cpufreq_ondemand.c 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831
  1. /*
  2. * drivers/cpufreq/cpufreq_ondemand.c
  3. *
  4. * Copyright (C) 2001 Russell King
  5. * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
  6. * Jun Nakajima <jun.nakajima@intel.com>
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License version 2 as
  10. * published by the Free Software Foundation.
  11. */
  12. #include <linux/kernel.h>
  13. #include <linux/module.h>
  14. #include <linux/init.h>
  15. #include <linux/cpufreq.h>
  16. #include <linux/cpu.h>
  17. #include <linux/jiffies.h>
  18. #include <linux/kernel_stat.h>
  19. #include <linux/mutex.h>
  20. #include <linux/hrtimer.h>
  21. #include <linux/tick.h>
  22. #include <linux/ktime.h>
  23. #include <linux/sched.h>
  24. /*
  25. * dbs is used in this file as a shortform for demandbased switching
  26. * It helps to keep variable names smaller, simpler
  27. */
  28. #define DEF_FREQUENCY_DOWN_DIFFERENTIAL (10)
  29. #define DEF_FREQUENCY_UP_THRESHOLD (80)
  30. #define MICRO_FREQUENCY_DOWN_DIFFERENTIAL (3)
  31. #define MICRO_FREQUENCY_UP_THRESHOLD (95)
  32. #define MICRO_FREQUENCY_MIN_SAMPLE_RATE (10000)
  33. #define MIN_FREQUENCY_UP_THRESHOLD (11)
  34. #define MAX_FREQUENCY_UP_THRESHOLD (100)
  35. /*
  36. * The polling frequency of this governor depends on the capability of
  37. * the processor. Default polling frequency is 1000 times the transition
  38. * latency of the processor. The governor will work on any processor with
  39. * transition latency <= 10mS, using appropriate sampling
  40. * rate.
  41. * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
  42. * this governor will not work.
  43. * All times here are in uS.
  44. */
  45. #define MIN_SAMPLING_RATE_RATIO (2)
  46. static unsigned int min_sampling_rate;
  47. #define LATENCY_MULTIPLIER (1000)
  48. #define MIN_LATENCY_MULTIPLIER (100)
  49. #define TRANSITION_LATENCY_LIMIT (10 * 1000 * 1000)
  50. static void do_dbs_timer(struct work_struct *work);
  51. static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
  52. unsigned int event);
  53. #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
  54. static
  55. #endif
  56. struct cpufreq_governor cpufreq_gov_ondemand = {
  57. .name = "ondemand",
  58. .governor = cpufreq_governor_dbs,
  59. .max_transition_latency = TRANSITION_LATENCY_LIMIT,
  60. .owner = THIS_MODULE,
  61. };
  62. /* Sampling types */
  63. enum {DBS_NORMAL_SAMPLE, DBS_SUB_SAMPLE};
  64. struct cpu_dbs_info_s {
  65. cputime64_t prev_cpu_idle;
  66. cputime64_t prev_cpu_iowait;
  67. cputime64_t prev_cpu_wall;
  68. cputime64_t prev_cpu_nice;
  69. struct cpufreq_policy *cur_policy;
  70. struct delayed_work work;
  71. struct cpufreq_frequency_table *freq_table;
  72. unsigned int freq_lo;
  73. unsigned int freq_lo_jiffies;
  74. unsigned int freq_hi_jiffies;
  75. int cpu;
  76. unsigned int sample_type:1;
  77. /*
  78. * percpu mutex that serializes governor limit change with
  79. * do_dbs_timer invocation. We do not want do_dbs_timer to run
  80. * when user is changing the governor or limits.
  81. */
  82. struct mutex timer_mutex;
  83. };
  84. static DEFINE_PER_CPU(struct cpu_dbs_info_s, od_cpu_dbs_info);
  85. static unsigned int dbs_enable; /* number of CPUs using this policy */
  86. /*
  87. * dbs_mutex protects data in dbs_tuners_ins from concurrent changes on
  88. * different CPUs. It protects dbs_enable in governor start/stop.
