intel_display.c 165 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739
  1. /*
  2. * Copyright © 2006-2007 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
  21. * DEALINGS IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. */
  26. #include <linux/module.h>
  27. #include <linux/input.h>
  28. #include <linux/i2c.h>
  29. #include <linux/kernel.h>
  30. #include <linux/slab.h>
  31. #include "drmP.h"
  32. #include "intel_drv.h"
  33. #include "i915_drm.h"
  34. #include "i915_drv.h"
  35. #include "drm_dp_helper.h"
  36. #include "drm_crtc_helper.h"
  37. #define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
  38. bool intel_pipe_has_type (struct drm_crtc *crtc, int type);
  39. static void intel_update_watermarks(struct drm_device *dev);
  40. static void intel_increase_pllclock(struct drm_crtc *crtc, bool schedule);
  41. typedef struct {
  42. /* given values */
  43. int n;
  44. int m1, m2;
  45. int p1, p2;
  46. /* derived values */
  47. int dot;
  48. int vco;
  49. int m;
  50. int p;
  51. } intel_clock_t;
  52. typedef struct {
  53. int min, max;
  54. } intel_range_t;
  55. typedef struct {
  56. int dot_limit;
  57. int p2_slow, p2_fast;
  58. } intel_p2_t;
  59. #define INTEL_P2_NUM 2
  60. typedef struct intel_limit intel_limit_t;
  61. struct intel_limit {
  62. intel_range_t dot, vco, n, m, m1, m2, p, p1;
  63. intel_p2_t p2;
  64. bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
  65. int, int, intel_clock_t *);
  66. };
  67. #define I8XX_DOT_MIN 25000
  68. #define I8XX_DOT_MAX 350000
  69. #define I8XX_VCO_MIN 930000
  70. #define I8XX_VCO_MAX 1400000
  71. #define I8XX_N_MIN 3
  72. #define I8XX_N_MAX 16
  73. #define I8XX_M_MIN 96
  74. #define I8XX_M_MAX 140
  75. #define I8XX_M1_MIN 18
  76. #define I8XX_M1_MAX 26
  77. #define I8XX_M2_MIN 6
  78. #define I8XX_M2_MAX 16
  79. #define I8XX_P_MIN 4
  80. #define I8XX_P_MAX 128
  81. #define I8XX_P1_MIN 2
  82. #define I8XX_P1_MAX 33
  83. #define I8XX_P1_LVDS_MIN 1
  84. #define I8XX_P1_LVDS_MAX 6
  85. #define I8XX_P2_SLOW 4
  86. #define I8XX_P2_FAST 2
  87. #define I8XX_P2_LVDS_SLOW 14
  88. #define I8XX_P2_LVDS_FAST 7
  89. #define I8XX_P2_SLOW_LIMIT 165000
  90. #define I9XX_DOT_MIN 20000
  91. #define I9XX_DOT_MAX 400000
  92. #define I9XX_VCO_MIN 1400000
  93. #define I9XX_VCO_MAX 2800000
  94. #define PINEVIEW_VCO_MIN 1700000
  95. #define PINEVIEW_VCO_MAX 3500000
  96. #define I9XX_N_MIN 1
  97. #define I9XX_N_MAX 6
  98. /* Pineview's Ncounter is a ring counter */
  99. #define PINEVIEW_N_MIN 3
  100. #define PINEVIEW_N_MAX 6
  101. #define I9XX_M_MIN 70
  102. #define I9XX_M_MAX 120
  103. #define PINEVIEW_M_MIN 2
  104. #define PINEVIEW_M_MAX 256
  105. #define I9XX_M1_MIN 10
  106. #define I9XX_M1_MAX 22
  107. #define I9XX_M2_MIN 5
  108. #define I9XX_M2_MAX 9
  109. /* Pineview M1 is reserved, and must be 0 */
  110. #define PINEVIEW_M1_MIN 0
  111. #define PINEVIEW_M1_MAX 0
  112. #define PINEVIEW_M2_MIN 0
  113. #define PINEVIEW_M2_MAX 254
  114. #define I9XX_P_SDVO_DAC_MIN 5
  115. #define I9XX_P_SDVO_DAC_MAX 80
  116. #define I9XX_P_LVDS_MIN 7
  117. #define I9XX_P_LVDS_MAX 98
  118. #define PINEVIEW_P_LVDS_MIN 7
  119. #define PINEVIEW_P_LVDS_MAX 112
  120. #define I9XX_P1_MIN 1
  121. #define I9XX_P1_MAX 8
  122. #define I9XX_P2_SDVO_DAC_SLOW 10
  123. #define I9XX_P2_SDVO_DAC_FAST 5
  124. #define I9XX_P2_SDVO_DAC_SLOW_LIMIT 200000
  125. #define I9XX_P2_LVDS_SLOW 14
  126. #define I9XX_P2_LVDS_FAST 7
  127. #define I9XX_P2_LVDS_SLOW_LIMIT 112000
  128. /*The parameter is for SDVO on G4x platform*/
  129. #define G4X_DOT_SDVO_MIN 25000
  130. #define G4X_DOT_SDVO_MAX 270000
  131. #define G4X_VCO_MIN 1750000
  132. #define G4X_VCO_MAX 3500000
  133. #define G4X_N_SDVO_MIN 1
  134. #define G4X_N_SDVO_MAX 4
  135. #define G4X_M_SDVO_MIN 104
  136. #define G4X_M_SDVO_MAX 138
  137. #define G4X_M1_SDVO_MIN 17
  138. #define G4X_M1_SDVO_MAX 23
  139. #define G4X_M2_SDVO_MIN 5
  140. #define G4X_M2_SDVO_MAX 11
  141. #define G4X_P_SDVO_MIN 10
  142. #define G4X_P_SDVO_MAX 30
  143. #define G4X_P1_SDVO_MIN 1
  144. #define G4X_P1_SDVO_MAX 3
  145. #define G4X_P2_SDVO_SLOW 10
  146. #define G4X_P2_SDVO_FAST 10
  147. #define G4X_P2_SDVO_LIMIT 270000
  148. /*The parameter is for HDMI_DAC on G4x platform*/
  149. #define G4X_DOT_HDMI_DAC_MIN 22000
  150. #define G4X_DOT_HDMI_DAC_MAX 400000
  151. #define G4X_N_HDMI_DAC_MIN 1
  152. #define G4X_N_HDMI_DAC_MAX 4
  153. #define G4X_M_HDMI_DAC_MIN 104
  154. #define G4X_M_HDMI_DAC_MAX 138
  155. #define G4X_M1_HDMI_DAC_MIN 16
  156. #define G4X_M1_HDMI_DAC_MAX 23
  157. #define G4X_M2_HDMI_DAC_MIN 5
  158. #define G4X_M2_HDMI_DAC_MAX 11
  159. #define G4X_P_HDMI_DAC_MIN 5
  160. #define G4X_P_HDMI_DAC_MAX 80
  161. #define G4X_P1_HDMI_DAC_MIN 1
  162. #define G4X_P1_HDMI_DAC_MAX 8
  163. #define G4X_P2_HDMI_DAC_SLOW 10
  164. #define G4X_P2_HDMI_DAC_FAST 5
  165. #define G4X_P2_HDMI_DAC_LIMIT 165000
  166. /*The parameter is for SINGLE_CHANNEL_LVDS on G4x platform*/
  167. #define G4X_DOT_SINGLE_CHANNEL_LVDS_MIN 20000
  168. #define G4X_DOT_SINGLE_CHANNEL_LVDS_MAX 115000
  169. #define G4X_N_SINGLE_CHANNEL_LVDS_MIN 1
  170. #define G4X_N_SINGLE_CHANNEL_LVDS_MAX 3
  171. #define G4X_M_SINGLE_CHANNEL_LVDS_MIN 104
  172. #define G4X_M_SINGLE_CHANNEL_LVDS_MAX 138
  173. #define G4X_M1_SINGLE_CHANNEL_LVDS_MIN 17
  174. #define G4X_M1_SINGLE_CHANNEL_LVDS_MAX 23
  175. #define G4X_M2_SINGLE_CHANNEL_LVDS_MIN 5
  176. #define G4X_M2_SINGLE_CHANNEL_LVDS_MAX 11
  177. #define G4X_P_SINGLE_CHANNEL_LVDS_MIN 28
  178. #define G4X_P_SINGLE_CHANNEL_LVDS_MAX 112
  179. #define G4X_P1_SINGLE_CHANNEL_LVDS_MIN 2
  180. #define G4X_P1_SINGLE_CHANNEL_LVDS_MAX 8
  181. #define G4X_P2_SINGLE_CHANNEL_LVDS_SLOW 14
  182. #define G4X_P2_SINGLE_CHANNEL_LVDS_FAST 14
  183. #define G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT 0
  184. /*The parameter is for DUAL_CHANNEL_LVDS on G4x platform*/
  185. #define G4X_DOT_DUAL_CHANNEL_LVDS_MIN 80000
  186. #define G4X_DOT_DUAL_CHANNEL_LVDS_MAX 224000
  187. #define G4X_N_DUAL_CHANNEL_LVDS_MIN 1
  188. #define G4X_N_DUAL_CHANNEL_LVDS_MAX 3
  189. #define G4X_M_DUAL_CHANNEL_LVDS_MIN 104
  190. #define G4X_M_DUAL_CHANNEL_LVDS_MAX 138
  191. #define G4X_M1_DUAL_CHANNEL_LVDS_MIN 17
  192. #define G4X_M1_DUAL_CHANNEL_LVDS_MAX 23
  193. #define G4X_M2_DUAL_CHANNEL_LVDS_MIN 5
  194. #define G4X_M2_DUAL_CHANNEL_LVDS_MAX 11
  195. #define G4X_P_DUAL_CHANNEL_LVDS_MIN 14
  196. #define G4X_P_DUAL_CHANNEL_LVDS_MAX 42
  197. #define G4X_P1_DUAL_CHANNEL_LVDS_MIN 2
  198. #define G4X_P1_DUAL_CHANNEL_LVDS_MAX 6
  199. #define G4X_P2_DUAL_CHANNEL_LVDS_SLOW 7
  200. #define G4X_P2_DUAL_CHANNEL_LVDS_FAST 7
  201. #define G4X_P2_DUAL_CHANNEL_LVDS_LIMIT 0
  202. /*The parameter is for DISPLAY PORT on G4x platform*/
  203. #define G4X_DOT_DISPLAY_PORT_MIN 161670
  204. #define G4X_DOT_DISPLAY_PORT_MAX 227000
  205. #define G4X_N_DISPLAY_PORT_MIN 1
  206. #define G4X_N_DISPLAY_PORT_MAX 2
  207. #define G4X_M_DISPLAY_PORT_MIN 97
  208. #define G4X_M_DISPLAY_PORT_MAX 108
  209. #define G4X_M1_DISPLAY_PORT_MIN 0x10
  210. #define G4X_M1_DISPLAY_PORT_MAX 0x12
  211. #define G4X_M2_DISPLAY_PORT_MIN 0x05
  212. #define G4X_M2_DISPLAY_PORT_MAX 0x06
  213. #define G4X_P_DISPLAY_PORT_MIN 10
  214. #define G4X_P_DISPLAY_PORT_MAX 20
  215. #define G4X_P1_DISPLAY_PORT_MIN 1
  216. #define G4X_P1_DISPLAY_PORT_MAX 2
  217. #define G4X_P2_DISPLAY_PORT_SLOW 10
  218. #define G4X_P2_DISPLAY_PORT_FAST 10
  219. #define G4X_P2_DISPLAY_PORT_LIMIT 0
  220. /* Ironlake / Sandybridge */
  221. /* as we calculate clock using (register_value + 2) for
  222. N/M1/M2, so here the range value for them is (actual_value-2).
  223. */
  224. #define IRONLAKE_DOT_MIN 25000
  225. #define IRONLAKE_DOT_MAX 350000
  226. #define IRONLAKE_VCO_MIN 1760000
  227. #define IRONLAKE_VCO_MAX 3510000
  228. #define IRONLAKE_M1_MIN 12
  229. #define IRONLAKE_M1_MAX 22
  230. #define IRONLAKE_M2_MIN 5
  231. #define IRONLAKE_M2_MAX 9
  232. #define IRONLAKE_P2_DOT_LIMIT 225000 /* 225Mhz */
  233. /* We have parameter ranges for different type of outputs. */
  234. /* DAC & HDMI Refclk 120Mhz */
  235. #define IRONLAKE_DAC_N_MIN 1
  236. #define IRONLAKE_DAC_N_MAX 5
  237. #define IRONLAKE_DAC_M_MIN 79
  238. #define IRONLAKE_DAC_M_MAX 127
  239. #define IRONLAKE_DAC_P_MIN 5
  240. #define IRONLAKE_DAC_P_MAX 80
  241. #define IRONLAKE_DAC_P1_MIN 1
  242. #define IRONLAKE_DAC_P1_MAX 8
  243. #define IRONLAKE_DAC_P2_SLOW 10
  244. #define IRONLAKE_DAC_P2_FAST 5
  245. /* LVDS single-channel 120Mhz refclk */
  246. #define IRONLAKE_LVDS_S_N_MIN 1
  247. #define IRONLAKE_LVDS_S_N_MAX 3
  248. #define IRONLAKE_LVDS_S_M_MIN 79
  249. #define IRONLAKE_LVDS_S_M_MAX 118
  250. #define IRONLAKE_LVDS_S_P_MIN 28
  251. #define IRONLAKE_LVDS_S_P_MAX 112
  252. #define IRONLAKE_LVDS_S_P1_MIN 2
  253. #define IRONLAKE_LVDS_S_P1_MAX 8
  254. #define IRONLAKE_LVDS_S_P2_SLOW 14
  255. #define IRONLAKE_LVDS_S_P2_FAST 14
  256. /* LVDS dual-channel 120Mhz refclk */
  257. #define IRONLAKE_LVDS_D_N_MIN 1
  258. #define IRONLAKE_LVDS_D_N_MAX 3
  259. #define IRONLAKE_LVDS_D_M_MIN 79
  260. #define IRONLAKE_LVDS_D_M_MAX 127
  261. #define IRONLAKE_LVDS_D_P_MIN 14
  262. #define IRONLAKE_LVDS_D_P_MAX 56
  263. #define IRONLAKE_LVDS_D_P1_MIN 2
  264. #define IRONLAKE_LVDS_D_P1_MAX 8
  265. #define IRONLAKE_LVDS_D_P2_SLOW 7
  266. #define IRONLAKE_LVDS_D_P2_FAST 7
  267. /* LVDS single-channel 100Mhz refclk */
  268. #define IRONLAKE_LVDS_S_SSC_N_MIN 1
  269. #define IRONLAKE_LVDS_S_SSC_N_MAX 2
  270. #define IRONLAKE_LVDS_S_SSC_M_MIN 79
  271. #define IRONLAKE_LVDS_S_SSC_M_MAX 126
  272. #define IRONLAKE_LVDS_S_SSC_P_MIN 28
  273. #define IRONLAKE_LVDS_S_SSC_P_MAX 112
  274. #define IRONLAKE_LVDS_S_SSC_P1_MIN 2
  275. #define IRONLAKE_LVDS_S_SSC_P1_MAX 8
  276. #define IRONLAKE_LVDS_S_SSC_P2_SLOW 14
  277. #define IRONLAKE_LVDS_S_SSC_P2_FAST 14
  278. /* LVDS dual-channel 100Mhz refclk */
  279. #define IRONLAKE_LVDS_D_SSC_N_MIN 1
  280. #define IRONLAKE_LVDS_D_SSC_N_MAX 3
  281. #define IRONLAKE_LVDS_D_SSC_M_MIN 79
  282. #define IRONLAKE_LVDS_D_SSC_M_MAX 126
  283. #define IRONLAKE_LVDS_D_SSC_P_MIN 14
  284. #define IRONLAKE_LVDS_D_SSC_P_MAX 42
  285. #define IRONLAKE_LVDS_D_SSC_P1_MIN 2
  286. #define IRONLAKE_LVDS_D_SSC_P1_MAX 6
  287. #define IRONLAKE_LVDS_D_SSC_P2_SLOW 7
  288. #define IRONLAKE_LVDS_D_SSC_P2_FAST 7
  289. /* DisplayPort */
  290. #define IRONLAKE_DP_N_MIN 1
  291. #define IRONLAKE_DP_N_MAX 2
  292. #define IRONLAKE_DP_M_MIN 81
  293. #define IRONLAKE_DP_M_MAX 90
  294. #define IRONLAKE_DP_P_MIN 10
  295. #define IRONLAKE_DP_P_MAX 20
  296. #define IRONLAKE_DP_P2_FAST 10
  297. #define IRONLAKE_DP_P2_SLOW 10
  298. #define IRONLAKE_DP_P2_LIMIT 0
  299. #define IRONLAKE_DP_P1_MIN 1
  300. #define IRONLAKE_DP_P1_MAX 2
  301. static bool
  302. intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  303. int target, int refclk, intel_clock_t *best_clock);
  304. static bool
  305. intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  306. int target, int refclk, intel_clock_t *best_clock);
  307. static bool
  308. intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
  309. int target, int refclk, intel_clock_t *best_clock);
  310. static bool
  311. intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
  312. int target, int refclk, intel_clock_t *best_clock);
  313. static const intel_limit_t intel_limits_i8xx_dvo = {
  314. .dot = { .min = I8XX_DOT_MIN, .max = I8XX_DOT_MAX },
  315. .vco = { .min = I8XX_VCO_MIN, .max = I8XX_VCO_MAX },
  316. .n = { .min = I8XX_N_MIN, .max = I8XX_N_MAX },
  317. .m = { .min = I8XX_M_MIN, .max = I8XX_M_MAX },
  318. .m1 = { .min = I8XX_M1_MIN, .max = I8XX_M1_MAX },
  319. .m2 = { .min = I8XX_M2_MIN, .max = I8XX_M2_MAX },
  320. .p = { .min = I8XX_P_MIN, .max = I8XX_P_MAX },
  321. .p1 = { .min = I8XX_P1_MIN, .max = I8XX_P1_MAX },
  322. .p2 = { .dot_limit = I8XX_P2_SLOW_LIMIT,
  323. .p2_slow = I8XX_P2_SLOW, .p2_fast = I8XX_P2_FAST },
  324. .find_pll = intel_find_best_PLL,
  325. };
  326. static const intel_limit_t intel_limits_i8xx_lvds = {
  327. .dot = { .min = I8XX_DOT_MIN, .max = I8XX_DOT_MAX },
  328. .vco = { .min = I8XX_VCO_MIN, .max = I8XX_VCO_MAX },
  329. .n = { .min = I8XX_N_MIN, .max = I8XX_N_MAX },
  330. .m = { .min = I8XX_M_MIN, .max = I8XX_M_MAX },
  331. .m1 = { .min = I8XX_M1_MIN, .max = I8XX_M1_MAX },
  332. .m2 = { .min = I8XX_M2_MIN, .max = I8XX_M2_MAX },
  333. .p = { .min = I8XX_P_MIN, .max = I8XX_P_MAX },
  334. .p1 = { .min = I8XX_P1_LVDS_MIN, .max = I8XX_P1_LVDS_MAX },
  335. .p2 = { .dot_limit = I8XX_P2_SLOW_LIMIT,
  336. .p2_slow = I8XX_P2_LVDS_SLOW, .p2_fast = I8XX_P2_LVDS_FAST },
  337. .find_pll = intel_find_best_PLL,
  338. };
  339. static const intel_limit_t intel_limits_i9xx_sdvo = {
  340. .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX },
  341. .vco = { .min = I9XX_VCO_MIN, .max = I9XX_VCO_MAX },
  342. .n = { .min = I9XX_N_MIN, .max = I9XX_N_MAX },
  343. .m = { .min = I9XX_M_MIN, .max = I9XX_M_MAX },
  344. .m1 = { .min = I9XX_M1_MIN, .max = I9XX_M1_MAX },
  345. .m2 = { .min = I9XX_M2_MIN, .max = I9XX_M2_MAX },
  346. .p = { .min = I9XX_P_SDVO_DAC_MIN, .max = I9XX_P_SDVO_DAC_MAX },
  347. .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
  348. .p2 = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
  349. .p2_slow = I9XX_P2_SDVO_DAC_SLOW, .p2_fast = I9XX_P2_SDVO_DAC_FAST },
  350. .find_pll = intel_find_best_PLL,
  351. };
  352. static const intel_limit_t intel_limits_i9xx_lvds = {
  353. .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX },
  354. .vco = { .min = I9XX_VCO_MIN, .max = I9XX_VCO_MAX },
  355. .n = { .min = I9XX_N_MIN, .max = I9XX_N_MAX },
  356. .m = { .min = I9XX_M_MIN, .max = I9XX_M_MAX },
  357. .m1 = { .min = I9XX_M1_MIN, .max = I9XX_M1_MAX },
  358. .m2 = { .min = I9XX_M2_MIN, .max = I9XX_M2_MAX },
  359. .p = { .min = I9XX_P_LVDS_MIN, .max = I9XX_P_LVDS_MAX },
  360. .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
  361. /* The single-channel range is 25-112Mhz, and dual-channel
  362. * is 80-224Mhz. Prefer single channel as much as possible.
