core-device.c 33 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271
  1. /*
  2. * Device probing and sysfs code.
  3. *
  4. * Copyright (C) 2005-2006 Kristian Hoegsberg <krh@bitplanet.net>
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License as published by
  8. * the Free Software Foundation; either version 2 of the License, or
  9. * (at your option) any later version.
  10. *
  11. * This program is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU General Public License
  17. * along with this program; if not, write to the Free Software Foundation,
  18. * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  19. */
  20. #include <linux/bug.h>
  21. #include <linux/ctype.h>
  22. #include <linux/delay.h>
  23. #include <linux/device.h>
  24. #include <linux/errno.h>
  25. #include <linux/firewire.h>
  26. #include <linux/firewire-constants.h>
  27. #include <linux/idr.h>
  28. #include <linux/jiffies.h>
  29. #include <linux/kobject.h>
  30. #include <linux/list.h>
  31. #include <linux/mod_devicetable.h>
  32. #include <linux/module.h>
  33. #include <linux/mutex.h>
  34. #include <linux/rwsem.h>
  35. #include <linux/slab.h>
  36. #include <linux/spinlock.h>
  37. #include <linux/string.h>
  38. #include <linux/workqueue.h>
  39. #include <asm/atomic.h>
  40. #include <asm/byteorder.h>
  41. #include <asm/system.h>
  42. #include "core.h"
  43. void fw_csr_iterator_init(struct fw_csr_iterator *ci, const u32 *p)
  44. {
  45. ci->p = p + 1;
  46. ci->end = ci->p + (p[0] >> 16);
  47. }
  48. EXPORT_SYMBOL(fw_csr_iterator_init);
  49. int fw_csr_iterator_next(struct fw_csr_iterator *ci, int *key, int *value)
  50. {
  51. *key = *ci->p >> 24;
  52. *value = *ci->p & 0xffffff;
  53. return ci->p++ < ci->end;
  54. }
  55. EXPORT_SYMBOL(fw_csr_iterator_next);
  56. static const u32 *search_leaf(const u32 *directory, int search_key)
  57. {
  58. struct fw_csr_iterator ci;
  59. int last_key = 0, key, value;
  60. fw_csr_iterator_init(&ci, directory);
  61. while (fw_csr_iterator_next(&ci, &key, &value)) {
  62. if (last_key == search_key &&
  63. key == (CSR_DESCRIPTOR | CSR_LEAF))
  64. return ci.p - 1 + value;
  65. last_key = key;
  66. }
  67. return NULL;
  68. }
  69. static int textual_leaf_to_string(const u32 *block, char *buf, size_t size)
  70. {
  71. unsigned int quadlets, i;
  72. char c;
  73. if (!size || !buf)
  74. return -EINVAL;
  75. quadlets = min(block[0] >> 16, 256U);
  76. if (quadlets < 2)
  77. return -ENODATA;
  78. if (block[1] != 0 || block[2] != 0)
  79. /* unknown language/character set */
  80. return -ENODATA;
  81. block += 3;
  82. quadlets -= 2;
  83. for (i = 0; i < quadlets * 4 && i < size - 1; i++) {
  84. c = block[i / 4] >> (24 - 8 * (i % 4));
  85. if (c == '\0')
  86. break;
  87. buf[i] = c;
  88. }
  89. buf[i] = '\0';
  90. return i;
  91. }
  92. /**
  93. * fw_csr_string - reads a string from the configuration ROM
  94. * @directory: e.g. root directory or unit directory
  95. * @key: the key of the preceding directory entry
  96. * @buf: where to put the string
  97. * @size: size of @buf, in bytes
  98. *
  99. * The string is taken from a minimal ASCII text descriptor leaf after
  100. * the immediate entry with @key. The string is zero-terminated.
  101. * Returns strlen(buf) or a negative error code.
  102. */
  103. int fw_csr_string(const u32 *directory, int key, char *buf, size_t size)
  104. {
  105. const u32 *leaf = search_leaf(directory, key);
  106. if (!leaf)
  107. return -ENOENT;
  108. return textual_leaf_to_string(leaf, buf, size);
  109. }
  110. EXPORT_SYMBOL(fw_csr_string);
  111. static void get_ids(const u32 *directory, int *id)
  112. {
  113. struct fw_csr_iterator ci;
  114. int key, value;
  115. fw_csr_iterator_init(&ci, directory);
  116. while (fw_csr_iterator_next(&ci, &key, &value)) {
  117. switch (key) {
  118. case CSR_VENDOR: id[0] = value; break;
  119. case CSR_MODEL: id[1] = value; break;
  120. case CSR_SPECIFIER_ID: id[2] = value; break;
  121. case CSR_VERSION: id[3] = value; break;
  122. }
  123. }
  124. }
  125. static void get_modalias_ids(struct fw_unit *unit, int *id)
  126. {
  127. get_ids(&fw_parent_device(unit)->config_rom[5], id);
  128. get_ids(unit->directory, id);
  129. }
  130. static bool match_ids(const struct ieee1394_device_id *id_table, int *id)
  131. {
  132. int match = 0;
  133. if (id[0] == id_table->vendor_id)
  134. match |= IEEE1394_MATCH_VENDOR_ID;
  135. if (id[1] == id_table->model_id)