  89. */
  90. static DEFINE_MUTEX(dbs_mutex);
  91. static struct workqueue_struct *kondemand_wq;
  92. static struct dbs_tuners {
  93. unsigned int sampling_rate;
  94. unsigned int up_threshold;
  95. unsigned int down_differential;
  96. unsigned int ignore_nice;
  97. unsigned int powersave_bias;
  98. unsigned int io_is_busy;
  99. } dbs_tuners_ins = {
  100. .up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
  101. .down_differential = DEF_FREQUENCY_DOWN_DIFFERENTIAL,
  102. .ignore_nice = 0,
  103. .powersave_bias = 0,
  104. };
  105. static inline cputime64_t get_cpu_idle_time_jiffy(unsigned int cpu,
  106. cputime64_t *wall)
  107. {
  108. cputime64_t idle_time;
  109. cputime64_t cur_wall_time;
  110. cputime64_t busy_time;
  111. cur_wall_time = jiffies64_to_cputime64(get_jiffies_64());
  112. busy_time = cputime64_add(kstat_cpu(cpu).cpustat.user,
  113. kstat_cpu(cpu).cpustat.system);
  114. busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.irq);
  115. busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.softirq);
  116. busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.steal);
  117. busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.nice);
  118. idle_time = cputime64_sub(cur_wall_time, busy_time);
  119. if (wall)
  120. *wall = (cputime64_t)jiffies_to_usecs(cur_wall_time);
  121. return (cputime64_t)jiffies_to_usecs(idle_time);
  122. }
  123. static inline cputime64_t get_cpu_idle_time(unsigned int cpu, cputime64_t *wall)
  124. {
  125. u64 idle_time = get_cpu_idle_time_us(cpu, wall);
  126. if (idle_time == -1ULL)
  127. return get_cpu_idle_time_jiffy(cpu, wall);
  128. return idle_time;
  129. }
  130. static inline cputime64_t get_cpu_iowait_time(unsigned int cpu, cputime64_t *wall)
  131. {
  132. u64 iowait_time = get_cpu_iowait_time_us(cpu, wall);
  133. if (iowait_time == -1ULL)
  134. return 0;
  135. return iowait_time;
  136. }
  137. /*
  138. * Find right freq to be set now with powersave_bias on.
  139. * Returns the freq_hi to be used right now and will set freq_hi_jiffies,
  140. * freq_lo, and freq_lo_jiffies in percpu area for averaging freqs.
  141. */
  142. static unsigned int powersave_bias_target(struct cpufreq_policy *policy,
  143. unsigned int freq_next,
  144. unsigned int relation)
  145. {
  146. unsigned int freq_req, freq_reduc, freq_avg;
  147. unsigned int freq_hi, freq_lo;
  148. unsigned int index = 0;
  149. unsigned int jiffies_total, jiffies_hi, jiffies_lo;
  150. struct cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info,
  151. policy->cpu);
  152. if (!dbs_info->freq_table) {
  153. dbs_info->freq_lo = 0;
  154. dbs_info->freq_lo_jiffies = 0;
  155. return freq_next;
  156. }
  157. cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_next,
  158. relation, &index);
  159. freq_req = dbs_info->freq_table[index].frequency;
  160. freq_reduc = freq_req * dbs_tuners_ins.powersave_bias / 1000;
  161. freq_avg = freq_req - freq_reduc;
  162. /* Find freq bounds for freq_avg in freq_table */
  163. index = 0;
  164. cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
  165. CPUFREQ_RELATION_H, &index);
  166. freq_lo = dbs_info->freq_table[index].frequency;
  167. index = 0;
  168. cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
  169. CPUFREQ_RELATION_L, &index);
  170. freq_hi = dbs_info->freq_table[index].frequency;
  171. /* Find out how long we have to be in hi and lo freqs */
  172. if (freq_hi == freq_lo) {
  173. dbs_info->freq_lo = 0;