  363. */
  364. .p2 = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
  365. .p2_slow = I9XX_P2_LVDS_SLOW, .p2_fast = I9XX_P2_LVDS_FAST },
  366. .find_pll = intel_find_best_PLL,
  367. };
  368. /* below parameter and function is for G4X Chipset Family*/
  369. static const intel_limit_t intel_limits_g4x_sdvo = {
  370. .dot = { .min = G4X_DOT_SDVO_MIN, .max = G4X_DOT_SDVO_MAX },
  371. .vco = { .min = G4X_VCO_MIN, .max = G4X_VCO_MAX},
  372. .n = { .min = G4X_N_SDVO_MIN, .max = G4X_N_SDVO_MAX },
  373. .m = { .min = G4X_M_SDVO_MIN, .max = G4X_M_SDVO_MAX },
  374. .m1 = { .min = G4X_M1_SDVO_MIN, .max = G4X_M1_SDVO_MAX },
  375. .m2 = { .min = G4X_M2_SDVO_MIN, .max = G4X_M2_SDVO_MAX },
  376. .p = { .min = G4X_P_SDVO_MIN, .max = G4X_P_SDVO_MAX },
  377. .p1 = { .min = G4X_P1_SDVO_MIN, .max = G4X_P1_SDVO_MAX},
  378. .p2 = { .dot_limit = G4X_P2_SDVO_LIMIT,
  379. .p2_slow = G4X_P2_SDVO_SLOW,
  380. .p2_fast = G4X_P2_SDVO_FAST
  381. },
  382. .find_pll = intel_g4x_find_best_PLL,
  383. };
  384. static const intel_limit_t intel_limits_g4x_hdmi = {
  385. .dot = { .min = G4X_DOT_HDMI_DAC_MIN, .max = G4X_DOT_HDMI_DAC_MAX },
  386. .vco = { .min = G4X_VCO_MIN, .max = G4X_VCO_MAX},
  387. .n = { .min = G4X_N_HDMI_DAC_MIN, .max = G4X_N_HDMI_DAC_MAX },
  388. .m = { .min = G4X_M_HDMI_DAC_MIN, .max = G4X_M_HDMI_DAC_MAX },
  389. .m1 = { .min = G4X_M1_HDMI_DAC_MIN, .max = G4X_M1_HDMI_DAC_MAX },
  390. .m2 = { .min = G4X_M2_HDMI_DAC_MIN, .max = G4X_M2_HDMI_DAC_MAX },
  391. .p = { .min = G4X_P_HDMI_DAC_MIN, .max = G4X_P_HDMI_DAC_MAX },
  392. .p1 = { .min = G4X_P1_HDMI_DAC_MIN, .max = G4X_P1_HDMI_DAC_MAX},
  393. .p2 = { .dot_limit = G4X_P2_HDMI_DAC_LIMIT,
  394. .p2_slow = G4X_P2_HDMI_DAC_SLOW,
  395. .p2_fast = G4X_P2_HDMI_DAC_FAST
  396. },
  397. .find_pll = intel_g4x_find_best_PLL,
  398. };
  399. static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
  400. .dot = { .min = G4X_DOT_SINGLE_CHANNEL_LVDS_MIN,
  401. .max = G4X_DOT_SINGLE_CHANNEL_LVDS_MAX },
  402. .vco = { .min = G4X_VCO_MIN,
  403. .max = G4X_VCO_MAX },
  404. .n = { .min = G4X_N_SINGLE_CHANNEL_LVDS_MIN,
  405. .max = G4X_N_SINGLE_CHANNEL_LVDS_MAX },
  406. .m = { .min = G4X_M_SINGLE_CHANNEL_LVDS_MIN,
  407. .max = G4X_M_SINGLE_CHANNEL_LVDS_MAX },
  408. .m1 = { .min = G4X_M1_SINGLE_CHANNEL_LVDS_MIN,
  409. .max = G4X_M1_SINGLE_CHANNEL_LVDS_MAX },
  410. .m2 = { .min = G4X_M2_SINGLE_CHANNEL_LVDS_MIN,
  411. .max = G4X_M2_SINGLE_CHANNEL_LVDS_MAX },
  412. .p = { .min = G4X_P_SINGLE_CHANNEL_LVDS_MIN,
  413. .max = G4X_P_SINGLE_CHANNEL_LVDS_MAX },
  414. .p1 = { .min = G4X_P1_SINGLE_CHANNEL_LVDS_MIN,
  415. .max = G4X_P1_SINGLE_CHANNEL_LVDS_MAX },
  416. .p2 = { .dot_limit = G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT,
  417. .p2_slow = G4X_P2_SINGLE_CHANNEL_LVDS_SLOW,
  418. .p2_fast = G4X_P2_SINGLE_CHANNEL_LVDS_FAST
  419. },
  420. .find_pll = intel_g4x_find_best_PLL,
  421. };
  422. static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
  423. .dot = { .min = G4X_DOT_DUAL_CHANNEL_LVDS_MIN,
  424. .max = G4X_DOT_DUAL_CHANNEL_LVDS_MAX },
  425. .vco = { .min = G4X_VCO_MIN,
  426. .max = G4X_VCO_MAX },
  427. .n = { .min = G4X_N_DUAL_CHANNEL_LVDS_MIN,
  428. .max = G4X_N_DUAL_CHANNEL_LVDS_MAX },
  429. .m = { .min = G4X_M_DUAL_CHANNEL_LVDS_MIN,
  430. .max = G4X_M_DUAL_CHANNEL_LVDS_MAX },
  431. .m1 = { .min = G4X_M1_DUAL_CHANNEL_LVDS_MIN,
  432. .max = G4X_M1_DUAL_CHANNEL_LVDS_MAX },
  433. .m2 = { .min = G4X_M2_DUAL_CHANNEL_LVDS_MIN,
  434. .max = G4X_M2_DUAL_CHANNEL_LVDS_MAX },
  435. .p = { .min = G4X_P_DUAL_CHANNEL_LVDS_MIN,
  436. .max = G4X_P_DUAL_CHANNEL_LVDS_MAX },
  437. .p1 = { .min = G4X_P1_DUAL_CHANNEL_LVDS_MIN,
  438. .max = G4X_P1_DUAL_CHANNEL_LVDS_MAX },
  439. .p2 = { .dot_limit = G4X_P2_DUAL_CHANNEL_LVDS_LIMIT,
  440. .p2_slow = G4X_P2_DUAL_CHANNEL_LVDS_SLOW,
  441. .p2_fast = G4X_P2_DUAL_CHANNEL_LVDS_FAST
  442. },
  443. .find_pll = intel_g4x_find_best_PLL,
  444. };
  445. static const intel_limit_t intel_limits_g4x_display_port = {
  446. .dot = { .min = G4X_DOT_DISPLAY_PORT_MIN,
  447. .max = G4X_DOT_DISPLAY_PORT_MAX },
  448. .vco = { .min = G4X_VCO_MIN,
  449. .max = G4X_VCO_MAX},
  450. .n = { .min = G4X_N_DISPLAY_PORT_MIN,
  451. .max = G4X_N_DISPLAY_PORT_MAX },
  452. .m = { .min = G4X_M_DISPLAY_PORT_MIN,
  453. .max = G4X_M_DISPLAY_PORT_MAX },
  454. .m1 = { .min = G4X_M1_DISPLAY_PORT_MIN,
  455. .max = G4X_M1_DISPLAY_PORT_MAX },
  456. .m2 = { .min = G4X_M2_DISPLAY_PORT_MIN,
  457. .max = G4X_M2_DISPLAY_PORT_MAX },
  458. .p = { .min = G4X_P_DISPLAY_PORT_MIN,
  459. .max = G4X_P_DISPLAY_PORT_MAX },
  460. .p1 = { .min = G4X_P1_DISPLAY_PORT_MIN,
  461. .max = G4X_P1_DISPLAY_PORT_MAX},
  462. .p2 = { .dot_limit = G4X_P2_DISPLAY_PORT_LIMIT,
  463. .p2_slow = G4X_P2_DISPLAY_PORT_SLOW,
  464. .p2_fast = G4X_P2_DISPLAY_PORT_FAST },
  465. .find_pll = intel_find_pll_g4x_dp,
  466. };
  467. static const intel_limit_t intel_limits_pineview_sdvo = {
  468. .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX},
  469. .vco = { .min = PINEVIEW_VCO_MIN, .max = PINEVIEW_VCO_MAX },
  470. .n = { .min = PINEVIEW_N_MIN, .max = PINEVIEW_N_MAX },
  471. .m = { .min = PINEVIEW_M_MIN, .max = PINEVIEW_M_MAX },
  472. .m1 = { .min = PINEVIEW_M1_MIN, .max = PINEVIEW_M1_MAX },
  473. .m2 = { .min = PINEVIEW_M2_MIN, .max = PINEVIEW_M2_MAX },
  474. .p = { .min = I9XX_P_SDVO_DAC_MIN, .max = I9XX_P_SDVO_DAC_MAX },
  475. .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
  476. .p2 = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
  477. .p2_slow = I9XX_P2_SDVO_DAC_SLOW, .p2_fast = I9XX_P2_SDVO_DAC_FAST },
  478. .find_pll = intel_find_best_PLL,
  479. };
  480. static const intel_limit_t intel_limits_pineview_lvds = {
  481. .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX },
  482. .vco = { .min = PINEVIEW_VCO_MIN, .max = PINEVIEW_VCO_MAX },
  483. .n = { .min = PINEVIEW_N_MIN, .max = PINEVIEW_N_MAX },
  484. .m = { .min = PINEVIEW_M_MIN, .max = PINEVIEW_M_MAX },
  485. .m1 = { .min = PINEVIEW_M1_MIN, .max = PINEVIEW_M1_MAX },
  486. .m2 = { .min = PINEVIEW_M2_MIN, .max = PINEVIEW_M2_MAX },
  487. .p = { .min = PINEVIEW_P_LVDS_MIN, .max = PINEVIEW_P_LVDS_MAX },
  488. .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
  489. /* Pineview only supports single-channel mode. */
  490. .p2 = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
  491. .p2_slow = I9XX_P2_LVDS_SLOW, .p2_fast = I9XX_P2_LVDS_SLOW },
  492. .find_pll = intel_find_best_PLL,
  493. };
  494. static const intel_limit_t intel_limits_ironlake_dac = {
  495. .dot = { .min = IRONLAKE_DOT_MIN, .max = IRONLAKE_DOT_MAX },
  496. .vco = { .min = IRONLAKE_VCO_MIN, .max = IRONLAKE_VCO_MAX },
  497. .n = { .min = IRONLAKE_DAC_N_MIN, .max = IRONLAKE_DAC_N_MAX },
  498. .m = { .min = IRONLAKE_DAC_M_MIN, .max = IRONLAKE_DAC_M_MAX },
  499. .m1 = { .min = IRONLAKE_M1_MIN, .max = IRONLAKE_M1_MAX },
  500. .m2 = { .min = IRONLAKE_M2_MIN, .max = IRONLAKE_M2_MAX },
  501. .p = { .min = IRONLAKE_DAC_P_MIN, .max = IRONLAKE_DAC_P_MAX },
  502. .p1 = { .min = IRONLAKE_DAC_P1_MIN, .max = IRONLAKE_DAC_P1_MAX },
  503. .p2 = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
  504. .p2_slow = IRONLAKE_DAC_P2_SLOW,
  505. .p2_fast = IRONLAKE_DAC_P2_FAST },
  506. .find_pll = intel_g4x_find_best_PLL,
  507. };
  508. static const intel_limit_t intel_limits_ironlake_single_lvds = {
  509. .dot = { .min = IRONLAKE_DOT_MIN, .max = IRONLAKE_DOT_MAX },
  510. .vco = { .min = IRONLAKE_VCO_MIN, .max = IRONLAKE_VCO_MAX },
  511. .n = { .min = IRONLAKE_LVDS_S_N_MIN, .max = IRONLAKE_LVDS_S_N_MAX },
  512. .m = { .min = IRONLAKE_LVDS_S_M_MIN, .max = IRONLAKE_LVDS_S_M_MAX },
  513. .m1 = { .min = IRONLAKE_M1_MIN, .max = IRONLAKE_M1_MAX },
  514. .m2 = { .min = IRONLAKE_M2_MIN, .max = IRONLAKE_M2_MAX },
  515. .p = { .min = IRONLAKE_LVDS_S_P_MIN, .max = IRONLAKE_LVDS_S_P_MAX },
  516. .p1 = { .min = IRONLAKE_LVDS_S_P1_MIN, .max = IRONLAKE_LVDS_S_P1_MAX },
  517. .p2 = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
  518. .p2_slow = IRONLAKE_LVDS_S_P2_SLOW,
  519. .p2_fast = IRONLAKE_LVDS_S_P2_FAST },
  520. .find_pll = intel_g4x_find_best_PLL,
  521. };
  522. static const intel_limit_t intel_limits_ironlake_dual_lvds = {
  523. .dot = { .min = IRONLAKE_DOT_MIN, .max = IRONLAKE_DOT_MAX },
  524. .vco = { .min = IRONLAKE_VCO_MIN, .max = IRONLAKE_VCO_MAX },
  525. .n = { .min = IRONLAKE_LVDS_D_N_MIN, .max = IRONLAKE_LVDS_D_N_MAX },
  526. .m = { .min = IRONLAKE_LVDS_D_M_MIN, .max = IRONLAKE_LVDS_D_M_MAX },
  527. .m1 = { .min = IRONLAKE_M1_MIN, .max = IRONLAKE_M1_MAX },
  528. .m2 = { .min = IRONLAKE_M2_MIN, .max = IRONLAKE_M2_MAX },
  529. .p = { .min = IRONLAKE_LVDS_D_P_MIN, .max = IRONLAKE_LVDS_D_P_MAX },
  530. .p1 = { .min = IRONLAKE_LVDS_D_P1_MIN, .max = IRONLAKE_LVDS_D_P1_MAX },
  531. .p2 = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
  532. .p2_slow = IRONLAKE_LVDS_D_P2_SLOW,
  533. .p2_fast = IRONLAKE_LVDS_D_P2_FAST },
  534. .find_pll = intel_g4x_find_best_PLL,
  535. };
  536. static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
  537. .dot = { .min = IRONLAKE_DOT_MIN, .max = IRONLAKE_DOT_MAX },
  538. .vco = { .min = IRONLAKE_VCO_MIN, .max = IRONLAKE_VCO_MAX },
  539. .n = { .min = IRONLAKE_LVDS_S_SSC_N_MIN, .max = IRONLAKE_LVDS_S_SSC_N_MAX },
  540. .m = { .min = IRONLAKE_LVDS_S_SSC_M_MIN, .max = IRONLAKE_LVDS_S_SSC_M_MAX },
  541. .m1 = { .min = IRONLAKE_M1_MIN, .max = IRONLAKE_M1_MAX },
  542. .m2 = { .min = IRONLAKE_M2_MIN, .max = IRONLAKE_M2_MAX },
  543. .p = { .min = IRONLAKE_LVDS_S_SSC_P_MIN, .max = IRONLAKE_LVDS_S_SSC_P_MAX },
  544. .p1 = { .min = IRONLAKE_LVDS_S_SSC_P1_MIN,.max = IRONLAKE_LVDS_S_SSC_P1_MAX },
  545. .p2 = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
  546. .p2_slow = IRONLAKE_LVDS_S_SSC_P2_SLOW,
  547. .p2_fast = IRONLAKE_LVDS_S_SSC_P2_FAST },
  548. .find_pll = intel_g4x_find_best_PLL,
  549. };
  550. static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
  551. .dot = { .min = IRONLAKE_DOT_MIN, .max = IRONLAKE_DOT_MAX },
  552. .vco = { .min = IRONLAKE_VCO_MIN, .max = IRONLAKE_VCO_MAX },
  553. .n = { .min = IRONLAKE_LVDS_D_SSC_N_MIN, .max = IRONLAKE_LVDS_D_SSC_N_MAX },
  554. .m = { .min = IRONLAKE_LVDS_D_SSC_M_MIN, .max = IRONLAKE_LVDS_D_SSC_M_MAX },
  555. .m1 = { .min = IRONLAKE_M1_MIN, .max = IRONLAKE_M1_MAX },
  556. .m2 = { .min = IRONLAKE_M2_MIN, .max = IRONLAKE_M2_MAX },
  557. .p = { .min = IRONLAKE_LVDS_D_SSC_P_MIN, .max = IRONLAKE_LVDS_D_SSC_P_MAX },
  558. .p1 = { .min = IRONLAKE_LVDS_D_SSC_P1_MIN,.max = IRONLAKE_LVDS_D_SSC_P1_MAX },
  559. .p2 = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
  560. .p2_slow = IRONLAKE_LVDS_D_SSC_P2_SLOW,
  561. .p2_fast = IRONLAKE_LVDS_D_SSC_P2_FAST },
  562. .find_pll = intel_g4x_find_best_PLL,
  563. };
  564. static const intel_limit_t intel_limits_ironlake_display_port = {
  565. .dot = { .min = IRONLAKE_DOT_MIN,
  566. .max = IRONLAKE_DOT_MAX },
  567. .vco = { .min = IRONLAKE_VCO_MIN,
  568. .max = IRONLAKE_VCO_MAX},
  569. .n = { .min = IRONLAKE_DP_N_MIN,
  570. .max = IRONLAKE_DP_N_MAX },
  571. .m = { .min = IRONLAKE_DP_M_MIN,
  572. .max = IRONLAKE_DP_M_MAX },
  573. .m1 = { .min = IRONLAKE_M1_MIN,
  574. .max = IRONLAKE_M1_MAX },
  575. .m2 = { .min = IRONLAKE_M2_MIN,
  576. .max = IRONLAKE_M2_MAX },
  577. .p = { .min = IRONLAKE_DP_P_MIN,
  578. .max = IRONLAKE_DP_P_MAX },
  579. .p1 = { .min = IRONLAKE_DP_P1_MIN,
  580. .max = IRONLAKE_DP_P1_MAX},
  581. .p2 = { .dot_limit = IRONLAKE_DP_P2_LIMIT,
  582. .p2_slow = IRONLAKE_DP_P2_SLOW,
  583. .p2_fast = IRONLAKE_DP_P2_FAST },
  584. .find_pll = intel_find_pll_ironlake_dp,
  585. };
  586. static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc)
  587. {
  588. struct drm_device *dev = crtc->dev;
  589. struct drm_i915_private *dev_priv = dev->dev_private;
  590. const intel_limit_t *limit;
  591. int refclk = 120;
  592. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  593. if (dev_priv->lvds_use_ssc && dev_priv->lvds_ssc_freq == 100)
  594. refclk = 100;
  595. if ((I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) ==
  596. LVDS_CLKB_POWER_UP) {
  597. /* LVDS dual channel */
  598. if (refclk == 100)
  599. limit = &intel_limits_ironlake_dual_lvds_100m;
  600. else
  601. limit = &intel_limits_ironlake_dual_lvds;
  602. } else {
  603. if (refclk == 100)
  604. limit = &intel_limits_ironlake_single_lvds_100m;
  605. else
  606. limit = &intel_limits_ironlake_single_lvds;
  607. }
  608. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
  609. HAS_eDP)
  610. limit = &intel_limits_ironlake_display_port;
  611. else
  612. limit = &intel_limits_ironlake_dac;
  613. return limit;
  614. }
  615. static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
  616. {
  617. struct drm_device *dev = crtc->dev;
  618. struct drm_i915_private *dev_priv = dev->dev_private;
  619. const intel_limit_t *limit;
  620. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  621. if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
  622. LVDS_CLKB_POWER_UP)
  623. /* LVDS with dual channel */
  624. limit = &intel_limits_g4x_dual_channel_lvds;
  625. else
  626. /* LVDS with dual channel */
  627. limit = &intel_limits_g4x_single_channel_lvds;
  628. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
  629. intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
  630. limit = &intel_limits_g4x_hdmi;
  631. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
  632. limit = &intel_limits_g4x_sdvo;
  633. } else if (intel_pipe_has_type (crtc, INTEL_OUTPUT_DISPLAYPORT)) {
  634. limit = &intel_limits_g4x_display_port;
  635. } else /* The option is for other outputs */
  636. limit = &intel_limits_i9xx_sdvo;
  637. return limit;
  638. }
  639. static const intel_limit_t *intel_limit(struct drm_crtc *crtc)
  640. {
  641. struct drm_device *dev = crtc->dev;
  642. const intel_limit_t *limit;
  643. if (HAS_PCH_SPLIT(dev))
  644. limit = intel_ironlake_limit(crtc);
  645. else if (IS_G4X(dev)) {
  646. limit = intel_g4x_limit(crtc);
  647. } else if (IS_I9XX(dev) && !IS_PINEVIEW(dev)) {
  648. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  649. limit = &intel_limits_i9xx_lvds;
  650. else
  651. limit = &intel_limits_i9xx_sdvo;
  652. } else if (IS_PINEVIEW(dev)) {
  653. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  654. limit = &intel_limits_pineview_lvds;
  655. else
  656. limit = &intel_limits_pineview_sdvo;
  657. } else {
  658. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  659. limit = &intel_limits_i8xx_lvds;
  660. else
  661. limit = &intel_limits_i8xx_dvo;
  662. }
  663. return limit;
  664. }
  665. /* m1 is reserved as 0 in Pineview, n is a ring counter */
  666. static void pineview_clock(int refclk, intel_clock_t *clock)
  667. {
  668. clock->m = clock->m2 + 2;
  669. clock->p = clock->p1 * clock->p2;
  670. clock->vco = refclk * clock->m / clock->n;
  671. clock->dot = clock->vco / clock->p;
  672. }
  673. static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
  674. {
  675. if (IS_PINEVIEW(dev)) {
  676. pineview_clock(refclk, clock);
  677. return;
  678. }
  679. clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
  680. clock->p = clock->p1 * clock->p2;
  681. clock->vco = refclk * clock->m / (clock->n + 2);
  682. clock->dot = clock->vco / clock->p;
  683. }
  684. /**
  685. * Returns whether any output on the specified pipe is of the specified type
  686. */
  687. bool intel_pipe_has_type (struct drm_crtc *crtc, int type)
  688. {
  689. struct drm_device *dev = crtc->dev;
  690. struct drm_mode_config *mode_config = &dev->mode_config;
  691. struct drm_encoder *l_entry;
  692. list_for_each_entry(l_entry, &mode_config->encoder_list, head) {
  693. if (l_entry && l_entry->crtc == crtc) {
  694. struct intel_encoder *intel_encoder = enc_to_intel_encoder(l_entry);
  695. if (intel_encoder->type == type)
  696. return true;
  697. }
  698. }
  699. return false;
  700. }
  701. #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
  702. /**
  703. * Returns whether the given set of divisors are valid for a given refclk with
  704. * the given connectors.
  705. */
  706. static bool intel_PLL_is_valid(struct drm_crtc *crtc, intel_clock_t *clock)
  707. {
  708. const intel_limit_t *limit = intel_limit (crtc);
  709. struct drm_device *dev = crtc->dev;
  710. if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
  711. INTELPllInvalid ("p1 out of range\n");
  712. if (clock->p < limit->p.min || limit->p.max < clock->p)
  713. INTELPllInvalid ("p out of range\n");
  714. if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
  715. INTELPllInvalid ("m2 out of range\n");
  716. if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
  717. INTELPllInvalid ("m1 out of range\n");
  718. if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
  719. INTELPllInvalid ("m1 <= m2\n");
  720. if (clock->m < limit->m.min || limit->m.max < clock->m)
  721. INTELPllInvalid ("m out of range\n");
  722. if (clock->n < limit->n.min || limit->n.max < clock->n)
  723. INTELPllInvalid ("n out of range\n");
  724. if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
  725. INTELPllInvalid ("vco out of range\n");
  726. /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
  727. * connector, etc., rather than just a single range.
  728. */
  729. if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
  730. INTELPllInvalid ("dot out of range\n");
  731. return true;
  732. }
  733. static bool
  734. intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  735. int target, int refclk, intel_clock_t *best_clock)
  736. {
  737. struct drm_device *dev = crtc->dev;
  738. struct drm_i915_private *dev_priv = dev->dev_private;
  739. intel_clock_t clock;
  740. int err = target;
  741. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
  742. (I915_READ(LVDS)) != 0) {
  743. /*
  744. * For LVDS, if the panel is on, just rely on its current
  745. * settings for dual-channel. We haven't figured out how to
  746. * reliably set up different single/dual channel state, if we
  747. * even can.
  748. */
  749. if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
  750. LVDS_CLKB_POWER_UP)
  751. clock.p2 = limit->p2.p2_fast;
  752. else
  753. clock.p2 = limit->p2.p2_slow;
  754. } else {
  755. if (target < limit->p2.dot_limit)
  756. clock.p2 = limit->p2.p2_slow;
  757. else
  758. clock.p2 = limit->p2.p2_fast;
  759. }
  760. memset (best_clock, 0, sizeof (*best_clock));
  761. for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
  762. clock.m1++) {
  763. for (clock.m2 = limit->m2.min;
  764. clock.m2 <= limit->m2.max; clock.m2++) {
  765. /* m1 is always 0 in Pineview */
  766. if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
  767. break;
  768. for (clock.n = limit->n.min;
  769. clock.n <= limit->n.max; clock.n++) {
  770. for (clock.p1 = limit->p1.min;
  771. clock.p1 <= limit->p1.max; clock.p1++) {
  772. int this_err;
  773. intel_clock(dev, refclk, &clock);
  774. if (!intel_PLL_is_valid(crtc, &clock))
  775. continue;
  776. this_err = abs(clock.dot - target);
  777. if (this_err < err) {
  778. *best_clock = clock;
  779. err = this_err;
  780. }
  781. }
  782. }
  783. }
  784. }
  785. return (err != target);
  786. }
  787. static bool
  788. intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  789. int target, int refclk, intel_clock_t *best_clock)
  790. {
  791. struct drm_device *dev = crtc->dev;
  792. struct drm_i915_private *dev_priv = dev->dev_private;
  793. intel_clock_t clock;
  794. int max_n;
  795. bool found;
  796. /* approximately equals target * 0.00585 */
  797. int err_most = (target >> 8) + (target >> 9);
  798. found = false;
  799. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  800. int lvds_reg;
  801. if (HAS_PCH_SPLIT(dev))
  802. lvds_reg = PCH_LVDS;
  803. else
  804. lvds_reg = LVDS;
  805. if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
  806. LVDS_CLKB_POWER_UP)
  807. clock.p2 = limit->p2.p2_fast;
  808. else
  809. clock.p2 = limit->p2.p2_slow;
  810. } else {
  811. if (target < limit->p2.dot_limit)
  812. clock.p2 = limit->p2.p2_slow;
  813. else
  814. clock.p2 = limit->p2.p2_fast;
  815. }
  816. memset(best_clock, 0, sizeof(*best_clock));
  817. max_n = limit->n.max;
  818. /* based on hardware requirement, prefer smaller n to precision */
  819. for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
  820. /* based on hardware requirement, prefere larger m1,m2 */
  821. for (clock.m1 = limit->m1.max;
  822. clock.m1 >= limit->m1.min; clock.m1--) {
  823. for (clock.m2 = limit->m2.max;
  824. clock.m2 >= limit->m2.min; clock.m2--) {
  825. for (clock.p1 = limit->p1.max;
  826. clock.p1 >= limit->p1.min; clock.p1--) {
  827. int this_err;
  828. intel_clock(dev, refclk, &clock);
  829. if (!intel_PLL_is_valid(crtc, &clock))
  830. continue;
  831. this_err = abs(clock.dot - target) ;
  832. if (this_err < err_most) {
  833. *best_clock = clock;
  834. err_most = this_err;
  835. max_n = clock.n;
  836. found = true;
  837. }
  838. }
  839. }
  840. }
  841. }
  842. return found;
  843. }
  844. static bool
  845. intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
  846. int target, int refclk, intel_clock_t *best_clock)
  847. {
  848. struct drm_device *dev = crtc->dev;
  849. intel_clock_t clock;
  850. /* return directly when it is eDP */
  851. if (HAS_eDP)
  852. return true;
  853. if (target < 200000) {
  854. clock.n = 1;
  855. clock.p1 = 2;
  856. clock.p2 = 10;
  857. clock.m1 = 12;
  858. clock.m2 = 9;
  859. } else {
  860. clock.n = 2;
  861. clock.p1 = 1;
  862. clock.p2 = 10;
  863. clock.m1 = 14;
  864. clock.m2 = 8;
  865. }
  866. intel_clock(dev, refclk, &clock);
  867. memcpy(best_clock, &clock, sizeof(intel_clock_t));
  868. return true;
  869. }
  870. /* DisplayPort has only two frequencies, 162MHz and 270MHz */
  871. static bool
  872. intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
  873. int target, int refclk, intel_clock_t *best_clock)
  874. {
  875. intel_clock_t clock;
  876. if (target < 200000) {
  877. clock.p1 = 2;
  878. clock.p2 = 10;
  879. clock.n = 2;
  880. clock.m1 = 23;
  881. clock.m2 = 8;
  882. } else {
  883. clock.p1 = 1;
  884. clock.p2 = 10;
  885. clock.n = 1;
  886. clock.m1 = 14;
  887. clock.m2 = 2;
  888. }
  889. clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
  890. clock.p = (clock.p1 * clock.p2);
  891. clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
  892. clock.vco = 0;
  893. memcpy(best_clock, &clock, sizeof(intel_clock_t));
  894. return true;
  895. }
  896. void
  897. intel_wait_for_vblank(struct drm_device *dev)
  898. {
  899. /* Wait for 20ms, i.e. one cycle at 50hz. */
  900. msleep(20);
  901. }
  902. /* Parameters have changed, update FBC info */
  903. static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
  904. {
  905. struct drm_device *dev = crtc->dev;
  906. struct drm_i915_private *dev_priv = dev->dev_private;
  907. struct drm_framebuffer *fb = crtc->fb;
  908. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  909. struct drm_i915_gem_object *obj_priv = to_intel_bo(intel_fb->obj);
  910. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  911. int plane, i;
  912. u32 fbc_ctl, fbc_ctl2;
  913. dev_priv->cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE;
  914. if (fb->pitch < dev_priv->cfb_pitch)
  915. dev_priv->cfb_pitch = fb->pitch;
  916. /* FBC_CTL wants 64B units */
  917. dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
  918. dev_priv->cfb_fence = obj_priv->fence_reg;
  919. dev_priv->cfb_plane = intel_crtc->plane;
  920. plane = dev_priv->cfb_plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
  921. /* Clear old tags */
  922. for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
  923. I915_WRITE(FBC_TAG + (i * 4), 0);
  924. /* Set it up... */
  925. fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | plane;
  926. if (obj_priv->tiling_mode != I915_TILING_NONE)
  927. fbc_ctl2 |= FBC_CTL_CPU_FENCE;
  928. I915_WRITE(FBC_CONTROL2, fbc_ctl2);
  929. I915_WRITE(FBC_FENCE_OFF, crtc->y);
  930. /* enable it... */
  931. fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
  932. if (IS_I945GM(dev))
  933. fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
  934. fbc_ctl |= (dev_priv->cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
  935. fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
  936. if (obj_priv->tiling_mode != I915_TILING_NONE)
  937. fbc_ctl |= dev_priv->cfb_fence;
  938. I915_WRITE(FBC_CONTROL, fbc_ctl);
  939. DRM_DEBUG_KMS("enabled FBC, pitch %ld, yoff %d, plane %d, ",
  940. dev_priv->cfb_pitch, crtc->y, dev_priv->cfb_plane);
  941. }
  942. void i8xx_disable_fbc(struct drm_device *dev)
  943. {
  944. struct drm_i915_private *dev_priv = dev->dev_private;
  945. unsigned long timeout = jiffies + msecs_to_jiffies(1);
  946. u32 fbc_ctl;
  947. if (!I915_HAS_FBC(dev))
  948. return;
  949. if (!(I915_READ(FBC_CONTROL) & FBC_CTL_EN))
  950. return; /* Already off, just return */
  951. /* Disable compression */
  952. fbc_ctl = I915_READ(FBC_CONTROL);
  953. fbc_ctl &= ~FBC_CTL_EN;
  954. I915_WRITE(FBC_CONTROL, fbc_ctl);
  955. /* Wait for compressing bit to clear */
  956. while (I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) {
  957. if (time_after(jiffies, timeout)) {
  958. DRM_DEBUG_DRIVER("FBC idle timed out\n");
  959. break;
  960. }
  961. ; /* do nothing */
  962. }
  963. intel_wait_for_vblank(dev);
  964. DRM_DEBUG_KMS("disabled FBC\n");
  965. }
  966. static bool i8xx_fbc_enabled(struct drm_device *dev)
  967. {
  968. struct drm_i915_private *dev_priv = dev->dev_private;
  969. return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
  970. }
  971. static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
  972. {
  973. struct drm_device *dev = crtc->dev;
  974. struct drm_i915_private *dev_priv = dev->dev_private;
  975. struct drm_framebuffer *fb = crtc->fb;
  976. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  977. struct drm_i915_gem_object *obj_priv = to_intel_bo(intel_fb->obj);
  978. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  979. int plane = (intel_crtc->plane == 0 ? DPFC_CTL_PLANEA :
  980. DPFC_CTL_PLANEB);
  981. unsigned long stall_watermark = 200;
  982. u32 dpfc_ctl;
  983. dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
  984. dev_priv->cfb_fence = obj_priv->fence_reg;
  985. dev_priv->cfb_plane = intel_crtc->plane;
  986. dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
  987. if (obj_priv->tiling_mode != I915_TILING_NONE) {
  988. dpfc_ctl |= DPFC_CTL_FENCE_EN | dev_priv->cfb_fence;
  989. I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
  990. } else {
  991. I915_WRITE(DPFC_CHICKEN, ~DPFC_HT_MODIFY);
  992. }
  993. I915_WRITE(DPFC_CONTROL, dpfc_ctl);
  994. I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
  995. (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
  996. (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
  997. I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
  998. /* enable it... */
  999. I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
  1000. DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
  1001. }
  1002. void g4x_disable_fbc(struct drm_device *dev)
  1003. {
  1004. struct drm_i915_private *dev_priv = dev->dev_private;
  1005. u32 dpfc_ctl;
  1006. /* Disable compression */
  1007. dpfc_ctl = I915_READ(DPFC_CONTROL);
  1008. dpfc_ctl &= ~DPFC_CTL_EN;
  1009. I915_WRITE(DPFC_CONTROL, dpfc_ctl);
  1010. intel_wait_for_vblank(dev);
  1011. DRM_DEBUG_KMS("disabled FBC\n");
  1012. }
  1013. static bool g4x_fbc_enabled(struct drm_device *dev)
  1014. {
  1015. struct drm_i915_private *dev_priv = dev->dev_private;
  1016. return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
  1017. }
  1018. bool intel_fbc_enabled(struct drm_device *dev)
  1019. {
  1020. struct drm_i915_private *dev_priv = dev->dev_private;
  1021. if (!dev_priv->display.fbc_enabled)
  1022. return false;
  1023. return dev_priv->display.fbc_enabled(dev);
  1024. }
  1025. void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
  1026. {
  1027. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  1028. if (!dev_priv->display.enable_fbc)
  1029. return;
  1030. dev_priv->display.enable_fbc(crtc, interval);
  1031. }
  1032. void intel_disable_fbc(struct drm_device *dev)
  1033. {
  1034. struct drm_i915_private *dev_priv = dev->dev_private;
  1035. if (!dev_priv->display.disable_fbc)
  1036. return;
  1037. dev_priv->display.disable_fbc(dev);
  1038. }
  1039. /**
  1040. * intel_update_fbc - enable/disable FBC as needed
  1041. * @crtc: CRTC to point the compressor at
  1042. * @mode: mode in use
  1043. *
  1044. * Set up the framebuffer compression hardware at mode set time. We
  1045. * enable it if possible:
  1046. * - plane A only (on pre-965)
  1047. * - no pixel mulitply/line duplication
  1048. * - no alpha buffer discard
  1049. * - no dual wide
  1050. * - framebuffer <= 2048 in width, 1536 in height
  1051. *
  1052. * We can't assume that any compression will take place (worst case),
  1053. * so the compressed buffer has to be the same size as the uncompressed
  1054. * one. It also must reside (along with the line length buffer) in
  1055. * stolen memory.
  1056. *
  1057. * We need to enable/disable FBC on a global basis.
  1058. */
  1059. static void intel_update_fbc(struct drm_crtc *crtc,
  1060. struct drm_display_mode *mode)
  1061. {
  1062. struct drm_device *dev = crtc->dev;
  1063. struct drm_i915_private *dev_priv = dev->dev_private;
  1064. struct drm_framebuffer *fb = crtc->fb;
  1065. struct intel_framebuffer *intel_fb;
  1066. struct drm_i915_gem_object *obj_priv;
  1067. struct drm_crtc *tmp_crtc;
  1068. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1069. int plane = intel_crtc->plane;
  1070. int crtcs_enabled = 0;
  1071. DRM_DEBUG_KMS("\n");
  1072. if (!i915_powersave)
  1073. return;
  1074. if (!I915_HAS_FBC(dev))
  1075. return;
  1076. if (!crtc->fb)
  1077. return;
  1078. intel_fb = to_intel_framebuffer(fb);
  1079. obj_priv = to_intel_bo(intel_fb->obj);
  1080. /*
  1081. * If FBC is already on, we just have to verify that we can
  1082. * keep it that way...
  1083. * Need to disable if:
  1084. * - more than one pipe is active
  1085. * - changing FBC params (stride, fence, mode)
  1086. * - new fb is too large to fit in compressed buffer
  1087. * - going to an unsupported config (interlace, pixel multiply, etc.)