  136. match |= IEEE1394_MATCH_MODEL_ID;
  137. if (id[2] == id_table->specifier_id)
  138. match |= IEEE1394_MATCH_SPECIFIER_ID;
  139. if (id[3] == id_table->version)
  140. match |= IEEE1394_MATCH_VERSION;
  141. return (match & id_table->match_flags) == id_table->match_flags;
  142. }
  143. static bool is_fw_unit(struct device *dev);
  144. static int fw_unit_match(struct device *dev, struct device_driver *drv)
  145. {
  146. const struct ieee1394_device_id *id_table =
  147. container_of(drv, struct fw_driver, driver)->id_table;
  148. int id[] = {0, 0, 0, 0};
  149. /* We only allow binding to fw_units. */
  150. if (!is_fw_unit(dev))
  151. return 0;
  152. get_modalias_ids(fw_unit(dev), id);
  153. for (; id_table->match_flags != 0; id_table++)
  154. if (match_ids(id_table, id))
  155. return 1;
  156. return 0;
  157. }
  158. static int get_modalias(struct fw_unit *unit, char *buffer, size_t buffer_size)
  159. {
  160. int id[] = {0, 0, 0, 0};
  161. get_modalias_ids(unit, id);
  162. return snprintf(buffer, buffer_size,
  163. "ieee1394:ven%08Xmo%08Xsp%08Xver%08X",
  164. id[0], id[1], id[2], id[3]);
  165. }
  166. static int fw_unit_uevent(struct device *dev, struct kobj_uevent_env *env)
  167. {
  168. struct fw_unit *unit = fw_unit(dev);
  169. char modalias[64];
  170. get_modalias(unit, modalias, sizeof(modalias));
  171. if (add_uevent_var(env, "MODALIAS=%s", modalias))
  172. return -ENOMEM;
  173. return 0;
  174. }
  175. struct bus_type fw_bus_type = {
  176. .name = "firewire",
  177. .match = fw_unit_match,
  178. };
  179. EXPORT_SYMBOL(fw_bus_type);
  180. int fw_device_enable_phys_dma(struct fw_device *device)
  181. {
  182. int generation = device->generation;
  183. /* device->node_id, accessed below, must not be older than generation */
  184. smp_rmb();
  185. return device->card->driver->enable_phys_dma(device->card,
  186. device->node_id,
  187. generation);
  188. }
  189. EXPORT_SYMBOL(fw_device_enable_phys_dma);
  190. struct config_rom_attribute {
  191. struct device_attribute attr;
  192. u32 key;
  193. };
  194. static ssize_t show_immediate(struct device *dev,
  195. struct device_attribute *dattr, char *buf)
  196. {
  197. struct config_rom_attribute *attr =
  198. container_of(dattr, struct config_rom_attribute, attr);
  199. struct fw_csr_iterator ci;
  200. const u32 *dir;
  201. int key, value, ret = -ENOENT;
  202. down_read(&fw_device_rwsem);
  203. if (is_fw_unit(dev))
  204. dir = fw_unit(dev)->directory;
  205. else
  206. dir = fw_device(dev)->config_rom + 5;
  207. fw_csr_iterator_init(&ci, dir);
  208. while (fw_csr_iterator_next(&ci, &key, &value))
  209. if (attr->key == key) {
  210. ret = snprintf(buf, buf ? PAGE_SIZE : 0,
  211. "0x%06x\n", value);
  212. break;
  213. }
  214. up_read(&fw_device_rwsem);
  215. return ret;
  216. }
  217. #define IMMEDIATE_ATTR(name, key) \
  218. { __ATTR(name, S_IRUGO, show_immediate, NULL), key }
  219. static ssize_t show_text_leaf(struct device *dev,
  220. struct device_attribute *dattr, char *buf)
  221. {
  222. struct config_rom_attribute *attr =
  223. container_of(dattr, struct config_rom_attribute, attr);
  224. const u32 *dir;
  225. size_t bufsize;
  226. char dummy_buf[2];
  227. int ret;
  228. down_read(&fw_device_rwsem);
  229. if (is_fw_unit(dev))
  230. dir = fw_unit(dev)->directory;
  231. else
  232. dir = fw_device(dev)->config_rom + 5;
  233. if (buf) {
  234. bufsize = PAGE_SIZE - 1;
  235. } else {
  236. buf = dummy_buf;
  237. bufsize = 1;
  238. }
  239. ret = fw_csr_string(dir, attr->key, buf, bufsize);
  240. if (ret >= 0) {
  241. /* Strip trailing whitespace and add newline. */
  242. while (ret > 0 && isspace(buf[ret - 1]))
  243. ret--;
  244. strcpy(buf + ret, "\n");
  245. ret++;
  246. }
  247. up_read(&fw_device_rwsem);
  248. return ret;
  249. }
  250. #define TEXT_LEAF_ATTR(name, key) \
  251. { __ATTR(name, S_IRUGO, show_text_leaf, NULL), key }
  252. static struct config_rom_attribute config_rom_attributes[] = {
  253. IMMEDIATE_ATTR(vendor, CSR_VENDOR),
  254. IMMEDIATE_ATTR(hardware_version, CSR_HARDWARE_VERSION),
  255. IMMEDIATE_ATTR(specifier_id, CSR_SPECIFIER_ID),
  256. IMMEDIATE_ATTR(version, CSR_VERSION),
  257. IMMEDIATE_ATTR(model, CSR_MODEL),
  258. TEXT_LEAF_ATTR(vendor_name, CSR_VENDOR),
  259. TEXT_LEAF_ATTR(model_name, CSR_MODEL),
  260. TEXT_LEAF_ATTR(hardware_version_name, CSR_HARDWARE_VERSION),
  261. };
  262. static void init_fw_attribute_group(struct device *dev,