  174. dbs_info->freq_lo_jiffies = 0;
  175. return freq_lo;
  176. }
  177. jiffies_total = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
  178. jiffies_hi = (freq_avg - freq_lo) * jiffies_total;
  179. jiffies_hi += ((freq_hi - freq_lo) / 2);
  180. jiffies_hi /= (freq_hi - freq_lo);
  181. jiffies_lo = jiffies_total - jiffies_hi;
  182. dbs_info->freq_lo = freq_lo;
  183. dbs_info->freq_lo_jiffies = jiffies_lo;
  184. dbs_info->freq_hi_jiffies = jiffies_hi;
  185. return freq_hi;
  186. }
  187. static void ondemand_powersave_bias_init_cpu(int cpu)
  188. {
  189. struct cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
  190. dbs_info->freq_table = cpufreq_frequency_get_table(cpu);
  191. dbs_info->freq_lo = 0;
  192. }
  193. static void ondemand_powersave_bias_init(void)
  194. {
  195. int i;
  196. for_each_online_cpu(i) {
  197. ondemand_powersave_bias_init_cpu(i);
  198. }
  199. }
  200. /************************** sysfs interface ************************/
  201. static ssize_t show_sampling_rate_max(struct kobject *kobj,
  202. struct attribute *attr, char *buf)
  203. {
  204. printk_once(KERN_INFO "CPUFREQ: ondemand sampling_rate_max "
  205. "sysfs file is deprecated - used by: %s\n", current->comm);
  206. return sprintf(buf, "%u\n", -1U);
  207. }
  208. static ssize_t show_sampling_rate_min(struct kobject *kobj,
  209. struct attribute *attr, char *buf)
  210. {
  211. return sprintf(buf, "%u\n", min_sampling_rate);
  212. }
  213. define_one_global_ro(sampling_rate_max);
  214. define_one_global_ro(sampling_rate_min);
  215. /* cpufreq_ondemand Governor Tunables */
  216. #define show_one(file_name, object) \
  217. static ssize_t show_##file_name \
  218. (struct kobject *kobj, struct attribute *attr, char *buf) \
  219. { \
  220. return sprintf(buf, "%u\n", dbs_tuners_ins.object); \
  221. }
  222. show_one(sampling_rate, sampling_rate);
  223. show_one(io_is_busy, io_is_busy);
  224. show_one(up_threshold, up_threshold);
  225. show_one(ignore_nice_load, ignore_nice);
  226. show_one(powersave_bias, powersave_bias);
  227. /*** delete after deprecation time ***/
  228. #define DEPRECATION_MSG(file_name) \
  229. printk_once(KERN_INFO "CPUFREQ: Per core ondemand sysfs " \
  230. "interface is deprecated - " #file_name "\n");
  231. #define show_one_old(file_name) \
  232. static ssize_t show_##file_name##_old \
  233. (struct cpufreq_policy *unused, char *buf) \
  234. { \
  235. printk_once(KERN_INFO "CPUFREQ: Per core ondemand sysfs " \
  236. "interface is deprecated - " #file_name "\n"); \
  237. return show_##file_name(NULL, NULL, buf); \
  238. }
  239. show_one_old(sampling_rate);
  240. show_one_old(up_threshold);
  241. show_one_old(ignore_nice_load);
  242. show_one_old(powersave_bias);
  243. show_one_old(sampling_rate_min);
  244. show_one_old(sampling_rate_max);
  245. cpufreq_freq_attr_ro_old(sampling_rate_min);
  246. cpufreq_freq_attr_ro_old(sampling_rate_max);
  247. /*** delete after deprecation time ***/
  248. static ssize_t store_sampling_rate(struct kobject *a, struct attribute *b,
  249. const char *buf, size_t count)
  250. {
  251. unsigned int input;
  252. int ret;
  253. ret = sscanf(buf, "%u", &input);
  254. if (ret != 1)
  255. return -EINVAL;
  256. mutex_lock(&dbs_mutex);
  257. dbs_tuners_ins.sampling_rate = max(input, min_sampling_rate);
  258. mutex_unlock(&dbs_mutex);
  259. return count;
  260. }
  261. static ssize_t store_io_is_busy(struct kobject *a, struct attribute *b,
  262. const char *buf, size_t count)
