boot.c 47 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424
  1. /*P:010
  2. * A hypervisor allows multiple Operating Systems to run on a single machine.
  3. * To quote David Wheeler: "Any problem in computer science can be solved with
  4. * another layer of indirection."
  5. *
  6. * We keep things simple in two ways. First, we start with a normal Linux
  7. * kernel and insert a module (lg.ko) which allows us to run other Linux
  8. * kernels the same way we'd run processes. We call the first kernel the Host,
  9. * and the others the Guests. The program which sets up and configures Guests
  10. * (such as the example in Documentation/lguest/lguest.c) is called the
  11. * Launcher.
  12. *
  13. * Secondly, we only run specially modified Guests, not normal kernels: setting
  14. * CONFIG_LGUEST_GUEST to "y" compiles this file into the kernel so it knows
  15. * how to be a Guest at boot time. This means that you can use the same kernel
  16. * you boot normally (ie. as a Host) as a Guest.
  17. *
  18. * These Guests know that they cannot do privileged operations, such as disable
  19. * interrupts, and that they have to ask the Host to do such things explicitly.
  20. * This file consists of all the replacements for such low-level native
  21. * hardware operations: these special Guest versions call the Host.
  22. *
  23. * So how does the kernel know it's a Guest? We'll see that later, but let's
  24. * just say that we end up here where we replace the native functions various
  25. * "paravirt" structures with our Guest versions, then boot like normal.
  26. :*/
  27. /*
  28. * Copyright (C) 2006, Rusty Russell <rusty@rustcorp.com.au> IBM Corporation.
  29. *
  30. * This program is free software; you can redistribute it and/or modify
  31. * it under the terms of the GNU General Public License as published by
  32. * the Free Software Foundation; either version 2 of the License, or
  33. * (at your option) any later version.
  34. *
  35. * This program is distributed in the hope that it will be useful, but
  36. * WITHOUT ANY WARRANTY; without even the implied warranty of
  37. * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
  38. * NON INFRINGEMENT. See the GNU General Public License for more
  39. * details.
  40. *
  41. * You should have received a copy of the GNU General Public License
  42. * along with this program; if not, write to the Free Software
  43. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  44. */
  45. #include <linux/kernel.h>
  46. #include <linux/start_kernel.h>
  47. #include <linux/string.h>
  48. #include <linux/console.h>
  49. #include <linux/screen_info.h>
  50. #include <linux/irq.h>
  51. #include <linux/interrupt.h>
  52. #include <linux/clocksource.h>
  53. #include <linux/clockchips.h>
  54. #include <linux/lguest.h>
  55. #include <linux/lguest_launcher.h>
  56. #include <linux/virtio_console.h>
  57. #include <linux/pm.h>
  58. #include <asm/apic.h>
  59. #include <asm/lguest.h>
  60. #include <asm/paravirt.h>
  61. #include <asm/param.h>
  62. #include <asm/page.h>
  63. #include <asm/pgtable.h>
  64. #include <asm/desc.h>
  65. #include <asm/setup.h>
  66. #include <asm/e820.h>
  67. #include <asm/mce.h>
  68. #include <asm/io.h>
  69. #include <asm/i387.h>
  70. #include <asm/stackprotector.h>
  71. #include <asm/reboot.h> /* for struct machine_ops */
  72. /*G:010 Welcome to the Guest!
  73. *
  74. * The Guest in our tale is a simple creature: identical to the Host but
  75. * behaving in simplified but equivalent ways. In particular, the Guest is the
  76. * same kernel as the Host (or at least, built from the same source code).
  77. :*/
  78. struct lguest_data lguest_data = {
  79. .hcall_status = { [0 ... LHCALL_RING_SIZE-1] = 0xFF },
  80. .noirq_start = (u32)lguest_noirq_start,
  81. .noirq_end = (u32)lguest_noirq_end,
  82. .kernel_address = PAGE_OFFSET,
  83. .blocked_interrupts = { 1 }, /* Block timer interrupts */
  84. .syscall_vec = SYSCALL_VECTOR,
  85. };
  86. /*G:037
  87. * async_hcall() is pretty simple: I'm quite proud of it really. We have a
  88. * ring buffer of stored hypercalls which the Host will run though next time we
  89. * do a normal hypercall. Each entry in the ring has 5 slots for the hypercall
  90. * arguments, and a "hcall_status" word which is 0 if the call is ready to go,
  91. * and 255 once the Host has finished with it.
  92. *
  93. * If we come around to a slot which hasn't been finished, then the table is
  94. * full and we just make the hypercall directly. This has the nice side
  95. * effect of causing the Host to run all the stored calls in the ring buffer
  96. * which empties it for next time!
  97. */
  98. static void async_hcall(unsigned long call, unsigned long arg1,
  99. unsigned long arg2, unsigned long arg3,
  100. unsigned long arg4)
  101. {
  102. /* Note: This code assumes we're uniprocessor. */
  103. static unsigned int next_call;
  104. unsigned long flags;
  105. /*
  106. * Disable interrupts if not already disabled: we don't want an
  107. * interrupt handler making a hypercall while we're already doing
  108. * one!
  109. */
  110. local_irq_save(flags);
  111. if (lguest_data.hcall_status[next_call] != 0xFF) {
  112. /* Table full, so do normal hcall which will flush table. */
  113. hcall(call, arg1, arg2, arg3, arg4);
  114. } else {
  115. lguest_data.hcalls[next_call].arg0 = call;
  116. lguest_data.hcalls[next_call].arg1 = arg1;
  117. lguest_data.hcalls[next_call].arg2 = arg2;
  118. lguest_data.hcalls[next_call].arg3 = arg3;
  119. lguest_data.hcalls[next_call].arg4 = arg4;
  120. /* Arguments must all be written before we mark it to go */
  121. wmb();
  122. lguest_data.hcall_status[next_call] = 0;
  123. if (++next_call == LHCALL_RING_SIZE)
  124. next_call = 0;
  125. }
  126. local_irq_restore(flags);
  127. }
  128. /*G:035
  129. * Notice the lazy_hcall() above, rather than hcall(). This is our first real
  130. * optimization trick!
  131. *
  132. * When lazy_mode is set, it means we're allowed to defer all hypercalls and do
  133. * them as a batch when lazy_mode is eventually turned off. Because hypercalls
  134. * are reasonably expensive, batching them up makes sense. For example, a
  135. * large munmap might update dozens of page table entries: that code calls
  136. * paravirt_enter_lazy_mmu(), does the dozen updates, then calls
  137. * lguest_leave_lazy_mode().