  1088. */
  1089. list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
  1090. if (tmp_crtc->enabled)
  1091. crtcs_enabled++;
  1092. }
  1093. DRM_DEBUG_KMS("%d pipes active\n", crtcs_enabled);
  1094. if (crtcs_enabled > 1) {
  1095. DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
  1096. dev_priv->no_fbc_reason = FBC_MULTIPLE_PIPES;
  1097. goto out_disable;
  1098. }
  1099. if (intel_fb->obj->size > dev_priv->cfb_size) {
  1100. DRM_DEBUG_KMS("framebuffer too large, disabling "
  1101. "compression\n");
  1102. dev_priv->no_fbc_reason = FBC_STOLEN_TOO_SMALL;
  1103. goto out_disable;
  1104. }
  1105. if ((mode->flags & DRM_MODE_FLAG_INTERLACE) ||
  1106. (mode->flags & DRM_MODE_FLAG_DBLSCAN)) {
  1107. DRM_DEBUG_KMS("mode incompatible with compression, "
  1108. "disabling\n");
  1109. dev_priv->no_fbc_reason = FBC_UNSUPPORTED_MODE;
  1110. goto out_disable;
  1111. }
  1112. if ((mode->hdisplay > 2048) ||
  1113. (mode->vdisplay > 1536)) {
  1114. DRM_DEBUG_KMS("mode too large for compression, disabling\n");
  1115. dev_priv->no_fbc_reason = FBC_MODE_TOO_LARGE;
  1116. goto out_disable;
  1117. }
  1118. if ((IS_I915GM(dev) || IS_I945GM(dev)) && plane != 0) {
  1119. DRM_DEBUG_KMS("plane not 0, disabling compression\n");
  1120. dev_priv->no_fbc_reason = FBC_BAD_PLANE;
  1121. goto out_disable;
  1122. }
  1123. if (obj_priv->tiling_mode != I915_TILING_X) {
  1124. DRM_DEBUG_KMS("framebuffer not tiled, disabling compression\n");
  1125. dev_priv->no_fbc_reason = FBC_NOT_TILED;
  1126. goto out_disable;
  1127. }
  1128. if (intel_fbc_enabled(dev)) {
  1129. /* We can re-enable it in this case, but need to update pitch */
  1130. if ((fb->pitch > dev_priv->cfb_pitch) ||
  1131. (obj_priv->fence_reg != dev_priv->cfb_fence) ||
  1132. (plane != dev_priv->cfb_plane))
  1133. intel_disable_fbc(dev);
  1134. }
  1135. /* Now try to turn it back on if possible */
  1136. if (!intel_fbc_enabled(dev))
  1137. intel_enable_fbc(crtc, 500);
  1138. return;
  1139. out_disable:
  1140. /* Multiple disables should be harmless */
  1141. if (intel_fbc_enabled(dev)) {
  1142. DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
  1143. intel_disable_fbc(dev);
  1144. }
  1145. }
  1146. int
  1147. intel_pin_and_fence_fb_obj(struct drm_device *dev, struct drm_gem_object *obj)
  1148. {
  1149. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1150. u32 alignment;
  1151. int ret;
  1152. switch (obj_priv->tiling_mode) {
  1153. case I915_TILING_NONE:
  1154. alignment = 64 * 1024;
  1155. break;
  1156. case I915_TILING_X:
  1157. /* pin() will align the object as required by fence */
  1158. alignment = 0;
  1159. break;
  1160. case I915_TILING_Y:
  1161. /* FIXME: Is this true? */
  1162. DRM_ERROR("Y tiled not allowed for scan out buffers\n");
  1163. return -EINVAL;
  1164. default:
  1165. BUG();
  1166. }
  1167. ret = i915_gem_object_pin(obj, alignment);
  1168. if (ret != 0)
  1169. return ret;
  1170. /* Install a fence for tiled scan-out. Pre-i965 always needs a
  1171. * fence, whereas 965+ only requires a fence if using
  1172. * framebuffer compression. For simplicity, we always install
  1173. * a fence as the cost is not that onerous.
  1174. */
  1175. if (obj_priv->fence_reg == I915_FENCE_REG_NONE &&
  1176. obj_priv->tiling_mode != I915_TILING_NONE) {
  1177. ret = i915_gem_object_get_fence_reg(obj);
  1178. if (ret != 0) {
  1179. i915_gem_object_unpin(obj);
  1180. return ret;
  1181. }
  1182. }
  1183. return 0;
  1184. }
  1185. static int
  1186. intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
  1187. struct drm_framebuffer *old_fb)
  1188. {
  1189. struct drm_device *dev = crtc->dev;
  1190. struct drm_i915_private *dev_priv = dev->dev_private;
  1191. struct drm_i915_master_private *master_priv;
  1192. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1193. struct intel_framebuffer *intel_fb;
  1194. struct drm_i915_gem_object *obj_priv;
  1195. struct drm_gem_object *obj;
  1196. int pipe = intel_crtc->pipe;
  1197. int plane = intel_crtc->plane;
  1198. unsigned long Start, Offset;
  1199. int dspbase = (plane == 0 ? DSPAADDR : DSPBADDR);
  1200. int dspsurf = (plane == 0 ? DSPASURF : DSPBSURF);
  1201. int dspstride = (plane == 0) ? DSPASTRIDE : DSPBSTRIDE;
  1202. int dsptileoff = (plane == 0 ? DSPATILEOFF : DSPBTILEOFF);
  1203. int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
  1204. u32 dspcntr;
  1205. int ret;
  1206. /* no fb bound */
  1207. if (!crtc->fb) {
  1208. DRM_DEBUG_KMS("No FB bound\n");
  1209. return 0;
  1210. }
  1211. switch (plane) {
  1212. case 0:
  1213. case 1:
  1214. break;
  1215. default:
  1216. DRM_ERROR("Can't update plane %d in SAREA\n", plane);
  1217. return -EINVAL;
  1218. }
  1219. intel_fb = to_intel_framebuffer(crtc->fb);
  1220. obj = intel_fb->obj;
  1221. obj_priv = to_intel_bo(obj);
  1222. mutex_lock(&dev->struct_mutex);
  1223. ret = intel_pin_and_fence_fb_obj(dev, obj);
  1224. if (ret != 0) {
  1225. mutex_unlock(&dev->struct_mutex);
  1226. return ret;
  1227. }
  1228. ret = i915_gem_object_set_to_display_plane(obj);
  1229. if (ret != 0) {
  1230. i915_gem_object_unpin(obj);
  1231. mutex_unlock(&dev->struct_mutex);
  1232. return ret;
  1233. }
  1234. dspcntr = I915_READ(dspcntr_reg);
  1235. /* Mask out pixel format bits in case we change it */
  1236. dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
  1237. switch (crtc->fb->bits_per_pixel) {
  1238. case 8:
  1239. dspcntr |= DISPPLANE_8BPP;
  1240. break;
  1241. case 16:
  1242. if (crtc->fb->depth == 15)
  1243. dspcntr |= DISPPLANE_15_16BPP;
  1244. else
  1245. dspcntr |= DISPPLANE_16BPP;
  1246. break;
  1247. case 24:
  1248. case 32:
  1249. if (crtc->fb->depth == 30)
  1250. dspcntr |= DISPPLANE_32BPP_30BIT_NO_ALPHA;
  1251. else
  1252. dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
  1253. break;
  1254. default:
  1255. DRM_ERROR("Unknown color depth\n");
  1256. i915_gem_object_unpin(obj);
  1257. mutex_unlock(&dev->struct_mutex);
  1258. return -EINVAL;
  1259. }
  1260. if (IS_I965G(dev)) {
  1261. if (obj_priv->tiling_mode != I915_TILING_NONE)
  1262. dspcntr |= DISPPLANE_TILED;
  1263. else
  1264. dspcntr &= ~DISPPLANE_TILED;
  1265. }
  1266. if (HAS_PCH_SPLIT(dev))
  1267. /* must disable */
  1268. dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
  1269. I915_WRITE(dspcntr_reg, dspcntr);
  1270. Start = obj_priv->gtt_offset;
  1271. Offset = y * crtc->fb->pitch + x * (crtc->fb->bits_per_pixel / 8);
  1272. DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
  1273. Start, Offset, x, y, crtc->fb->pitch);
  1274. I915_WRITE(dspstride, crtc->fb->pitch);
  1275. if (IS_I965G(dev)) {
  1276. I915_WRITE(dspbase, Offset);
  1277. I915_READ(dspbase);
  1278. I915_WRITE(dspsurf, Start);
  1279. I915_READ(dspsurf);
  1280. I915_WRITE(dsptileoff, (y << 16) | x);
  1281. } else {
  1282. I915_WRITE(dspbase, Start + Offset);
  1283. I915_READ(dspbase);
  1284. }
  1285. if ((IS_I965G(dev) || plane == 0))
  1286. intel_update_fbc(crtc, &crtc->mode);
  1287. intel_wait_for_vblank(dev);
  1288. if (old_fb) {
  1289. intel_fb = to_intel_framebuffer(old_fb);
  1290. obj_priv = to_intel_bo(intel_fb->obj);
  1291. i915_gem_object_unpin(intel_fb->obj);
  1292. }
  1293. intel_increase_pllclock(crtc, true);
  1294. mutex_unlock(&dev->struct_mutex);
  1295. if (!dev->primary->master)
  1296. return 0;
  1297. master_priv = dev->primary->master->driver_priv;
  1298. if (!master_priv->sarea_priv)
  1299. return 0;
  1300. if (pipe) {
  1301. master_priv->sarea_priv->pipeB_x = x;
  1302. master_priv->sarea_priv->pipeB_y = y;
  1303. } else {
  1304. master_priv->sarea_priv->pipeA_x = x;
  1305. master_priv->sarea_priv->pipeA_y = y;
  1306. }
  1307. return 0;
  1308. }
  1309. /* Disable the VGA plane that we never use */
  1310. static void i915_disable_vga (struct drm_device *dev)
  1311. {
  1312. struct drm_i915_private *dev_priv = dev->dev_private;
  1313. u8 sr1;
  1314. u32 vga_reg;
  1315. if (HAS_PCH_SPLIT(dev))
  1316. vga_reg = CPU_VGACNTRL;
  1317. else
  1318. vga_reg = VGACNTRL;
  1319. if (I915_READ(vga_reg) & VGA_DISP_DISABLE)
  1320. return;
  1321. I915_WRITE8(VGA_SR_INDEX, 1);
  1322. sr1 = I915_READ8(VGA_SR_DATA);
  1323. I915_WRITE8(VGA_SR_DATA, sr1 | (1 << 5));
  1324. udelay(100);
  1325. I915_WRITE(vga_reg, VGA_DISP_DISABLE);
  1326. }
  1327. static void ironlake_disable_pll_edp (struct drm_crtc *crtc)
  1328. {
  1329. struct drm_device *dev = crtc->dev;
  1330. struct drm_i915_private *dev_priv = dev->dev_private;
  1331. u32 dpa_ctl;
  1332. DRM_DEBUG_KMS("\n");
  1333. dpa_ctl = I915_READ(DP_A);
  1334. dpa_ctl &= ~DP_PLL_ENABLE;
  1335. I915_WRITE(DP_A, dpa_ctl);
  1336. }
  1337. static void ironlake_enable_pll_edp (struct drm_crtc *crtc)
  1338. {
  1339. struct drm_device *dev = crtc->dev;
  1340. struct drm_i915_private *dev_priv = dev->dev_private;
  1341. u32 dpa_ctl;
  1342. dpa_ctl = I915_READ(DP_A);
  1343. dpa_ctl |= DP_PLL_ENABLE;
  1344. I915_WRITE(DP_A, dpa_ctl);
  1345. udelay(200);
  1346. }
  1347. static void ironlake_set_pll_edp (struct drm_crtc *crtc, int clock)
  1348. {
  1349. struct drm_device *dev = crtc->dev;
  1350. struct drm_i915_private *dev_priv = dev->dev_private;
  1351. u32 dpa_ctl;
  1352. DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
  1353. dpa_ctl = I915_READ(DP_A);
  1354. dpa_ctl &= ~DP_PLL_FREQ_MASK;
  1355. if (clock < 200000) {
  1356. u32 temp;
  1357. dpa_ctl |= DP_PLL_FREQ_160MHZ;
  1358. /* workaround for 160Mhz:
  1359. 1) program 0x4600c bits 15:0 = 0x8124
  1360. 2) program 0x46010 bit 0 = 1
  1361. 3) program 0x46034 bit 24 = 1
  1362. 4) program 0x64000 bit 14 = 1
  1363. */
  1364. temp = I915_READ(0x4600c);
  1365. temp &= 0xffff0000;
  1366. I915_WRITE(0x4600c, temp | 0x8124);
  1367. temp = I915_READ(0x46010);
  1368. I915_WRITE(0x46010, temp | 1);
  1369. temp = I915_READ(0x46034);
  1370. I915_WRITE(0x46034, temp | (1 << 24));
  1371. } else {
  1372. dpa_ctl |= DP_PLL_FREQ_270MHZ;
  1373. }
  1374. I915_WRITE(DP_A, dpa_ctl);
  1375. udelay(500);
  1376. }
  1377. /* The FDI link training functions for ILK/Ibexpeak. */
  1378. static void ironlake_fdi_link_train(struct drm_crtc *crtc)
  1379. {
  1380. struct drm_device *dev = crtc->dev;
  1381. struct drm_i915_private *dev_priv = dev->dev_private;
  1382. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1383. int pipe = intel_crtc->pipe;
  1384. int fdi_tx_reg = (pipe == 0) ? FDI_TXA_CTL : FDI_TXB_CTL;
  1385. int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL;
  1386. int fdi_rx_iir_reg = (pipe == 0) ? FDI_RXA_IIR : FDI_RXB_IIR;
  1387. int fdi_rx_imr_reg = (pipe == 0) ? FDI_RXA_IMR : FDI_RXB_IMR;
  1388. u32 temp, tries = 0;
  1389. /* enable CPU FDI TX and PCH FDI RX */
  1390. temp = I915_READ(fdi_tx_reg);
  1391. temp |= FDI_TX_ENABLE;
  1392. temp &= ~(7 << 19);
  1393. temp |= (intel_crtc->fdi_lanes - 1) << 19;
  1394. temp &= ~FDI_LINK_TRAIN_NONE;
  1395. temp |= FDI_LINK_TRAIN_PATTERN_1;
  1396. I915_WRITE(fdi_tx_reg, temp);
  1397. I915_READ(fdi_tx_reg);
  1398. temp = I915_READ(fdi_rx_reg);
  1399. temp &= ~FDI_LINK_TRAIN_NONE;
  1400. temp |= FDI_LINK_TRAIN_PATTERN_1;
  1401. I915_WRITE(fdi_rx_reg, temp | FDI_RX_ENABLE);
  1402. I915_READ(fdi_rx_reg);
  1403. udelay(150);
  1404. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  1405. for train result */
  1406. temp = I915_READ(fdi_rx_imr_reg);
  1407. temp &= ~FDI_RX_SYMBOL_LOCK;
  1408. temp &= ~FDI_RX_BIT_LOCK;
  1409. I915_WRITE(fdi_rx_imr_reg, temp);
  1410. I915_READ(fdi_rx_imr_reg);
  1411. udelay(150);
  1412. for (;;) {
  1413. temp = I915_READ(fdi_rx_iir_reg);
  1414. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  1415. if ((temp & FDI_RX_BIT_LOCK)) {
  1416. DRM_DEBUG_KMS("FDI train 1 done.\n");
  1417. I915_WRITE(fdi_rx_iir_reg,
  1418. temp | FDI_RX_BIT_LOCK);
  1419. break;
  1420. }
  1421. tries++;
  1422. if (tries > 5) {
  1423. DRM_DEBUG_KMS("FDI train 1 fail!\n");
  1424. break;
  1425. }
  1426. }
  1427. /* Train 2 */
  1428. temp = I915_READ(fdi_tx_reg);
  1429. temp &= ~FDI_LINK_TRAIN_NONE;
  1430. temp |= FDI_LINK_TRAIN_PATTERN_2;
  1431. I915_WRITE(fdi_tx_reg, temp);
  1432. temp = I915_READ(fdi_rx_reg);
  1433. temp &= ~FDI_LINK_TRAIN_NONE;
  1434. temp |= FDI_LINK_TRAIN_PATTERN_2;
  1435. I915_WRITE(fdi_rx_reg, temp);
  1436. udelay(150);
  1437. tries = 0;
  1438. for (;;) {
  1439. temp = I915_READ(fdi_rx_iir_reg);
  1440. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  1441. if (temp & FDI_RX_SYMBOL_LOCK) {
  1442. I915_WRITE(fdi_rx_iir_reg,
  1443. temp | FDI_RX_SYMBOL_LOCK);
  1444. DRM_DEBUG_KMS("FDI train 2 done.\n");
  1445. break;
  1446. }
  1447. tries++;
  1448. if (tries > 5) {
  1449. DRM_DEBUG_KMS("FDI train 2 fail!\n");
  1450. break;
  1451. }
  1452. }
  1453. DRM_DEBUG_KMS("FDI train done\n");
  1454. }
  1455. static int snb_b_fdi_train_param [] = {
  1456. FDI_LINK_TRAIN_400MV_0DB_SNB_B,
  1457. FDI_LINK_TRAIN_400MV_6DB_SNB_B,
  1458. FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
  1459. FDI_LINK_TRAIN_800MV_0DB_SNB_B,
  1460. };
  1461. /* The FDI link training functions for SNB/Cougarpoint. */
  1462. static void gen6_fdi_link_train(struct drm_crtc *crtc)
  1463. {
  1464. struct drm_device *dev = crtc->dev;
  1465. struct drm_i915_private *dev_priv = dev->dev_private;
  1466. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1467. int pipe = intel_crtc->pipe;
  1468. int fdi_tx_reg = (pipe == 0) ? FDI_TXA_CTL : FDI_TXB_CTL;
  1469. int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL;
  1470. int fdi_rx_iir_reg = (pipe == 0) ? FDI_RXA_IIR : FDI_RXB_IIR;
  1471. int fdi_rx_imr_reg = (pipe == 0) ? FDI_RXA_IMR : FDI_RXB_IMR;
  1472. u32 temp, i;
  1473. /* enable CPU FDI TX and PCH FDI RX */
  1474. temp = I915_READ(fdi_tx_reg);
  1475. temp |= FDI_TX_ENABLE;
  1476. temp &= ~(7 << 19);
  1477. temp |= (intel_crtc->fdi_lanes - 1) << 19;
  1478. temp &= ~FDI_LINK_TRAIN_NONE;
  1479. temp |= FDI_LINK_TRAIN_PATTERN_1;
  1480. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  1481. /* SNB-B */
  1482. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  1483. I915_WRITE(fdi_tx_reg, temp);
  1484. I915_READ(fdi_tx_reg);
  1485. temp = I915_READ(fdi_rx_reg);
  1486. if (HAS_PCH_CPT(dev)) {
  1487. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  1488. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  1489. } else {
  1490. temp &= ~FDI_LINK_TRAIN_NONE;
  1491. temp |= FDI_LINK_TRAIN_PATTERN_1;
  1492. }
  1493. I915_WRITE(fdi_rx_reg, temp | FDI_RX_ENABLE);
  1494. I915_READ(fdi_rx_reg);
  1495. udelay(150);
  1496. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  1497. for train result */
  1498. temp = I915_READ(fdi_rx_imr_reg);
  1499. temp &= ~FDI_RX_SYMBOL_LOCK;
  1500. temp &= ~FDI_RX_BIT_LOCK;
  1501. I915_WRITE(fdi_rx_imr_reg, temp);
  1502. I915_READ(fdi_rx_imr_reg);
  1503. udelay(150);
  1504. for (i = 0; i < 4; i++ ) {
  1505. temp = I915_READ(fdi_tx_reg);
  1506. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  1507. temp |= snb_b_fdi_train_param[i];
  1508. I915_WRITE(fdi_tx_reg, temp);
  1509. udelay(500);
  1510. temp = I915_READ(fdi_rx_iir_reg);
  1511. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  1512. if (temp & FDI_RX_BIT_LOCK) {
  1513. I915_WRITE(fdi_rx_iir_reg,
  1514. temp | FDI_RX_BIT_LOCK);
  1515. DRM_DEBUG_KMS("FDI train 1 done.\n");
  1516. break;
  1517. }
  1518. }
  1519. if (i == 4)
  1520. DRM_DEBUG_KMS("FDI train 1 fail!\n");
  1521. /* Train 2 */
  1522. temp = I915_READ(fdi_tx_reg);
  1523. temp &= ~FDI_LINK_TRAIN_NONE;
  1524. temp |= FDI_LINK_TRAIN_PATTERN_2;
  1525. if (IS_GEN6(dev)) {
  1526. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  1527. /* SNB-B */
  1528. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  1529. }
  1530. I915_WRITE(fdi_tx_reg, temp);
  1531. temp = I915_READ(fdi_rx_reg);
  1532. if (HAS_PCH_CPT(dev)) {
  1533. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  1534. temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
  1535. } else {
  1536. temp &= ~FDI_LINK_TRAIN_NONE;
  1537. temp |= FDI_LINK_TRAIN_PATTERN_2;
  1538. }
  1539. I915_WRITE(fdi_rx_reg, temp);
  1540. udelay(150);
  1541. for (i = 0; i < 4; i++ ) {
  1542. temp = I915_READ(fdi_tx_reg);
  1543. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  1544. temp |= snb_b_fdi_train_param[i];
  1545. I915_WRITE(fdi_tx_reg, temp);
  1546. udelay(500);
  1547. temp = I915_READ(fdi_rx_iir_reg);
  1548. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  1549. if (temp & FDI_RX_SYMBOL_LOCK) {
  1550. I915_WRITE(fdi_rx_iir_reg,
  1551. temp | FDI_RX_SYMBOL_LOCK);
  1552. DRM_DEBUG_KMS("FDI train 2 done.\n");
  1553. break;
  1554. }
  1555. }
  1556. if (i == 4)
  1557. DRM_DEBUG_KMS("FDI train 2 fail!\n");
  1558. DRM_DEBUG_KMS("FDI train done.\n");
  1559. }
  1560. static void ironlake_crtc_dpms(struct drm_crtc *crtc, int mode)
  1561. {
  1562. struct drm_device *dev = crtc->dev;
  1563. struct drm_i915_private *dev_priv = dev->dev_private;
  1564. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1565. int pipe = intel_crtc->pipe;
  1566. int plane = intel_crtc->plane;
  1567. int pch_dpll_reg = (pipe == 0) ? PCH_DPLL_A : PCH_DPLL_B;
  1568. int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
  1569. int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
  1570. int dspbase_reg = (plane == 0) ? DSPAADDR : DSPBADDR;
  1571. int fdi_tx_reg = (pipe == 0) ? FDI_TXA_CTL : FDI_TXB_CTL;
  1572. int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL;
  1573. int transconf_reg = (pipe == 0) ? TRANSACONF : TRANSBCONF;
  1574. int pf_ctl_reg = (pipe == 0) ? PFA_CTL_1 : PFB_CTL_1;
  1575. int pf_win_size = (pipe == 0) ? PFA_WIN_SZ : PFB_WIN_SZ;
  1576. int pf_win_pos = (pipe == 0) ? PFA_WIN_POS : PFB_WIN_POS;
  1577. int cpu_htot_reg = (pipe == 0) ? HTOTAL_A : HTOTAL_B;
  1578. int cpu_hblank_reg = (pipe == 0) ? HBLANK_A : HBLANK_B;
  1579. int cpu_hsync_reg = (pipe == 0) ? HSYNC_A : HSYNC_B;
  1580. int cpu_vtot_reg = (pipe == 0) ? VTOTAL_A : VTOTAL_B;
  1581. int cpu_vblank_reg = (pipe == 0) ? VBLANK_A : VBLANK_B;
  1582. int cpu_vsync_reg = (pipe == 0) ? VSYNC_A : VSYNC_B;
  1583. int trans_htot_reg = (pipe == 0) ? TRANS_HTOTAL_A : TRANS_HTOTAL_B;
  1584. int trans_hblank_reg = (pipe == 0) ? TRANS_HBLANK_A : TRANS_HBLANK_B;
  1585. int trans_hsync_reg = (pipe == 0) ? TRANS_HSYNC_A : TRANS_HSYNC_B;
  1586. int trans_vtot_reg = (pipe == 0) ? TRANS_VTOTAL_A : TRANS_VTOTAL_B;
  1587. int trans_vblank_reg = (pipe == 0) ? TRANS_VBLANK_A : TRANS_VBLANK_B;
  1588. int trans_vsync_reg = (pipe == 0) ? TRANS_VSYNC_A : TRANS_VSYNC_B;
  1589. int trans_dpll_sel = (pipe == 0) ? 0 : 1;
  1590. u32 temp;
  1591. int n;
  1592. u32 pipe_bpc;
  1593. temp = I915_READ(pipeconf_reg);
  1594. pipe_bpc = temp & PIPE_BPC_MASK;
  1595. /* XXX: When our outputs are all unaware of DPMS modes other than off
  1596. * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
  1597. */
  1598. switch (mode) {
  1599. case DRM_MODE_DPMS_ON:
  1600. case DRM_MODE_DPMS_STANDBY:
  1601. case DRM_MODE_DPMS_SUSPEND:
  1602. DRM_DEBUG_KMS("crtc %d dpms on\n", pipe);
  1603. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  1604. temp = I915_READ(PCH_LVDS);
  1605. if ((temp & LVDS_PORT_EN) == 0) {
  1606. I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
  1607. POSTING_READ(PCH_LVDS);
  1608. }
  1609. }
  1610. if (HAS_eDP) {
  1611. /* enable eDP PLL */
  1612. ironlake_enable_pll_edp(crtc);
  1613. } else {
  1614. /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
  1615. temp = I915_READ(fdi_rx_reg);
  1616. /*
  1617. * make the BPC in FDI Rx be consistent with that in
  1618. * pipeconf reg.
  1619. */
  1620. temp &= ~(0x7 << 16);
  1621. temp |= (pipe_bpc << 11);
  1622. temp &= ~(7 << 19);
  1623. temp |= (intel_crtc->fdi_lanes - 1) << 19;
  1624. I915_WRITE(fdi_rx_reg, temp | FDI_RX_PLL_ENABLE);
  1625. I915_READ(fdi_rx_reg);
  1626. udelay(200);
  1627. /* Switch from Rawclk to PCDclk */
  1628. temp = I915_READ(fdi_rx_reg);
  1629. I915_WRITE(fdi_rx_reg, temp | FDI_SEL_PCDCLK);
  1630. I915_READ(fdi_rx_reg);
  1631. udelay(200);
  1632. /* Enable CPU FDI TX PLL, always on for Ironlake */
  1633. temp = I915_READ(fdi_tx_reg);
  1634. if ((temp & FDI_TX_PLL_ENABLE) == 0) {
  1635. I915_WRITE(fdi_tx_reg, temp | FDI_TX_PLL_ENABLE);
  1636. I915_READ(fdi_tx_reg);
  1637. udelay(100);
  1638. }
  1639. }
  1640. /* Enable panel fitting for LVDS */
  1641. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  1642. temp = I915_READ(pf_ctl_reg);
  1643. I915_WRITE(pf_ctl_reg, temp | PF_ENABLE | PF_FILTER_MED_3x3);
  1644. /* currently full aspect */
  1645. I915_WRITE(pf_win_pos, 0);
  1646. I915_WRITE(pf_win_size,
  1647. (dev_priv->panel_fixed_mode->hdisplay << 16) |
  1648. (dev_priv->panel_fixed_mode->vdisplay));
  1649. }
  1650. /* Enable CPU pipe */
  1651. temp = I915_READ(pipeconf_reg);
  1652. if ((temp & PIPEACONF_ENABLE) == 0) {
  1653. I915_WRITE(pipeconf_reg, temp | PIPEACONF_ENABLE);
  1654. I915_READ(pipeconf_reg);
  1655. udelay(100);
  1656. }
  1657. /* configure and enable CPU plane */
  1658. temp = I915_READ(dspcntr_reg);
  1659. if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
  1660. I915_WRITE(dspcntr_reg, temp | DISPLAY_PLANE_ENABLE);
  1661. /* Flush the plane changes */
  1662. I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
  1663. }
  1664. if (!HAS_eDP) {
  1665. /* For PCH output, training FDI link */
  1666. if (IS_GEN6(dev))
  1667. gen6_fdi_link_train(crtc);
  1668. else
  1669. ironlake_fdi_link_train(crtc);
  1670. /* enable PCH DPLL */
  1671. temp = I915_READ(pch_dpll_reg);
  1672. if ((temp & DPLL_VCO_ENABLE) == 0) {
  1673. I915_WRITE(pch_dpll_reg, temp | DPLL_VCO_ENABLE);
  1674. I915_READ(pch_dpll_reg);
  1675. }
  1676. udelay(200);
  1677. if (HAS_PCH_CPT(dev)) {
  1678. /* Be sure PCH DPLL SEL is set */
  1679. temp = I915_READ(PCH_DPLL_SEL);
  1680. if (trans_dpll_sel == 0 &&
  1681. (temp & TRANSA_DPLL_ENABLE) == 0)
  1682. temp |= (TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL);
  1683. else if (trans_dpll_sel == 1 &&
  1684. (temp & TRANSB_DPLL_ENABLE) == 0)
  1685. temp |= (TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
  1686. I915_WRITE(PCH_DPLL_SEL, temp);
  1687. I915_READ(PCH_DPLL_SEL);
  1688. }
  1689. /* set transcoder timing */
  1690. I915_WRITE(trans_htot_reg, I915_READ(cpu_htot_reg));
  1691. I915_WRITE(trans_hblank_reg, I915_READ(cpu_hblank_reg));
  1692. I915_WRITE(trans_hsync_reg, I915_READ(cpu_hsync_reg));
  1693. I915_WRITE(trans_vtot_reg, I915_READ(cpu_vtot_reg));
  1694. I915_WRITE(trans_vblank_reg, I915_READ(cpu_vblank_reg));
  1695. I915_WRITE(trans_vsync_reg, I915_READ(cpu_vsync_reg));
  1696. /* enable normal train */
  1697. temp = I915_READ(fdi_tx_reg);
  1698. temp &= ~FDI_LINK_TRAIN_NONE;
  1699. I915_WRITE(fdi_tx_reg, temp | FDI_LINK_TRAIN_NONE |
  1700. FDI_TX_ENHANCE_FRAME_ENABLE);
  1701. I915_READ(fdi_tx_reg);
  1702. temp = I915_READ(fdi_rx_reg);
  1703. if (HAS_PCH_CPT(dev)) {
  1704. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  1705. temp |= FDI_LINK_TRAIN_NORMAL_CPT;
  1706. } else {
  1707. temp &= ~FDI_LINK_TRAIN_NONE;
  1708. temp |= FDI_LINK_TRAIN_NONE;
  1709. }
  1710. I915_WRITE(fdi_rx_reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
  1711. I915_READ(fdi_rx_reg);
  1712. /* wait one idle pattern time */
  1713. udelay(100);
  1714. /* For PCH DP, enable TRANS_DP_CTL */
  1715. if (HAS_PCH_CPT(dev) &&
  1716. intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
  1717. int trans_dp_ctl = (pipe == 0) ? TRANS_DP_CTL_A : TRANS_DP_CTL_B;
  1718. int reg;
  1719. reg = I915_READ(trans_dp_ctl);
  1720. reg &= ~TRANS_DP_PORT_SEL_MASK;
  1721. reg = TRANS_DP_OUTPUT_ENABLE |
  1722. TRANS_DP_ENH_FRAMING |
  1723. TRANS_DP_VSYNC_ACTIVE_HIGH |
  1724. TRANS_DP_HSYNC_ACTIVE_HIGH;
  1725. switch (intel_trans_dp_port_sel(crtc)) {
  1726. case PCH_DP_B:
  1727. reg |= TRANS_DP_PORT_SEL_B;
  1728. break;
  1729. case PCH_DP_C:
  1730. reg |= TRANS_DP_PORT_SEL_C;
  1731. break;
  1732. case PCH_DP_D:
  1733. reg |= TRANS_DP_PORT_SEL_D;
  1734. break;
  1735. default:
  1736. DRM_DEBUG_KMS("Wrong PCH DP port return. Guess port B\n");
  1737. reg |= TRANS_DP_PORT_SEL_B;
  1738. break;
  1739. }
  1740. I915_WRITE(trans_dp_ctl, reg);
  1741. POSTING_READ(trans_dp_ctl);
  1742. }
  1743. /* enable PCH transcoder */
  1744. temp = I915_READ(transconf_reg);
  1745. /*
  1746. * make the BPC in transcoder be consistent with
  1747. * that in pipeconf reg.