  263. {
  264. unsigned int input;
  265. int ret;
  266. ret = sscanf(buf, "%u", &input);
  267. if (ret != 1)
  268. return -EINVAL;
  269. mutex_lock(&dbs_mutex);
  270. dbs_tuners_ins.io_is_busy = !!input;
  271. mutex_unlock(&dbs_mutex);
  272. return count;
  273. }
  274. static ssize_t store_up_threshold(struct kobject *a, struct attribute *b,
  275. const char *buf, size_t count)
  276. {
  277. unsigned int input;
  278. int ret;
  279. ret = sscanf(buf, "%u", &input);
  280. if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD ||
  281. input < MIN_FREQUENCY_UP_THRESHOLD) {
  282. return -EINVAL;
  283. }
  284. mutex_lock(&dbs_mutex);
  285. dbs_tuners_ins.up_threshold = input;
  286. mutex_unlock(&dbs_mutex);
  287. return count;
  288. }
  289. static ssize_t store_ignore_nice_load(struct kobject *a, struct attribute *b,
  290. const char *buf, size_t count)
  291. {
  292. unsigned int input;
  293. int ret;
  294. unsigned int j;
  295. ret = sscanf(buf, "%u", &input);
  296. if (ret != 1)
  297. return -EINVAL;
  298. if (input > 1)
  299. input = 1;
  300. mutex_lock(&dbs_mutex);
  301. if (input == dbs_tuners_ins.ignore_nice) { /* nothing to do */
  302. mutex_unlock(&dbs_mutex);
  303. return count;
  304. }
  305. dbs_tuners_ins.ignore_nice = input;
  306. /* we need to re-evaluate prev_cpu_idle */
  307. for_each_online_cpu(j) {
  308. struct cpu_dbs_info_s *dbs_info;
  309. dbs_info = &per_cpu(od_cpu_dbs_info, j);
  310. dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
  311. &dbs_info->prev_cpu_wall);
  312. if (dbs_tuners_ins.ignore_nice)
  313. dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice;
  314. }
  315. mutex_unlock(&dbs_mutex);
  316. return count;
  317. }
  318. static ssize_t store_powersave_bias(struct kobject *a, struct attribute *b,
  319. const char *buf, size_t count)
  320. {
  321. unsigned int input;
  322. int ret;
  323. ret = sscanf(buf, "%u", &input);
  324. if (ret != 1)
  325. return -EINVAL;
  326. if (input > 1000)
  327. input = 1000;
  328. mutex_lock(&dbs_mutex);
  329. dbs_tuners_ins.powersave_bias = input;
  330. ondemand_powersave_bias_init();
  331. mutex_unlock(&dbs_mutex);
  332. return count;
  333. }
  334. define_one_global_rw(sampling_rate);
  335. define_one_global_rw(io_is_busy);
  336. define_one_global_rw(up_threshold);
  337. define_one_global_rw(ignore_nice_load);
  338. define_one_global_rw(powersave_bias);
  339. static struct attribute *dbs_attributes[] = {
  340. &sampling_rate_max.attr,
  341. &sampling_rate_min.attr,
  342. &sampling_rate.attr,
  343. &up_threshold.attr,
  344. &ignore_nice_load.attr,
  345. &powersave_bias.attr,
  346. &io_is_busy.attr,
  347. NULL
  348. };
  349. static struct attribute_group dbs_attr_group = {
  350. .attrs = dbs_attributes,
  351. .name = "ondemand",
  352. };
  353. /*** delete after deprecation time ***/
  354. #define write_one_old(file_name) \
  355. static ssize_t store_##file_name##_old \
  356. (struct cpufreq_policy *unused, const char *buf, size_t count) \
  357. { \
  358. printk_once(KERN_INFO "CPUFREQ: Per core ondemand sysfs " \
  359. "interface is deprecated - " #file_name "\n"); \
  360. return store_##file_name(NULL, NULL, buf, count); \
  361. }
  362. write_one_old(sampling_rate);
  363. write_one_old(up_threshold);
  364. write_one_old(ignore_nice_load);
  365. write_one_old(powersave_bias);
  366. cpufreq_freq_attr_rw_old(sampling_rate);
  367. cpufreq_freq_attr_rw_old(up_threshold);
  368. cpufreq_freq_attr_rw_old(ignore_nice_load);