  138. *
  139. * So, when we're in lazy mode, we call async_hcall() to store the call for
  140. * future processing:
  141. */
  142. static void lazy_hcall1(unsigned long call, unsigned long arg1)
  143. {
  144. if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_NONE)
  145. hcall(call, arg1, 0, 0, 0);
  146. else
  147. async_hcall(call, arg1, 0, 0, 0);
  148. }
  149. /* You can imagine what lazy_hcall2, 3 and 4 look like. :*/
  150. static void lazy_hcall2(unsigned long call,
  151. unsigned long arg1,
  152. unsigned long arg2)
  153. {
  154. if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_NONE)
  155. hcall(call, arg1, arg2, 0, 0);
  156. else
  157. async_hcall(call, arg1, arg2, 0, 0);
  158. }
  159. static void lazy_hcall3(unsigned long call,
  160. unsigned long arg1,
  161. unsigned long arg2,
  162. unsigned long arg3)
  163. {
  164. if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_NONE)
  165. hcall(call, arg1, arg2, arg3, 0);
  166. else
  167. async_hcall(call, arg1, arg2, arg3, 0);
  168. }
  169. #ifdef CONFIG_X86_PAE
  170. static void lazy_hcall4(unsigned long call,
  171. unsigned long arg1,
  172. unsigned long arg2,
  173. unsigned long arg3,
  174. unsigned long arg4)
  175. {
  176. if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_NONE)
  177. hcall(call, arg1, arg2, arg3, arg4);
  178. else
  179. async_hcall(call, arg1, arg2, arg3, arg4);
  180. }
  181. #endif
  182. /*G:036
  183. * When lazy mode is turned off reset the per-cpu lazy mode variable and then
  184. * issue the do-nothing hypercall to flush any stored calls.
  185. :*/
  186. static void lguest_leave_lazy_mmu_mode(void)
  187. {
  188. hcall(LHCALL_FLUSH_ASYNC, 0, 0, 0, 0);
  189. paravirt_leave_lazy_mmu();
  190. }
  191. static void lguest_end_context_switch(struct task_struct *next)
  192. {
  193. hcall(LHCALL_FLUSH_ASYNC, 0, 0, 0, 0);
  194. paravirt_end_context_switch(next);
  195. }
  196. /*G:032
  197. * After that diversion we return to our first native-instruction
  198. * replacements: four functions for interrupt control.
  199. *
  200. * The simplest way of implementing these would be to have "turn interrupts
  201. * off" and "turn interrupts on" hypercalls. Unfortunately, this is too slow:
  202. * these are by far the most commonly called functions of those we override.
  203. *
  204. * So instead we keep an "irq_enabled" field inside our "struct lguest_data",
  205. * which the Guest can update with a single instruction. The Host knows to
  206. * check there before it tries to deliver an interrupt.
  207. */
  208. /*
  209. * save_flags() is expected to return the processor state (ie. "flags"). The
  210. * flags word contains all kind of stuff, but in practice Linux only cares
  211. * about the interrupt flag. Our "save_flags()" just returns that.
  212. */
  213. static unsigned long save_fl(void)
  214. {
  215. return lguest_data.irq_enabled;
  216. }
  217. /* Interrupts go off... */
  218. static void irq_disable(void)
  219. {
  220. lguest_data.irq_enabled = 0;
  221. }
  222. /*
  223. * Let's pause a moment. Remember how I said these are called so often?
  224. * Jeremy Fitzhardinge optimized them so hard early in 2009 that he had to
  225. * break some rules. In particular, these functions are assumed to save their
  226. * own registers if they need to: normal C functions assume they can trash the
  227. * eax register. To use normal C functions, we use
  228. * PV_CALLEE_SAVE_REGS_THUNK(), which pushes %eax onto the stack, calls the
  229. * C function, then restores it.
  230. */
  231. PV_CALLEE_SAVE_REGS_THUNK(save_fl);
  232. PV_CALLEE_SAVE_REGS_THUNK(irq_disable);
  233. /*:*/
  234. /* These are in i386_head.S */
  235. extern void lg_irq_enable(void);
  236. extern void lg_restore_fl(unsigned long flags);
  237. /*M:003
  238. * We could be more efficient in our checking of outstanding interrupts, rather
  239. * than using a branch. One way would be to put the "irq_enabled" field in a
  240. * page by itself, and have the Host write-protect it when an interrupt comes
  241. * in when irqs are disabled. There will then be a page fault as soon as
  242. * interrupts are re-enabled.
  243. *
  244. * A better method is to implement soft interrupt disable generally for x86:
  245. * instead of disabling interrupts, we set a flag. If an interrupt does come
  246. * in, we then disable them for real. This is uncommon, so we could simply use
  247. * a hypercall for interrupt control and not worry about efficiency.
  248. :*/
  249. /*G:034
  250. * The Interrupt Descriptor Table (IDT).
  251. *
  252. * The IDT tells the processor what to do when an interrupt comes in. Each
  253. * entry in the table is a 64-bit descriptor: this holds the privilege level,
  254. * address of the handler, and... well, who cares? The Guest just asks the
  255. * Host to make the change anyway, because the Host controls the real IDT.
  256. */
  257. static void lguest_write_idt_entry(gate_desc *dt,
  258. int entrynum, const gate_desc *g)
  259. {
  260. /*
  261. * The gate_desc structure is 8 bytes long: we hand it to the Host in
  262. * two 32-bit chunks. The whole 32-bit kernel used to hand descriptors
  263. * around like this; typesafety wasn't a big concern in Linux's early
  264. * years.
  265. */
  266. u32 *desc = (u32 *)g;
  267. /* Keep the local copy up to date. */
  268. native_write_idt_entry(dt, entrynum, g);
  269. /* Tell Host about this new entry. */
  270. hcall(LHCALL_LOAD_IDT_ENTRY, entrynum, desc[0], desc[1], 0);
  271. }
  272. /*
  273. * Changing to a different IDT is very rare: we keep the IDT up-to-date every
  274. * time it is written, so we can simply loop through all entries and tell the
  275. * Host about them.
  276. */
  277. static void lguest_load_idt(const struct desc_ptr *desc)
  278. {
  279. unsigned int i;
  280. struct desc_struct *idt = (void *)desc->address;
  281. for (i = 0; i < (desc->size+1)/8; i++)
  282. hcall(LHCALL_LOAD_IDT_ENTRY, i, idt[i].a, idt[i].b, 0);
  283. }
  284. /*
  285. * The Global Descriptor Table.
  286. *
  287. * The Intel architecture defines another table, called the Global Descriptor
  288. * Table (GDT). You tell the CPU where it is (and its size) using the "lgdt"
  289. * instruction, and then several other instructions refer to entries in the
  290. * table. There are three entries which the Switcher needs, so the Host simply
  291. * controls the entire thing and the Guest asks it to make changes using the
  292. * LOAD_GDT hypercall.
  293. *
  294. * This is the exactly like the IDT code.
  295. */
  296. static void lguest_load_gdt(const struct desc_ptr *desc)
  297. {
  298. unsigned int i;
  299. struct desc_struct *gdt = (void *)desc->address;
  300. for (i = 0; i < (desc->size+1)/8; i++)
  301. hcall(LHCALL_LOAD_GDT_ENTRY, i, gdt[i].a, gdt[i].b, 0);
  302. }
  303. /*
  304. * For a single GDT entry which changes, we do the lazy thing: alter our GDT,
  305. * then tell the Host to reload the entire thing. This operation is so rare
  306. * that this naive implementation is reasonable.