  1748. */
  1749. temp &= ~PIPE_BPC_MASK;
  1750. temp |= pipe_bpc;
  1751. I915_WRITE(transconf_reg, temp | TRANS_ENABLE);
  1752. I915_READ(transconf_reg);
  1753. while ((I915_READ(transconf_reg) & TRANS_STATE_ENABLE) == 0)
  1754. ;
  1755. }
  1756. intel_crtc_load_lut(crtc);
  1757. break;
  1758. case DRM_MODE_DPMS_OFF:
  1759. DRM_DEBUG_KMS("crtc %d dpms off\n", pipe);
  1760. drm_vblank_off(dev, pipe);
  1761. /* Disable display plane */
  1762. temp = I915_READ(dspcntr_reg);
  1763. if ((temp & DISPLAY_PLANE_ENABLE) != 0) {
  1764. I915_WRITE(dspcntr_reg, temp & ~DISPLAY_PLANE_ENABLE);
  1765. /* Flush the plane changes */
  1766. I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
  1767. I915_READ(dspbase_reg);
  1768. }
  1769. i915_disable_vga(dev);
  1770. /* disable cpu pipe, disable after all planes disabled */
  1771. temp = I915_READ(pipeconf_reg);
  1772. if ((temp & PIPEACONF_ENABLE) != 0) {
  1773. I915_WRITE(pipeconf_reg, temp & ~PIPEACONF_ENABLE);
  1774. I915_READ(pipeconf_reg);
  1775. n = 0;
  1776. /* wait for cpu pipe off, pipe state */
  1777. while ((I915_READ(pipeconf_reg) & I965_PIPECONF_ACTIVE) != 0) {
  1778. n++;
  1779. if (n < 60) {
  1780. udelay(500);
  1781. continue;
  1782. } else {
  1783. DRM_DEBUG_KMS("pipe %d off delay\n",
  1784. pipe);
  1785. break;
  1786. }
  1787. }
  1788. } else
  1789. DRM_DEBUG_KMS("crtc %d is disabled\n", pipe);
  1790. udelay(100);
  1791. /* Disable PF */
  1792. temp = I915_READ(pf_ctl_reg);
  1793. if ((temp & PF_ENABLE) != 0) {
  1794. I915_WRITE(pf_ctl_reg, temp & ~PF_ENABLE);
  1795. I915_READ(pf_ctl_reg);
  1796. }
  1797. I915_WRITE(pf_win_size, 0);
  1798. POSTING_READ(pf_win_size);
  1799. /* disable CPU FDI tx and PCH FDI rx */
  1800. temp = I915_READ(fdi_tx_reg);
  1801. I915_WRITE(fdi_tx_reg, temp & ~FDI_TX_ENABLE);
  1802. I915_READ(fdi_tx_reg);
  1803. temp = I915_READ(fdi_rx_reg);
  1804. /* BPC in FDI rx is consistent with that in pipeconf */
  1805. temp &= ~(0x07 << 16);
  1806. temp |= (pipe_bpc << 11);
  1807. I915_WRITE(fdi_rx_reg, temp & ~FDI_RX_ENABLE);
  1808. I915_READ(fdi_rx_reg);
  1809. udelay(100);
  1810. /* still set train pattern 1 */
  1811. temp = I915_READ(fdi_tx_reg);
  1812. temp &= ~FDI_LINK_TRAIN_NONE;
  1813. temp |= FDI_LINK_TRAIN_PATTERN_1;
  1814. I915_WRITE(fdi_tx_reg, temp);
  1815. POSTING_READ(fdi_tx_reg);
  1816. temp = I915_READ(fdi_rx_reg);
  1817. if (HAS_PCH_CPT(dev)) {
  1818. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  1819. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  1820. } else {
  1821. temp &= ~FDI_LINK_TRAIN_NONE;
  1822. temp |= FDI_LINK_TRAIN_PATTERN_1;
  1823. }
  1824. I915_WRITE(fdi_rx_reg, temp);
  1825. POSTING_READ(fdi_rx_reg);
  1826. udelay(100);
  1827. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  1828. temp = I915_READ(PCH_LVDS);
  1829. I915_WRITE(PCH_LVDS, temp & ~LVDS_PORT_EN);
  1830. I915_READ(PCH_LVDS);
  1831. udelay(100);
  1832. }
  1833. /* disable PCH transcoder */
  1834. temp = I915_READ(transconf_reg);
  1835. if ((temp & TRANS_ENABLE) != 0) {
  1836. I915_WRITE(transconf_reg, temp & ~TRANS_ENABLE);
  1837. I915_READ(transconf_reg);
  1838. n = 0;
  1839. /* wait for PCH transcoder off, transcoder state */
  1840. while ((I915_READ(transconf_reg) & TRANS_STATE_ENABLE) != 0) {
  1841. n++;
  1842. if (n < 60) {
  1843. udelay(500);
  1844. continue;
  1845. } else {
  1846. DRM_DEBUG_KMS("transcoder %d off "
  1847. "delay\n", pipe);
  1848. break;
  1849. }
  1850. }
  1851. }
  1852. temp = I915_READ(transconf_reg);
  1853. /* BPC in transcoder is consistent with that in pipeconf */
  1854. temp &= ~PIPE_BPC_MASK;
  1855. temp |= pipe_bpc;
  1856. I915_WRITE(transconf_reg, temp);
  1857. I915_READ(transconf_reg);
  1858. udelay(100);
  1859. if (HAS_PCH_CPT(dev)) {
  1860. /* disable TRANS_DP_CTL */
  1861. int trans_dp_ctl = (pipe == 0) ? TRANS_DP_CTL_A : TRANS_DP_CTL_B;
  1862. int reg;
  1863. reg = I915_READ(trans_dp_ctl);
  1864. reg &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
  1865. I915_WRITE(trans_dp_ctl, reg);
  1866. POSTING_READ(trans_dp_ctl);
  1867. /* disable DPLL_SEL */
  1868. temp = I915_READ(PCH_DPLL_SEL);
  1869. if (trans_dpll_sel == 0)
  1870. temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
  1871. else
  1872. temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
  1873. I915_WRITE(PCH_DPLL_SEL, temp);
  1874. I915_READ(PCH_DPLL_SEL);
  1875. }
  1876. /* disable PCH DPLL */
  1877. temp = I915_READ(pch_dpll_reg);
  1878. I915_WRITE(pch_dpll_reg, temp & ~DPLL_VCO_ENABLE);
  1879. I915_READ(pch_dpll_reg);
  1880. if (HAS_eDP) {
  1881. ironlake_disable_pll_edp(crtc);
  1882. }
  1883. /* Switch from PCDclk to Rawclk */
  1884. temp = I915_READ(fdi_rx_reg);
  1885. temp &= ~FDI_SEL_PCDCLK;
  1886. I915_WRITE(fdi_rx_reg, temp);
  1887. I915_READ(fdi_rx_reg);
  1888. /* Disable CPU FDI TX PLL */
  1889. temp = I915_READ(fdi_tx_reg);
  1890. I915_WRITE(fdi_tx_reg, temp & ~FDI_TX_PLL_ENABLE);
  1891. I915_READ(fdi_tx_reg);
  1892. udelay(100);
  1893. temp = I915_READ(fdi_rx_reg);
  1894. temp &= ~FDI_RX_PLL_ENABLE;
  1895. I915_WRITE(fdi_rx_reg, temp);
  1896. I915_READ(fdi_rx_reg);
  1897. /* Wait for the clocks to turn off. */
  1898. udelay(100);
  1899. break;
  1900. }
  1901. }
  1902. static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
  1903. {
  1904. struct intel_overlay *overlay;
  1905. int ret;
  1906. if (!enable && intel_crtc->overlay) {
  1907. overlay = intel_crtc->overlay;
  1908. mutex_lock(&overlay->dev->struct_mutex);
  1909. for (;;) {
  1910. ret = intel_overlay_switch_off(overlay);
  1911. if (ret == 0)
  1912. break;
  1913. ret = intel_overlay_recover_from_interrupt(overlay, 0);
  1914. if (ret != 0) {
  1915. /* overlay doesn't react anymore. Usually
  1916. * results in a black screen and an unkillable
  1917. * X server. */
  1918. BUG();
  1919. overlay->hw_wedged = HW_WEDGED;
  1920. break;
  1921. }
  1922. }
  1923. mutex_unlock(&overlay->dev->struct_mutex);
  1924. }
  1925. /* Let userspace switch the overlay on again. In most cases userspace
  1926. * has to recompute where to put it anyway. */
  1927. return;
  1928. }
  1929. static void i9xx_crtc_dpms(struct drm_crtc *crtc, int mode)
  1930. {
  1931. struct drm_device *dev = crtc->dev;
  1932. struct drm_i915_private *dev_priv = dev->dev_private;
  1933. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1934. int pipe = intel_crtc->pipe;
  1935. int plane = intel_crtc->plane;
  1936. int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
  1937. int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
  1938. int dspbase_reg = (plane == 0) ? DSPAADDR : DSPBADDR;
  1939. int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
  1940. u32 temp;
  1941. /* XXX: When our outputs are all unaware of DPMS modes other than off
  1942. * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
  1943. */
  1944. switch (mode) {
  1945. case DRM_MODE_DPMS_ON:
  1946. case DRM_MODE_DPMS_STANDBY:
  1947. case DRM_MODE_DPMS_SUSPEND:
  1948. intel_update_watermarks(dev);
  1949. /* Enable the DPLL */
  1950. temp = I915_READ(dpll_reg);
  1951. if ((temp & DPLL_VCO_ENABLE) == 0) {
  1952. I915_WRITE(dpll_reg, temp);
  1953. I915_READ(dpll_reg);
  1954. /* Wait for the clocks to stabilize. */
  1955. udelay(150);
  1956. I915_WRITE(dpll_reg, temp | DPLL_VCO_ENABLE);
  1957. I915_READ(dpll_reg);
  1958. /* Wait for the clocks to stabilize. */
  1959. udelay(150);
  1960. I915_WRITE(dpll_reg, temp | DPLL_VCO_ENABLE);
  1961. I915_READ(dpll_reg);
  1962. /* Wait for the clocks to stabilize. */
  1963. udelay(150);
  1964. }
  1965. /* Enable the pipe */
  1966. temp = I915_READ(pipeconf_reg);
  1967. if ((temp & PIPEACONF_ENABLE) == 0)
  1968. I915_WRITE(pipeconf_reg, temp | PIPEACONF_ENABLE);
  1969. /* Enable the plane */
  1970. temp = I915_READ(dspcntr_reg);
  1971. if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
  1972. I915_WRITE(dspcntr_reg, temp | DISPLAY_PLANE_ENABLE);
  1973. /* Flush the plane changes */
  1974. I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
  1975. }
  1976. intel_crtc_load_lut(crtc);
  1977. if ((IS_I965G(dev) || plane == 0))
  1978. intel_update_fbc(crtc, &crtc->mode);
  1979. /* Give the overlay scaler a chance to enable if it's on this pipe */
  1980. intel_crtc_dpms_overlay(intel_crtc, true);
  1981. break;
  1982. case DRM_MODE_DPMS_OFF:
  1983. intel_update_watermarks(dev);
  1984. /* Give the overlay scaler a chance to disable if it's on this pipe */
  1985. intel_crtc_dpms_overlay(intel_crtc, false);
  1986. drm_vblank_off(dev, pipe);
  1987. if (dev_priv->cfb_plane == plane &&
  1988. dev_priv->display.disable_fbc)
  1989. dev_priv->display.disable_fbc(dev);
  1990. /* Disable the VGA plane that we never use */
  1991. i915_disable_vga(dev);
  1992. /* Disable display plane */
  1993. temp = I915_READ(dspcntr_reg);
  1994. if ((temp & DISPLAY_PLANE_ENABLE) != 0) {
  1995. I915_WRITE(dspcntr_reg, temp & ~DISPLAY_PLANE_ENABLE);
  1996. /* Flush the plane changes */
  1997. I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
  1998. I915_READ(dspbase_reg);
  1999. }
  2000. if (!IS_I9XX(dev)) {
  2001. /* Wait for vblank for the disable to take effect */
  2002. intel_wait_for_vblank(dev);
  2003. }
  2004. /* Don't disable pipe A or pipe A PLLs if needed */
  2005. if (pipeconf_reg == PIPEACONF &&
  2006. (dev_priv->quirks & QUIRK_PIPEA_FORCE))
  2007. goto skip_pipe_off;
  2008. /* Next, disable display pipes */
  2009. temp = I915_READ(pipeconf_reg);
  2010. if ((temp & PIPEACONF_ENABLE) != 0) {
  2011. I915_WRITE(pipeconf_reg, temp & ~PIPEACONF_ENABLE);
  2012. I915_READ(pipeconf_reg);
  2013. }
  2014. /* Wait for vblank for the disable to take effect. */
  2015. intel_wait_for_vblank(dev);
  2016. temp = I915_READ(dpll_reg);
  2017. if ((temp & DPLL_VCO_ENABLE) != 0) {
  2018. I915_WRITE(dpll_reg, temp & ~DPLL_VCO_ENABLE);
  2019. I915_READ(dpll_reg);
  2020. }
  2021. skip_pipe_off:
  2022. /* Wait for the clocks to turn off. */
  2023. udelay(150);
  2024. break;
  2025. }
  2026. }
  2027. /**
  2028. * Sets the power management mode of the pipe and plane.
  2029. *
  2030. * This code should probably grow support for turning the cursor off and back
  2031. * on appropriately at the same time as we're turning the pipe off/on.
  2032. */
  2033. static void intel_crtc_dpms(struct drm_crtc *crtc, int mode)
  2034. {
  2035. struct drm_device *dev = crtc->dev;
  2036. struct drm_i915_private *dev_priv = dev->dev_private;
  2037. struct drm_i915_master_private *master_priv;
  2038. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2039. int pipe = intel_crtc->pipe;
  2040. bool enabled;
  2041. dev_priv->display.dpms(crtc, mode);
  2042. intel_crtc->dpms_mode = mode;
  2043. if (!dev->primary->master)
  2044. return;
  2045. master_priv = dev->primary->master->driver_priv;
  2046. if (!master_priv->sarea_priv)
  2047. return;
  2048. enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF;
  2049. switch (pipe) {
  2050. case 0:
  2051. master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
  2052. master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
  2053. break;
  2054. case 1:
  2055. master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
  2056. master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
  2057. break;
  2058. default:
  2059. DRM_ERROR("Can't update pipe %d in SAREA\n", pipe);
  2060. break;
  2061. }
  2062. }
  2063. static void intel_crtc_prepare (struct drm_crtc *crtc)
  2064. {
  2065. struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
  2066. crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
  2067. }
  2068. static void intel_crtc_commit (struct drm_crtc *crtc)
  2069. {
  2070. struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
  2071. crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
  2072. }
  2073. void intel_encoder_prepare (struct drm_encoder *encoder)
  2074. {
  2075. struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
  2076. /* lvds has its own version of prepare see intel_lvds_prepare */
  2077. encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
  2078. }
  2079. void intel_encoder_commit (struct drm_encoder *encoder)
  2080. {
  2081. struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
  2082. /* lvds has its own version of commit see intel_lvds_commit */
  2083. encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
  2084. }
  2085. static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
  2086. struct drm_display_mode *mode,
  2087. struct drm_display_mode *adjusted_mode)
  2088. {
  2089. struct drm_device *dev = crtc->dev;
  2090. if (HAS_PCH_SPLIT(dev)) {
  2091. /* FDI link clock is fixed at 2.7G */
  2092. if (mode->clock * 3 > 27000 * 4)
  2093. return MODE_CLOCK_HIGH;
  2094. }
  2095. return true;
  2096. }
  2097. static int i945_get_display_clock_speed(struct drm_device *dev)
  2098. {
  2099. return 400000;
  2100. }
  2101. static int i915_get_display_clock_speed(struct drm_device *dev)
  2102. {
  2103. return 333000;
  2104. }
  2105. static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
  2106. {
  2107. return 200000;
  2108. }
  2109. static int i915gm_get_display_clock_speed(struct drm_device *dev)
  2110. {
  2111. u16 gcfgc = 0;
  2112. pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
  2113. if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
  2114. return 133000;
  2115. else {
  2116. switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
  2117. case GC_DISPLAY_CLOCK_333_MHZ:
  2118. return 333000;
  2119. default:
  2120. case GC_DISPLAY_CLOCK_190_200_MHZ:
  2121. return 190000;
  2122. }
  2123. }
  2124. }
  2125. static int i865_get_display_clock_speed(struct drm_device *dev)
  2126. {
  2127. return 266000;
  2128. }
  2129. static int i855_get_display_clock_speed(struct drm_device *dev)
  2130. {
  2131. u16 hpllcc = 0;
  2132. /* Assume that the hardware is in the high speed state. This
  2133. * should be the default.
  2134. */
  2135. switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
  2136. case GC_CLOCK_133_200:
  2137. case GC_CLOCK_100_200:
  2138. return 200000;
  2139. case GC_CLOCK_166_250:
  2140. return 250000;
  2141. case GC_CLOCK_100_133:
  2142. return 133000;
  2143. }
  2144. /* Shouldn't happen */
  2145. return 0;
  2146. }
  2147. static int i830_get_display_clock_speed(struct drm_device *dev)
  2148. {
  2149. return 133000;
  2150. }
  2151. /**
  2152. * Return the pipe currently connected to the panel fitter,
  2153. * or -1 if the panel fitter is not present or not in use
  2154. */
  2155. int intel_panel_fitter_pipe (struct drm_device *dev)
  2156. {
  2157. struct drm_i915_private *dev_priv = dev->dev_private;
  2158. u32 pfit_control;
  2159. /* i830 doesn't have a panel fitter */
  2160. if (IS_I830(dev))
  2161. return -1;
  2162. pfit_control = I915_READ(PFIT_CONTROL);
  2163. /* See if the panel fitter is in use */
  2164. if ((pfit_control & PFIT_ENABLE) == 0)
  2165. return -1;
  2166. /* 965 can place panel fitter on either pipe */
  2167. if (IS_I965G(dev))
  2168. return (pfit_control >> 29) & 0x3;
  2169. /* older chips can only use pipe 1 */
  2170. return 1;
  2171. }
  2172. struct fdi_m_n {
  2173. u32 tu;
  2174. u32 gmch_m;
  2175. u32 gmch_n;
  2176. u32 link_m;
  2177. u32 link_n;
  2178. };
  2179. static void
  2180. fdi_reduce_ratio(u32 *num, u32 *den)
  2181. {
  2182. while (*num > 0xffffff || *den > 0xffffff) {
  2183. *num >>= 1;
  2184. *den >>= 1;
  2185. }
  2186. }
  2187. #define DATA_N 0x800000
  2188. #define LINK_N 0x80000
  2189. static void
  2190. ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
  2191. int link_clock, struct fdi_m_n *m_n)
  2192. {
  2193. u64 temp;
  2194. m_n->tu = 64; /* default size */
  2195. temp = (u64) DATA_N * pixel_clock;
  2196. temp = div_u64(temp, link_clock);
  2197. m_n->gmch_m = div_u64(temp * bits_per_pixel, nlanes);
  2198. m_n->gmch_m >>= 3; /* convert to bytes_per_pixel */
  2199. m_n->gmch_n = DATA_N;
  2200. fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
  2201. temp = (u64) LINK_N * pixel_clock;
  2202. m_n->link_m = div_u64(temp, link_clock);
  2203. m_n->link_n = LINK_N;
  2204. fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
  2205. }
  2206. struct intel_watermark_params {
  2207. unsigned long fifo_size;
  2208. unsigned long max_wm;
  2209. unsigned long default_wm;
  2210. unsigned long guard_size;
  2211. unsigned long cacheline_size;
  2212. };
  2213. /* Pineview has different values for various configs */
  2214. static struct intel_watermark_params pineview_display_wm = {
  2215. PINEVIEW_DISPLAY_FIFO,
  2216. PINEVIEW_MAX_WM,
  2217. PINEVIEW_DFT_WM,
  2218. PINEVIEW_GUARD_WM,
  2219. PINEVIEW_FIFO_LINE_SIZE
  2220. };
  2221. static struct intel_watermark_params pineview_display_hplloff_wm = {
  2222. PINEVIEW_DISPLAY_FIFO,
  2223. PINEVIEW_MAX_WM,
  2224. PINEVIEW_DFT_HPLLOFF_WM,
  2225. PINEVIEW_GUARD_WM,
  2226. PINEVIEW_FIFO_LINE_SIZE
  2227. };
  2228. static struct intel_watermark_params pineview_cursor_wm = {
  2229. PINEVIEW_CURSOR_FIFO,
  2230. PINEVIEW_CURSOR_MAX_WM,
  2231. PINEVIEW_CURSOR_DFT_WM,
  2232. PINEVIEW_CURSOR_GUARD_WM,
  2233. PINEVIEW_FIFO_LINE_SIZE,
  2234. };
  2235. static struct intel_watermark_params pineview_cursor_hplloff_wm = {
  2236. PINEVIEW_CURSOR_FIFO,
  2237. PINEVIEW_CURSOR_MAX_WM,
  2238. PINEVIEW_CURSOR_DFT_WM,
  2239. PINEVIEW_CURSOR_GUARD_WM,
  2240. PINEVIEW_FIFO_LINE_SIZE
  2241. };
  2242. static struct intel_watermark_params g4x_wm_info = {
  2243. G4X_FIFO_SIZE,
  2244. G4X_MAX_WM,
  2245. G4X_MAX_WM,
  2246. 2,
  2247. G4X_FIFO_LINE_SIZE,
  2248. };
  2249. static struct intel_watermark_params i945_wm_info = {
  2250. I945_FIFO_SIZE,
  2251. I915_MAX_WM,
  2252. 1,
  2253. 2,
  2254. I915_FIFO_LINE_SIZE
  2255. };
  2256. static struct intel_watermark_params i915_wm_info = {
  2257. I915_FIFO_SIZE,
  2258. I915_MAX_WM,
  2259. 1,
  2260. 2,
  2261. I915_FIFO_LINE_SIZE
  2262. };
  2263. static struct intel_watermark_params i855_wm_info = {
  2264. I855GM_FIFO_SIZE,
  2265. I915_MAX_WM,
  2266. 1,
  2267. 2,
  2268. I830_FIFO_LINE_SIZE
  2269. };
  2270. static struct intel_watermark_params i830_wm_info = {
  2271. I830_FIFO_SIZE,
  2272. I915_MAX_WM,
  2273. 1,
  2274. 2,
  2275. I830_FIFO_LINE_SIZE
  2276. };
  2277. static struct intel_watermark_params ironlake_display_wm_info = {
  2278. ILK_DISPLAY_FIFO,
  2279. ILK_DISPLAY_MAXWM,
  2280. ILK_DISPLAY_DFTWM,
  2281. 2,
  2282. ILK_FIFO_LINE_SIZE
  2283. };
  2284. static struct intel_watermark_params ironlake_display_srwm_info = {
  2285. ILK_DISPLAY_SR_FIFO,
  2286. ILK_DISPLAY_MAX_SRWM,
  2287. ILK_DISPLAY_DFT_SRWM,
  2288. 2,
  2289. ILK_FIFO_LINE_SIZE
  2290. };
  2291. static struct intel_watermark_params ironlake_cursor_srwm_info = {
  2292. ILK_CURSOR_SR_FIFO,
  2293. ILK_CURSOR_MAX_SRWM,
  2294. ILK_CURSOR_DFT_SRWM,
  2295. 2,
  2296. ILK_FIFO_LINE_SIZE
  2297. };
  2298. /**
  2299. * intel_calculate_wm - calculate watermark level
  2300. * @clock_in_khz: pixel clock
  2301. * @wm: chip FIFO params
  2302. * @pixel_size: display pixel size
  2303. * @latency_ns: memory latency for the platform
  2304. *
  2305. * Calculate the watermark level (the level at which the display plane will
  2306. * start fetching from memory again). Each chip has a different display
  2307. * FIFO size and allocation, so the caller needs to figure that out and pass
  2308. * in the correct intel_watermark_params structure.
  2309. *
  2310. * As the pixel clock runs, the FIFO will be drained at a rate that depends
  2311. * on the pixel size. When it reaches the watermark level, it'll start
  2312. * fetching FIFO line sized based chunks from memory until the FIFO fills
  2313. * past the watermark point. If the FIFO drains completely, a FIFO underrun
  2314. * will occur, and a display engine hang could result.
  2315. */
  2316. static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
  2317. struct intel_watermark_params *wm,
  2318. int pixel_size,
  2319. unsigned long latency_ns)
  2320. {
  2321. long entries_required, wm_size;
  2322. /*
  2323. * Note: we need to make sure we don't overflow for various clock &
  2324. * latency values.
  2325. * clocks go from a few thousand to several hundred thousand.
  2326. * latency is usually a few thousand
  2327. */
  2328. entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
  2329. 1000;
  2330. entries_required /= wm->cacheline_size;
  2331. DRM_DEBUG_KMS("FIFO entries required for mode: %d\n", entries_required);
  2332. wm_size = wm->fifo_size - (entries_required + wm->guard_size);
  2333. DRM_DEBUG_KMS("FIFO watermark level: %d\n", wm_size);
  2334. /* Don't promote wm_size to unsigned... */
  2335. if (wm_size > (long)wm->max_wm)
  2336. wm_size = wm->max_wm;
  2337. if (wm_size <= 0)
  2338. wm_size = wm->default_wm;
  2339. return wm_size;
  2340. }
  2341. struct cxsr_latency {
  2342. int is_desktop;
  2343. int is_ddr3;
  2344. unsigned long fsb_freq;
  2345. unsigned long mem_freq;
  2346. unsigned long display_sr;
  2347. unsigned long display_hpll_disable;
  2348. unsigned long cursor_sr;
  2349. unsigned long cursor_hpll_disable;
  2350. };
  2351. static struct cxsr_latency cxsr_latency_table[] = {
  2352. {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
  2353. {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
  2354. {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
  2355. {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
  2356. {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
  2357. {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
  2358. {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
  2359. {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
  2360. {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
  2361. {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
  2362. {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
  2363. {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
  2364. {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
  2365. {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
  2366. {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
  2367. {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
  2368. {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
  2369. {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
  2370. {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
  2371. {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
  2372. {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
  2373. {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
  2374. {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
  2375. {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
  2376. {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
  2377. {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
  2378. {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
  2379. {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
  2380. {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
  2381. {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
  2382. };
  2383. static struct cxsr_latency *intel_get_cxsr_latency(int is_desktop, int is_ddr3,
  2384. int fsb, int mem)
  2385. {
  2386. int i;
  2387. struct cxsr_latency *latency;
  2388. if (fsb == 0 || mem == 0)
  2389. return NULL;
  2390. for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
  2391. latency = &cxsr_latency_table[i];
  2392. if (is_desktop == latency->is_desktop &&
  2393. is_ddr3 == latency->is_ddr3 &&
  2394. fsb == latency->fsb_freq && mem == latency->mem_freq)
  2395. return latency;
  2396. }
  2397. DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
  2398. return NULL;
  2399. }
  2400. static void pineview_disable_cxsr(struct drm_device *dev)
  2401. {
  2402. struct drm_i915_private *dev_priv = dev->dev_private;
  2403. u32 reg;
  2404. /* deactivate cxsr */
  2405. reg = I915_READ(DSPFW3);
  2406. reg &= ~(PINEVIEW_SELF_REFRESH_EN);
  2407. I915_WRITE(DSPFW3, reg);
  2408. DRM_INFO("Big FIFO is disabled\n");
  2409. }
  2410. /*
  2411. * Latency for FIFO fetches is dependent on several factors:
  2412. * - memory configuration (speed, channels)
  2413. * - chipset
  2414. * - current MCH state
  2415. * It can be fairly high in some situations, so here we assume a fairly
  2416. * pessimal value. It's a tradeoff between extra memory fetches (if we
  2417. * set this value too high, the FIFO will fetch frequently to stay full)
  2418. * and power consumption (set it too low to save power and we might see
  2419. * FIFO underruns and display "flicker").