  369. cpufreq_freq_attr_rw_old(powersave_bias);
  370. static struct attribute *dbs_attributes_old[] = {
  371. &sampling_rate_max_old.attr,
  372. &sampling_rate_min_old.attr,
  373. &sampling_rate_old.attr,
  374. &up_threshold_old.attr,
  375. &ignore_nice_load_old.attr,
  376. &powersave_bias_old.attr,
  377. NULL
  378. };
  379. static struct attribute_group dbs_attr_group_old = {
  380. .attrs = dbs_attributes_old,
  381. .name = "ondemand",
  382. };
  383. /*** delete after deprecation time ***/
  384. /************************** sysfs end ************************/
  385. static void dbs_freq_increase(struct cpufreq_policy *p, unsigned int freq)
  386. {
  387. if (dbs_tuners_ins.powersave_bias)
  388. freq = powersave_bias_target(p, freq, CPUFREQ_RELATION_H);
  389. else if (p->cur == p->max)
  390. return;
  391. __cpufreq_driver_target(p, freq, dbs_tuners_ins.powersave_bias ?
  392. CPUFREQ_RELATION_L : CPUFREQ_RELATION_H);
  393. }
  394. static void dbs_check_cpu(struct cpu_dbs_info_s *this_dbs_info)
  395. {
  396. unsigned int max_load_freq;
  397. struct cpufreq_policy *policy;
  398. unsigned int j;
  399. this_dbs_info->freq_lo = 0;
  400. policy = this_dbs_info->cur_policy;
  401. /*
  402. * Every sampling_rate, we check, if current idle time is less
  403. * than 20% (default), then we try to increase frequency
  404. * Every sampling_rate, we look for a the lowest
  405. * frequency which can sustain the load while keeping idle time over
  406. * 30%. If such a frequency exist, we try to decrease to this frequency.
  407. *
  408. * Any frequency increase takes it to the maximum frequency.
  409. * Frequency reduction happens at minimum steps of
  410. * 5% (default) of current frequency
  411. */
  412. /* Get Absolute Load - in terms of freq */
  413. max_load_freq = 0;
  414. for_each_cpu(j, policy->cpus) {
  415. struct cpu_dbs_info_s *j_dbs_info;
  416. cputime64_t cur_wall_time, cur_idle_time, cur_iowait_time;
  417. unsigned int idle_time, wall_time, iowait_time;
  418. unsigned int load, load_freq;
  419. int freq_avg;
  420. j_dbs_info = &per_cpu(od_cpu_dbs_info, j);
  421. cur_idle_time = get_cpu_idle_time(j, &cur_wall_time);
  422. cur_iowait_time = get_cpu_iowait_time(j, &cur_wall_time);
  423. wall_time = (unsigned int) cputime64_sub(cur_wall_time,
  424. j_dbs_info->prev_cpu_wall);
  425. j_dbs_info->prev_cpu_wall = cur_wall_time;
  426. idle_time = (unsigned int) cputime64_sub(cur_idle_time,
  427. j_dbs_info->prev_cpu_idle);
  428. j_dbs_info->prev_cpu_idle = cur_idle_time;
  429. iowait_time = (unsigned int) cputime64_sub(cur_iowait_time,
  430. j_dbs_info->prev_cpu_iowait);
  431. j_dbs_info->prev_cpu_iowait = cur_iowait_time;
  432. if (dbs_tuners_ins.ignore_nice) {
  433. cputime64_t cur_nice;
  434. unsigned long cur_nice_jiffies;
  435. cur_nice = cputime64_sub(kstat_cpu(j).cpustat.nice,
  436. j_dbs_info->prev_cpu_nice);
  437. /*
  438. * Assumption: nice time between sampling periods will
  439. * be less than 2^32 jiffies for 32 bit sys
  440. */
  441. cur_nice_jiffies = (unsigned long)
  442. cputime64_to_jiffies64(cur_nice);
  443. j_dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice;
  444. idle_time += jiffies_to_usecs(cur_nice_jiffies);
  445. }
  446. /*
  447. * For the purpose of ondemand, waiting for disk IO is an
  448. * indication that you're performance critical, and not that
  449. * the system is actually idle. So subtract the iowait time
  450. * from the cpu idle time.