  307. */
  308. static void lguest_write_gdt_entry(struct desc_struct *dt, int entrynum,
  309. const void *desc, int type)
  310. {
  311. native_write_gdt_entry(dt, entrynum, desc, type);
  312. /* Tell Host about this new entry. */
  313. hcall(LHCALL_LOAD_GDT_ENTRY, entrynum,
  314. dt[entrynum].a, dt[entrynum].b, 0);
  315. }
  316. /*
  317. * OK, I lied. There are three "thread local storage" GDT entries which change
  318. * on every context switch (these three entries are how glibc implements
  319. * __thread variables). So we have a hypercall specifically for this case.
  320. */
  321. static void lguest_load_tls(struct thread_struct *t, unsigned int cpu)
  322. {
  323. /*
  324. * There's one problem which normal hardware doesn't have: the Host
  325. * can't handle us removing entries we're currently using. So we clear
  326. * the GS register here: if it's needed it'll be reloaded anyway.
  327. */
  328. lazy_load_gs(0);
  329. lazy_hcall2(LHCALL_LOAD_TLS, __pa(&t->tls_array), cpu);
  330. }
  331. /*G:038
  332. * That's enough excitement for now, back to ploughing through each of the
  333. * different pv_ops structures (we're about 1/3 of the way through).
  334. *
  335. * This is the Local Descriptor Table, another weird Intel thingy. Linux only
  336. * uses this for some strange applications like Wine. We don't do anything
  337. * here, so they'll get an informative and friendly Segmentation Fault.
  338. */
  339. static void lguest_set_ldt(const void *addr, unsigned entries)
  340. {
  341. }
  342. /*
  343. * This loads a GDT entry into the "Task Register": that entry points to a
  344. * structure called the Task State Segment. Some comments scattered though the
  345. * kernel code indicate that this used for task switching in ages past, along
  346. * with blood sacrifice and astrology.
  347. *
  348. * Now there's nothing interesting in here that we don't get told elsewhere.
  349. * But the native version uses the "ltr" instruction, which makes the Host
  350. * complain to the Guest about a Segmentation Fault and it'll oops. So we
  351. * override the native version with a do-nothing version.
  352. */
  353. static void lguest_load_tr_desc(void)
  354. {
  355. }
  356. /*
  357. * The "cpuid" instruction is a way of querying both the CPU identity
  358. * (manufacturer, model, etc) and its features. It was introduced before the
  359. * Pentium in 1993 and keeps getting extended by both Intel, AMD and others.
  360. * As you might imagine, after a decade and a half this treatment, it is now a
  361. * giant ball of hair. Its entry in the current Intel manual runs to 28 pages.
  362. *
  363. * This instruction even it has its own Wikipedia entry. The Wikipedia entry
  364. * has been translated into 5 languages. I am not making this up!
  365. *
  366. * We could get funky here and identify ourselves as "GenuineLguest", but
  367. * instead we just use the real "cpuid" instruction. Then I pretty much turned
  368. * off feature bits until the Guest booted. (Don't say that: you'll damage
  369. * lguest sales!) Shut up, inner voice! (Hey, just pointing out that this is
  370. * hardly future proof.) Noone's listening! They don't like you anyway,
  371. * parenthetic weirdo!
  372. *
  373. * Replacing the cpuid so we can turn features off is great for the kernel, but
  374. * anyone (including userspace) can just use the raw "cpuid" instruction and
  375. * the Host won't even notice since it isn't privileged. So we try not to get
  376. * too worked up about it.
  377. */
  378. static void lguest_cpuid(unsigned int *ax, unsigned int *bx,
  379. unsigned int *cx, unsigned int *dx)
  380. {
  381. int function = *ax;
  382. native_cpuid(ax, bx, cx, dx);
  383. switch (function) {
  384. /*
  385. * CPUID 0 gives the highest legal CPUID number (and the ID string).
  386. * We futureproof our code a little by sticking to known CPUID values.
  387. */
  388. case 0:
  389. if (*ax > 5)
  390. *ax = 5;
  391. break;
  392. /*
  393. * CPUID 1 is a basic feature request.
  394. *
  395. * CX: we only allow kernel to see SSE3, CMPXCHG16B and SSSE3
  396. * DX: SSE, SSE2, FXSR, MMX, CMOV, CMPXCHG8B, TSC, FPU and PAE.
  397. */
  398. case 1:
  399. *cx &= 0x00002201;
  400. *dx &= 0x07808151;
  401. /*
  402. * The Host can do a nice optimization if it knows that the
  403. * kernel mappings (addresses above 0xC0000000 or whatever
  404. * PAGE_OFFSET is set to) haven't changed. But Linux calls
  405. * flush_tlb_user() for both user and kernel mappings unless
  406. * the Page Global Enable (PGE) feature bit is set.
  407. */
  408. *dx |= 0x00002000;
  409. /*
  410. * We also lie, and say we're family id 5. 6 or greater
  411. * leads to a rdmsr in early_init_intel which we can't handle.
  412. * Family ID is returned as bits 8-12 in ax.
  413. */
  414. *ax &= 0xFFFFF0FF;
  415. *ax |= 0x00000500;
  416. break;
  417. /*
  418. * 0x80000000 returns the highest Extended Function, so we futureproof
  419. * like we do above by limiting it to known fields.
  420. */
  421. case 0x80000000:
  422. if (*ax > 0x80000008)
  423. *ax = 0x80000008;
  424. break;
  425. /*
  426. * PAE systems can mark pages as non-executable. Linux calls this the
  427. * NX bit. Intel calls it XD (eXecute Disable), AMD EVP (Enhanced
  428. * Virus Protection). We just switch turn if off here, since we don't
  429. * support it.
  430. */
  431. case 0x80000001:
  432. *dx &= ~(1 << 20);
  433. break;
  434. }
  435. }
  436. /*
  437. * Intel has four control registers, imaginatively named cr0, cr2, cr3 and cr4.
  438. * I assume there's a cr1, but it hasn't bothered us yet, so we'll not bother
  439. * it. The Host needs to know when the Guest wants to change them, so we have
  440. * a whole series of functions like read_cr0() and write_cr0().
  441. *
  442. * We start with cr0. cr0 allows you to turn on and off all kinds of basic
  443. * features, but Linux only really cares about one: the horrifically-named Task
  444. * Switched (TS) bit at bit 3 (ie. 8)
  445. *
  446. * What does the TS bit do? Well, it causes the CPU to trap (interrupt 7) if
  447. * the floating point unit is used. Which allows us to restore FPU state
  448. * lazily after a task switch, and Linux uses that gratefully, but wouldn't a
  449. * name like "FPUTRAP bit" be a little less cryptic?
  450. *
  451. * We store cr0 locally because the Host never changes it. The Guest sometimes
  452. * wants to read it and we'd prefer not to bother the Host unnecessarily.
  453. */
  454. static unsigned long current_cr0;
  455. static void lguest_write_cr0(unsigned long val)
  456. {
  457. lazy_hcall1(LHCALL_TS, val & X86_CR0_TS);
  458. current_cr0 = val;
  459. }
  460. static unsigned long lguest_read_cr0(void)
  461. {
  462. return current_cr0;
  463. }
  464. /*
  465. * Intel provided a special instruction to clear the TS bit for people too cool
  466. * to use write_cr0() to do it. This "clts" instruction is faster, because all
  467. * the vowels have been optimized out.