  263. struct device_attribute *attrs,
  264. struct fw_attribute_group *group)
  265. {
  266. struct device_attribute *attr;
  267. int i, j;
  268. for (j = 0; attrs[j].attr.name != NULL; j++)
  269. group->attrs[j] = &attrs[j].attr;
  270. for (i = 0; i < ARRAY_SIZE(config_rom_attributes); i++) {
  271. attr = &config_rom_attributes[i].attr;
  272. if (attr->show(dev, attr, NULL) < 0)
  273. continue;
  274. group->attrs[j++] = &attr->attr;
  275. }
  276. group->attrs[j] = NULL;
  277. group->groups[0] = &group->group;
  278. group->groups[1] = NULL;
  279. group->group.attrs = group->attrs;
  280. dev->groups = (const struct attribute_group **) group->groups;
  281. }
  282. static ssize_t modalias_show(struct device *dev,
  283. struct device_attribute *attr, char *buf)
  284. {
  285. struct fw_unit *unit = fw_unit(dev);
  286. int length;
  287. length = get_modalias(unit, buf, PAGE_SIZE);
  288. strcpy(buf + length, "\n");
  289. return length + 1;
  290. }
  291. static ssize_t rom_index_show(struct device *dev,
  292. struct device_attribute *attr, char *buf)
  293. {
  294. struct fw_device *device = fw_device(dev->parent);
  295. struct fw_unit *unit = fw_unit(dev);
  296. return snprintf(buf, PAGE_SIZE, "%d\n",
  297. (int)(unit->directory - device->config_rom));
  298. }
  299. static struct device_attribute fw_unit_attributes[] = {
  300. __ATTR_RO(modalias),
  301. __ATTR_RO(rom_index),
  302. __ATTR_NULL,
  303. };
  304. static ssize_t config_rom_show(struct device *dev,
  305. struct device_attribute *attr, char *buf)
  306. {
  307. struct fw_device *device = fw_device(dev);
  308. size_t length;
  309. down_read(&fw_device_rwsem);
  310. length = device->config_rom_length * 4;
  311. memcpy(buf, device->config_rom, length);
  312. up_read(&fw_device_rwsem);
  313. return length;
  314. }
  315. static ssize_t guid_show(struct device *dev,
  316. struct device_attribute *attr, char *buf)
  317. {
  318. struct fw_device *device = fw_device(dev);
  319. int ret;
  320. down_read(&fw_device_rwsem);
  321. ret = snprintf(buf, PAGE_SIZE, "0x%08x%08x\n",
  322. device->config_rom[3], device->config_rom[4]);
  323. up_read(&fw_device_rwsem);
  324. return ret;
  325. }
  326. static int units_sprintf(char *buf, const u32 *directory)
  327. {
  328. struct fw_csr_iterator ci;
  329. int key, value;
  330. int specifier_id = 0;
  331. int version = 0;
  332. fw_csr_iterator_init(&ci, directory);
  333. while (fw_csr_iterator_next(&ci, &key, &value)) {
  334. switch (key) {
  335. case CSR_SPECIFIER_ID:
  336. specifier_id = value;
  337. break;
  338. case CSR_VERSION:
  339. version = value;
  340. break;
  341. }
  342. }
  343. return sprintf(buf, "0x%06x:0x%06x ", specifier_id, version);
  344. }
  345. static ssize_t units_show(struct device *dev,
  346. struct device_attribute *attr, char *buf)
  347. {
  348. struct fw_device *device = fw_device(dev);
  349. struct fw_csr_iterator ci;
  350. int key, value, i = 0;
  351. down_read(&fw_device_rwsem);
  352. fw_csr_iterator_init(&ci, &device->config_rom[5]);
  353. while (fw_csr_iterator_next(&ci, &key, &value)) {
  354. if (key != (CSR_UNIT | CSR_DIRECTORY))
  355. continue;
  356. i += units_sprintf(&buf[i], ci.p + value - 1);
  357. if (i >= PAGE_SIZE - (8 + 1 + 8 + 1))
  358. break;
  359. }
  360. up_read(&fw_device_rwsem);
  361. if (i)
  362. buf[i - 1] = '\n';
  363. return i;
  364. }
  365. static struct device_attribute fw_device_attributes[] = {
  366. __ATTR_RO(config_rom),
  367. __ATTR_RO(guid),
  368. __ATTR_RO(units),
  369. __ATTR_NULL,
  370. };
  371. static int read_rom(struct fw_device *device,
  372. int generation, int index, u32 *data)
  373. {
  374. int rcode;
  375. /* device->node_id, accessed below, must not be older than generation */
  376. smp_rmb();
  377. rcode = fw_run_transaction(device->card, TCODE_READ_QUADLET_REQUEST,
  378. device->node_id, generation, device->max_speed,
  379. (CSR_REGISTER_BASE | CSR_CONFIG_ROM) + index * 4,
  380. data, 4);
  381. be32_to_cpus(data);
  382. return rcode;
  383. }
  384. #define MAX_CONFIG_ROM_SIZE 256
  385. /*
  386. * Read the bus info block, perform a speed probe, and read all of the rest of
  387. * the config ROM. We do all this with a cached bus generation. If the bus
  388. * generation changes under us, read_config_rom will fail and get retried.
  389. * It's better to start all over in this case because the node from which we
  390. * are reading the ROM may have changed the ROM during the reset.