  2420. *
  2421. * A value of 5us seems to be a good balance; safe for very low end
  2422. * platforms but not overly aggressive on lower latency configs.
  2423. */
  2424. static const int latency_ns = 5000;
  2425. static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
  2426. {
  2427. struct drm_i915_private *dev_priv = dev->dev_private;
  2428. uint32_t dsparb = I915_READ(DSPARB);
  2429. int size;
  2430. if (plane == 0)
  2431. size = dsparb & 0x7f;
  2432. else
  2433. size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) -
  2434. (dsparb & 0x7f);
  2435. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  2436. plane ? "B" : "A", size);
  2437. return size;
  2438. }
  2439. static int i85x_get_fifo_size(struct drm_device *dev, int plane)
  2440. {
  2441. struct drm_i915_private *dev_priv = dev->dev_private;
  2442. uint32_t dsparb = I915_READ(DSPARB);
  2443. int size;
  2444. if (plane == 0)
  2445. size = dsparb & 0x1ff;
  2446. else
  2447. size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) -
  2448. (dsparb & 0x1ff);
  2449. size >>= 1; /* Convert to cachelines */
  2450. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  2451. plane ? "B" : "A", size);
  2452. return size;
  2453. }
  2454. static int i845_get_fifo_size(struct drm_device *dev, int plane)
  2455. {
  2456. struct drm_i915_private *dev_priv = dev->dev_private;
  2457. uint32_t dsparb = I915_READ(DSPARB);
  2458. int size;
  2459. size = dsparb & 0x7f;
  2460. size >>= 2; /* Convert to cachelines */
  2461. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  2462. plane ? "B" : "A",
  2463. size);
  2464. return size;
  2465. }
  2466. static int i830_get_fifo_size(struct drm_device *dev, int plane)
  2467. {
  2468. struct drm_i915_private *dev_priv = dev->dev_private;
  2469. uint32_t dsparb = I915_READ(DSPARB);
  2470. int size;
  2471. size = dsparb & 0x7f;
  2472. size >>= 1; /* Convert to cachelines */
  2473. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  2474. plane ? "B" : "A", size);
  2475. return size;
  2476. }
  2477. static void pineview_update_wm(struct drm_device *dev, int planea_clock,
  2478. int planeb_clock, int sr_hdisplay, int pixel_size)
  2479. {
  2480. struct drm_i915_private *dev_priv = dev->dev_private;
  2481. u32 reg;
  2482. unsigned long wm;
  2483. struct cxsr_latency *latency;
  2484. int sr_clock;
  2485. latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
  2486. dev_priv->fsb_freq, dev_priv->mem_freq);
  2487. if (!latency) {
  2488. DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
  2489. pineview_disable_cxsr(dev);
  2490. return;
  2491. }
  2492. if (!planea_clock || !planeb_clock) {
  2493. sr_clock = planea_clock ? planea_clock : planeb_clock;
  2494. /* Display SR */
  2495. wm = intel_calculate_wm(sr_clock, &pineview_display_wm,
  2496. pixel_size, latency->display_sr);
  2497. reg = I915_READ(DSPFW1);
  2498. reg &= ~DSPFW_SR_MASK;
  2499. reg |= wm << DSPFW_SR_SHIFT;
  2500. I915_WRITE(DSPFW1, reg);
  2501. DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
  2502. /* cursor SR */
  2503. wm = intel_calculate_wm(sr_clock, &pineview_cursor_wm,
  2504. pixel_size, latency->cursor_sr);
  2505. reg = I915_READ(DSPFW3);
  2506. reg &= ~DSPFW_CURSOR_SR_MASK;
  2507. reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
  2508. I915_WRITE(DSPFW3, reg);
  2509. /* Display HPLL off SR */
  2510. wm = intel_calculate_wm(sr_clock, &pineview_display_hplloff_wm,
  2511. pixel_size, latency->display_hpll_disable);
  2512. reg = I915_READ(DSPFW3);
  2513. reg &= ~DSPFW_HPLL_SR_MASK;
  2514. reg |= wm & DSPFW_HPLL_SR_MASK;
  2515. I915_WRITE(DSPFW3, reg);
  2516. /* cursor HPLL off SR */
  2517. wm = intel_calculate_wm(sr_clock, &pineview_cursor_hplloff_wm,
  2518. pixel_size, latency->cursor_hpll_disable);
  2519. reg = I915_READ(DSPFW3);
  2520. reg &= ~DSPFW_HPLL_CURSOR_MASK;
  2521. reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
  2522. I915_WRITE(DSPFW3, reg);
  2523. DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
  2524. /* activate cxsr */
  2525. reg = I915_READ(DSPFW3);
  2526. reg |= PINEVIEW_SELF_REFRESH_EN;
  2527. I915_WRITE(DSPFW3, reg);
  2528. DRM_DEBUG_KMS("Self-refresh is enabled\n");
  2529. } else {
  2530. pineview_disable_cxsr(dev);
  2531. DRM_DEBUG_KMS("Self-refresh is disabled\n");
  2532. }
  2533. }
  2534. static void g4x_update_wm(struct drm_device *dev, int planea_clock,
  2535. int planeb_clock, int sr_hdisplay, int pixel_size)
  2536. {
  2537. struct drm_i915_private *dev_priv = dev->dev_private;
  2538. int total_size, cacheline_size;
  2539. int planea_wm, planeb_wm, cursora_wm, cursorb_wm, cursor_sr;
  2540. struct intel_watermark_params planea_params, planeb_params;
  2541. unsigned long line_time_us;
  2542. int sr_clock, sr_entries = 0, entries_required;
  2543. /* Create copies of the base settings for each pipe */
  2544. planea_params = planeb_params = g4x_wm_info;
  2545. /* Grab a couple of global values before we overwrite them */
  2546. total_size = planea_params.fifo_size;
  2547. cacheline_size = planea_params.cacheline_size;
  2548. /*
  2549. * Note: we need to make sure we don't overflow for various clock &
  2550. * latency values.
  2551. * clocks go from a few thousand to several hundred thousand.
  2552. * latency is usually a few thousand
  2553. */
  2554. entries_required = ((planea_clock / 1000) * pixel_size * latency_ns) /
  2555. 1000;
  2556. entries_required /= G4X_FIFO_LINE_SIZE;
  2557. planea_wm = entries_required + planea_params.guard_size;
  2558. entries_required = ((planeb_clock / 1000) * pixel_size * latency_ns) /
  2559. 1000;
  2560. entries_required /= G4X_FIFO_LINE_SIZE;
  2561. planeb_wm = entries_required + planeb_params.guard_size;
  2562. cursora_wm = cursorb_wm = 16;
  2563. cursor_sr = 32;
  2564. DRM_DEBUG("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
  2565. /* Calc sr entries for one plane configs */
  2566. if (sr_hdisplay && (!planea_clock || !planeb_clock)) {
  2567. /* self-refresh has much higher latency */
  2568. static const int sr_latency_ns = 12000;
  2569. sr_clock = planea_clock ? planea_clock : planeb_clock;
  2570. line_time_us = ((sr_hdisplay * 1000) / sr_clock);
  2571. /* Use ns/us then divide to preserve precision */
  2572. sr_entries = (((sr_latency_ns / line_time_us) + 1) *
  2573. pixel_size * sr_hdisplay) / 1000;
  2574. sr_entries = roundup(sr_entries / cacheline_size, 1);
  2575. DRM_DEBUG("self-refresh entries: %d\n", sr_entries);
  2576. I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
  2577. } else {
  2578. /* Turn off self refresh if both pipes are enabled */
  2579. I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
  2580. & ~FW_BLC_SELF_EN);
  2581. }
  2582. DRM_DEBUG("Setting FIFO watermarks - A: %d, B: %d, SR %d\n",
  2583. planea_wm, planeb_wm, sr_entries);
  2584. planea_wm &= 0x3f;
  2585. planeb_wm &= 0x3f;
  2586. I915_WRITE(DSPFW1, (sr_entries << DSPFW_SR_SHIFT) |
  2587. (cursorb_wm << DSPFW_CURSORB_SHIFT) |
  2588. (planeb_wm << DSPFW_PLANEB_SHIFT) | planea_wm);
  2589. I915_WRITE(DSPFW2, (I915_READ(DSPFW2) & DSPFW_CURSORA_MASK) |
  2590. (cursora_wm << DSPFW_CURSORA_SHIFT));
  2591. /* HPLL off in SR has some issues on G4x... disable it */
  2592. I915_WRITE(DSPFW3, (I915_READ(DSPFW3) & ~DSPFW_HPLL_SR_EN) |
  2593. (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
  2594. }
  2595. static void i965_update_wm(struct drm_device *dev, int planea_clock,
  2596. int planeb_clock, int sr_hdisplay, int pixel_size)
  2597. {
  2598. struct drm_i915_private *dev_priv = dev->dev_private;
  2599. unsigned long line_time_us;
  2600. int sr_clock, sr_entries, srwm = 1;
  2601. /* Calc sr entries for one plane configs */
  2602. if (sr_hdisplay && (!planea_clock || !planeb_clock)) {
  2603. /* self-refresh has much higher latency */
  2604. static const int sr_latency_ns = 12000;
  2605. sr_clock = planea_clock ? planea_clock : planeb_clock;
  2606. line_time_us = ((sr_hdisplay * 1000) / sr_clock);
  2607. /* Use ns/us then divide to preserve precision */
  2608. sr_entries = (((sr_latency_ns / line_time_us) + 1) *
  2609. pixel_size * sr_hdisplay) / 1000;
  2610. sr_entries = roundup(sr_entries / I915_FIFO_LINE_SIZE, 1);
  2611. DRM_DEBUG("self-refresh entries: %d\n", sr_entries);
  2612. srwm = I945_FIFO_SIZE - sr_entries;
  2613. if (srwm < 0)
  2614. srwm = 1;
  2615. srwm &= 0x3f;
  2616. if (IS_I965GM(dev))
  2617. I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
  2618. } else {
  2619. /* Turn off self refresh if both pipes are enabled */
  2620. if (IS_I965GM(dev))
  2621. I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
  2622. & ~FW_BLC_SELF_EN);
  2623. }
  2624. DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
  2625. srwm);
  2626. /* 965 has limitations... */
  2627. I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) | (8 << 16) | (8 << 8) |
  2628. (8 << 0));
  2629. I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
  2630. }
  2631. static void i9xx_update_wm(struct drm_device *dev, int planea_clock,
  2632. int planeb_clock, int sr_hdisplay, int pixel_size)
  2633. {
  2634. struct drm_i915_private *dev_priv = dev->dev_private;
  2635. uint32_t fwater_lo;
  2636. uint32_t fwater_hi;
  2637. int total_size, cacheline_size, cwm, srwm = 1;
  2638. int planea_wm, planeb_wm;
  2639. struct intel_watermark_params planea_params, planeb_params;
  2640. unsigned long line_time_us;
  2641. int sr_clock, sr_entries = 0;
  2642. /* Create copies of the base settings for each pipe */
  2643. if (IS_I965GM(dev) || IS_I945GM(dev))
  2644. planea_params = planeb_params = i945_wm_info;
  2645. else if (IS_I9XX(dev))
  2646. planea_params = planeb_params = i915_wm_info;
  2647. else
  2648. planea_params = planeb_params = i855_wm_info;
  2649. /* Grab a couple of global values before we overwrite them */
  2650. total_size = planea_params.fifo_size;
  2651. cacheline_size = planea_params.cacheline_size;
  2652. /* Update per-plane FIFO sizes */
  2653. planea_params.fifo_size = dev_priv->display.get_fifo_size(dev, 0);
  2654. planeb_params.fifo_size = dev_priv->display.get_fifo_size(dev, 1);
  2655. planea_wm = intel_calculate_wm(planea_clock, &planea_params,
  2656. pixel_size, latency_ns);
  2657. planeb_wm = intel_calculate_wm(planeb_clock, &planeb_params,
  2658. pixel_size, latency_ns);
  2659. DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
  2660. /*
  2661. * Overlay gets an aggressive default since video jitter is bad.
  2662. */
  2663. cwm = 2;
  2664. /* Calc sr entries for one plane configs */
  2665. if (HAS_FW_BLC(dev) && sr_hdisplay &&
  2666. (!planea_clock || !planeb_clock)) {
  2667. /* self-refresh has much higher latency */
  2668. static const int sr_latency_ns = 6000;
  2669. sr_clock = planea_clock ? planea_clock : planeb_clock;
  2670. line_time_us = ((sr_hdisplay * 1000) / sr_clock);
  2671. /* Use ns/us then divide to preserve precision */
  2672. sr_entries = (((sr_latency_ns / line_time_us) + 1) *
  2673. pixel_size * sr_hdisplay) / 1000;
  2674. sr_entries = roundup(sr_entries / cacheline_size, 1);
  2675. DRM_DEBUG_KMS("self-refresh entries: %d\n", sr_entries);
  2676. srwm = total_size - sr_entries;
  2677. if (srwm < 0)
  2678. srwm = 1;
  2679. if (IS_I945G(dev) || IS_I945GM(dev))
  2680. I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
  2681. else if (IS_I915GM(dev)) {
  2682. /* 915M has a smaller SRWM field */
  2683. I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
  2684. I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
  2685. }
  2686. } else {
  2687. /* Turn off self refresh if both pipes are enabled */
  2688. if (IS_I945G(dev) || IS_I945GM(dev)) {
  2689. I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
  2690. & ~FW_BLC_SELF_EN);
  2691. } else if (IS_I915GM(dev)) {
  2692. I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
  2693. }
  2694. }
  2695. DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
  2696. planea_wm, planeb_wm, cwm, srwm);
  2697. fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
  2698. fwater_hi = (cwm & 0x1f);
  2699. /* Set request length to 8 cachelines per fetch */
  2700. fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
  2701. fwater_hi = fwater_hi | (1 << 8);
  2702. I915_WRITE(FW_BLC, fwater_lo);
  2703. I915_WRITE(FW_BLC2, fwater_hi);
  2704. }
  2705. static void i830_update_wm(struct drm_device *dev, int planea_clock, int unused,
  2706. int unused2, int pixel_size)
  2707. {
  2708. struct drm_i915_private *dev_priv = dev->dev_private;
  2709. uint32_t fwater_lo = I915_READ(FW_BLC) & ~0xfff;
  2710. int planea_wm;
  2711. i830_wm_info.fifo_size = dev_priv->display.get_fifo_size(dev, 0);
  2712. planea_wm = intel_calculate_wm(planea_clock, &i830_wm_info,
  2713. pixel_size, latency_ns);
  2714. fwater_lo |= (3<<8) | planea_wm;
  2715. DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
  2716. I915_WRITE(FW_BLC, fwater_lo);
  2717. }
  2718. #define ILK_LP0_PLANE_LATENCY 700
  2719. static void ironlake_update_wm(struct drm_device *dev, int planea_clock,
  2720. int planeb_clock, int sr_hdisplay, int pixel_size)
  2721. {
  2722. struct drm_i915_private *dev_priv = dev->dev_private;
  2723. int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
  2724. int sr_wm, cursor_wm;
  2725. unsigned long line_time_us;
  2726. int sr_clock, entries_required;
  2727. u32 reg_value;
  2728. /* Calculate and update the watermark for plane A */
  2729. if (planea_clock) {
  2730. entries_required = ((planea_clock / 1000) * pixel_size *
  2731. ILK_LP0_PLANE_LATENCY) / 1000;
  2732. entries_required = DIV_ROUND_UP(entries_required,
  2733. ironlake_display_wm_info.cacheline_size);
  2734. planea_wm = entries_required +
  2735. ironlake_display_wm_info.guard_size;
  2736. if (planea_wm > (int)ironlake_display_wm_info.max_wm)
  2737. planea_wm = ironlake_display_wm_info.max_wm;
  2738. cursora_wm = 16;
  2739. reg_value = I915_READ(WM0_PIPEA_ILK);
  2740. reg_value &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
  2741. reg_value |= (planea_wm << WM0_PIPE_PLANE_SHIFT) |
  2742. (cursora_wm & WM0_PIPE_CURSOR_MASK);
  2743. I915_WRITE(WM0_PIPEA_ILK, reg_value);
  2744. DRM_DEBUG_KMS("FIFO watermarks For pipe A - plane %d, "
  2745. "cursor: %d\n", planea_wm, cursora_wm);
  2746. }
  2747. /* Calculate and update the watermark for plane B */
  2748. if (planeb_clock) {
  2749. entries_required = ((planeb_clock / 1000) * pixel_size *
  2750. ILK_LP0_PLANE_LATENCY) / 1000;
  2751. entries_required = DIV_ROUND_UP(entries_required,
  2752. ironlake_display_wm_info.cacheline_size);
  2753. planeb_wm = entries_required +
  2754. ironlake_display_wm_info.guard_size;
  2755. if (planeb_wm > (int)ironlake_display_wm_info.max_wm)
  2756. planeb_wm = ironlake_display_wm_info.max_wm;
  2757. cursorb_wm = 16;
  2758. reg_value = I915_READ(WM0_PIPEB_ILK);
  2759. reg_value &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
  2760. reg_value |= (planeb_wm << WM0_PIPE_PLANE_SHIFT) |
  2761. (cursorb_wm & WM0_PIPE_CURSOR_MASK);
  2762. I915_WRITE(WM0_PIPEB_ILK, reg_value);
  2763. DRM_DEBUG_KMS("FIFO watermarks For pipe B - plane %d, "
  2764. "cursor: %d\n", planeb_wm, cursorb_wm);
  2765. }
  2766. /*
  2767. * Calculate and update the self-refresh watermark only when one
  2768. * display plane is used.
  2769. */
  2770. if (!planea_clock || !planeb_clock) {
  2771. int line_count;
  2772. /* Read the self-refresh latency. The unit is 0.5us */
  2773. int ilk_sr_latency = I915_READ(MLTR_ILK) & ILK_SRLT_MASK;
  2774. sr_clock = planea_clock ? planea_clock : planeb_clock;
  2775. line_time_us = ((sr_hdisplay * 1000) / sr_clock);
  2776. /* Use ns/us then divide to preserve precision */
  2777. line_count = ((ilk_sr_latency * 500) / line_time_us + 1000)
  2778. / 1000;
  2779. /* calculate the self-refresh watermark for display plane */
  2780. entries_required = line_count * sr_hdisplay * pixel_size;
  2781. entries_required = DIV_ROUND_UP(entries_required,
  2782. ironlake_display_srwm_info.cacheline_size);
  2783. sr_wm = entries_required +
  2784. ironlake_display_srwm_info.guard_size;
  2785. /* calculate the self-refresh watermark for display cursor */
  2786. entries_required = line_count * pixel_size * 64;
  2787. entries_required = DIV_ROUND_UP(entries_required,
  2788. ironlake_cursor_srwm_info.cacheline_size);
  2789. cursor_wm = entries_required +
  2790. ironlake_cursor_srwm_info.guard_size;
  2791. /* configure watermark and enable self-refresh */
  2792. reg_value = I915_READ(WM1_LP_ILK);
  2793. reg_value &= ~(WM1_LP_LATENCY_MASK | WM1_LP_SR_MASK |
  2794. WM1_LP_CURSOR_MASK);
  2795. reg_value |= WM1_LP_SR_EN |
  2796. (ilk_sr_latency << WM1_LP_LATENCY_SHIFT) |
  2797. (sr_wm << WM1_LP_SR_SHIFT) | cursor_wm;
  2798. I915_WRITE(WM1_LP_ILK, reg_value);
  2799. DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
  2800. "cursor %d\n", sr_wm, cursor_wm);
  2801. } else {
  2802. /* Turn off self refresh if both pipes are enabled */
  2803. I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
  2804. }
  2805. }
  2806. /**
  2807. * intel_update_watermarks - update FIFO watermark values based on current modes
  2808. *
  2809. * Calculate watermark values for the various WM regs based on current mode
  2810. * and plane configuration.
  2811. *
  2812. * There are several cases to deal with here:
  2813. * - normal (i.e. non-self-refresh)
  2814. * - self-refresh (SR) mode
  2815. * - lines are large relative to FIFO size (buffer can hold up to 2)
  2816. * - lines are small relative to FIFO size (buffer can hold more than 2
  2817. * lines), so need to account for TLB latency
  2818. *
  2819. * The normal calculation is:
  2820. * watermark = dotclock * bytes per pixel * latency
  2821. * where latency is platform & configuration dependent (we assume pessimal
  2822. * values here).
  2823. *
  2824. * The SR calculation is:
  2825. * watermark = (trunc(latency/line time)+1) * surface width *
  2826. * bytes per pixel
  2827. * where
  2828. * line time = htotal / dotclock
  2829. * and latency is assumed to be high, as above.
  2830. *
  2831. * The final value programmed to the register should always be rounded up,
  2832. * and include an extra 2 entries to account for clock crossings.
  2833. *
  2834. * We don't use the sprite, so we can ignore that. And on Crestline we have
  2835. * to set the non-SR watermarks to 8.
  2836. */
  2837. static void intel_update_watermarks(struct drm_device *dev)
  2838. {
  2839. struct drm_i915_private *dev_priv = dev->dev_private;
  2840. struct drm_crtc *crtc;
  2841. struct intel_crtc *intel_crtc;
  2842. int sr_hdisplay = 0;
  2843. unsigned long planea_clock = 0, planeb_clock = 0, sr_clock = 0;
  2844. int enabled = 0, pixel_size = 0;
  2845. if (!dev_priv->display.update_wm)
  2846. return;
  2847. /* Get the clock config from both planes */
  2848. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  2849. intel_crtc = to_intel_crtc(crtc);
  2850. if (crtc->enabled) {
  2851. enabled++;
  2852. if (intel_crtc->plane == 0) {
  2853. DRM_DEBUG_KMS("plane A (pipe %d) clock: %d\n",
  2854. intel_crtc->pipe, crtc->mode.clock);
  2855. planea_clock = crtc->mode.clock;
  2856. } else {
  2857. DRM_DEBUG_KMS("plane B (pipe %d) clock: %d\n",
  2858. intel_crtc->pipe, crtc->mode.clock);
  2859. planeb_clock = crtc->mode.clock;
  2860. }
  2861. sr_hdisplay = crtc->mode.hdisplay;
  2862. sr_clock = crtc->mode.clock;
  2863. if (crtc->fb)
  2864. pixel_size = crtc->fb->bits_per_pixel / 8;
  2865. else
  2866. pixel_size = 4; /* by default */
  2867. }
  2868. }
  2869. if (enabled <= 0)
  2870. return;
  2871. dev_priv->display.update_wm(dev, planea_clock, planeb_clock,
  2872. sr_hdisplay, pixel_size);
  2873. }
  2874. static int intel_crtc_mode_set(struct drm_crtc *crtc,
  2875. struct drm_display_mode *mode,
  2876. struct drm_display_mode *adjusted_mode,
  2877. int x, int y,
  2878. struct drm_framebuffer *old_fb)
  2879. {
  2880. struct drm_device *dev = crtc->dev;
  2881. struct drm_i915_private *dev_priv = dev->dev_private;
  2882. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2883. int pipe = intel_crtc->pipe;
  2884. int plane = intel_crtc->plane;
  2885. int fp_reg = (pipe == 0) ? FPA0 : FPB0;
  2886. int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
  2887. int dpll_md_reg = (intel_crtc->pipe == 0) ? DPLL_A_MD : DPLL_B_MD;
  2888. int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
  2889. int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
  2890. int htot_reg = (pipe == 0) ? HTOTAL_A : HTOTAL_B;
  2891. int hblank_reg = (pipe == 0) ? HBLANK_A : HBLANK_B;
  2892. int hsync_reg = (pipe == 0) ? HSYNC_A : HSYNC_B;
  2893. int vtot_reg = (pipe == 0) ? VTOTAL_A : VTOTAL_B;
  2894. int vblank_reg = (pipe == 0) ? VBLANK_A : VBLANK_B;
  2895. int vsync_reg = (pipe == 0) ? VSYNC_A : VSYNC_B;
  2896. int dspsize_reg = (plane == 0) ? DSPASIZE : DSPBSIZE;
  2897. int dsppos_reg = (plane == 0) ? DSPAPOS : DSPBPOS;
  2898. int pipesrc_reg = (pipe == 0) ? PIPEASRC : PIPEBSRC;
  2899. int refclk, num_connectors = 0;
  2900. intel_clock_t clock, reduced_clock;
  2901. u32 dpll = 0, fp = 0, fp2 = 0, dspcntr, pipeconf;
  2902. bool ok, has_reduced_clock = false, is_sdvo = false, is_dvo = false;
  2903. bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
  2904. bool is_edp = false;
  2905. struct drm_mode_config *mode_config = &dev->mode_config;
  2906. struct drm_encoder *encoder;
  2907. struct intel_encoder *intel_encoder = NULL;
  2908. const intel_limit_t *limit;
  2909. int ret;
  2910. struct fdi_m_n m_n = {0};
  2911. int data_m1_reg = (pipe == 0) ? PIPEA_DATA_M1 : PIPEB_DATA_M1;
  2912. int data_n1_reg = (pipe == 0) ? PIPEA_DATA_N1 : PIPEB_DATA_N1;
  2913. int link_m1_reg = (pipe == 0) ? PIPEA_LINK_M1 : PIPEB_LINK_M1;
  2914. int link_n1_reg = (pipe == 0) ? PIPEA_LINK_N1 : PIPEB_LINK_N1;
  2915. int pch_fp_reg = (pipe == 0) ? PCH_FPA0 : PCH_FPB0;
  2916. int pch_dpll_reg = (pipe == 0) ? PCH_DPLL_A : PCH_DPLL_B;
  2917. int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL;
  2918. int fdi_tx_reg = (pipe == 0) ? FDI_TXA_CTL : FDI_TXB_CTL;
  2919. int trans_dpll_sel = (pipe == 0) ? 0 : 1;
  2920. int lvds_reg = LVDS;
  2921. u32 temp;
  2922. int sdvo_pixel_multiply;
  2923. int target_clock;
  2924. drm_vblank_pre_modeset(dev, pipe);
  2925. list_for_each_entry(encoder, &mode_config->encoder_list, head) {
  2926. if (!encoder || encoder->crtc != crtc)
  2927. continue;
  2928. intel_encoder = enc_to_intel_encoder(encoder);
  2929. switch (intel_encoder->type) {
  2930. case INTEL_OUTPUT_LVDS:
  2931. is_lvds = true;
  2932. break;
  2933. case INTEL_OUTPUT_SDVO:
  2934. case INTEL_OUTPUT_HDMI:
  2935. is_sdvo = true;
  2936. if (intel_encoder->needs_tv_clock)
  2937. is_tv = true;
  2938. break;
  2939. case INTEL_OUTPUT_DVO:
  2940. is_dvo = true;
  2941. break;
  2942. case INTEL_OUTPUT_TVOUT:
  2943. is_tv = true;
  2944. break;
  2945. case INTEL_OUTPUT_ANALOG:
  2946. is_crt = true;
  2947. break;
  2948. case INTEL_OUTPUT_DISPLAYPORT:
  2949. is_dp = true;
  2950. break;
  2951. case INTEL_OUTPUT_EDP:
  2952. is_edp = true;
  2953. break;
  2954. }
  2955. num_connectors++;
  2956. }
  2957. if (is_lvds && dev_priv->lvds_use_ssc && num_connectors < 2) {
  2958. refclk = dev_priv->lvds_ssc_freq * 1000;
  2959. DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
  2960. refclk / 1000);
  2961. } else if (IS_I9XX(dev)) {
  2962. refclk = 96000;
  2963. if (HAS_PCH_SPLIT(dev))
  2964. refclk = 120000; /* 120Mhz refclk */
  2965. } else {
  2966. refclk = 48000;
  2967. }
  2968. /*
  2969. * Returns a set of divisors for the desired target clock with the given
  2970. * refclk, or FALSE. The returned values represent the clock equation:
  2971. * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
  2972. */
  2973. limit = intel_limit(crtc);
  2974. ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, &clock);
  2975. if (!ok) {
  2976. DRM_ERROR("Couldn't find PLL settings for mode!\n");
  2977. drm_vblank_post_modeset(dev, pipe);
  2978. return -EINVAL;
  2979. }
  2980. if (is_lvds && dev_priv->lvds_downclock_avail) {
  2981. has_reduced_clock = limit->find_pll(limit, crtc,
  2982. dev_priv->lvds_downclock,
  2983. refclk,
  2984. &reduced_clock);
  2985. if (has_reduced_clock && (clock.p != reduced_clock.p)) {
  2986. /*
  2987. * If the different P is found, it means that we can't
  2988. * switch the display clock by using the FP0/FP1.