  468. */
  469. static void lguest_clts(void)
  470. {
  471. lazy_hcall1(LHCALL_TS, 0);
  472. current_cr0 &= ~X86_CR0_TS;
  473. }
  474. /*
  475. * cr2 is the virtual address of the last page fault, which the Guest only ever
  476. * reads. The Host kindly writes this into our "struct lguest_data", so we
  477. * just read it out of there.
  478. */
  479. static unsigned long lguest_read_cr2(void)
  480. {
  481. return lguest_data.cr2;
  482. }
  483. /* See lguest_set_pte() below. */
  484. static bool cr3_changed = false;
  485. /*
  486. * cr3 is the current toplevel pagetable page: the principle is the same as
  487. * cr0. Keep a local copy, and tell the Host when it changes. The only
  488. * difference is that our local copy is in lguest_data because the Host needs
  489. * to set it upon our initial hypercall.
  490. */
  491. static void lguest_write_cr3(unsigned long cr3)
  492. {
  493. lguest_data.pgdir = cr3;
  494. lazy_hcall1(LHCALL_NEW_PGTABLE, cr3);
  495. cr3_changed = true;
  496. }
  497. static unsigned long lguest_read_cr3(void)
  498. {
  499. return lguest_data.pgdir;
  500. }
  501. /* cr4 is used to enable and disable PGE, but we don't care. */
  502. static unsigned long lguest_read_cr4(void)
  503. {
  504. return 0;
  505. }
  506. static void lguest_write_cr4(unsigned long val)
  507. {
  508. }
  509. /*
  510. * Page Table Handling.
  511. *
  512. * Now would be a good time to take a rest and grab a coffee or similarly
  513. * relaxing stimulant. The easy parts are behind us, and the trek gradually
  514. * winds uphill from here.
  515. *
  516. * Quick refresher: memory is divided into "pages" of 4096 bytes each. The CPU
  517. * maps virtual addresses to physical addresses using "page tables". We could
  518. * use one huge index of 1 million entries: each address is 4 bytes, so that's
  519. * 1024 pages just to hold the page tables. But since most virtual addresses
  520. * are unused, we use a two level index which saves space. The cr3 register
  521. * contains the physical address of the top level "page directory" page, which
  522. * contains physical addresses of up to 1024 second-level pages. Each of these
  523. * second level pages contains up to 1024 physical addresses of actual pages,
  524. * or Page Table Entries (PTEs).
  525. *
  526. * Here's a diagram, where arrows indicate physical addresses:
  527. *
  528. * cr3 ---> +---------+
  529. * | --------->+---------+
  530. * | | | PADDR1 |
  531. * Mid-level | | PADDR2 |
  532. * (PMD) page | | |
  533. * | | Lower-level |
  534. * | | (PTE) page |
  535. * | | | |
  536. * .... ....
  537. *
  538. * So to convert a virtual address to a physical address, we look up the top
  539. * level, which points us to the second level, which gives us the physical
  540. * address of that page. If the top level entry was not present, or the second
  541. * level entry was not present, then the virtual address is invalid (we
  542. * say "the page was not mapped").
  543. *
  544. * Put another way, a 32-bit virtual address is divided up like so:
  545. *
  546. * 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
  547. * |<---- 10 bits ---->|<---- 10 bits ---->|<------ 12 bits ------>|
  548. * Index into top Index into second Offset within page
  549. * page directory page pagetable page
  550. *
  551. * Now, unfortunately, this isn't the whole story: Intel added Physical Address
  552. * Extension (PAE) to allow 32 bit systems to use 64GB of memory (ie. 36 bits).
  553. * These are held in 64-bit page table entries, so we can now only fit 512
  554. * entries in a page, and the neat three-level tree breaks down.
  555. *
  556. * The result is a four level page table:
  557. *
  558. * cr3 --> [ 4 Upper ]
  559. * [ Level ]
  560. * [ Entries ]
  561. * [(PUD Page)]---> +---------+
  562. * | --------->+---------+
  563. * | | | PADDR1 |
  564. * Mid-level | | PADDR2 |
  565. * (PMD) page | | |
  566. * | | Lower-level |
  567. * | | (PTE) page |
  568. * | | | |
  569. * .... ....
  570. *
  571. *
  572. * And the virtual address is decoded as:
  573. *
  574. * 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
  575. * |<-2->|<--- 9 bits ---->|<---- 9 bits --->|<------ 12 bits ------>|
  576. * Index into Index into mid Index into lower Offset within page
  577. * top entries directory page pagetable page
  578. *
  579. * It's too hard to switch between these two formats at runtime, so Linux only
  580. * supports one or the other depending on whether CONFIG_X86_PAE is set. Many
  581. * distributions turn it on, and not just for people with silly amounts of
  582. * memory: the larger PTE entries allow room for the NX bit, which lets the
  583. * kernel disable execution of pages and increase security.
  584. *
  585. * This was a problem for lguest, which couldn't run on these distributions;
  586. * then Matias Zabaljauregui figured it all out and implemented it, and only a
  587. * handful of puppies were crushed in the process!
  588. *
  589. * Back to our point: the kernel spends a lot of time changing both the
  590. * top-level page directory and lower-level pagetable pages. The Guest doesn't
  591. * know physical addresses, so while it maintains these page tables exactly
  592. * like normal, it also needs to keep the Host informed whenever it makes a
  593. * change: the Host will create the real page tables based on the Guests'.
  594. */
  595. /*
  596. * The Guest calls this after it has set a second-level entry (pte), ie. to map
  597. * a page into a process' address space. Wetell the Host the toplevel and
  598. * address this corresponds to. The Guest uses one pagetable per process, so
  599. * we need to tell the Host which one we're changing (mm->pgd).
  600. */
  601. static void lguest_pte_update(struct mm_struct *mm, unsigned long addr,
  602. pte_t *ptep)
  603. {
  604. #ifdef CONFIG_X86_PAE
  605. /* PAE needs to hand a 64 bit page table entry, so it uses two args. */
  606. lazy_hcall4(LHCALL_SET_PTE, __pa(mm->pgd), addr,
  607. ptep->pte_low, ptep->pte_high);
  608. #else
  609. lazy_hcall3(LHCALL_SET_PTE, __pa(mm->pgd), addr, ptep->pte_low);
  610. #endif
  611. }
  612. /* This is the "set and update" combo-meal-deal version. */
  613. static void lguest_set_pte_at(struct mm_struct *mm, unsigned long addr,
  614. pte_t *ptep, pte_t pteval)
  615. {
  616. native_set_pte(ptep, pteval);
  617. lguest_pte_update(mm, addr, ptep);
  618. }
  619. /*
  620. * The Guest calls lguest_set_pud to set a top-level entry and lguest_set_pmd
  621. * to set a middle-level entry when PAE is activated.
  622. *
  623. * Again, we set the entry then tell the Host which page we changed,
  624. * and the index of the entry we changed.