  391. */
  392. static int read_config_rom(struct fw_device *device, int generation)
  393. {
  394. const u32 *old_rom, *new_rom;
  395. u32 *rom, *stack;
  396. u32 sp, key;
  397. int i, end, length, ret = -1;
  398. rom = kmalloc(sizeof(*rom) * MAX_CONFIG_ROM_SIZE +
  399. sizeof(*stack) * MAX_CONFIG_ROM_SIZE, GFP_KERNEL);
  400. if (rom == NULL)
  401. return -ENOMEM;
  402. stack = &rom[MAX_CONFIG_ROM_SIZE];
  403. memset(rom, 0, sizeof(*rom) * MAX_CONFIG_ROM_SIZE);
  404. device->max_speed = SCODE_100;
  405. /* First read the bus info block. */
  406. for (i = 0; i < 5; i++) {
  407. if (read_rom(device, generation, i, &rom[i]) != RCODE_COMPLETE)
  408. goto out;
  409. /*
  410. * As per IEEE1212 7.2, during power-up, devices can
  411. * reply with a 0 for the first quadlet of the config
  412. * rom to indicate that they are booting (for example,
  413. * if the firmware is on the disk of a external
  414. * harddisk). In that case we just fail, and the
  415. * retry mechanism will try again later.
  416. */
  417. if (i == 0 && rom[i] == 0)
  418. goto out;
  419. }
  420. device->max_speed = device->node->max_speed;
  421. /*
  422. * Determine the speed of
  423. * - devices with link speed less than PHY speed,
  424. * - devices with 1394b PHY (unless only connected to 1394a PHYs),
  425. * - all devices if there are 1394b repeaters.
  426. * Note, we cannot use the bus info block's link_spd as starting point
  427. * because some buggy firmwares set it lower than necessary and because
  428. * 1394-1995 nodes do not have the field.
  429. */
  430. if ((rom[2] & 0x7) < device->max_speed ||
  431. device->max_speed == SCODE_BETA ||
  432. device->card->beta_repeaters_present) {
  433. u32 dummy;
  434. /* for S1600 and S3200 */
  435. if (device->max_speed == SCODE_BETA)
  436. device->max_speed = device->card->link_speed;
  437. while (device->max_speed > SCODE_100) {
  438. if (read_rom(device, generation, 0, &dummy) ==
  439. RCODE_COMPLETE)
  440. break;
  441. device->max_speed--;
  442. }
  443. }
  444. /*
  445. * Now parse the config rom. The config rom is a recursive
  446. * directory structure so we parse it using a stack of
  447. * references to the blocks that make up the structure. We
  448. * push a reference to the root directory on the stack to
  449. * start things off.
  450. */
  451. length = i;
  452. sp = 0;
  453. stack[sp++] = 0xc0000005;
  454. while (sp > 0) {
  455. /*
  456. * Pop the next block reference of the stack. The
  457. * lower 24 bits is the offset into the config rom,
  458. * the upper 8 bits are the type of the reference the
  459. * block.
  460. */
  461. key = stack[--sp];
  462. i = key & 0xffffff;
  463. if (WARN_ON(i >= MAX_CONFIG_ROM_SIZE))
  464. goto out;
  465. /* Read header quadlet for the block to get the length. */
  466. if (read_rom(device, generation, i, &rom[i]) != RCODE_COMPLETE)
  467. goto out;
  468. end = i + (rom[i] >> 16) + 1;
  469. if (end > MAX_CONFIG_ROM_SIZE) {
  470. /*
  471. * This block extends outside the config ROM which is
  472. * a firmware bug. Ignore this whole block, i.e.
  473. * simply set a fake block length of 0.
  474. */
  475. fw_error("skipped invalid ROM block %x at %llx\n",
  476. rom[i],
  477. i * 4 | CSR_REGISTER_BASE | CSR_CONFIG_ROM);
  478. rom[i] = 0;
  479. end = i;
  480. }
  481. i++;
  482. /*
  483. * Now read in the block. If this is a directory
  484. * block, check the entries as we read them to see if
  485. * it references another block, and push it in that case.
  486. */
  487. for (; i < end; i++) {
  488. if (read_rom(device, generation, i, &rom[i]) !=
  489. RCODE_COMPLETE)
  490. goto out;
  491. if ((key >> 30) != 3 || (rom[i] >> 30) < 2)
  492. continue;
  493. /*
  494. * Offset points outside the ROM. May be a firmware
  495. * bug or an Extended ROM entry (IEEE 1212-2001 clause
  496. * 7.7.18). Simply overwrite this pointer here by a
  497. * fake immediate entry so that later iterators over
  498. * the ROM don't have to check offsets all the time.
  499. */
  500. if (i + (rom[i] & 0xffffff) >= MAX_CONFIG_ROM_SIZE) {
  501. fw_error("skipped unsupported ROM entry %x at %llx\n",
  502. rom[i],
  503. i * 4 | CSR_REGISTER_BASE | CSR_CONFIG_ROM);
  504. rom[i] = 0;
  505. continue;
  506. }
  507. stack[sp++] = i + rom[i];
  508. }
  509. if (length < i)
  510. length = i;
  511. }
  512. old_rom = device->config_rom;
  513. new_rom = kmemdup(rom, length * 4, GFP_KERNEL);
  514. if (new_rom == NULL)
  515. goto out;
  516. down_write(&fw_device_rwsem);
  517. device->config_rom = new_rom;
  518. device->config_rom_length = length;
  519. up_write(&fw_device_rwsem);
  520. kfree(old_rom);
  521. ret = 0;
  522. device->max_rec = rom[2] >> 12 & 0xf;
  523. device->cmc = rom[2] >> 30 & 1;
  524. device->irmc = rom[2] >> 31 & 1;
  525. out:
  526. kfree(rom);
  527. return ret;
  528. }
  529. static void fw_unit_release(struct device *dev)
  530. {
  531. struct fw_unit *unit = fw_unit(dev);
  532. kfree(unit);
  533. }
  534. static struct device_type fw_unit_type = {
  535. .uevent = fw_unit_uevent,
  536. .release = fw_unit_release,
  537. };
  538. static bool is_fw_unit(struct device *dev)
  539. {
  540. return dev->type == &fw_unit_type;
  541. }
  542. static void create_units(struct fw_device *device)
  543. {
  544. struct fw_csr_iterator ci;
  545. struct fw_unit *unit;
  546. int key, value, i;
  547. i = 0;
  548. fw_csr_iterator_init(&ci, &device->config_rom[5]);
  549. while (fw_csr_iterator_next(&ci, &key, &value)) {
  550. if (key != (CSR_UNIT | CSR_DIRECTORY))
  551. continue;
  552. /*
  553. * Get the address of the unit directory and try to
  554. * match the drivers id_tables against it.