  451. */
  452. if (dbs_tuners_ins.io_is_busy && idle_time >= iowait_time)
  453. idle_time -= iowait_time;
  454. if (unlikely(!wall_time || wall_time < idle_time))
  455. continue;
  456. load = 100 * (wall_time - idle_time) / wall_time;
  457. freq_avg = __cpufreq_driver_getavg(policy, j);
  458. if (freq_avg <= 0)
  459. freq_avg = policy->cur;
  460. load_freq = load * freq_avg;
  461. if (load_freq > max_load_freq)
  462. max_load_freq = load_freq;
  463. }
  464. /* Check for frequency increase */
  465. if (max_load_freq > dbs_tuners_ins.up_threshold * policy->cur) {
  466. dbs_freq_increase(policy, policy->max);
  467. return;
  468. }
  469. /* Check for frequency decrease */
  470. /* if we cannot reduce the frequency anymore, break out early */
  471. if (policy->cur == policy->min)
  472. return;
  473. /*
  474. * The optimal frequency is the frequency that is the lowest that
  475. * can support the current CPU usage without triggering the up
  476. * policy. To be safe, we focus 10 points under the threshold.
  477. */
  478. if (max_load_freq <
  479. (dbs_tuners_ins.up_threshold - dbs_tuners_ins.down_differential) *
  480. policy->cur) {
  481. unsigned int freq_next;
  482. freq_next = max_load_freq /
  483. (dbs_tuners_ins.up_threshold -
  484. dbs_tuners_ins.down_differential);
  485. if (freq_next < policy->min)
  486. freq_next = policy->min;
  487. if (!dbs_tuners_ins.powersave_bias) {
  488. __cpufreq_driver_target(policy, freq_next,
  489. CPUFREQ_RELATION_L);
  490. } else {
  491. int freq = powersave_bias_target(policy, freq_next,
  492. CPUFREQ_RELATION_L);
  493. __cpufreq_driver_target(policy, freq,
  494. CPUFREQ_RELATION_L);
  495. }
  496. }
  497. }
  498. static void do_dbs_timer(struct work_struct *work)
  499. {
  500. struct cpu_dbs_info_s *dbs_info =
  501. container_of(work, struct cpu_dbs_info_s, work.work);
  502. unsigned int cpu = dbs_info->cpu;
  503. int sample_type = dbs_info->sample_type;
  504. /* We want all CPUs to do sampling nearly on same jiffy */
  505. int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
  506. if (num_online_cpus() > 1)
  507. delay -= jiffies % delay;
  508. mutex_lock(&dbs_info->timer_mutex);
  509. /* Common NORMAL_SAMPLE setup */
  510. dbs_info->sample_type = DBS_NORMAL_SAMPLE;
  511. if (!dbs_tuners_ins.powersave_bias ||
  512. sample_type == DBS_NORMAL_SAMPLE) {
  513. dbs_check_cpu(dbs_info);
  514. if (dbs_info->freq_lo) {
  515. /* Setup timer for SUB_SAMPLE */
  516. dbs_info->sample_type = DBS_SUB_SAMPLE;
  517. delay = dbs_info->freq_hi_jiffies;
  518. }
  519. } else {
  520. __cpufreq_driver_target(dbs_info->cur_policy,
  521. dbs_info->freq_lo, CPUFREQ_RELATION_H);
  522. }
  523. queue_delayed_work_on(cpu, kondemand_wq, &dbs_info->work, delay);
  524. mutex_unlock(&dbs_info->timer_mutex);
  525. }
  526. static inline void dbs_timer_init(struct cpu_dbs_info_s *dbs_info)
  527. {
  528. /* We want all CPUs to do sampling nearly on same jiffy */
  529. int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