  625. */
  626. #ifdef CONFIG_X86_PAE
  627. static void lguest_set_pud(pud_t *pudp, pud_t pudval)
  628. {
  629. native_set_pud(pudp, pudval);
  630. /* 32 bytes aligned pdpt address and the index. */
  631. lazy_hcall2(LHCALL_SET_PGD, __pa(pudp) & 0xFFFFFFE0,
  632. (__pa(pudp) & 0x1F) / sizeof(pud_t));
  633. }
  634. static void lguest_set_pmd(pmd_t *pmdp, pmd_t pmdval)
  635. {
  636. native_set_pmd(pmdp, pmdval);
  637. lazy_hcall2(LHCALL_SET_PMD, __pa(pmdp) & PAGE_MASK,
  638. (__pa(pmdp) & (PAGE_SIZE - 1)) / sizeof(pmd_t));
  639. }
  640. #else
  641. /* The Guest calls lguest_set_pmd to set a top-level entry when !PAE. */
  642. static void lguest_set_pmd(pmd_t *pmdp, pmd_t pmdval)
  643. {
  644. native_set_pmd(pmdp, pmdval);
  645. lazy_hcall2(LHCALL_SET_PGD, __pa(pmdp) & PAGE_MASK,
  646. (__pa(pmdp) & (PAGE_SIZE - 1)) / sizeof(pmd_t));
  647. }
  648. #endif
  649. /*
  650. * There are a couple of legacy places where the kernel sets a PTE, but we
  651. * don't know the top level any more. This is useless for us, since we don't
  652. * know which pagetable is changing or what address, so we just tell the Host
  653. * to forget all of them. Fortunately, this is very rare.
  654. *
  655. * ... except in early boot when the kernel sets up the initial pagetables,
  656. * which makes booting astonishingly slow: 1.83 seconds! So we don't even tell
  657. * the Host anything changed until we've done the first page table switch,
  658. * which brings boot back to 0.25 seconds.
  659. */
  660. static void lguest_set_pte(pte_t *ptep, pte_t pteval)
  661. {
  662. native_set_pte(ptep, pteval);
  663. if (cr3_changed)
  664. lazy_hcall1(LHCALL_FLUSH_TLB, 1);
  665. }
  666. #ifdef CONFIG_X86_PAE
  667. /*
  668. * With 64-bit PTE values, we need to be careful setting them: if we set 32
  669. * bits at a time, the hardware could see a weird half-set entry. These
  670. * versions ensure we update all 64 bits at once.
  671. */
  672. static void lguest_set_pte_atomic(pte_t *ptep, pte_t pte)
  673. {
  674. native_set_pte_atomic(ptep, pte);
  675. if (cr3_changed)
  676. lazy_hcall1(LHCALL_FLUSH_TLB, 1);
  677. }
  678. static void lguest_pte_clear(struct mm_struct *mm, unsigned long addr,
  679. pte_t *ptep)
  680. {
  681. native_pte_clear(mm, addr, ptep);
  682. lguest_pte_update(mm, addr, ptep);
  683. }
  684. static void lguest_pmd_clear(pmd_t *pmdp)
  685. {
  686. lguest_set_pmd(pmdp, __pmd(0));
  687. }
  688. #endif
  689. /*
  690. * Unfortunately for Lguest, the pv_mmu_ops for page tables were based on
  691. * native page table operations. On native hardware you can set a new page
  692. * table entry whenever you want, but if you want to remove one you have to do
  693. * a TLB flush (a TLB is a little cache of page table entries kept by the CPU).
  694. *
  695. * So the lguest_set_pte_at() and lguest_set_pmd() functions above are only
  696. * called when a valid entry is written, not when it's removed (ie. marked not
  697. * present). Instead, this is where we come when the Guest wants to remove a
  698. * page table entry: we tell the Host to set that entry to 0 (ie. the present
  699. * bit is zero).
  700. */
  701. static void lguest_flush_tlb_single(unsigned long addr)
  702. {
  703. /* Simply set it to zero: if it was not, it will fault back in. */
  704. lazy_hcall3(LHCALL_SET_PTE, lguest_data.pgdir, addr, 0);
  705. }
  706. /*
  707. * This is what happens after the Guest has removed a large number of entries.
  708. * This tells the Host that any of the page table entries for userspace might
  709. * have changed, ie. virtual addresses below PAGE_OFFSET.
  710. */
  711. static void lguest_flush_tlb_user(void)
  712. {
  713. lazy_hcall1(LHCALL_FLUSH_TLB, 0);
  714. }
  715. /*
  716. * This is called when the kernel page tables have changed. That's not very
  717. * common (unless the Guest is using highmem, which makes the Guest extremely
  718. * slow), so it's worth separating this from the user flushing above.
  719. */
  720. static void lguest_flush_tlb_kernel(void)
  721. {
  722. lazy_hcall1(LHCALL_FLUSH_TLB, 1);
  723. }
  724. /*
  725. * The Unadvanced Programmable Interrupt Controller.
  726. *
  727. * This is an attempt to implement the simplest possible interrupt controller.
  728. * I spent some time looking though routines like set_irq_chip_and_handler,
  729. * set_irq_chip_and_handler_name, set_irq_chip_data and set_phasers_to_stun and
  730. * I *think* this is as simple as it gets.
  731. *
  732. * We can tell the Host what interrupts we want blocked ready for using the
  733. * lguest_data.interrupts bitmap, so disabling (aka "masking") them is as
  734. * simple as setting a bit. We don't actually "ack" interrupts as such, we
  735. * just mask and unmask them. I wonder if we should be cleverer?
  736. */
  737. static void disable_lguest_irq(unsigned int irq)
  738. {
  739. set_bit(irq, lguest_data.blocked_interrupts);
  740. }
  741. static void enable_lguest_irq(unsigned int irq)
  742. {
  743. clear_bit(irq, lguest_data.blocked_interrupts);
  744. }
  745. /* This structure describes the lguest IRQ controller. */
  746. static struct irq_chip lguest_irq_controller = {
  747. .name = "lguest",
  748. .mask = disable_lguest_irq,
  749. .mask_ack = disable_lguest_irq,
  750. .unmask = enable_lguest_irq,
  751. };
  752. /*
  753. * This sets up the Interrupt Descriptor Table (IDT) entry for each hardware
  754. * interrupt (except 128, which is used for system calls), and then tells the
  755. * Linux infrastructure that each interrupt is controlled by our level-based
  756. * lguest interrupt controller.
  757. */
  758. static void __init lguest_init_IRQ(void)
  759. {
  760. unsigned int i;
  761. for (i = FIRST_EXTERNAL_VECTOR; i < NR_VECTORS; i++) {
  762. /* Some systems map "vectors" to interrupts weirdly. Not us! */
  763. __get_cpu_var(vector_irq)[i] = i - FIRST_EXTERNAL_VECTOR;
  764. if (i != SYSCALL_VECTOR)
  765. set_intr_gate(i, interrupt[i - FIRST_EXTERNAL_VECTOR]);
  766. }
  767. /*
  768. * This call is required to set up for 4k stacks, where we have
  769. * separate stacks for hard and soft interrupts.