  555. */
  556. unit = kzalloc(sizeof(*unit), GFP_KERNEL);
  557. if (unit == NULL) {
  558. fw_error("failed to allocate memory for unit\n");
  559. continue;
  560. }
  561. unit->directory = ci.p + value - 1;
  562. unit->device.bus = &fw_bus_type;
  563. unit->device.type = &fw_unit_type;
  564. unit->device.parent = &device->device;
  565. dev_set_name(&unit->device, "%s.%d", dev_name(&device->device), i++);
  566. BUILD_BUG_ON(ARRAY_SIZE(unit->attribute_group.attrs) <
  567. ARRAY_SIZE(fw_unit_attributes) +
  568. ARRAY_SIZE(config_rom_attributes));
  569. init_fw_attribute_group(&unit->device,
  570. fw_unit_attributes,
  571. &unit->attribute_group);
  572. if (device_register(&unit->device) < 0)
  573. goto skip_unit;
  574. continue;
  575. skip_unit:
  576. kfree(unit);
  577. }
  578. }
  579. static int shutdown_unit(struct device *device, void *data)
  580. {
  581. device_unregister(device);
  582. return 0;
  583. }
  584. /*
  585. * fw_device_rwsem acts as dual purpose mutex:
  586. * - serializes accesses to fw_device_idr,
  587. * - serializes accesses to fw_device.config_rom/.config_rom_length and
  588. * fw_unit.directory, unless those accesses happen at safe occasions
  589. */
  590. DECLARE_RWSEM(fw_device_rwsem);
  591. DEFINE_IDR(fw_device_idr);
  592. int fw_cdev_major;
  593. struct fw_device *fw_device_get_by_devt(dev_t devt)
  594. {
  595. struct fw_device *device;
  596. down_read(&fw_device_rwsem);
  597. device = idr_find(&fw_device_idr, MINOR(devt));
  598. if (device)
  599. fw_device_get(device);
  600. up_read(&fw_device_rwsem);
  601. return device;
  602. }
  603. /*
  604. * These defines control the retry behavior for reading the config
  605. * rom. It shouldn't be necessary to tweak these; if the device
  606. * doesn't respond to a config rom read within 10 seconds, it's not
  607. * going to respond at all. As for the initial delay, a lot of
  608. * devices will be able to respond within half a second after bus
  609. * reset. On the other hand, it's not really worth being more
  610. * aggressive than that, since it scales pretty well; if 10 devices
  611. * are plugged in, they're all getting read within one second.
  612. */
  613. #define MAX_RETRIES 10
  614. #define RETRY_DELAY (3 * HZ)
  615. #define INITIAL_DELAY (HZ / 2)
  616. #define SHUTDOWN_DELAY (2 * HZ)
  617. static void fw_device_shutdown(struct work_struct *work)
  618. {
  619. struct fw_device *device =
  620. container_of(work, struct fw_device, work.work);
  621. int minor = MINOR(device->device.devt);
  622. if (time_is_after_jiffies(device->card->reset_jiffies + SHUTDOWN_DELAY)
  623. && !list_empty(&device->card->link)) {
  624. schedule_delayed_work(&device->work, SHUTDOWN_DELAY);
  625. return;
  626. }
  627. if (atomic_cmpxchg(&device->state,
  628. FW_DEVICE_GONE,
  629. FW_DEVICE_SHUTDOWN) != FW_DEVICE_GONE)
  630. return;
  631. fw_device_cdev_remove(device);
  632. device_for_each_child(&device->device, NULL, shutdown_unit);
  633. device_unregister(&device->device);
  634. down_write(&fw_device_rwsem);
  635. idr_remove(&fw_device_idr, minor);
  636. up_write(&fw_device_rwsem);
  637. fw_device_put(device);
  638. }
  639. static void fw_device_release(struct device *dev)
  640. {
  641. struct fw_device *device = fw_device(dev);
  642. struct fw_card *card = device->card;
  643. unsigned long flags;
  644. /*
  645. * Take the card lock so we don't set this to NULL while a
  646. * FW_NODE_UPDATED callback is being handled or while the
  647. * bus manager work looks at this node.
  648. */
  649. spin_lock_irqsave(&card->lock, flags);
  650. device->node->data = NULL;
  651. spin_unlock_irqrestore(&card->lock, flags);
  652. fw_node_put(device->node);
  653. kfree(device->config_rom);
  654. kfree(device);
  655. fw_card_put(card);
  656. }
  657. static struct device_type fw_device_type = {
  658. .release = fw_device_release,
  659. };
  660. static bool is_fw_device(struct device *dev)
  661. {
  662. return dev->type == &fw_device_type;
  663. }
  664. static int update_unit(struct device *dev, void *data)
  665. {
  666. struct fw_unit *unit = fw_unit(dev);
  667. struct fw_driver *driver = (struct fw_driver *)dev->driver;
  668. if (is_fw_unit(dev) && driver != NULL && driver->update != NULL) {
  669. device_lock(dev);
  670. driver->update(unit);
  671. device_unlock(dev);
  672. }
  673. return 0;
  674. }
  675. static void fw_device_update(struct work_struct *work)
  676. {
  677. struct fw_device *device =
  678. container_of(work, struct fw_device, work.work);
  679. fw_device_cdev_update(device);
  680. device_for_each_child(&device->device, NULL, update_unit);
  681. }
  682. /*
  683. * If a device was pending for deletion because its node went away but its
  684. * bus info block and root directory header matches that of a newly discovered
  685. * device, revive the existing fw_device.