  2989. * In such case we will disable the LVDS downclock
  2990. * feature.
  2991. */
  2992. DRM_DEBUG_KMS("Different P is found for "
  2993. "LVDS clock/downclock\n");
  2994. has_reduced_clock = 0;
  2995. }
  2996. }
  2997. /* SDVO TV has fixed PLL values depend on its clock range,
  2998. this mirrors vbios setting. */
  2999. if (is_sdvo && is_tv) {
  3000. if (adjusted_mode->clock >= 100000
  3001. && adjusted_mode->clock < 140500) {
  3002. clock.p1 = 2;
  3003. clock.p2 = 10;
  3004. clock.n = 3;
  3005. clock.m1 = 16;
  3006. clock.m2 = 8;
  3007. } else if (adjusted_mode->clock >= 140500
  3008. && adjusted_mode->clock <= 200000) {
  3009. clock.p1 = 1;
  3010. clock.p2 = 10;
  3011. clock.n = 6;
  3012. clock.m1 = 12;
  3013. clock.m2 = 8;
  3014. }
  3015. }
  3016. /* FDI link */
  3017. if (HAS_PCH_SPLIT(dev)) {
  3018. int lane = 0, link_bw, bpp;
  3019. /* eDP doesn't require FDI link, so just set DP M/N
  3020. according to current link config */
  3021. if (is_edp) {
  3022. target_clock = mode->clock;
  3023. intel_edp_link_config(intel_encoder,
  3024. &lane, &link_bw);
  3025. } else {
  3026. /* DP over FDI requires target mode clock
  3027. instead of link clock */
  3028. if (is_dp)
  3029. target_clock = mode->clock;
  3030. else
  3031. target_clock = adjusted_mode->clock;
  3032. link_bw = 270000;
  3033. }
  3034. /* determine panel color depth */
  3035. temp = I915_READ(pipeconf_reg);
  3036. temp &= ~PIPE_BPC_MASK;
  3037. if (is_lvds) {
  3038. int lvds_reg = I915_READ(PCH_LVDS);
  3039. /* the BPC will be 6 if it is 18-bit LVDS panel */
  3040. if ((lvds_reg & LVDS_A3_POWER_MASK) == LVDS_A3_POWER_UP)
  3041. temp |= PIPE_8BPC;
  3042. else
  3043. temp |= PIPE_6BPC;
  3044. } else if (is_edp) {
  3045. switch (dev_priv->edp_bpp/3) {
  3046. case 8:
  3047. temp |= PIPE_8BPC;
  3048. break;
  3049. case 10:
  3050. temp |= PIPE_10BPC;
  3051. break;
  3052. case 6:
  3053. temp |= PIPE_6BPC;
  3054. break;
  3055. case 12:
  3056. temp |= PIPE_12BPC;
  3057. break;
  3058. }
  3059. } else
  3060. temp |= PIPE_8BPC;
  3061. I915_WRITE(pipeconf_reg, temp);
  3062. I915_READ(pipeconf_reg);
  3063. switch (temp & PIPE_BPC_MASK) {
  3064. case PIPE_8BPC:
  3065. bpp = 24;
  3066. break;
  3067. case PIPE_10BPC:
  3068. bpp = 30;
  3069. break;
  3070. case PIPE_6BPC:
  3071. bpp = 18;
  3072. break;
  3073. case PIPE_12BPC:
  3074. bpp = 36;
  3075. break;
  3076. default:
  3077. DRM_ERROR("unknown pipe bpc value\n");
  3078. bpp = 24;
  3079. }
  3080. if (!lane) {
  3081. /*
  3082. * Account for spread spectrum to avoid
  3083. * oversubscribing the link. Max center spread
  3084. * is 2.5%; use 5% for safety's sake.
  3085. */
  3086. u32 bps = target_clock * bpp * 21 / 20;
  3087. lane = bps / (link_bw * 8) + 1;
  3088. }
  3089. intel_crtc->fdi_lanes = lane;
  3090. ironlake_compute_m_n(bpp, lane, target_clock, link_bw, &m_n);
  3091. }
  3092. /* Ironlake: try to setup display ref clock before DPLL
  3093. * enabling. This is only under driver's control after
  3094. * PCH B stepping, previous chipset stepping should be
  3095. * ignoring this setting.
  3096. */
  3097. if (HAS_PCH_SPLIT(dev)) {
  3098. temp = I915_READ(PCH_DREF_CONTROL);
  3099. /* Always enable nonspread source */
  3100. temp &= ~DREF_NONSPREAD_SOURCE_MASK;
  3101. temp |= DREF_NONSPREAD_SOURCE_ENABLE;
  3102. I915_WRITE(PCH_DREF_CONTROL, temp);
  3103. POSTING_READ(PCH_DREF_CONTROL);
  3104. temp &= ~DREF_SSC_SOURCE_MASK;
  3105. temp |= DREF_SSC_SOURCE_ENABLE;
  3106. I915_WRITE(PCH_DREF_CONTROL, temp);
  3107. POSTING_READ(PCH_DREF_CONTROL);
  3108. udelay(200);
  3109. if (is_edp) {
  3110. if (dev_priv->lvds_use_ssc) {
  3111. temp |= DREF_SSC1_ENABLE;
  3112. I915_WRITE(PCH_DREF_CONTROL, temp);
  3113. POSTING_READ(PCH_DREF_CONTROL);
  3114. udelay(200);
  3115. temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  3116. temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
  3117. I915_WRITE(PCH_DREF_CONTROL, temp);
  3118. POSTING_READ(PCH_DREF_CONTROL);
  3119. } else {
  3120. temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
  3121. I915_WRITE(PCH_DREF_CONTROL, temp);
  3122. POSTING_READ(PCH_DREF_CONTROL);
  3123. }
  3124. }
  3125. }
  3126. if (IS_PINEVIEW(dev)) {
  3127. fp = (1 << clock.n) << 16 | clock.m1 << 8 | clock.m2;
  3128. if (has_reduced_clock)
  3129. fp2 = (1 << reduced_clock.n) << 16 |
  3130. reduced_clock.m1 << 8 | reduced_clock.m2;
  3131. } else {
  3132. fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
  3133. if (has_reduced_clock)
  3134. fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
  3135. reduced_clock.m2;
  3136. }
  3137. if (!HAS_PCH_SPLIT(dev))
  3138. dpll = DPLL_VGA_MODE_DIS;
  3139. if (IS_I9XX(dev)) {
  3140. if (is_lvds)
  3141. dpll |= DPLLB_MODE_LVDS;
  3142. else
  3143. dpll |= DPLLB_MODE_DAC_SERIAL;
  3144. if (is_sdvo) {
  3145. dpll |= DPLL_DVO_HIGH_SPEED;
  3146. sdvo_pixel_multiply = adjusted_mode->clock / mode->clock;
  3147. if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  3148. dpll |= (sdvo_pixel_multiply - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
  3149. else if (HAS_PCH_SPLIT(dev))
  3150. dpll |= (sdvo_pixel_multiply - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
  3151. }
  3152. if (is_dp)
  3153. dpll |= DPLL_DVO_HIGH_SPEED;
  3154. /* compute bitmask from p1 value */
  3155. if (IS_PINEVIEW(dev))
  3156. dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
  3157. else {
  3158. dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  3159. /* also FPA1 */
  3160. if (HAS_PCH_SPLIT(dev))
  3161. dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
  3162. if (IS_G4X(dev) && has_reduced_clock)
  3163. dpll |= (1 << (reduced_clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
  3164. }
  3165. switch (clock.p2) {
  3166. case 5:
  3167. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
  3168. break;
  3169. case 7:
  3170. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
  3171. break;
  3172. case 10:
  3173. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
  3174. break;
  3175. case 14:
  3176. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
  3177. break;
  3178. }
  3179. if (IS_I965G(dev) && !HAS_PCH_SPLIT(dev))
  3180. dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
  3181. } else {
  3182. if (is_lvds) {
  3183. dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  3184. } else {
  3185. if (clock.p1 == 2)
  3186. dpll |= PLL_P1_DIVIDE_BY_TWO;
  3187. else
  3188. dpll |= (clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  3189. if (clock.p2 == 4)
  3190. dpll |= PLL_P2_DIVIDE_BY_4;
  3191. }
  3192. }
  3193. if (is_sdvo && is_tv)
  3194. dpll |= PLL_REF_INPUT_TVCLKINBC;
  3195. else if (is_tv)
  3196. /* XXX: just matching BIOS for now */
  3197. /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
  3198. dpll |= 3;
  3199. else if (is_lvds && dev_priv->lvds_use_ssc && num_connectors < 2)
  3200. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  3201. else
  3202. dpll |= PLL_REF_INPUT_DREFCLK;
  3203. /* setup pipeconf */
  3204. pipeconf = I915_READ(pipeconf_reg);
  3205. /* Set up the display plane register */
  3206. dspcntr = DISPPLANE_GAMMA_ENABLE;
  3207. /* Ironlake's plane is forced to pipe, bit 24 is to
  3208. enable color space conversion */
  3209. if (!HAS_PCH_SPLIT(dev)) {
  3210. if (pipe == 0)
  3211. dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
  3212. else
  3213. dspcntr |= DISPPLANE_SEL_PIPE_B;
  3214. }
  3215. if (pipe == 0 && !IS_I965G(dev)) {
  3216. /* Enable pixel doubling when the dot clock is > 90% of the (display)
  3217. * core speed.
  3218. *
  3219. * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
  3220. * pipe == 0 check?
  3221. */
  3222. if (mode->clock >
  3223. dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
  3224. pipeconf |= PIPEACONF_DOUBLE_WIDE;
  3225. else
  3226. pipeconf &= ~PIPEACONF_DOUBLE_WIDE;
  3227. }
  3228. dspcntr |= DISPLAY_PLANE_ENABLE;
  3229. pipeconf |= PIPEACONF_ENABLE;
  3230. dpll |= DPLL_VCO_ENABLE;
  3231. /* Disable the panel fitter if it was on our pipe */
  3232. if (!HAS_PCH_SPLIT(dev) && intel_panel_fitter_pipe(dev) == pipe)
  3233. I915_WRITE(PFIT_CONTROL, 0);
  3234. DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
  3235. drm_mode_debug_printmodeline(mode);
  3236. /* assign to Ironlake registers */
  3237. if (HAS_PCH_SPLIT(dev)) {
  3238. fp_reg = pch_fp_reg;
  3239. dpll_reg = pch_dpll_reg;
  3240. }
  3241. if (is_edp) {
  3242. ironlake_disable_pll_edp(crtc);
  3243. } else if ((dpll & DPLL_VCO_ENABLE)) {
  3244. I915_WRITE(fp_reg, fp);
  3245. I915_WRITE(dpll_reg, dpll & ~DPLL_VCO_ENABLE);
  3246. I915_READ(dpll_reg);
  3247. udelay(150);
  3248. }
  3249. /* enable transcoder DPLL */
  3250. if (HAS_PCH_CPT(dev)) {
  3251. temp = I915_READ(PCH_DPLL_SEL);
  3252. if (trans_dpll_sel == 0)
  3253. temp |= (TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL);
  3254. else
  3255. temp |= (TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
  3256. I915_WRITE(PCH_DPLL_SEL, temp);
  3257. I915_READ(PCH_DPLL_SEL);
  3258. udelay(150);
  3259. }
  3260. /* The LVDS pin pair needs to be on before the DPLLs are enabled.
  3261. * This is an exception to the general rule that mode_set doesn't turn
  3262. * things on.
  3263. */
  3264. if (is_lvds) {
  3265. u32 lvds;
  3266. if (HAS_PCH_SPLIT(dev))
  3267. lvds_reg = PCH_LVDS;
  3268. lvds = I915_READ(lvds_reg);
  3269. lvds |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
  3270. if (pipe == 1) {
  3271. if (HAS_PCH_CPT(dev))
  3272. lvds |= PORT_TRANS_B_SEL_CPT;
  3273. else
  3274. lvds |= LVDS_PIPEB_SELECT;
  3275. } else {
  3276. if (HAS_PCH_CPT(dev))
  3277. lvds &= ~PORT_TRANS_SEL_MASK;
  3278. else
  3279. lvds &= ~LVDS_PIPEB_SELECT;
  3280. }
  3281. /* set the corresponsding LVDS_BORDER bit */
  3282. lvds |= dev_priv->lvds_border_bits;
  3283. /* Set the B0-B3 data pairs corresponding to whether we're going to
  3284. * set the DPLLs for dual-channel mode or not.
  3285. */
  3286. if (clock.p2 == 7)
  3287. lvds |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
  3288. else
  3289. lvds &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
  3290. /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
  3291. * appropriately here, but we need to look more thoroughly into how
  3292. * panels behave in the two modes.
  3293. */
  3294. /* set the dithering flag */
  3295. if (IS_I965G(dev)) {
  3296. if (dev_priv->lvds_dither) {
  3297. if (HAS_PCH_SPLIT(dev)) {
  3298. pipeconf |= PIPE_ENABLE_DITHER;
  3299. pipeconf &= ~PIPE_DITHER_TYPE_MASK;
  3300. pipeconf |= PIPE_DITHER_TYPE_ST01;
  3301. } else
  3302. lvds |= LVDS_ENABLE_DITHER;
  3303. } else {
  3304. if (HAS_PCH_SPLIT(dev)) {
  3305. pipeconf &= ~PIPE_ENABLE_DITHER;
  3306. pipeconf &= ~PIPE_DITHER_TYPE_MASK;
  3307. } else
  3308. lvds &= ~LVDS_ENABLE_DITHER;
  3309. }
  3310. }
  3311. I915_WRITE(lvds_reg, lvds);
  3312. I915_READ(lvds_reg);
  3313. }
  3314. if (is_dp)
  3315. intel_dp_set_m_n(crtc, mode, adjusted_mode);
  3316. else if (HAS_PCH_SPLIT(dev)) {
  3317. /* For non-DP output, clear any trans DP clock recovery setting.*/
  3318. if (pipe == 0) {
  3319. I915_WRITE(TRANSA_DATA_M1, 0);
  3320. I915_WRITE(TRANSA_DATA_N1, 0);
  3321. I915_WRITE(TRANSA_DP_LINK_M1, 0);
  3322. I915_WRITE(TRANSA_DP_LINK_N1, 0);
  3323. } else {
  3324. I915_WRITE(TRANSB_DATA_M1, 0);
  3325. I915_WRITE(TRANSB_DATA_N1, 0);
  3326. I915_WRITE(TRANSB_DP_LINK_M1, 0);
  3327. I915_WRITE(TRANSB_DP_LINK_N1, 0);
  3328. }
  3329. }
  3330. if (!is_edp) {
  3331. I915_WRITE(fp_reg, fp);
  3332. I915_WRITE(dpll_reg, dpll);
  3333. I915_READ(dpll_reg);
  3334. /* Wait for the clocks to stabilize. */
  3335. udelay(150);
  3336. if (IS_I965G(dev) && !HAS_PCH_SPLIT(dev)) {
  3337. if (is_sdvo) {
  3338. sdvo_pixel_multiply = adjusted_mode->clock / mode->clock;
  3339. I915_WRITE(dpll_md_reg, (0 << DPLL_MD_UDI_DIVIDER_SHIFT) |
  3340. ((sdvo_pixel_multiply - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT));
  3341. } else
  3342. I915_WRITE(dpll_md_reg, 0);
  3343. } else {
  3344. /* write it again -- the BIOS does, after all */
  3345. I915_WRITE(dpll_reg, dpll);
  3346. }
  3347. I915_READ(dpll_reg);
  3348. /* Wait for the clocks to stabilize. */
  3349. udelay(150);
  3350. }
  3351. if (is_lvds && has_reduced_clock && i915_powersave) {
  3352. I915_WRITE(fp_reg + 4, fp2);
  3353. intel_crtc->lowfreq_avail = true;
  3354. if (HAS_PIPE_CXSR(dev)) {
  3355. DRM_DEBUG_KMS("enabling CxSR downclocking\n");
  3356. pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
  3357. }
  3358. } else {
  3359. I915_WRITE(fp_reg + 4, fp);
  3360. intel_crtc->lowfreq_avail = false;
  3361. if (HAS_PIPE_CXSR(dev)) {
  3362. DRM_DEBUG_KMS("disabling CxSR downclocking\n");
  3363. pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
  3364. }
  3365. }
  3366. if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
  3367. pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
  3368. /* the chip adds 2 halflines automatically */
  3369. adjusted_mode->crtc_vdisplay -= 1;
  3370. adjusted_mode->crtc_vtotal -= 1;
  3371. adjusted_mode->crtc_vblank_start -= 1;
  3372. adjusted_mode->crtc_vblank_end -= 1;
  3373. adjusted_mode->crtc_vsync_end -= 1;
  3374. adjusted_mode->crtc_vsync_start -= 1;
  3375. } else
  3376. pipeconf &= ~PIPECONF_INTERLACE_W_FIELD_INDICATION; /* progressive */
  3377. I915_WRITE(htot_reg, (adjusted_mode->crtc_hdisplay - 1) |
  3378. ((adjusted_mode->crtc_htotal - 1) << 16));
  3379. I915_WRITE(hblank_reg, (adjusted_mode->crtc_hblank_start - 1) |
  3380. ((adjusted_mode->crtc_hblank_end - 1) << 16));
  3381. I915_WRITE(hsync_reg, (adjusted_mode->crtc_hsync_start - 1) |
  3382. ((adjusted_mode->crtc_hsync_end - 1) << 16));
  3383. I915_WRITE(vtot_reg, (adjusted_mode->crtc_vdisplay - 1) |
  3384. ((adjusted_mode->crtc_vtotal - 1) << 16));
  3385. I915_WRITE(vblank_reg, (adjusted_mode->crtc_vblank_start - 1) |
  3386. ((adjusted_mode->crtc_vblank_end - 1) << 16));
  3387. I915_WRITE(vsync_reg, (adjusted_mode->crtc_vsync_start - 1) |
  3388. ((adjusted_mode->crtc_vsync_end - 1) << 16));
  3389. /* pipesrc and dspsize control the size that is scaled from, which should
  3390. * always be the user's requested size.
  3391. */
  3392. if (!HAS_PCH_SPLIT(dev)) {
  3393. I915_WRITE(dspsize_reg, ((mode->vdisplay - 1) << 16) |
  3394. (mode->hdisplay - 1));
  3395. I915_WRITE(dsppos_reg, 0);
  3396. }
  3397. I915_WRITE(pipesrc_reg, ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
  3398. if (HAS_PCH_SPLIT(dev)) {
  3399. I915_WRITE(data_m1_reg, TU_SIZE(m_n.tu) | m_n.gmch_m);
  3400. I915_WRITE(data_n1_reg, TU_SIZE(m_n.tu) | m_n.gmch_n);
  3401. I915_WRITE(link_m1_reg, m_n.link_m);
  3402. I915_WRITE(link_n1_reg, m_n.link_n);
  3403. if (is_edp) {
  3404. ironlake_set_pll_edp(crtc, adjusted_mode->clock);
  3405. } else {
  3406. /* enable FDI RX PLL too */
  3407. temp = I915_READ(fdi_rx_reg);
  3408. I915_WRITE(fdi_rx_reg, temp | FDI_RX_PLL_ENABLE);
  3409. I915_READ(fdi_rx_reg);
  3410. udelay(200);
  3411. /* enable FDI TX PLL too */
  3412. temp = I915_READ(fdi_tx_reg);
  3413. I915_WRITE(fdi_tx_reg, temp | FDI_TX_PLL_ENABLE);
  3414. I915_READ(fdi_tx_reg);
  3415. /* enable FDI RX PCDCLK */
  3416. temp = I915_READ(fdi_rx_reg);
  3417. I915_WRITE(fdi_rx_reg, temp | FDI_SEL_PCDCLK);
  3418. I915_READ(fdi_rx_reg);
  3419. udelay(200);
  3420. }
  3421. }
  3422. I915_WRITE(pipeconf_reg, pipeconf);
  3423. I915_READ(pipeconf_reg);
  3424. intel_wait_for_vblank(dev);
  3425. if (IS_IRONLAKE(dev)) {
  3426. /* enable address swizzle for tiling buffer */
  3427. temp = I915_READ(DISP_ARB_CTL);
  3428. I915_WRITE(DISP_ARB_CTL, temp | DISP_TILE_SURFACE_SWIZZLING);
  3429. }
  3430. I915_WRITE(dspcntr_reg, dspcntr);
  3431. /* Flush the plane changes */
  3432. ret = intel_pipe_set_base(crtc, x, y, old_fb);
  3433. if ((IS_I965G(dev) || plane == 0))
  3434. intel_update_fbc(crtc, &crtc->mode);
  3435. intel_update_watermarks(dev);
  3436. drm_vblank_post_modeset(dev, pipe);
  3437. return ret;
  3438. }
  3439. /** Loads the palette/gamma unit for the CRTC with the prepared values */
  3440. void intel_crtc_load_lut(struct drm_crtc *crtc)
  3441. {
  3442. struct drm_device *dev = crtc->dev;
  3443. struct drm_i915_private *dev_priv = dev->dev_private;
  3444. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3445. int palreg = (intel_crtc->pipe == 0) ? PALETTE_A : PALETTE_B;
  3446. int i;
  3447. /* The clocks have to be on to load the palette. */
  3448. if (!crtc->enabled)
  3449. return;
  3450. /* use legacy palette for Ironlake */
  3451. if (HAS_PCH_SPLIT(dev))
  3452. palreg = (intel_crtc->pipe == 0) ? LGC_PALETTE_A :
  3453. LGC_PALETTE_B;
  3454. for (i = 0; i < 256; i++) {
  3455. I915_WRITE(palreg + 4 * i,
  3456. (intel_crtc->lut_r[i] << 16) |
  3457. (intel_crtc->lut_g[i] << 8) |
  3458. intel_crtc->lut_b[i]);
  3459. }
  3460. }
  3461. static int intel_crtc_cursor_set(struct drm_crtc *crtc,
  3462. struct drm_file *file_priv,
  3463. uint32_t handle,
  3464. uint32_t width, uint32_t height)
  3465. {
  3466. struct drm_device *dev = crtc->dev;
  3467. struct drm_i915_private *dev_priv = dev->dev_private;
  3468. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3469. struct drm_gem_object *bo;
  3470. struct drm_i915_gem_object *obj_priv;
  3471. int pipe = intel_crtc->pipe;
  3472. uint32_t control = (pipe == 0) ? CURACNTR : CURBCNTR;
  3473. uint32_t base = (pipe == 0) ? CURABASE : CURBBASE;
  3474. uint32_t temp = I915_READ(control);
  3475. size_t addr;
  3476. int ret;
  3477. DRM_DEBUG_KMS("\n");
  3478. /* if we want to turn off the cursor ignore width and height */
  3479. if (!handle) {
  3480. DRM_DEBUG_KMS("cursor off\n");
  3481. if (IS_MOBILE(dev) || IS_I9XX(dev)) {
  3482. temp &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
  3483. temp |= CURSOR_MODE_DISABLE;
  3484. } else {
  3485. temp &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
  3486. }
  3487. addr = 0;
  3488. bo = NULL;
  3489. mutex_lock(&dev->struct_mutex);
  3490. goto finish;
  3491. }
  3492. /* Currently we only support 64x64 cursors */
  3493. if (width != 64 || height != 64) {
  3494. DRM_ERROR("we currently only support 64x64 cursors\n");
  3495. return -EINVAL;
  3496. }
  3497. bo = drm_gem_object_lookup(dev, file_priv, handle);
  3498. if (!bo)
  3499. return -ENOENT;
  3500. obj_priv = to_intel_bo(bo);
  3501. if (bo->size < width * height * 4) {
  3502. DRM_ERROR("buffer is to small\n");
  3503. ret = -ENOMEM;
  3504. goto fail;
  3505. }
  3506. /* we only need to pin inside GTT if cursor is non-phy */
  3507. mutex_lock(&dev->struct_mutex);
  3508. if (!dev_priv->info->cursor_needs_physical) {
  3509. ret = i915_gem_object_pin(bo, PAGE_SIZE);
  3510. if (ret) {
  3511. DRM_ERROR("failed to pin cursor bo\n");
  3512. goto fail_locked;
  3513. }
  3514. ret = i915_gem_object_set_to_gtt_domain(bo, 0);
  3515. if (ret) {
  3516. DRM_ERROR("failed to move cursor bo into the GTT\n");
  3517. goto fail_unpin;
  3518. }
  3519. addr = obj_priv->gtt_offset;
  3520. } else {
  3521. ret = i915_gem_attach_phys_object(dev, bo, (pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1);
  3522. if (ret) {
  3523. DRM_ERROR("failed to attach phys object\n");
  3524. goto fail_locked;
  3525. }
  3526. addr = obj_priv->phys_obj->handle->busaddr;
  3527. }
  3528. if (!IS_I9XX(dev))
  3529. I915_WRITE(CURSIZE, (height << 12) | width);
  3530. /* Hooray for CUR*CNTR differences */
  3531. if (IS_MOBILE(dev) || IS_I9XX(dev)) {
  3532. temp &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
  3533. temp |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
  3534. temp |= (pipe << 28); /* Connect to correct pipe */
  3535. } else {
  3536. temp &= ~(CURSOR_FORMAT_MASK);
  3537. temp |= CURSOR_ENABLE;
  3538. temp |= CURSOR_FORMAT_ARGB | CURSOR_GAMMA_ENABLE;
  3539. }
  3540. finish:
  3541. I915_WRITE(control, temp);
  3542. I915_WRITE(base, addr);
  3543. if (intel_crtc->cursor_bo) {
  3544. if (dev_priv->info->cursor_needs_physical) {
  3545. if (intel_crtc->cursor_bo != bo)
  3546. i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
  3547. } else
  3548. i915_gem_object_unpin(intel_crtc->cursor_bo);
  3549. drm_gem_object_unreference(intel_crtc->cursor_bo);
  3550. }
  3551. mutex_unlock(&dev->struct_mutex);
  3552. intel_crtc->cursor_addr = addr;
  3553. intel_crtc->cursor_bo = bo;
  3554. return 0;
  3555. fail_unpin:
  3556. i915_gem_object_unpin(bo);
  3557. fail_locked:
  3558. mutex_unlock(&dev->struct_mutex);
  3559. fail:
  3560. drm_gem_object_unreference_unlocked(bo);
  3561. return ret;
  3562. }
  3563. static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
  3564. {
  3565. struct drm_device *dev = crtc->dev;
  3566. struct drm_i915_private *dev_priv = dev->dev_private;
  3567. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3568. struct intel_framebuffer *intel_fb;
  3569. int pipe = intel_crtc->pipe;
  3570. uint32_t temp = 0;
  3571. uint32_t adder;
  3572. if (crtc->fb) {
  3573. intel_fb = to_intel_framebuffer(crtc->fb);
  3574. intel_mark_busy(dev, intel_fb->obj);
  3575. }
  3576. if (x < 0) {
  3577. temp |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
  3578. x = -x;
  3579. }
  3580. if (y < 0) {
  3581. temp |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
  3582. y = -y;
  3583. }
  3584. temp |= x << CURSOR_X_SHIFT;
  3585. temp |= y << CURSOR_Y_SHIFT;
  3586. adder = intel_crtc->cursor_addr;
  3587. I915_WRITE((pipe == 0) ? CURAPOS : CURBPOS, temp);
  3588. I915_WRITE((pipe == 0) ? CURABASE : CURBBASE, adder);
  3589. return 0;
  3590. }
  3591. /** Sets the color ramps on behalf of RandR */
  3592. void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
  3593. u16 blue, int regno)
  3594. {
  3595. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3596. intel_crtc->lut_r[regno] = red >> 8;
  3597. intel_crtc->lut_g[regno] = green >> 8;
  3598. intel_crtc->lut_b[regno] = blue >> 8;
  3599. }
  3600. void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
  3601. u16 *blue, int regno)
  3602. {
  3603. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3604. *red = intel_crtc->lut_r[regno] << 8;
  3605. *green = intel_crtc->lut_g[regno] << 8;
  3606. *blue = intel_crtc->lut_b[regno] << 8;
  3607. }
  3608. static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
  3609. u16 *blue, uint32_t size)
  3610. {
  3611. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3612. int i;
  3613. if (size != 256)
  3614. return;
  3615. for (i = 0; i < 256; i++) {
  3616. intel_crtc->lut_r[i] = red[i] >> 8;
  3617. intel_crtc->lut_g[i] = green[i] >> 8;
  3618. intel_crtc->lut_b[i] = blue[i] >> 8;
  3619. }
  3620. intel_crtc_load_lut(crtc);
  3621. }
  3622. /**
  3623. * Get a pipe with a simple mode set on it for doing load-based monitor
  3624. * detection.
  3625. *
  3626. * It will be up to the load-detect code to adjust the pipe as appropriate for
  3627. * its requirements. The pipe will be connected to no other encoders.