  770. */
  771. irq_ctx_init(smp_processor_id());
  772. }
  773. /*
  774. * With CONFIG_SPARSE_IRQ, interrupt descriptors are allocated as-needed, so
  775. * rather than set them in lguest_init_IRQ we are called here every time an
  776. * lguest device needs an interrupt.
  777. *
  778. * FIXME: irq_to_desc_alloc_node() can fail due to lack of memory, we should
  779. * pass that up!
  780. */
  781. void lguest_setup_irq(unsigned int irq)
  782. {
  783. irq_to_desc_alloc_node(irq, 0);
  784. set_irq_chip_and_handler_name(irq, &lguest_irq_controller,
  785. handle_level_irq, "level");
  786. }
  787. /*
  788. * Time.
  789. *
  790. * It would be far better for everyone if the Guest had its own clock, but
  791. * until then the Host gives us the time on every interrupt.
  792. */
  793. static unsigned long lguest_get_wallclock(void)
  794. {
  795. return lguest_data.time.tv_sec;
  796. }
  797. /*
  798. * The TSC is an Intel thing called the Time Stamp Counter. The Host tells us
  799. * what speed it runs at, or 0 if it's unusable as a reliable clock source.
  800. * This matches what we want here: if we return 0 from this function, the x86
  801. * TSC clock will give up and not register itself.
  802. */
  803. static unsigned long lguest_tsc_khz(void)
  804. {
  805. return lguest_data.tsc_khz;
  806. }
  807. /*
  808. * If we can't use the TSC, the kernel falls back to our lower-priority
  809. * "lguest_clock", where we read the time value given to us by the Host.
  810. */
  811. static cycle_t lguest_clock_read(struct clocksource *cs)
  812. {
  813. unsigned long sec, nsec;
  814. /*
  815. * Since the time is in two parts (seconds and nanoseconds), we risk
  816. * reading it just as it's changing from 99 & 0.999999999 to 100 and 0,
  817. * and getting 99 and 0. As Linux tends to come apart under the stress
  818. * of time travel, we must be careful:
  819. */
  820. do {
  821. /* First we read the seconds part. */
  822. sec = lguest_data.time.tv_sec;
  823. /*
  824. * This read memory barrier tells the compiler and the CPU that
  825. * this can't be reordered: we have to complete the above
  826. * before going on.
  827. */
  828. rmb();
  829. /* Now we read the nanoseconds part. */
  830. nsec = lguest_data.time.tv_nsec;
  831. /* Make sure we've done that. */
  832. rmb();
  833. /* Now if the seconds part has changed, try again. */
  834. } while (unlikely(lguest_data.time.tv_sec != sec));
  835. /* Our lguest clock is in real nanoseconds. */
  836. return sec*1000000000ULL + nsec;
  837. }
  838. /* This is the fallback clocksource: lower priority than the TSC clocksource. */
  839. static struct clocksource lguest_clock = {
  840. .name = "lguest",
  841. .rating = 200,
  842. .read = lguest_clock_read,
  843. .mask = CLOCKSOURCE_MASK(64),
  844. .mult = 1 << 22,
  845. .shift = 22,
  846. .flags = CLOCK_SOURCE_IS_CONTINUOUS,
  847. };
  848. /*
  849. * We also need a "struct clock_event_device": Linux asks us to set it to go
  850. * off some time in the future. Actually, James Morris figured all this out, I
  851. * just applied the patch.
  852. */
  853. static int lguest_clockevent_set_next_event(unsigned long delta,
  854. struct clock_event_device *evt)
  855. {
  856. /* FIXME: I don't think this can ever happen, but James tells me he had
  857. * to put this code in. Maybe we should remove it now. Anyone? */
  858. if (delta < LG_CLOCK_MIN_DELTA) {
  859. if (printk_ratelimit())
  860. printk(KERN_DEBUG "%s: small delta %lu ns\n",
  861. __func__, delta);
  862. return -ETIME;
  863. }
  864. /* Please wake us this far in the future. */
  865. hcall(LHCALL_SET_CLOCKEVENT, delta, 0, 0, 0);
  866. return 0;
  867. }
  868. static void lguest_clockevent_set_mode(enum clock_event_mode mode,
  869. struct clock_event_device *evt)
  870. {
  871. switch (mode) {
  872. case CLOCK_EVT_MODE_UNUSED:
  873. case CLOCK_EVT_MODE_SHUTDOWN:
  874. /* A 0 argument shuts the clock down. */
  875. hcall(LHCALL_SET_CLOCKEVENT, 0, 0, 0, 0);
  876. break;
  877. case CLOCK_EVT_MODE_ONESHOT:
  878. /* This is what we expect. */
  879. break;
  880. case CLOCK_EVT_MODE_PERIODIC:
  881. BUG();
  882. case CLOCK_EVT_MODE_RESUME:
  883. break;
  884. }
  885. }
  886. /* This describes our primitive timer chip. */
  887. static struct clock_event_device lguest_clockevent = {
  888. .name = "lguest",
  889. .features = CLOCK_EVT_FEAT_ONESHOT,
  890. .set_next_event = lguest_clockevent_set_next_event,
  891. .set_mode = lguest_clockevent_set_mode,
  892. .rating = INT_MAX,
  893. .mult = 1,
  894. .shift = 0,
  895. .min_delta_ns = LG_CLOCK_MIN_DELTA,
  896. .max_delta_ns = LG_CLOCK_MAX_DELTA,
  897. };
  898. /*
  899. * This is the Guest timer interrupt handler (hardware interrupt 0). We just
  900. * call the clockevent infrastructure and it does whatever needs doing.
  901. */
  902. static void lguest_time_irq(unsigned int irq, struct irq_desc *desc)
  903. {
  904. unsigned long flags;
  905. /* Don't interrupt us while this is running. */
  906. local_irq_save(flags);
  907. lguest_clockevent.event_handler(&lguest_clockevent);
  908. local_irq_restore(flags);
  909. }
  910. /*
  911. * At some point in the boot process, we get asked to set up our timing
  912. * infrastructure. The kernel doesn't expect timer interrupts before this, but
  913. * we cleverly initialized the "blocked_interrupts" field of "struct
  914. * lguest_data" so that timer interrupts were blocked until now.
  915. */
  916. static void lguest_time_init(void)
  917. {
  918. /* Set up the timer interrupt (0) to go to our simple timer routine */
  919. set_irq_handler(0, lguest_time_irq);
  920. clocksource_register(&lguest_clock);
  921. /* We can't set cpumask in the initializer: damn C limitations! Set it
  922. * here and register our timer device. */
  923. lguest_clockevent.cpumask = cpumask_of(0);
  924. clockevents_register_device(&lguest_clockevent);
  925. /* Finally, we unblock the timer interrupt. */
  926. enable_lguest_irq(0);
  927. }
  928. /*
  929. * Miscellaneous bits and pieces.
  930. *
  931. * Here is an oddball collection of functions which the Guest needs for things
  932. * to work. They're pretty simple.
  933. */
  934. /*
  935. * The Guest needs to tell the Host what stack it expects traps to use. For
  936. * native hardware, this is part of the Task State Segment mentioned above in
  937. * lguest_load_tr_desc(), but to help hypervisors there's this special call.