  686. * The newly allocated fw_device becomes obsolete instead.
  687. */
  688. static int lookup_existing_device(struct device *dev, void *data)
  689. {
  690. struct fw_device *old = fw_device(dev);
  691. struct fw_device *new = data;
  692. struct fw_card *card = new->card;
  693. int match = 0;
  694. if (!is_fw_device(dev))
  695. return 0;
  696. down_read(&fw_device_rwsem); /* serialize config_rom access */
  697. spin_lock_irq(&card->lock); /* serialize node access */
  698. if (memcmp(old->config_rom, new->config_rom, 6 * 4) == 0 &&
  699. atomic_cmpxchg(&old->state,
  700. FW_DEVICE_GONE,
  701. FW_DEVICE_RUNNING) == FW_DEVICE_GONE) {
  702. struct fw_node *current_node = new->node;
  703. struct fw_node *obsolete_node = old->node;
  704. new->node = obsolete_node;
  705. new->node->data = new;
  706. old->node = current_node;
  707. old->node->data = old;
  708. old->max_speed = new->max_speed;
  709. old->node_id = current_node->node_id;
  710. smp_wmb(); /* update node_id before generation */
  711. old->generation = card->generation;
  712. old->config_rom_retries = 0;
  713. fw_notify("rediscovered device %s\n", dev_name(dev));
  714. PREPARE_DELAYED_WORK(&old->work, fw_device_update);
  715. schedule_delayed_work(&old->work, 0);
  716. if (current_node == card->root_node)
  717. fw_schedule_bm_work(card, 0);
  718. match = 1;
  719. }
  720. spin_unlock_irq(&card->lock);
  721. up_read(&fw_device_rwsem);
  722. return match;
  723. }
  724. enum { BC_UNKNOWN = 0, BC_UNIMPLEMENTED, BC_IMPLEMENTED, };
  725. static void set_broadcast_channel(struct fw_device *device, int generation)
  726. {
  727. struct fw_card *card = device->card;
  728. __be32 data;
  729. int rcode;
  730. if (!card->broadcast_channel_allocated)
  731. return;
  732. /*
  733. * The Broadcast_Channel Valid bit is required by nodes which want to
  734. * transmit on this channel. Such transmissions are practically
  735. * exclusive to IP over 1394 (RFC 2734). IP capable nodes are required
  736. * to be IRM capable and have a max_rec of 8 or more. We use this fact
  737. * to narrow down to which nodes we send Broadcast_Channel updates.
  738. */
  739. if (!device->irmc || device->max_rec < 8)
  740. return;
  741. /*
  742. * Some 1394-1995 nodes crash if this 1394a-2000 register is written.
  743. * Perform a read test first.
  744. */
  745. if (device->bc_implemented == BC_UNKNOWN) {
  746. rcode = fw_run_transaction(card, TCODE_READ_QUADLET_REQUEST,
  747. device->node_id, generation, device->max_speed,
  748. CSR_REGISTER_BASE + CSR_BROADCAST_CHANNEL,
  749. &data, 4);
  750. switch (rcode) {
  751. case RCODE_COMPLETE:
  752. if (data & cpu_to_be32(1 << 31)) {
  753. device->bc_implemented = BC_IMPLEMENTED;
  754. break;
  755. }
  756. /* else fall through to case address error */
  757. case RCODE_ADDRESS_ERROR:
  758. device->bc_implemented = BC_UNIMPLEMENTED;
  759. }
  760. }
  761. if (device->bc_implemented == BC_IMPLEMENTED) {
  762. data = cpu_to_be32(BROADCAST_CHANNEL_INITIAL |
  763. BROADCAST_CHANNEL_VALID);
  764. fw_run_transaction(card, TCODE_WRITE_QUADLET_REQUEST,
  765. device->node_id, generation, device->max_speed,
  766. CSR_REGISTER_BASE + CSR_BROADCAST_CHANNEL,
  767. &data, 4);
  768. }
  769. }
  770. int fw_device_set_broadcast_channel(struct device *dev, void *gen)
  771. {
  772. if (is_fw_device(dev))
  773. set_broadcast_channel(fw_device(dev), (long)gen);
  774. return 0;
  775. }
  776. static void fw_device_init(struct work_struct *work)
  777. {
  778. struct fw_device *device =
  779. container_of(work, struct fw_device, work.work);
  780. struct device *revived_dev;
  781. int minor, ret;
  782. /*
  783. * All failure paths here set node->data to NULL, so that we
  784. * don't try to do device_for_each_child() on a kfree()'d
  785. * device.
  786. */
  787. if (read_config_rom(device, device->generation) < 0) {
  788. if (device->config_rom_retries < MAX_RETRIES &&
  789. atomic_read(&device->state) == FW_DEVICE_INITIALIZING) {
  790. device->config_rom_retries++;
  791. schedule_delayed_work(&device->work, RETRY_DELAY);
  792. } else {
  793. fw_notify("giving up on config rom for node id %x\n",
  794. device->node_id);
  795. if (device->node == device->card->root_node)
  796. fw_schedule_bm_work(device->card, 0);
  797. fw_device_release(&device->device);
  798. }
  799. return;
  800. }
  801. revived_dev = device_find_child(device->card->device,
  802. device, lookup_existing_device);
  803. if (revived_dev) {
  804. put_device(revived_dev);
  805. fw_device_release(&device->device);
  806. return;
  807. }
  808. device_initialize(&device->device);
  809. fw_device_get(device);
  810. down_write(&fw_device_rwsem);
  811. ret = idr_pre_get(&fw_device_idr, GFP_KERNEL) ?