  530. if (num_online_cpus() > 1)
  531. delay -= jiffies % delay;
  532. dbs_info->sample_type = DBS_NORMAL_SAMPLE;
  533. INIT_DELAYED_WORK_DEFERRABLE(&dbs_info->work, do_dbs_timer);
  534. queue_delayed_work_on(dbs_info->cpu, kondemand_wq, &dbs_info->work,
  535. delay);
  536. }
  537. static inline void dbs_timer_exit(struct cpu_dbs_info_s *dbs_info)
  538. {
  539. cancel_delayed_work_sync(&dbs_info->work);
  540. }
  541. /*
  542. * Not all CPUs want IO time to be accounted as busy; this dependson how
  543. * efficient idling at a higher frequency/voltage is.
  544. * Pavel Machek says this is not so for various generations of AMD and old
  545. * Intel systems.
  546. * Mike Chan (androidlcom) calis this is also not true for ARM.
  547. * Because of this, whitelist specific known (series) of CPUs by default, and
  548. * leave all others up to the user.
  549. */
  550. static int should_io_be_busy(void)
  551. {
  552. #if defined(CONFIG_X86)
  553. /*
  554. * For Intel, Core 2 (model 15) andl later have an efficient idle.
  555. */
  556. if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
  557. boot_cpu_data.x86 == 6 &&
  558. boot_cpu_data.x86_model >= 15)
  559. return 1;
  560. #endif
  561. return 0;
  562. }
  563. static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
  564. unsigned int event)
  565. {
  566. unsigned int cpu = policy->cpu;
  567. struct cpu_dbs_info_s *this_dbs_info;
  568. unsigned int j;
  569. int rc;
  570. this_dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
  571. switch (event) {
  572. case CPUFREQ_GOV_START:
  573. if ((!cpu_online(cpu)) || (!policy->cur))
  574. return -EINVAL;
  575. mutex_lock(&dbs_mutex);
  576. rc = sysfs_create_group(&policy->kobj, &dbs_attr_group_old);
  577. if (rc) {
  578. mutex_unlock(&dbs_mutex);
  579. return rc;
  580. }
  581. dbs_enable++;
  582. for_each_cpu(j, policy->cpus) {
  583. struct cpu_dbs_info_s *j_dbs_info;
  584. j_dbs_info = &per_cpu(od_cpu_dbs_info, j);
  585. j_dbs_info->cur_policy = policy;
  586. j_dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
  587. &j_dbs_info->prev_cpu_wall);
  588. if (dbs_tuners_ins.ignore_nice) {
  589. j_dbs_info->prev_cpu_nice =
  590. kstat_cpu(j).cpustat.nice;
  591. }
  592. }
  593. this_dbs_info->cpu = cpu;
  594. ondemand_powersave_bias_init_cpu(cpu);
  595. /*
  596. * Start the timerschedule work, when this governor
  597. * is used for first time
  598. */
  599. if (dbs_enable == 1) {
  600. unsigned int latency;
  601. rc = sysfs_create_group(cpufreq_global_kobject,
  602. &dbs_attr_group);
  603. if (rc) {
  604. mutex_unlock(&dbs_mutex);
  605. return rc;
  606. }
  607. /* policy latency is in nS. Convert it to uS first */
  608. latency = policy->cpuinfo.transition_latency / 1000;
  609. if (latency == 0)
  610. latency = 1;
  611. /* Bring kernel and HW constraints together */
  612. min_sampling_rate = max(min_sampling_rate,
  613. MIN_LATENCY_MULTIPLIER * latency);
  614. dbs_tuners_ins.sampling_rate =
  615. max(min_sampling_rate,
  616. latency * LATENCY_MULTIPLIER);