  938. *
  939. * We tell the Host the segment we want to use (__KERNEL_DS is the kernel data
  940. * segment), the privilege level (we're privilege level 1, the Host is 0 and
  941. * will not tolerate us trying to use that), the stack pointer, and the number
  942. * of pages in the stack.
  943. */
  944. static void lguest_load_sp0(struct tss_struct *tss,
  945. struct thread_struct *thread)
  946. {
  947. lazy_hcall3(LHCALL_SET_STACK, __KERNEL_DS | 0x1, thread->sp0,
  948. THREAD_SIZE / PAGE_SIZE);
  949. }
  950. /* Let's just say, I wouldn't do debugging under a Guest. */
  951. static void lguest_set_debugreg(int regno, unsigned long value)
  952. {
  953. /* FIXME: Implement */
  954. }
  955. /*
  956. * There are times when the kernel wants to make sure that no memory writes are
  957. * caught in the cache (that they've all reached real hardware devices). This
  958. * doesn't matter for the Guest which has virtual hardware.
  959. *
  960. * On the Pentium 4 and above, cpuid() indicates that the Cache Line Flush
  961. * (clflush) instruction is available and the kernel uses that. Otherwise, it
  962. * uses the older "Write Back and Invalidate Cache" (wbinvd) instruction.
  963. * Unlike clflush, wbinvd can only be run at privilege level 0. So we can
  964. * ignore clflush, but replace wbinvd.
  965. */
  966. static void lguest_wbinvd(void)
  967. {
  968. }
  969. /*
  970. * If the Guest expects to have an Advanced Programmable Interrupt Controller,
  971. * we play dumb by ignoring writes and returning 0 for reads. So it's no
  972. * longer Programmable nor Controlling anything, and I don't think 8 lines of
  973. * code qualifies for Advanced. It will also never interrupt anything. It
  974. * does, however, allow us to get through the Linux boot code.
  975. */
  976. #ifdef CONFIG_X86_LOCAL_APIC
  977. static void lguest_apic_write(u32 reg, u32 v)
  978. {
  979. }
  980. static u32 lguest_apic_read(u32 reg)
  981. {
  982. return 0;
  983. }
  984. static u64 lguest_apic_icr_read(void)
  985. {
  986. return 0;
  987. }
  988. static void lguest_apic_icr_write(u32 low, u32 id)
  989. {
  990. /* Warn to see if there's any stray references */
  991. WARN_ON(1);
  992. }
  993. static void lguest_apic_wait_icr_idle(void)
  994. {
  995. return;
  996. }
  997. static u32 lguest_apic_safe_wait_icr_idle(void)
  998. {
  999. return 0;
  1000. }
  1001. static void set_lguest_basic_apic_ops(void)
  1002. {
  1003. apic->read = lguest_apic_read;
  1004. apic->write = lguest_apic_write;
  1005. apic->icr_read = lguest_apic_icr_read;
  1006. apic->icr_write = lguest_apic_icr_write;
  1007. apic->wait_icr_idle = lguest_apic_wait_icr_idle;
  1008. apic->safe_wait_icr_idle = lguest_apic_safe_wait_icr_idle;
  1009. };
  1010. #endif
  1011. /* STOP! Until an interrupt comes in. */
  1012. static void lguest_safe_halt(void)
  1013. {
  1014. hcall(LHCALL_HALT, 0, 0, 0, 0);
  1015. }
  1016. /*
  1017. * The SHUTDOWN hypercall takes a string to describe what's happening, and
  1018. * an argument which says whether this to restart (reboot) the Guest or not.
  1019. *
  1020. * Note that the Host always prefers that the Guest speak in physical addresses
  1021. * rather than virtual addresses, so we use __pa() here.
  1022. */
  1023. static void lguest_power_off(void)
  1024. {
  1025. hcall(LHCALL_SHUTDOWN, __pa("Power down"),
  1026. LGUEST_SHUTDOWN_POWEROFF, 0, 0);
  1027. }
  1028. /*
  1029. * Panicing.
  1030. *
  1031. * Don't. But if you did, this is what happens.
  1032. */
  1033. static int lguest_panic(struct notifier_block *nb, unsigned long l, void *p)
  1034. {
  1035. hcall(LHCALL_SHUTDOWN, __pa(p), LGUEST_SHUTDOWN_POWEROFF, 0, 0);
  1036. /* The hcall won't return, but to keep gcc happy, we're "done". */
  1037. return NOTIFY_DONE;
  1038. }
  1039. static struct notifier_block paniced = {
  1040. .notifier_call = lguest_panic
  1041. };
  1042. /* Setting up memory is fairly easy. */
  1043. static __init char *lguest_memory_setup(void)
  1044. {
  1045. /*
  1046. *The Linux bootloader header contains an "e820" memory map: the
  1047. * Launcher populated the first entry with our memory limit.
  1048. */
  1049. e820_add_region(boot_params.e820_map[0].addr,
  1050. boot_params.e820_map[0].size,
  1051. boot_params.e820_map[0].type);
  1052. /* This string is for the boot messages. */
  1053. return "LGUEST";
  1054. }
  1055. /*
  1056. * We will eventually use the virtio console device to produce console output,
  1057. * but before that is set up we use LHCALL_NOTIFY on normal memory to produce
  1058. * console output.
  1059. */
  1060. static __init int early_put_chars(u32 vtermno, const char *buf, int count)
  1061. {
  1062. char scratch[17];
  1063. unsigned int len = count;
  1064. /* We use a nul-terminated string, so we make a copy. Icky, huh? */
  1065. if (len > sizeof(scratch) - 1)
  1066. len = sizeof(scratch) - 1;
  1067. scratch[len] = '\0';
  1068. memcpy(scratch, buf, len);
  1069. hcall(LHCALL_NOTIFY, __pa(scratch), 0, 0, 0);
  1070. /* This routine returns the number of bytes actually written. */
  1071. return len;
  1072. }
  1073. /*
  1074. * Rebooting also tells the Host we're finished, but the RESTART flag tells the
  1075. * Launcher to reboot us.
  1076. */
  1077. static void lguest_restart(char *reason)
  1078. {
  1079. hcall(LHCALL_SHUTDOWN, __pa(reason), LGUEST_SHUTDOWN_RESTART, 0, 0);
  1080. }
  1081. /*G:050
  1082. * Patching (Powerfully Placating Performance Pedants)
  1083. *
  1084. * We have already seen that pv_ops structures let us replace simple native
  1085. * instructions with calls to the appropriate back end all throughout the
  1086. * kernel. This allows the same kernel to run as a Guest and as a native
  1087. * kernel, but it's slow because of all the indirect branches.
  1088. *
  1089. * Remember that David Wheeler quote about "Any problem in computer science can
  1090. * be solved with another layer of indirection"? The rest of that quote is
  1091. * "... But that usually will create another problem." This is the first of
  1092. * those problems.
  1093. *
  1094. * Our current solution is to allow the paravirt back end to optionally patch
  1095. * over the indirect calls to replace them with something more efficient. We
  1096. * patch two of the simplest of the most commonly called functions: disable
  1097. * interrupts and save interrupts. We usually have 6 or 10 bytes to patch
  1098. * into: the Guest versions of these operations are small enough that we can
  1099. * fit comfortably.