  812. idr_get_new(&fw_device_idr, device, &minor) :
  813. -ENOMEM;
  814. up_write(&fw_device_rwsem);
  815. if (ret < 0)
  816. goto error;
  817. device->device.bus = &fw_bus_type;
  818. device->device.type = &fw_device_type;
  819. device->device.parent = device->card->device;
  820. device->device.devt = MKDEV(fw_cdev_major, minor);
  821. dev_set_name(&device->device, "fw%d", minor);
  822. BUILD_BUG_ON(ARRAY_SIZE(device->attribute_group.attrs) <
  823. ARRAY_SIZE(fw_device_attributes) +
  824. ARRAY_SIZE(config_rom_attributes));
  825. init_fw_attribute_group(&device->device,
  826. fw_device_attributes,
  827. &device->attribute_group);
  828. if (device_add(&device->device)) {
  829. fw_error("Failed to add device.\n");
  830. goto error_with_cdev;
  831. }
  832. create_units(device);
  833. /*
  834. * Transition the device to running state. If it got pulled
  835. * out from under us while we did the intialization work, we
  836. * have to shut down the device again here. Normally, though,
  837. * fw_node_event will be responsible for shutting it down when
  838. * necessary. We have to use the atomic cmpxchg here to avoid
  839. * racing with the FW_NODE_DESTROYED case in
  840. * fw_node_event().
  841. */
  842. if (atomic_cmpxchg(&device->state,
  843. FW_DEVICE_INITIALIZING,
  844. FW_DEVICE_RUNNING) == FW_DEVICE_GONE) {
  845. PREPARE_DELAYED_WORK(&device->work, fw_device_shutdown);
  846. schedule_delayed_work(&device->work, SHUTDOWN_DELAY);
  847. } else {
  848. if (device->config_rom_retries)
  849. fw_notify("created device %s: GUID %08x%08x, S%d00, "
  850. "%d config ROM retries\n",
  851. dev_name(&device->device),
  852. device->config_rom[3], device->config_rom[4],
  853. 1 << device->max_speed,
  854. device->config_rom_retries);
  855. else
  856. fw_notify("created device %s: GUID %08x%08x, S%d00\n",
  857. dev_name(&device->device),
  858. device->config_rom[3], device->config_rom[4],
  859. 1 << device->max_speed);
  860. device->config_rom_retries = 0;
  861. set_broadcast_channel(device, device->generation);
  862. }
  863. /*
  864. * Reschedule the IRM work if we just finished reading the
  865. * root node config rom. If this races with a bus reset we
  866. * just end up running the IRM work a couple of extra times -
  867. * pretty harmless.
  868. */
  869. if (device->node == device->card->root_node)
  870. fw_schedule_bm_work(device->card, 0);
  871. return;
  872. error_with_cdev:
  873. down_write(&fw_device_rwsem);
  874. idr_remove(&fw_device_idr, minor);
  875. up_write(&fw_device_rwsem);
  876. error:
  877. fw_device_put(device); /* fw_device_idr's reference */
  878. put_device(&device->device); /* our reference */
  879. }
  880. enum {
  881. REREAD_BIB_ERROR,
  882. REREAD_BIB_GONE,
  883. REREAD_BIB_UNCHANGED,
  884. REREAD_BIB_CHANGED,
  885. };
  886. /* Reread and compare bus info block and header of root directory */
  887. static int reread_config_rom(struct fw_device *device, int generation)
  888. {
  889. u32 q;
  890. int i;
  891. for (i = 0; i < 6; i++) {
  892. if (read_rom(device, generation, i, &q) != RCODE_COMPLETE)
  893. return REREAD_BIB_ERROR;
  894. if (i == 0 && q == 0)
  895. return REREAD_BIB_GONE;
  896. if (q != device->config_rom[i])
  897. return REREAD_BIB_CHANGED;
  898. }
  899. return REREAD_BIB_UNCHANGED;
  900. }
  901. static void fw_device_refresh(struct work_struct *work)
  902. {
  903. struct fw_device *device =
  904. container_of(work, struct fw_device, work.work);
  905. struct fw_card *card = device->card;
  906. int node_id = device->node_id;
  907. switch (reread_config_rom(device, device->generation)) {
  908. case REREAD_BIB_ERROR:
  909. if (device->config_rom_retries < MAX_RETRIES / 2 &&
  910. atomic_read(&device->state) == FW_DEVICE_INITIALIZING) {
  911. device->config_rom_retries++;
  912. schedule_delayed_work(&device->work, RETRY_DELAY / 2);
  913. return;
  914. }
  915. goto give_up;
  916. case REREAD_BIB_GONE:
  917. goto gone;
  918. case REREAD_BIB_UNCHANGED:
  919. if (atomic_cmpxchg(&device->state,
  920. FW_DEVICE_INITIALIZING,
  921. FW_DEVICE_RUNNING) == FW_DEVICE_GONE)
  922. goto gone;
  923. fw_device_update(work);
  924. device->config_rom_retries = 0;
  925. goto out;
  926. case REREAD_BIB_CHANGED:
  927. break;
  928. }
  929. /*
  930. * Something changed. We keep things simple and don't investigate
  931. * further. We just destroy all previous units and create new ones.
