  1345. u32 temp = I915_READ(PEG_BAND_GAP_DATA);
  1346. I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
  1347. }
  1348. }