  3628. *
  3629. * Currently this code will only succeed if there is a pipe with no encoders
  3630. * configured for it. In the future, it could choose to temporarily disable
  3631. * some outputs to free up a pipe for its use.
  3632. *
  3633. * \return crtc, or NULL if no pipes are available.
  3634. */
  3635. /* VESA 640x480x72Hz mode to set on the pipe */
  3636. static struct drm_display_mode load_detect_mode = {
  3637. DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
  3638. 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
  3639. };
  3640. struct drm_crtc *intel_get_load_detect_pipe(struct intel_encoder *intel_encoder,
  3641. struct drm_connector *connector,
  3642. struct drm_display_mode *mode,
  3643. int *dpms_mode)
  3644. {
  3645. struct intel_crtc *intel_crtc;
  3646. struct drm_crtc *possible_crtc;
  3647. struct drm_crtc *supported_crtc =NULL;
  3648. struct drm_encoder *encoder = &intel_encoder->enc;
  3649. struct drm_crtc *crtc = NULL;
  3650. struct drm_device *dev = encoder->dev;
  3651. struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
  3652. struct drm_crtc_helper_funcs *crtc_funcs;
  3653. int i = -1;
  3654. /*
  3655. * Algorithm gets a little messy:
  3656. * - if the connector already has an assigned crtc, use it (but make
  3657. * sure it's on first)
  3658. * - try to find the first unused crtc that can drive this connector,
  3659. * and use that if we find one
  3660. * - if there are no unused crtcs available, try to use the first
  3661. * one we found that supports the connector
  3662. */
  3663. /* See if we already have a CRTC for this connector */
  3664. if (encoder->crtc) {
  3665. crtc = encoder->crtc;
  3666. /* Make sure the crtc and connector are running */
  3667. intel_crtc = to_intel_crtc(crtc);
  3668. *dpms_mode = intel_crtc->dpms_mode;
  3669. if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
  3670. crtc_funcs = crtc->helper_private;
  3671. crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
  3672. encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
  3673. }
  3674. return crtc;
  3675. }
  3676. /* Find an unused one (if possible) */
  3677. list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
  3678. i++;
  3679. if (!(encoder->possible_crtcs & (1 << i)))
  3680. continue;
  3681. if (!possible_crtc->enabled) {
  3682. crtc = possible_crtc;
  3683. break;
  3684. }
  3685. if (!supported_crtc)
  3686. supported_crtc = possible_crtc;
  3687. }
  3688. /*
  3689. * If we didn't find an unused CRTC, don't use any.
  3690. */
  3691. if (!crtc) {
  3692. return NULL;
  3693. }
  3694. encoder->crtc = crtc;
  3695. connector->encoder = encoder;
  3696. intel_encoder->load_detect_temp = true;
  3697. intel_crtc = to_intel_crtc(crtc);
  3698. *dpms_mode = intel_crtc->dpms_mode;
  3699. if (!crtc->enabled) {
  3700. if (!mode)
  3701. mode = &load_detect_mode;
  3702. drm_crtc_helper_set_mode(crtc, mode, 0, 0, crtc->fb);
  3703. } else {
  3704. if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
  3705. crtc_funcs = crtc->helper_private;
  3706. crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
  3707. }
  3708. /* Add this connector to the crtc */
  3709. encoder_funcs->mode_set(encoder, &crtc->mode, &crtc->mode);
  3710. encoder_funcs->commit(encoder);
  3711. }
  3712. /* let the connector get through one full cycle before testing */
  3713. intel_wait_for_vblank(dev);
  3714. return crtc;
  3715. }
  3716. void intel_release_load_detect_pipe(struct intel_encoder *intel_encoder,
  3717. struct drm_connector *connector, int dpms_mode)
  3718. {
  3719. struct drm_encoder *encoder = &intel_encoder->enc;
  3720. struct drm_device *dev = encoder->dev;
  3721. struct drm_crtc *crtc = encoder->crtc;
  3722. struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
  3723. struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
  3724. if (intel_encoder->load_detect_temp) {
  3725. encoder->crtc = NULL;
  3726. connector->encoder = NULL;
  3727. intel_encoder->load_detect_temp = false;
  3728. crtc->enabled = drm_helper_crtc_in_use(crtc);
  3729. drm_helper_disable_unused_functions(dev);
  3730. }
  3731. /* Switch crtc and encoder back off if necessary */
  3732. if (crtc->enabled && dpms_mode != DRM_MODE_DPMS_ON) {
  3733. if (encoder->crtc == crtc)
  3734. encoder_funcs->dpms(encoder, dpms_mode);
  3735. crtc_funcs->dpms(crtc, dpms_mode);
  3736. }
  3737. }
  3738. /* Returns the clock of the currently programmed mode of the given pipe. */
  3739. static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
  3740. {
  3741. struct drm_i915_private *dev_priv = dev->dev_private;
  3742. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3743. int pipe = intel_crtc->pipe;
  3744. u32 dpll = I915_READ((pipe == 0) ? DPLL_A : DPLL_B);
  3745. u32 fp;
  3746. intel_clock_t clock;
  3747. if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
  3748. fp = I915_READ((pipe == 0) ? FPA0 : FPB0);
  3749. else
  3750. fp = I915_READ((pipe == 0) ? FPA1 : FPB1);
  3751. clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
  3752. if (IS_PINEVIEW(dev)) {
  3753. clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
  3754. clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
  3755. } else {
  3756. clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
  3757. clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
  3758. }
  3759. if (IS_I9XX(dev)) {
  3760. if (IS_PINEVIEW(dev))
  3761. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
  3762. DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
  3763. else
  3764. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
  3765. DPLL_FPA01_P1_POST_DIV_SHIFT);
  3766. switch (dpll & DPLL_MODE_MASK) {
  3767. case DPLLB_MODE_DAC_SERIAL:
  3768. clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
  3769. 5 : 10;
  3770. break;
  3771. case DPLLB_MODE_LVDS:
  3772. clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
  3773. 7 : 14;
  3774. break;
  3775. default:
  3776. DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
  3777. "mode\n", (int)(dpll & DPLL_MODE_MASK));
  3778. return 0;
  3779. }
  3780. /* XXX: Handle the 100Mhz refclk */
  3781. intel_clock(dev, 96000, &clock);
  3782. } else {
  3783. bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
  3784. if (is_lvds) {
  3785. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
  3786. DPLL_FPA01_P1_POST_DIV_SHIFT);
  3787. clock.p2 = 14;
  3788. if ((dpll & PLL_REF_INPUT_MASK) ==
  3789. PLLB_REF_INPUT_SPREADSPECTRUMIN) {
  3790. /* XXX: might not be 66MHz */
  3791. intel_clock(dev, 66000, &clock);
  3792. } else
  3793. intel_clock(dev, 48000, &clock);
  3794. } else {
  3795. if (dpll & PLL_P1_DIVIDE_BY_TWO)
  3796. clock.p1 = 2;
  3797. else {
  3798. clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
  3799. DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
  3800. }
  3801. if (dpll & PLL_P2_DIVIDE_BY_4)
  3802. clock.p2 = 4;
  3803. else
  3804. clock.p2 = 2;
  3805. intel_clock(dev, 48000, &clock);
  3806. }
  3807. }
  3808. /* XXX: It would be nice to validate the clocks, but we can't reuse
  3809. * i830PllIsValid() because it relies on the xf86_config connector
  3810. * configuration being accurate, which it isn't necessarily.
  3811. */
  3812. return clock.dot;
  3813. }
  3814. /** Returns the currently programmed mode of the given pipe. */
  3815. struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
  3816. struct drm_crtc *crtc)
  3817. {
  3818. struct drm_i915_private *dev_priv = dev->dev_private;
  3819. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3820. int pipe = intel_crtc->pipe;
  3821. struct drm_display_mode *mode;
  3822. int htot = I915_READ((pipe == 0) ? HTOTAL_A : HTOTAL_B);
  3823. int hsync = I915_READ((pipe == 0) ? HSYNC_A : HSYNC_B);
  3824. int vtot = I915_READ((pipe == 0) ? VTOTAL_A : VTOTAL_B);
  3825. int vsync = I915_READ((pipe == 0) ? VSYNC_A : VSYNC_B);
  3826. mode = kzalloc(sizeof(*mode), GFP_KERNEL);
  3827. if (!mode)
  3828. return NULL;
  3829. mode->clock = intel_crtc_clock_get(dev, crtc);
  3830. mode->hdisplay = (htot & 0xffff) + 1;
  3831. mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
  3832. mode->hsync_start = (hsync & 0xffff) + 1;
  3833. mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
  3834. mode->vdisplay = (vtot & 0xffff) + 1;
  3835. mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
  3836. mode->vsync_start = (vsync & 0xffff) + 1;
  3837. mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
  3838. drm_mode_set_name(mode);
  3839. drm_mode_set_crtcinfo(mode, 0);
  3840. return mode;
  3841. }
  3842. #define GPU_IDLE_TIMEOUT 500 /* ms */
  3843. /* When this timer fires, we've been idle for awhile */
  3844. static void intel_gpu_idle_timer(unsigned long arg)
  3845. {
  3846. struct drm_device *dev = (struct drm_device *)arg;
  3847. drm_i915_private_t *dev_priv = dev->dev_private;
  3848. DRM_DEBUG_DRIVER("idle timer fired, downclocking\n");
  3849. dev_priv->busy = false;
  3850. queue_work(dev_priv->wq, &dev_priv->idle_work);
  3851. }
  3852. #define CRTC_IDLE_TIMEOUT 1000 /* ms */
  3853. static void intel_crtc_idle_timer(unsigned long arg)
  3854. {
  3855. struct intel_crtc *intel_crtc = (struct intel_crtc *)arg;
  3856. struct drm_crtc *crtc = &intel_crtc->base;
  3857. drm_i915_private_t *dev_priv = crtc->dev->dev_private;
  3858. DRM_DEBUG_DRIVER("idle timer fired, downclocking\n");
  3859. intel_crtc->busy = false;
  3860. queue_work(dev_priv->wq, &dev_priv->idle_work);
  3861. }
  3862. static void intel_increase_pllclock(struct drm_crtc *crtc, bool schedule)
  3863. {
  3864. struct drm_device *dev = crtc->dev;
  3865. drm_i915_private_t *dev_priv = dev->dev_private;
  3866. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3867. int pipe = intel_crtc->pipe;
  3868. int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
  3869. int dpll = I915_READ(dpll_reg);
  3870. if (HAS_PCH_SPLIT(dev))
  3871. return;
  3872. if (!dev_priv->lvds_downclock_avail)
  3873. return;
  3874. if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
  3875. DRM_DEBUG_DRIVER("upclocking LVDS\n");
  3876. /* Unlock panel regs */
  3877. I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) |
  3878. PANEL_UNLOCK_REGS);
  3879. dpll &= ~DISPLAY_RATE_SELECT_FPA1;
  3880. I915_WRITE(dpll_reg, dpll);
  3881. dpll = I915_READ(dpll_reg);
  3882. intel_wait_for_vblank(dev);
  3883. dpll = I915_READ(dpll_reg);
  3884. if (dpll & DISPLAY_RATE_SELECT_FPA1)
  3885. DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
  3886. /* ...and lock them again */
  3887. I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
  3888. }
  3889. /* Schedule downclock */
  3890. if (schedule)
  3891. mod_timer(&intel_crtc->idle_timer, jiffies +
  3892. msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
  3893. }
  3894. static void intel_decrease_pllclock(struct drm_crtc *crtc)
  3895. {
  3896. struct drm_device *dev = crtc->dev;
  3897. drm_i915_private_t *dev_priv = dev->dev_private;
  3898. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3899. int pipe = intel_crtc->pipe;
  3900. int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
  3901. int dpll = I915_READ(dpll_reg);
  3902. if (HAS_PCH_SPLIT(dev))
  3903. return;
  3904. if (!dev_priv->lvds_downclock_avail)
  3905. return;
  3906. /*
  3907. * Since this is called by a timer, we should never get here in
  3908. * the manual case.
  3909. */
  3910. if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
  3911. DRM_DEBUG_DRIVER("downclocking LVDS\n");
  3912. /* Unlock panel regs */
  3913. I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) |
  3914. PANEL_UNLOCK_REGS);
  3915. dpll |= DISPLAY_RATE_SELECT_FPA1;
  3916. I915_WRITE(dpll_reg, dpll);
  3917. dpll = I915_READ(dpll_reg);
  3918. intel_wait_for_vblank(dev);
  3919. dpll = I915_READ(dpll_reg);
  3920. if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
  3921. DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
  3922. /* ...and lock them again */
  3923. I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
  3924. }
  3925. }
  3926. /**
  3927. * intel_idle_update - adjust clocks for idleness
  3928. * @work: work struct
  3929. *
  3930. * Either the GPU or display (or both) went idle. Check the busy status
  3931. * here and adjust the CRTC and GPU clocks as necessary.
  3932. */
  3933. static void intel_idle_update(struct work_struct *work)
  3934. {
  3935. drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
  3936. idle_work);
  3937. struct drm_device *dev = dev_priv->dev;
  3938. struct drm_crtc *crtc;
  3939. struct intel_crtc *intel_crtc;
  3940. int enabled = 0;
  3941. if (!i915_powersave)
  3942. return;
  3943. mutex_lock(&dev->struct_mutex);
  3944. i915_update_gfx_val(dev_priv);
  3945. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  3946. /* Skip inactive CRTCs */
  3947. if (!crtc->fb)
  3948. continue;
  3949. enabled++;
  3950. intel_crtc = to_intel_crtc(crtc);
  3951. if (!intel_crtc->busy)
  3952. intel_decrease_pllclock(crtc);
  3953. }
  3954. if ((enabled == 1) && (IS_I945G(dev) || IS_I945GM(dev))) {
  3955. DRM_DEBUG_DRIVER("enable memory self refresh on 945\n");
  3956. I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
  3957. }
  3958. mutex_unlock(&dev->struct_mutex);
  3959. }
  3960. /**
  3961. * intel_mark_busy - mark the GPU and possibly the display busy
  3962. * @dev: drm device
  3963. * @obj: object we're operating on
  3964. *
  3965. * Callers can use this function to indicate that the GPU is busy processing
  3966. * commands. If @obj matches one of the CRTC objects (i.e. it's a scanout
  3967. * buffer), we'll also mark the display as busy, so we know to increase its
  3968. * clock frequency.
  3969. */
  3970. void intel_mark_busy(struct drm_device *dev, struct drm_gem_object *obj)
  3971. {
  3972. drm_i915_private_t *dev_priv = dev->dev_private;
  3973. struct drm_crtc *crtc = NULL;
  3974. struct intel_framebuffer *intel_fb;
  3975. struct intel_crtc *intel_crtc;
  3976. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  3977. return;
  3978. if (!dev_priv->busy) {
  3979. if (IS_I945G(dev) || IS_I945GM(dev)) {
  3980. u32 fw_blc_self;
  3981. DRM_DEBUG_DRIVER("disable memory self refresh on 945\n");
  3982. fw_blc_self = I915_READ(FW_BLC_SELF);
  3983. fw_blc_self &= ~FW_BLC_SELF_EN;
  3984. I915_WRITE(FW_BLC_SELF, fw_blc_self | FW_BLC_SELF_EN_MASK);
  3985. }
  3986. dev_priv->busy = true;
  3987. } else
  3988. mod_timer(&dev_priv->idle_timer, jiffies +
  3989. msecs_to_jiffies(GPU_IDLE_TIMEOUT));
  3990. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  3991. if (!crtc->fb)
  3992. continue;
  3993. intel_crtc = to_intel_crtc(crtc);
  3994. intel_fb = to_intel_framebuffer(crtc->fb);
  3995. if (intel_fb->obj == obj) {
  3996. if (!intel_crtc->busy) {
  3997. if (IS_I945G(dev) || IS_I945GM(dev)) {
  3998. u32 fw_blc_self;
  3999. DRM_DEBUG_DRIVER("disable memory self refresh on 945\n");
  4000. fw_blc_self = I915_READ(FW_BLC_SELF);
  4001. fw_blc_self &= ~FW_BLC_SELF_EN;
  4002. I915_WRITE(FW_BLC_SELF, fw_blc_self | FW_BLC_SELF_EN_MASK);
  4003. }
  4004. /* Non-busy -> busy, upclock */
  4005. intel_increase_pllclock(crtc, true);
  4006. intel_crtc->busy = true;
  4007. } else {
  4008. /* Busy -> busy, put off timer */
  4009. mod_timer(&intel_crtc->idle_timer, jiffies +
  4010. msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
  4011. }
  4012. }
  4013. }
  4014. }
  4015. static void intel_crtc_destroy(struct drm_crtc *crtc)
  4016. {
  4017. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4018. drm_crtc_cleanup(crtc);
  4019. kfree(intel_crtc);
  4020. }
  4021. struct intel_unpin_work {
  4022. struct work_struct work;
  4023. struct drm_device *dev;
  4024. struct drm_gem_object *old_fb_obj;
  4025. struct drm_gem_object *pending_flip_obj;
  4026. struct drm_pending_vblank_event *event;
  4027. int pending;
  4028. };
  4029. static void intel_unpin_work_fn(struct work_struct *__work)
  4030. {
  4031. struct intel_unpin_work *work =
  4032. container_of(__work, struct intel_unpin_work, work);
  4033. mutex_lock(&work->dev->struct_mutex);
  4034. i915_gem_object_unpin(work->old_fb_obj);
  4035. drm_gem_object_unreference(work->pending_flip_obj);
  4036. drm_gem_object_unreference(work->old_fb_obj);
  4037. mutex_unlock(&work->dev->struct_mutex);
  4038. kfree(work);
  4039. }
  4040. static void do_intel_finish_page_flip(struct drm_device *dev,
  4041. struct drm_crtc *crtc)
  4042. {
  4043. drm_i915_private_t *dev_priv = dev->dev_private;
  4044. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4045. struct intel_unpin_work *work;
  4046. struct drm_i915_gem_object *obj_priv;
  4047. struct drm_pending_vblank_event *e;
  4048. struct timeval now;
  4049. unsigned long flags;
  4050. /* Ignore early vblank irqs */
  4051. if (intel_crtc == NULL)
  4052. return;
  4053. spin_lock_irqsave(&dev->event_lock, flags);
  4054. work = intel_crtc->unpin_work;
  4055. if (work == NULL || !work->pending) {
  4056. spin_unlock_irqrestore(&dev->event_lock, flags);
  4057. return;
  4058. }
  4059. intel_crtc->unpin_work = NULL;
  4060. drm_vblank_put(dev, intel_crtc->pipe);
  4061. if (work->event) {
  4062. e = work->event;
  4063. do_gettimeofday(&now);
  4064. e->event.sequence = drm_vblank_count(dev, intel_crtc->pipe);
  4065. e->event.tv_sec = now.tv_sec;
  4066. e->event.tv_usec = now.tv_usec;
  4067. list_add_tail(&e->base.link,
  4068. &e->base.file_priv->event_list);
  4069. wake_up_interruptible(&e->base.file_priv->event_wait);
  4070. }
  4071. spin_unlock_irqrestore(&dev->event_lock, flags);
  4072. obj_priv = to_intel_bo(work->pending_flip_obj);
  4073. /* Initial scanout buffer will have a 0 pending flip count */
  4074. if ((atomic_read(&obj_priv->pending_flip) == 0) ||
  4075. atomic_dec_and_test(&obj_priv->pending_flip))
  4076. DRM_WAKEUP(&dev_priv->pending_flip_queue);
  4077. schedule_work(&work->work);
  4078. }
  4079. void intel_finish_page_flip(struct drm_device *dev, int pipe)
  4080. {
  4081. drm_i915_private_t *dev_priv = dev->dev_private;
  4082. struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  4083. do_intel_finish_page_flip(dev, crtc);
  4084. }
  4085. void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
  4086. {
  4087. drm_i915_private_t *dev_priv = dev->dev_private;
  4088. struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
  4089. do_intel_finish_page_flip(dev, crtc);
  4090. }
  4091. void intel_prepare_page_flip(struct drm_device *dev, int plane)
  4092. {
  4093. drm_i915_private_t *dev_priv = dev->dev_private;
  4094. struct intel_crtc *intel_crtc =
  4095. to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
  4096. unsigned long flags;
  4097. spin_lock_irqsave(&dev->event_lock, flags);
  4098. if (intel_crtc->unpin_work) {
  4099. intel_crtc->unpin_work->pending = 1;
  4100. } else {
  4101. DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
  4102. }
  4103. spin_unlock_irqrestore(&dev->event_lock, flags);
  4104. }
  4105. static int intel_crtc_page_flip(struct drm_crtc *crtc,
  4106. struct drm_framebuffer *fb,
  4107. struct drm_pending_vblank_event *event)
  4108. {
  4109. struct drm_device *dev = crtc->dev;
  4110. struct drm_i915_private *dev_priv = dev->dev_private;
  4111. struct intel_framebuffer *intel_fb;
  4112. struct drm_i915_gem_object *obj_priv;
  4113. struct drm_gem_object *obj;
  4114. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4115. struct intel_unpin_work *work;
  4116. unsigned long flags, offset;
  4117. int pipesrc_reg = (intel_crtc->pipe == 0) ? PIPEASRC : PIPEBSRC;
  4118. int ret, pipesrc;
  4119. u32 flip_mask;
  4120. work = kzalloc(sizeof *work, GFP_KERNEL);
  4121. if (work == NULL)
  4122. return -ENOMEM;
  4123. work->event = event;
  4124. work->dev = crtc->dev;
  4125. intel_fb = to_intel_framebuffer(crtc->fb);
  4126. work->old_fb_obj = intel_fb->obj;
  4127. INIT_WORK(&work->work, intel_unpin_work_fn);
  4128. /* We borrow the event spin lock for protecting unpin_work */
  4129. spin_lock_irqsave(&dev->event_lock, flags);
  4130. if (intel_crtc->unpin_work) {
  4131. spin_unlock_irqrestore(&dev->event_lock, flags);
  4132. kfree(work);
  4133. DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
  4134. return -EBUSY;
  4135. }
  4136. intel_crtc->unpin_work = work;
  4137. spin_unlock_irqrestore(&dev->event_lock, flags);
  4138. intel_fb = to_intel_framebuffer(fb);
  4139. obj = intel_fb->obj;
  4140. mutex_lock(&dev->struct_mutex);
  4141. ret = intel_pin_and_fence_fb_obj(dev, obj);
  4142. if (ret != 0) {
  4143. mutex_unlock(&dev->struct_mutex);
  4144. spin_lock_irqsave(&dev->event_lock, flags);
  4145. intel_crtc->unpin_work = NULL;
  4146. spin_unlock_irqrestore(&dev->event_lock, flags);
  4147. kfree(work);
  4148. DRM_DEBUG_DRIVER("flip queue: %p pin & fence failed\n",
  4149. to_intel_bo(obj));
  4150. return ret;
  4151. }
  4152. /* Reference the objects for the scheduled work. */
  4153. drm_gem_object_reference(work->old_fb_obj);
  4154. drm_gem_object_reference(obj);
  4155. crtc->fb = fb;
  4156. i915_gem_object_flush_write_domain(obj);
  4157. drm_vblank_get(dev, intel_crtc->pipe);
  4158. obj_priv = to_intel_bo(obj);
  4159. atomic_inc(&obj_priv->pending_flip);
  4160. work->pending_flip_obj = obj;
  4161. if (intel_crtc->plane)
  4162. flip_mask = I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
  4163. else
  4164. flip_mask = I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT;
  4165. /* Wait for any previous flip to finish */
  4166. if (IS_GEN3(dev))
  4167. while (I915_READ(ISR) & flip_mask)
  4168. ;
  4169. /* Offset into the new buffer for cases of shared fbs between CRTCs */
  4170. offset = obj_priv->gtt_offset;
  4171. offset += (crtc->y * fb->pitch) + (crtc->x * (fb->bits_per_pixel) / 8);
  4172. BEGIN_LP_RING(4);
  4173. if (IS_I965G(dev)) {
  4174. OUT_RING(MI_DISPLAY_FLIP |
  4175. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  4176. OUT_RING(fb->pitch);
  4177. OUT_RING(offset | obj_priv->tiling_mode);
  4178. pipesrc = I915_READ(pipesrc_reg);
  4179. OUT_RING(pipesrc & 0x0fff0fff);
  4180. } else {
  4181. OUT_RING(MI_DISPLAY_FLIP_I915 |
  4182. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  4183. OUT_RING(fb->pitch);
  4184. OUT_RING(offset);
  4185. OUT_RING(MI_NOOP);
  4186. }
  4187. ADVANCE_LP_RING();
  4188. mutex_unlock(&dev->struct_mutex);
  4189. return 0;
  4190. }
  4191. static const struct drm_crtc_helper_funcs intel_helper_funcs = {
  4192. .dpms = intel_crtc_dpms,
  4193. .mode_fixup = intel_crtc_mode_fixup,
  4194. .mode_set = intel_crtc_mode_set,
  4195. .mode_set_base = intel_pipe_set_base,
  4196. .prepare = intel_crtc_prepare,
  4197. .commit = intel_crtc_commit,
  4198. .load_lut = intel_crtc_load_lut,
  4199. };
  4200. static const struct drm_crtc_funcs intel_crtc_funcs = {
  4201. .cursor_set = intel_crtc_cursor_set,
  4202. .cursor_move = intel_crtc_cursor_move,
  4203. .gamma_set = intel_crtc_gamma_set,
  4204. .set_config = drm_crtc_helper_set_config,
  4205. .destroy = intel_crtc_destroy,
  4206. .page_flip = intel_crtc_page_flip,
  4207. };
  4208. static void intel_crtc_init(struct drm_device *dev, int pipe)
  4209. {
  4210. drm_i915_private_t *dev_priv = dev->dev_private;
  4211. struct intel_crtc *intel_crtc;
  4212. int i;
  4213. intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
  4214. if (intel_crtc == NULL)
  4215. return;
  4216. drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
  4217. drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
  4218. intel_crtc->pipe = pipe;
  4219. intel_crtc->plane = pipe;
  4220. for (i = 0; i < 256; i++) {
  4221. intel_crtc->lut_r[i] = i;
  4222. intel_crtc->lut_g[i] = i;
  4223. intel_crtc->lut_b[i] = i;
  4224. }
  4225. /* Swap pipes & planes for FBC on pre-965 */
  4226. intel_crtc->pipe = pipe;
  4227. intel_crtc->plane = pipe;
  4228. if (IS_MOBILE(dev) && (IS_I9XX(dev) && !IS_I965G(dev))) {
  4229. DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
  4230. intel_crtc->plane = ((pipe == 0) ? 1 : 0);
  4231. }
  4232. BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
  4233. dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
  4234. dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
  4235. dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
  4236. intel_crtc->cursor_addr = 0;
  4237. intel_crtc->dpms_mode = DRM_MODE_DPMS_OFF;
  4238. drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
  4239. intel_crtc->busy = false;
  4240. setup_timer(&intel_crtc->idle_timer, intel_crtc_idle_timer,
  4241. (unsigned long)intel_crtc);
  4242. }
  4243. int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
  4244. struct drm_file *file_priv)
  4245. {
  4246. drm_i915_private_t *dev_priv = dev->dev_private;
  4247. struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
  4248. struct drm_mode_object *drmmode_obj;
  4249. struct intel_crtc *crtc;
  4250. if (!dev_priv) {
  4251. DRM_ERROR("called with no initialization\n");
  4252. return -EINVAL;
  4253. }
  4254. drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
  4255. DRM_MODE_OBJECT_CRTC);
  4256. if (!drmmode_obj) {
  4257. DRM_ERROR("no such CRTC id\n");
  4258. return -EINVAL;
  4259. }
  4260. crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
  4261. pipe_from_crtc_id->pipe = crtc->pipe;
  4262. return 0;
  4263. }
  4264. struct drm_crtc *intel_get_crtc_from_pipe(struct drm_device *dev, int pipe)
  4265. {
  4266. struct drm_crtc *crtc = NULL;
  4267. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  4268. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4269. if (intel_crtc->pipe == pipe)
  4270. break;
  4271. }
  4272. return crtc;
  4273. }
  4274. static int intel_encoder_clones(struct drm_device *dev, int type_mask)