  932. */
  933. device_for_each_child(&device->device, NULL, shutdown_unit);
  934. if (read_config_rom(device, device->generation) < 0) {
  935. if (device->config_rom_retries < MAX_RETRIES &&
  936. atomic_read(&device->state) == FW_DEVICE_INITIALIZING) {
  937. device->config_rom_retries++;
  938. schedule_delayed_work(&device->work, RETRY_DELAY);
  939. return;
  940. }
  941. goto give_up;
  942. }
  943. create_units(device);
  944. /* Userspace may want to re-read attributes. */
  945. kobject_uevent(&device->device.kobj, KOBJ_CHANGE);
  946. if (atomic_cmpxchg(&device->state,
  947. FW_DEVICE_INITIALIZING,
  948. FW_DEVICE_RUNNING) == FW_DEVICE_GONE)
  949. goto gone;
  950. fw_notify("refreshed device %s\n", dev_name(&device->device));
  951. device->config_rom_retries = 0;
  952. goto out;
  953. give_up:
  954. fw_notify("giving up on refresh of device %s\n", dev_name(&device->device));
  955. gone:
  956. atomic_set(&device->state, FW_DEVICE_GONE);
  957. PREPARE_DELAYED_WORK(&device->work, fw_device_shutdown);
  958. schedule_delayed_work(&device->work, SHUTDOWN_DELAY);
  959. out:
  960. if (node_id == card->root_node->node_id)
  961. fw_schedule_bm_work(card, 0);
  962. }
  963. void fw_node_event(struct fw_card *card, struct fw_node *node, int event)
  964. {
  965. struct fw_device *device;
  966. switch (event) {
  967. case FW_NODE_CREATED:
  968. case FW_NODE_LINK_ON:
  969. if (!node->link_on)
  970. break;
  971. create:
  972. device = kzalloc(sizeof(*device), GFP_ATOMIC);
  973. if (device == NULL)
  974. break;
  975. /*
  976. * Do minimal intialization of the device here, the
  977. * rest will happen in fw_device_init().
  978. *
  979. * Attention: A lot of things, even fw_device_get(),
  980. * cannot be done before fw_device_init() finished!
  981. * You can basically just check device->state and
  982. * schedule work until then, but only while holding
  983. * card->lock.
  984. */
  985. atomic_set(&device->state, FW_DEVICE_INITIALIZING);
  986. device->card = fw_card_get(card);
  987. device->node = fw_node_get(node);
  988. device->node_id = node->node_id;
  989. device->generation = card->generation;
  990. device->is_local = node == card->local_node;
  991. mutex_init(&device->client_list_mutex);
  992. INIT_LIST_HEAD(&device->client_list);
  993. /*
  994. * Set the node data to point back to this device so
  995. * FW_NODE_UPDATED callbacks can update the node_id
  996. * and generation for the device.
  997. */
  998. node->data = device;
  999. /*
  1000. * Many devices are slow to respond after bus resets,
  1001. * especially if they are bus powered and go through
  1002. * power-up after getting plugged in. We schedule the
  1003. * first config rom scan half a second after bus reset.
  1004. */
  1005. INIT_DELAYED_WORK(&device->work, fw_device_init);
  1006. schedule_delayed_work(&device->work, INITIAL_DELAY);
  1007. break;
  1008. case FW_NODE_INITIATED_RESET:
  1009. device = node->data;
  1010. if (device == NULL)
  1011. goto create;
  1012. device->node_id = node->node_id;
  1013. smp_wmb(); /* update node_id before generation */
  1014. device->generation = card->generation;
  1015. if (atomic_cmpxchg(&device->state,
  1016. FW_DEVICE_RUNNING,
  1017. FW_DEVICE_INITIALIZING) == FW_DEVICE_RUNNING) {
  1018. PREPARE_DELAYED_WORK(&device->work, fw_device_refresh);
  1019. schedule_delayed_work(&device->work,
  1020. device->is_local ? 0 : INITIAL_DELAY);
  1021. }
  1022. break;
  1023. case FW_NODE_UPDATED:
  1024. if (!node->link_on || node->data == NULL)
  1025. break;
  1026. device = node->data;
  1027. device->node_id = node->node_id;
  1028. smp_wmb(); /* update node_id before generation */
  1029. device->generation = card->generation;
  1030. if (atomic_read(&device->state) == FW_DEVICE_RUNNING) {
  1031. PREPARE_DELAYED_WORK(&device->work, fw_device_update);
  1032. schedule_delayed_work(&device->work, 0);
  1033. }
  1034. break;
  1035. case FW_NODE_DESTROYED:
  1036. case FW_NODE_LINK_OFF:
  1037. if (!node->data)
  1038. break;
  1039. /*
  1040. * Destroy the device associated with the node. There
  1041. * are two cases here: either the device is fully
  1042. * initialized (FW_DEVICE_RUNNING) or we're in the
  1043. * process of reading its config rom
  1044. * (FW_DEVICE_INITIALIZING). If it is fully
  1045. * initialized we can reuse device->work to schedule a
  1046. * full fw_device_shutdown(). If not, there's work
  1047. * scheduled to read it's config rom, and we just put
  1048. * the device in shutdown state to have that code fail
  1049. * to create the device.
  1050. */
  1051. device = node->data;
  1052. if (atomic_xchg(&device->state,
  1053. FW_DEVICE_GONE) == FW_DEVICE_RUNNING) {
  1054. PREPARE_DELAYED_WORK(&device->work, fw_device_shutdown);
  1055. schedule_delayed_work(&device->work,
  1056. list_empty(&card->link) ? 0 : SHUTDOWN_DELAY);
  1057. }
  1058. break;
  1059. }
  1060. }