  617. dbs_tuners_ins.io_is_busy = should_io_be_busy();
  618. }
  619. mutex_unlock(&dbs_mutex);
  620. mutex_init(&this_dbs_info->timer_mutex);
  621. dbs_timer_init(this_dbs_info);
  622. break;
  623. case CPUFREQ_GOV_STOP:
  624. dbs_timer_exit(this_dbs_info);
  625. mutex_lock(&dbs_mutex);
  626. sysfs_remove_group(&policy->kobj, &dbs_attr_group_old);
  627. mutex_destroy(&this_dbs_info->timer_mutex);
  628. dbs_enable--;
  629. mutex_unlock(&dbs_mutex);
  630. if (!dbs_enable)
  631. sysfs_remove_group(cpufreq_global_kobject,
  632. &dbs_attr_group);
  633. break;
  634. case CPUFREQ_GOV_LIMITS:
  635. mutex_lock(&this_dbs_info->timer_mutex);
  636. if (policy->max < this_dbs_info->cur_policy->cur)
  637. __cpufreq_driver_target(this_dbs_info->cur_policy,
  638. policy->max, CPUFREQ_RELATION_H);
  639. else if (policy->min > this_dbs_info->cur_policy->cur)
  640. __cpufreq_driver_target(this_dbs_info->cur_policy,
  641. policy->min, CPUFREQ_RELATION_L);
  642. mutex_unlock(&this_dbs_info->timer_mutex);
  643. break;
  644. }
  645. return 0;
  646. }
  647. static int __init cpufreq_gov_dbs_init(void)
  648. {
  649. int err;
  650. cputime64_t wall;
  651. u64 idle_time;
  652. int cpu = get_cpu();
  653. idle_time = get_cpu_idle_time_us(cpu, &wall);
  654. put_cpu();
  655. if (idle_time != -1ULL) {
  656. /* Idle micro accounting is supported. Use finer thresholds */
  657. dbs_tuners_ins.up_threshold = MICRO_FREQUENCY_UP_THRESHOLD;
  658. dbs_tuners_ins.down_differential =
  659. MICRO_FREQUENCY_DOWN_DIFFERENTIAL;
  660. /*
  661. * In no_hz/micro accounting case we set the minimum frequency
  662. * not depending on HZ, but fixed (very low). The deferred
  663. * timer might skip some samples if idle/sleeping as needed.
  664. */
  665. min_sampling_rate = MICRO_FREQUENCY_MIN_SAMPLE_RATE;
  666. } else {
  667. /* For correct statistics, we need 10 ticks for each measure */
  668. min_sampling_rate =
  669. MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10);
  670. }
  671. kondemand_wq = create_workqueue("kondemand");
  672. if (!kondemand_wq) {
  673. printk(KERN_ERR "Creation of kondemand failed\n");
  674. return -EFAULT;
  675. }
  676. err = cpufreq_register_governor(&cpufreq_gov_ondemand);
  677. if (err)
  678. destroy_workqueue(kondemand_wq);
  679. return err;
  680. }
  681. static void __exit cpufreq_gov_dbs_exit(void)
  682. {
  683. cpufreq_unregister_governor(&cpufreq_gov_ondemand);
  684. destroy_workqueue(kondemand_wq);
  685. }
  686. MODULE_AUTHOR("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>");
  687. MODULE_AUTHOR("Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>");
  688. MODULE_DESCRIPTION("'cpufreq_ondemand' - A dynamic cpufreq governor for "
  689. "Low Latency Frequency Transition capable processors");
  690. MODULE_LICENSE("GPL");
  691. #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
  692. fs_initcall(cpufreq_gov_dbs_init);
  693. #else
  694. module_init(cpufreq_gov_dbs_init);
  695. #endif
  696. module_exit(cpufreq_gov_dbs_exit);