  4275. {
  4276. int index_mask = 0;
  4277. struct drm_encoder *encoder;
  4278. int entry = 0;
  4279. list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
  4280. struct intel_encoder *intel_encoder = enc_to_intel_encoder(encoder);
  4281. if (type_mask & intel_encoder->clone_mask)
  4282. index_mask |= (1 << entry);
  4283. entry++;
  4284. }
  4285. return index_mask;
  4286. }
  4287. static void intel_setup_outputs(struct drm_device *dev)
  4288. {
  4289. struct drm_i915_private *dev_priv = dev->dev_private;
  4290. struct drm_encoder *encoder;
  4291. intel_crt_init(dev);
  4292. /* Set up integrated LVDS */
  4293. if (IS_MOBILE(dev) && !IS_I830(dev))
  4294. intel_lvds_init(dev);
  4295. if (HAS_PCH_SPLIT(dev)) {
  4296. int found;
  4297. if (IS_MOBILE(dev) && (I915_READ(DP_A) & DP_DETECTED))
  4298. intel_dp_init(dev, DP_A);
  4299. if (I915_READ(HDMIB) & PORT_DETECTED) {
  4300. /* PCH SDVOB multiplex with HDMIB */
  4301. found = intel_sdvo_init(dev, PCH_SDVOB);
  4302. if (!found)
  4303. intel_hdmi_init(dev, HDMIB);
  4304. if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
  4305. intel_dp_init(dev, PCH_DP_B);
  4306. }
  4307. if (I915_READ(HDMIC) & PORT_DETECTED)
  4308. intel_hdmi_init(dev, HDMIC);
  4309. if (I915_READ(HDMID) & PORT_DETECTED)
  4310. intel_hdmi_init(dev, HDMID);
  4311. if (I915_READ(PCH_DP_C) & DP_DETECTED)
  4312. intel_dp_init(dev, PCH_DP_C);
  4313. if (I915_READ(PCH_DP_D) & DP_DETECTED)
  4314. intel_dp_init(dev, PCH_DP_D);
  4315. } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
  4316. bool found = false;
  4317. if (I915_READ(SDVOB) & SDVO_DETECTED) {
  4318. DRM_DEBUG_KMS("probing SDVOB\n");
  4319. found = intel_sdvo_init(dev, SDVOB);
  4320. if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
  4321. DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
  4322. intel_hdmi_init(dev, SDVOB);
  4323. }
  4324. if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
  4325. DRM_DEBUG_KMS("probing DP_B\n");
  4326. intel_dp_init(dev, DP_B);
  4327. }
  4328. }
  4329. /* Before G4X SDVOC doesn't have its own detect register */
  4330. if (I915_READ(SDVOB) & SDVO_DETECTED) {
  4331. DRM_DEBUG_KMS("probing SDVOC\n");
  4332. found = intel_sdvo_init(dev, SDVOC);
  4333. }
  4334. if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
  4335. if (SUPPORTS_INTEGRATED_HDMI(dev)) {
  4336. DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
  4337. intel_hdmi_init(dev, SDVOC);
  4338. }
  4339. if (SUPPORTS_INTEGRATED_DP(dev)) {
  4340. DRM_DEBUG_KMS("probing DP_C\n");
  4341. intel_dp_init(dev, DP_C);
  4342. }
  4343. }
  4344. if (SUPPORTS_INTEGRATED_DP(dev) &&
  4345. (I915_READ(DP_D) & DP_DETECTED)) {
  4346. DRM_DEBUG_KMS("probing DP_D\n");
  4347. intel_dp_init(dev, DP_D);
  4348. }
  4349. } else if (IS_GEN2(dev))
  4350. intel_dvo_init(dev);
  4351. if (SUPPORTS_TV(dev))
  4352. intel_tv_init(dev);
  4353. list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
  4354. struct intel_encoder *intel_encoder = enc_to_intel_encoder(encoder);
  4355. encoder->possible_crtcs = intel_encoder->crtc_mask;
  4356. encoder->possible_clones = intel_encoder_clones(dev,
  4357. intel_encoder->clone_mask);
  4358. }
  4359. }
  4360. static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
  4361. {
  4362. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  4363. drm_framebuffer_cleanup(fb);
  4364. drm_gem_object_unreference_unlocked(intel_fb->obj);
  4365. kfree(intel_fb);
  4366. }
  4367. static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
  4368. struct drm_file *file_priv,
  4369. unsigned int *handle)
  4370. {
  4371. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  4372. struct drm_gem_object *object = intel_fb->obj;
  4373. return drm_gem_handle_create(file_priv, object, handle);
  4374. }
  4375. static const struct drm_framebuffer_funcs intel_fb_funcs = {
  4376. .destroy = intel_user_framebuffer_destroy,
  4377. .create_handle = intel_user_framebuffer_create_handle,
  4378. };
  4379. int intel_framebuffer_init(struct drm_device *dev,
  4380. struct intel_framebuffer *intel_fb,
  4381. struct drm_mode_fb_cmd *mode_cmd,
  4382. struct drm_gem_object *obj)
  4383. {
  4384. int ret;
  4385. ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
  4386. if (ret) {
  4387. DRM_ERROR("framebuffer init failed %d\n", ret);
  4388. return ret;
  4389. }
  4390. drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
  4391. intel_fb->obj = obj;
  4392. return 0;
  4393. }
  4394. static struct drm_framebuffer *
  4395. intel_user_framebuffer_create(struct drm_device *dev,
  4396. struct drm_file *filp,
  4397. struct drm_mode_fb_cmd *mode_cmd)
  4398. {
  4399. struct drm_gem_object *obj;
  4400. struct intel_framebuffer *intel_fb;
  4401. int ret;
  4402. obj = drm_gem_object_lookup(dev, filp, mode_cmd->handle);
  4403. if (!obj)
  4404. return NULL;
  4405. intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
  4406. if (!intel_fb)
  4407. return NULL;
  4408. ret = intel_framebuffer_init(dev, intel_fb,
  4409. mode_cmd, obj);
  4410. if (ret) {
  4411. drm_gem_object_unreference_unlocked(obj);
  4412. kfree(intel_fb);
  4413. return NULL;
  4414. }
  4415. return &intel_fb->base;
  4416. }
  4417. static const struct drm_mode_config_funcs intel_mode_funcs = {
  4418. .fb_create = intel_user_framebuffer_create,
  4419. .output_poll_changed = intel_fb_output_poll_changed,
  4420. };
  4421. static struct drm_gem_object *
  4422. intel_alloc_power_context(struct drm_device *dev)
  4423. {
  4424. struct drm_gem_object *pwrctx;
  4425. int ret;
  4426. pwrctx = i915_gem_alloc_object(dev, 4096);
  4427. if (!pwrctx) {
  4428. DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
  4429. return NULL;
  4430. }
  4431. mutex_lock(&dev->struct_mutex);
  4432. ret = i915_gem_object_pin(pwrctx, 4096);
  4433. if (ret) {
  4434. DRM_ERROR("failed to pin power context: %d\n", ret);
  4435. goto err_unref;
  4436. }
  4437. ret = i915_gem_object_set_to_gtt_domain(pwrctx, 1);
  4438. if (ret) {
  4439. DRM_ERROR("failed to set-domain on power context: %d\n", ret);
  4440. goto err_unpin;
  4441. }
  4442. mutex_unlock(&dev->struct_mutex);
  4443. return pwrctx;
  4444. err_unpin:
  4445. i915_gem_object_unpin(pwrctx);
  4446. err_unref:
  4447. drm_gem_object_unreference(pwrctx);
  4448. mutex_unlock(&dev->struct_mutex);
  4449. return NULL;
  4450. }
  4451. bool ironlake_set_drps(struct drm_device *dev, u8 val)
  4452. {
  4453. struct drm_i915_private *dev_priv = dev->dev_private;
  4454. u16 rgvswctl;
  4455. rgvswctl = I915_READ16(MEMSWCTL);
  4456. if (rgvswctl & MEMCTL_CMD_STS) {
  4457. DRM_DEBUG("gpu busy, RCS change rejected\n");
  4458. return false; /* still busy with another command */
  4459. }
  4460. rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
  4461. (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
  4462. I915_WRITE16(MEMSWCTL, rgvswctl);
  4463. POSTING_READ16(MEMSWCTL);
  4464. rgvswctl |= MEMCTL_CMD_STS;
  4465. I915_WRITE16(MEMSWCTL, rgvswctl);
  4466. return true;
  4467. }
  4468. void ironlake_enable_drps(struct drm_device *dev)
  4469. {
  4470. struct drm_i915_private *dev_priv = dev->dev_private;
  4471. u32 rgvmodectl = I915_READ(MEMMODECTL);
  4472. u8 fmax, fmin, fstart, vstart;
  4473. int i = 0;
  4474. /* 100ms RC evaluation intervals */
  4475. I915_WRITE(RCUPEI, 100000);
  4476. I915_WRITE(RCDNEI, 100000);
  4477. /* Set max/min thresholds to 90ms and 80ms respectively */
  4478. I915_WRITE(RCBMAXAVG, 90000);
  4479. I915_WRITE(RCBMINAVG, 80000);
  4480. I915_WRITE(MEMIHYST, 1);
  4481. /* Set up min, max, and cur for interrupt handling */
  4482. fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
  4483. fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
  4484. fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
  4485. MEMMODE_FSTART_SHIFT;
  4486. fstart = fmax;
  4487. vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
  4488. PXVFREQ_PX_SHIFT;
  4489. dev_priv->fmax = fstart; /* IPS callback will increase this */
  4490. dev_priv->fstart = fstart;
  4491. dev_priv->max_delay = fmax;
  4492. dev_priv->min_delay = fmin;
  4493. dev_priv->cur_delay = fstart;
  4494. DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n", fmax, fmin,
  4495. fstart);
  4496. I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
  4497. /*
  4498. * Interrupts will be enabled in ironlake_irq_postinstall
  4499. */
  4500. I915_WRITE(VIDSTART, vstart);
  4501. POSTING_READ(VIDSTART);
  4502. rgvmodectl |= MEMMODE_SWMODE_EN;
  4503. I915_WRITE(MEMMODECTL, rgvmodectl);
  4504. while (I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) {
  4505. if (i++ > 100) {
  4506. DRM_ERROR("stuck trying to change perf mode\n");
  4507. break;
  4508. }
  4509. msleep(1);
  4510. }
  4511. msleep(1);
  4512. ironlake_set_drps(dev, fstart);
  4513. dev_priv->last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
  4514. I915_READ(0x112e0);
  4515. dev_priv->last_time1 = jiffies_to_msecs(jiffies);
  4516. dev_priv->last_count2 = I915_READ(0x112f4);
  4517. getrawmonotonic(&dev_priv->last_time2);
  4518. }
  4519. void ironlake_disable_drps(struct drm_device *dev)
  4520. {
  4521. struct drm_i915_private *dev_priv = dev->dev_private;
  4522. u16 rgvswctl = I915_READ16(MEMSWCTL);
  4523. /* Ack interrupts, disable EFC interrupt */
  4524. I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
  4525. I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
  4526. I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
  4527. I915_WRITE(DEIIR, DE_PCU_EVENT);
  4528. I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
  4529. /* Go back to the starting frequency */
  4530. ironlake_set_drps(dev, dev_priv->fstart);
  4531. msleep(1);
  4532. rgvswctl |= MEMCTL_CMD_STS;
  4533. I915_WRITE(MEMSWCTL, rgvswctl);
  4534. msleep(1);
  4535. }
  4536. static unsigned long intel_pxfreq(u32 vidfreq)
  4537. {
  4538. unsigned long freq;
  4539. int div = (vidfreq & 0x3f0000) >> 16;
  4540. int post = (vidfreq & 0x3000) >> 12;
  4541. int pre = (vidfreq & 0x7);
  4542. if (!pre)
  4543. return 0;
  4544. freq = ((div * 133333) / ((1<<post) * pre));
  4545. return freq;
  4546. }
  4547. void intel_init_emon(struct drm_device *dev)
  4548. {
  4549. struct drm_i915_private *dev_priv = dev->dev_private;
  4550. u32 lcfuse;
  4551. u8 pxw[16];
  4552. int i;
  4553. /* Disable to program */
  4554. I915_WRITE(ECR, 0);
  4555. POSTING_READ(ECR);
  4556. /* Program energy weights for various events */
  4557. I915_WRITE(SDEW, 0x15040d00);
  4558. I915_WRITE(CSIEW0, 0x007f0000);
  4559. I915_WRITE(CSIEW1, 0x1e220004);
  4560. I915_WRITE(CSIEW2, 0x04000004);
  4561. for (i = 0; i < 5; i++)
  4562. I915_WRITE(PEW + (i * 4), 0);
  4563. for (i = 0; i < 3; i++)
  4564. I915_WRITE(DEW + (i * 4), 0);
  4565. /* Program P-state weights to account for frequency power adjustment */
  4566. for (i = 0; i < 16; i++) {
  4567. u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
  4568. unsigned long freq = intel_pxfreq(pxvidfreq);
  4569. unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
  4570. PXVFREQ_PX_SHIFT;
  4571. unsigned long val;
  4572. val = vid * vid;
  4573. val *= (freq / 1000);
  4574. val *= 255;
  4575. val /= (127*127*900);
  4576. if (val > 0xff)
  4577. DRM_ERROR("bad pxval: %ld\n", val);
  4578. pxw[i] = val;
  4579. }
  4580. /* Render standby states get 0 weight */
  4581. pxw[14] = 0;
  4582. pxw[15] = 0;
  4583. for (i = 0; i < 4; i++) {
  4584. u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
  4585. (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
  4586. I915_WRITE(PXW + (i * 4), val);
  4587. }
  4588. /* Adjust magic regs to magic values (more experimental results) */
  4589. I915_WRITE(OGW0, 0);
  4590. I915_WRITE(OGW1, 0);
  4591. I915_WRITE(EG0, 0x00007f00);
  4592. I915_WRITE(EG1, 0x0000000e);
  4593. I915_WRITE(EG2, 0x000e0000);
  4594. I915_WRITE(EG3, 0x68000300);
  4595. I915_WRITE(EG4, 0x42000000);
  4596. I915_WRITE(EG5, 0x00140031);
  4597. I915_WRITE(EG6, 0);
  4598. I915_WRITE(EG7, 0);
  4599. for (i = 0; i < 8; i++)
  4600. I915_WRITE(PXWL + (i * 4), 0);
  4601. /* Enable PMON + select events */
  4602. I915_WRITE(ECR, 0x80000019);
  4603. lcfuse = I915_READ(LCFUSE02);
  4604. dev_priv->corr = (lcfuse & LCFUSE_HIV_MASK);
  4605. }
  4606. void intel_init_clock_gating(struct drm_device *dev)
  4607. {
  4608. struct drm_i915_private *dev_priv = dev->dev_private;
  4609. /*
  4610. * Disable clock gating reported to work incorrectly according to the
  4611. * specs, but enable as much else as we can.
  4612. */
  4613. if (HAS_PCH_SPLIT(dev)) {
  4614. uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
  4615. if (IS_IRONLAKE(dev)) {
  4616. /* Required for FBC */
  4617. dspclk_gate |= DPFDUNIT_CLOCK_GATE_DISABLE;
  4618. /* Required for CxSR */
  4619. dspclk_gate |= DPARBUNIT_CLOCK_GATE_DISABLE;
  4620. I915_WRITE(PCH_3DCGDIS0,
  4621. MARIUNIT_CLOCK_GATE_DISABLE |
  4622. SVSMUNIT_CLOCK_GATE_DISABLE);
  4623. }
  4624. I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
  4625. /*
  4626. * According to the spec the following bits should be set in
  4627. * order to enable memory self-refresh
  4628. * The bit 22/21 of 0x42004
  4629. * The bit 5 of 0x42020
  4630. * The bit 15 of 0x45000
  4631. */
  4632. if (IS_IRONLAKE(dev)) {
  4633. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  4634. (I915_READ(ILK_DISPLAY_CHICKEN2) |
  4635. ILK_DPARB_GATE | ILK_VSDPFD_FULL));
  4636. I915_WRITE(ILK_DSPCLK_GATE,
  4637. (I915_READ(ILK_DSPCLK_GATE) |
  4638. ILK_DPARB_CLK_GATE));
  4639. I915_WRITE(DISP_ARB_CTL,
  4640. (I915_READ(DISP_ARB_CTL) |
  4641. DISP_FBC_WM_DIS));
  4642. }
  4643. return;
  4644. } else if (IS_G4X(dev)) {
  4645. uint32_t dspclk_gate;
  4646. I915_WRITE(RENCLK_GATE_D1, 0);
  4647. I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
  4648. GS_UNIT_CLOCK_GATE_DISABLE |
  4649. CL_UNIT_CLOCK_GATE_DISABLE);
  4650. I915_WRITE(RAMCLK_GATE_D, 0);
  4651. dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
  4652. OVRUNIT_CLOCK_GATE_DISABLE |
  4653. OVCUNIT_CLOCK_GATE_DISABLE;
  4654. if (IS_GM45(dev))
  4655. dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
  4656. I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
  4657. } else if (IS_I965GM(dev)) {
  4658. I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
  4659. I915_WRITE(RENCLK_GATE_D2, 0);
  4660. I915_WRITE(DSPCLK_GATE_D, 0);
  4661. I915_WRITE(RAMCLK_GATE_D, 0);
  4662. I915_WRITE16(DEUC, 0);
  4663. } else if (IS_I965G(dev)) {
  4664. I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
  4665. I965_RCC_CLOCK_GATE_DISABLE |
  4666. I965_RCPB_CLOCK_GATE_DISABLE |
  4667. I965_ISC_CLOCK_GATE_DISABLE |
  4668. I965_FBC_CLOCK_GATE_DISABLE);
  4669. I915_WRITE(RENCLK_GATE_D2, 0);
  4670. } else if (IS_I9XX(dev)) {
  4671. u32 dstate = I915_READ(D_STATE);
  4672. dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
  4673. DSTATE_DOT_CLOCK_GATING;
  4674. I915_WRITE(D_STATE, dstate);
  4675. } else if (IS_I85X(dev) || IS_I865G(dev)) {
  4676. I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
  4677. } else if (IS_I830(dev)) {
  4678. I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
  4679. }
  4680. /*
  4681. * GPU can automatically power down the render unit if given a page
  4682. * to save state.
  4683. */
  4684. if (I915_HAS_RC6(dev) && drm_core_check_feature(dev, DRIVER_MODESET)) {
  4685. struct drm_i915_gem_object *obj_priv = NULL;
  4686. if (dev_priv->pwrctx) {
  4687. obj_priv = to_intel_bo(dev_priv->pwrctx);
  4688. } else {
  4689. struct drm_gem_object *pwrctx;
  4690. pwrctx = intel_alloc_power_context(dev);
  4691. if (pwrctx) {
  4692. dev_priv->pwrctx = pwrctx;
  4693. obj_priv = to_intel_bo(pwrctx);
  4694. }
  4695. }
  4696. if (obj_priv) {
  4697. I915_WRITE(PWRCTXA, obj_priv->gtt_offset | PWRCTX_EN);
  4698. I915_WRITE(MCHBAR_RENDER_STANDBY,
  4699. I915_READ(MCHBAR_RENDER_STANDBY) & ~RCX_SW_EXIT);
  4700. }
  4701. }
  4702. }
  4703. /* Set up chip specific display functions */
  4704. static void intel_init_display(struct drm_device *dev)
  4705. {
  4706. struct drm_i915_private *dev_priv = dev->dev_private;
  4707. /* We always want a DPMS function */
  4708. if (HAS_PCH_SPLIT(dev))
  4709. dev_priv->display.dpms = ironlake_crtc_dpms;
  4710. else
  4711. dev_priv->display.dpms = i9xx_crtc_dpms;
  4712. if (I915_HAS_FBC(dev)) {
  4713. if (IS_GM45(dev)) {
  4714. dev_priv->display.fbc_enabled = g4x_fbc_enabled;
  4715. dev_priv->display.enable_fbc = g4x_enable_fbc;
  4716. dev_priv->display.disable_fbc = g4x_disable_fbc;
  4717. } else if (IS_I965GM(dev)) {
  4718. dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
  4719. dev_priv->display.enable_fbc = i8xx_enable_fbc;
  4720. dev_priv->display.disable_fbc = i8xx_disable_fbc;
  4721. }
  4722. /* 855GM needs testing */
  4723. }
  4724. /* Returns the core display clock speed */
  4725. if (IS_I945G(dev) || (IS_G33(dev) && ! IS_PINEVIEW_M(dev)))
  4726. dev_priv->display.get_display_clock_speed =
  4727. i945_get_display_clock_speed;
  4728. else if (IS_I915G(dev))
  4729. dev_priv->display.get_display_clock_speed =
  4730. i915_get_display_clock_speed;
  4731. else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
  4732. dev_priv->display.get_display_clock_speed =
  4733. i9xx_misc_get_display_clock_speed;
  4734. else if (IS_I915GM(dev))
  4735. dev_priv->display.get_display_clock_speed =
  4736. i915gm_get_display_clock_speed;
  4737. else if (IS_I865G(dev))
  4738. dev_priv->display.get_display_clock_speed =
  4739. i865_get_display_clock_speed;
  4740. else if (IS_I85X(dev))
  4741. dev_priv->display.get_display_clock_speed =
  4742. i855_get_display_clock_speed;
  4743. else /* 852, 830 */
  4744. dev_priv->display.get_display_clock_speed =
  4745. i830_get_display_clock_speed;
  4746. /* For FIFO watermark updates */
  4747. if (HAS_PCH_SPLIT(dev)) {
  4748. if (IS_IRONLAKE(dev)) {
  4749. if (I915_READ(MLTR_ILK) & ILK_SRLT_MASK)
  4750. dev_priv->display.update_wm = ironlake_update_wm;
  4751. else {
  4752. DRM_DEBUG_KMS("Failed to get proper latency. "
  4753. "Disable CxSR\n");
  4754. dev_priv->display.update_wm = NULL;
  4755. }
  4756. } else
  4757. dev_priv->display.update_wm = NULL;
  4758. } else if (IS_PINEVIEW(dev)) {
  4759. if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
  4760. dev_priv->is_ddr3,
  4761. dev_priv->fsb_freq,
  4762. dev_priv->mem_freq)) {
  4763. DRM_INFO("failed to find known CxSR latency "
  4764. "(found ddr%s fsb freq %d, mem freq %d), "
  4765. "disabling CxSR\n",
  4766. (dev_priv->is_ddr3 == 1) ? "3": "2",
  4767. dev_priv->fsb_freq, dev_priv->mem_freq);
  4768. /* Disable CxSR and never update its watermark again */
  4769. pineview_disable_cxsr(dev);
  4770. dev_priv->display.update_wm = NULL;
  4771. } else
  4772. dev_priv->display.update_wm = pineview_update_wm;
  4773. } else if (IS_G4X(dev))
  4774. dev_priv->display.update_wm = g4x_update_wm;
  4775. else if (IS_I965G(dev))
  4776. dev_priv->display.update_wm = i965_update_wm;
  4777. else if (IS_I9XX(dev)) {
  4778. dev_priv->display.update_wm = i9xx_update_wm;
  4779. dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
  4780. } else if (IS_I85X(dev)) {
  4781. dev_priv->display.update_wm = i9xx_update_wm;
  4782. dev_priv->display.get_fifo_size = i85x_get_fifo_size;
  4783. } else {
  4784. dev_priv->display.update_wm = i830_update_wm;
  4785. if (IS_845G(dev))
  4786. dev_priv->display.get_fifo_size = i845_get_fifo_size;
  4787. else
  4788. dev_priv->display.get_fifo_size = i830_get_fifo_size;
  4789. }
  4790. }
  4791. /*
  4792. * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
  4793. * resume, or other times. This quirk makes sure that's the case for
  4794. * affected systems.
  4795. */
  4796. static void quirk_pipea_force (struct drm_device *dev)
  4797. {
  4798. struct drm_i915_private *dev_priv = dev->dev_private;
  4799. dev_priv->quirks |= QUIRK_PIPEA_FORCE;
  4800. DRM_DEBUG_DRIVER("applying pipe a force quirk\n");
  4801. }
  4802. struct intel_quirk {
  4803. int device;
  4804. int subsystem_vendor;
  4805. int subsystem_device;
  4806. void (*hook)(struct drm_device *dev);
  4807. };
  4808. struct intel_quirk intel_quirks[] = {
  4809. /* HP Compaq 2730p needs pipe A force quirk (LP: #291555) */
  4810. { 0x2a42, 0x103c, 0x30eb, quirk_pipea_force },
  4811. /* HP Mini needs pipe A force quirk (LP: #322104) */
  4812. { 0x27ae,0x103c, 0x361a, quirk_pipea_force },
  4813. /* Thinkpad R31 needs pipe A force quirk */
  4814. { 0x3577, 0x1014, 0x0505, quirk_pipea_force },
  4815. /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
  4816. { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
  4817. /* ThinkPad X30 needs pipe A force quirk (LP: #304614) */
  4818. { 0x3577, 0x1014, 0x0513, quirk_pipea_force },
  4819. /* ThinkPad X40 needs pipe A force quirk */
  4820. /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
  4821. { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
  4822. /* 855 & before need to leave pipe A & dpll A up */
  4823. { 0x3582, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
  4824. { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
  4825. };
  4826. static void intel_init_quirks(struct drm_device *dev)
  4827. {
  4828. struct pci_dev *d = dev->pdev;
  4829. int i;
  4830. for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
  4831. struct intel_quirk *q = &intel_quirks[i];
  4832. if (d->device == q->device &&
  4833. (d->subsystem_vendor == q->subsystem_vendor ||
  4834. q->subsystem_vendor == PCI_ANY_ID) &&
  4835. (d->subsystem_device == q->subsystem_device ||
  4836. q->subsystem_device == PCI_ANY_ID))
  4837. q->hook(dev);
  4838. }
  4839. }
  4840. void intel_modeset_init(struct drm_device *dev)
  4841. {
  4842. struct drm_i915_private *dev_priv = dev->dev_private;
  4843. int i;
  4844. drm_mode_config_init(dev);
  4845. dev->mode_config.min_width = 0;
  4846. dev->mode_config.min_height = 0;
  4847. dev->mode_config.funcs = (void *)&intel_mode_funcs;
  4848. intel_init_quirks(dev);
  4849. intel_init_display(dev);
  4850. if (IS_I965G(dev)) {
  4851. dev->mode_config.max_width = 8192;
  4852. dev->mode_config.max_height = 8192;
  4853. } else if (IS_I9XX(dev)) {
  4854. dev->mode_config.max_width = 4096;
  4855. dev->mode_config.max_height = 4096;
  4856. } else {
  4857. dev->mode_config.max_width = 2048;
  4858. dev->mode_config.max_height = 2048;
  4859. }
  4860. /* set memory base */
  4861. if (IS_I9XX(dev))
  4862. dev->mode_config.fb_base = pci_resource_start(dev->pdev, 2);
  4863. else
  4864. dev->mode_config.fb_base = pci_resource_start(dev->pdev, 0);
  4865. if (IS_MOBILE(dev) || IS_I9XX(dev))
  4866. dev_priv->num_pipe = 2;
  4867. else
  4868. dev_priv->num_pipe = 1;
  4869. DRM_DEBUG_KMS("%d display pipe%s available.\n",
  4870. dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
  4871. for (i = 0; i < dev_priv->num_pipe; i++) {
  4872. intel_crtc_init(dev, i);
  4873. }
  4874. intel_setup_outputs(dev);
  4875. intel_init_clock_gating(dev);
  4876. if (IS_IRONLAKE_M(dev)) {
  4877. ironlake_enable_drps(dev);
  4878. intel_init_emon(dev);
  4879. }
  4880. INIT_WORK(&dev_priv->idle_work, intel_idle_update);
  4881. setup_timer(&dev_priv->idle_timer, intel_gpu_idle_timer,
  4882. (unsigned long)dev);
  4883. intel_setup_overlay(dev);
  4884. }
  4885. void intel_modeset_cleanup(struct drm_device *dev)
  4886. {
  4887. struct drm_i915_private *dev_priv = dev->dev_private;
  4888. struct drm_crtc *crtc;
  4889. struct intel_crtc *intel_crtc;
  4890. mutex_lock(&dev->struct_mutex);
  4891. drm_kms_helper_poll_fini(dev);
  4892. intel_fbdev_fini(dev);
  4893. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  4894. /* Skip inactive CRTCs */
  4895. if (!crtc->fb)
  4896. continue;
  4897. intel_crtc = to_intel_crtc(crtc);
  4898. intel_increase_pllclock(crtc, false);
  4899. del_timer_sync(&intel_crtc->idle_timer);
  4900. }
  4901. del_timer_sync(&dev_priv->idle_timer);
  4902. if (dev_priv->display.disable_fbc)
  4903. dev_priv->display.disable_fbc(dev);
  4904. if (dev_priv->pwrctx) {
  4905. struct drm_i915_gem_object *obj_priv;
  4906. obj_priv = to_intel_bo(dev_priv->pwrctx);
  4907. I915_WRITE(PWRCTXA, obj_priv->gtt_offset &~ PWRCTX_EN);
  4908. I915_READ(PWRCTXA);
  4909. i915_gem_object_unpin(dev_priv->pwrctx);
  4910. drm_gem_object_unreference(dev_priv->pwrctx);
  4911. }
  4912. if (IS_IRONLAKE_M(dev))
  4913. ironlake_disable_drps(dev);
  4914. mutex_unlock(&dev->struct_mutex);
  4915. drm_mode_config_cleanup(dev);
  4916. }
  4917. /*
  4918. * Return which encoder is currently attached for connector.
  4919. */
  4920. struct drm_encoder *intel_attached_encoder (struct drm_connector *connector)
  4921. {
  4922. struct drm_mode_object *obj;
  4923. struct drm_encoder *encoder;
  4924. int i;
  4925. for (i = 0; i < DRM_CONNECTOR_MAX_ENCODER; i++) {
  4926. if (connector->encoder_ids[i] == 0)
  4927. break;
  4928. obj = drm_mode_object_find(connector->dev,
  4929. connector->encoder_ids[i],
  4930. DRM_MODE_OBJECT_ENCODER);
  4931. if (!obj)
  4932. continue;
  4933. encoder = obj_to_encoder(obj);
  4934. return encoder;
  4935. }
  4936. return NULL;
  4937. }
  4938. /*
  4939. * set vga decode state - true == enable VGA decode
  4940. */
  4941. int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
  4942. {
  4943. struct drm_i915_private *dev_priv = dev->dev_private;
  4944. u16 gmch_ctrl;
  4945. pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
  4946. if (state)
  4947. gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
  4948. else
  4949. gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
  4950. pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
  4951. return 0;
  4952. }