  1100. *
  1101. * First we need assembly templates of each of the patchable Guest operations,
  1102. * and these are in i386_head.S.
  1103. */
  1104. /*G:060 We construct a table from the assembler templates: */
  1105. static const struct lguest_insns
  1106. {
  1107. const char *start, *end;
  1108. } lguest_insns[] = {
  1109. [PARAVIRT_PATCH(pv_irq_ops.irq_disable)] = { lgstart_cli, lgend_cli },
  1110. [PARAVIRT_PATCH(pv_irq_ops.save_fl)] = { lgstart_pushf, lgend_pushf },
  1111. };
  1112. /*
  1113. * Now our patch routine is fairly simple (based on the native one in
  1114. * paravirt.c). If we have a replacement, we copy it in and return how much of
  1115. * the available space we used.
  1116. */
  1117. static unsigned lguest_patch(u8 type, u16 clobber, void *ibuf,
  1118. unsigned long addr, unsigned len)
  1119. {
  1120. unsigned int insn_len;
  1121. /* Don't do anything special if we don't have a replacement */
  1122. if (type >= ARRAY_SIZE(lguest_insns) || !lguest_insns[type].start)
  1123. return paravirt_patch_default(type, clobber, ibuf, addr, len);
  1124. insn_len = lguest_insns[type].end - lguest_insns[type].start;
  1125. /* Similarly if it can't fit (doesn't happen, but let's be thorough). */
  1126. if (len < insn_len)
  1127. return paravirt_patch_default(type, clobber, ibuf, addr, len);
  1128. /* Copy in our instructions. */
  1129. memcpy(ibuf, lguest_insns[type].start, insn_len);
  1130. return insn_len;
  1131. }
  1132. /*G:029
  1133. * Once we get to lguest_init(), we know we're a Guest. The various
  1134. * pv_ops structures in the kernel provide points for (almost) every routine we
  1135. * have to override to avoid privileged instructions.
  1136. */
  1137. __init void lguest_init(void)
  1138. {
  1139. /* We're under lguest. */
  1140. pv_info.name = "lguest";
  1141. /* Paravirt is enabled. */
  1142. pv_info.paravirt_enabled = 1;
  1143. /* We're running at privilege level 1, not 0 as normal. */
  1144. pv_info.kernel_rpl = 1;
  1145. /* Everyone except Xen runs with this set. */
  1146. pv_info.shared_kernel_pmd = 1;
  1147. /*
  1148. * We set up all the lguest overrides for sensitive operations. These
  1149. * are detailed with the operations themselves.
  1150. */
  1151. /* Interrupt-related operations */
  1152. pv_irq_ops.save_fl = PV_CALLEE_SAVE(save_fl);
  1153. pv_irq_ops.restore_fl = __PV_IS_CALLEE_SAVE(lg_restore_fl);
  1154. pv_irq_ops.irq_disable = PV_CALLEE_SAVE(irq_disable);
  1155. pv_irq_ops.irq_enable = __PV_IS_CALLEE_SAVE(lg_irq_enable);
  1156. pv_irq_ops.safe_halt = lguest_safe_halt;
  1157. /* Setup operations */
  1158. pv_init_ops.patch = lguest_patch;
  1159. /* Intercepts of various CPU instructions */
  1160. pv_cpu_ops.load_gdt = lguest_load_gdt;
  1161. pv_cpu_ops.cpuid = lguest_cpuid;
  1162. pv_cpu_ops.load_idt = lguest_load_idt;
  1163. pv_cpu_ops.iret = lguest_iret;
  1164. pv_cpu_ops.load_sp0 = lguest_load_sp0;
  1165. pv_cpu_ops.load_tr_desc = lguest_load_tr_desc;
  1166. pv_cpu_ops.set_ldt = lguest_set_ldt;
  1167. pv_cpu_ops.load_tls = lguest_load_tls;
  1168. pv_cpu_ops.set_debugreg = lguest_set_debugreg;
  1169. pv_cpu_ops.clts = lguest_clts;
  1170. pv_cpu_ops.read_cr0 = lguest_read_cr0;
  1171. pv_cpu_ops.write_cr0 = lguest_write_cr0;
  1172. pv_cpu_ops.read_cr4 = lguest_read_cr4;
  1173. pv_cpu_ops.write_cr4 = lguest_write_cr4;
  1174. pv_cpu_ops.write_gdt_entry = lguest_write_gdt_entry;
  1175. pv_cpu_ops.write_idt_entry = lguest_write_idt_entry;
  1176. pv_cpu_ops.wbinvd = lguest_wbinvd;
  1177. pv_cpu_ops.start_context_switch = paravirt_start_context_switch;
  1178. pv_cpu_ops.end_context_switch = lguest_end_context_switch;
  1179. /* Pagetable management */
  1180. pv_mmu_ops.write_cr3 = lguest_write_cr3;
  1181. pv_mmu_ops.flush_tlb_user = lguest_flush_tlb_user;
  1182. pv_mmu_ops.flush_tlb_single = lguest_flush_tlb_single;
  1183. pv_mmu_ops.flush_tlb_kernel = lguest_flush_tlb_kernel;
  1184. pv_mmu_ops.set_pte = lguest_set_pte;
  1185. pv_mmu_ops.set_pte_at = lguest_set_pte_at;
  1186. pv_mmu_ops.set_pmd = lguest_set_pmd;
  1187. #ifdef CONFIG_X86_PAE
  1188. pv_mmu_ops.set_pte_atomic = lguest_set_pte_atomic;
  1189. pv_mmu_ops.pte_clear = lguest_pte_clear;
  1190. pv_mmu_ops.pmd_clear = lguest_pmd_clear;
  1191. pv_mmu_ops.set_pud = lguest_set_pud;
  1192. #endif
  1193. pv_mmu_ops.read_cr2 = lguest_read_cr2;
  1194. pv_mmu_ops.read_cr3 = lguest_read_cr3;
  1195. pv_mmu_ops.lazy_mode.enter = paravirt_enter_lazy_mmu;
  1196. pv_mmu_ops.lazy_mode.leave = lguest_leave_lazy_mmu_mode;
  1197. pv_mmu_ops.pte_update = lguest_pte_update;
  1198. pv_mmu_ops.pte_update_defer = lguest_pte_update;
  1199. #ifdef CONFIG_X86_LOCAL_APIC
  1200. /* APIC read/write intercepts */
  1201. set_lguest_basic_apic_ops();
  1202. #endif
  1203. x86_init.resources.memory_setup = lguest_memory_setup;
  1204. x86_init.irqs.intr_init = lguest_init_IRQ;
  1205. x86_init.timers.timer_init = lguest_time_init;
  1206. x86_platform.calibrate_tsc = lguest_tsc_khz;
  1207. x86_platform.get_wallclock = lguest_get_wallclock;
  1208. /*
  1209. * Now is a good time to look at the implementations of these functions
  1210. * before returning to the rest of lguest_init().
  1211. */
  1212. /*G:070
  1213. * Now we've seen all the paravirt_ops, we return to
  1214. * lguest_init() where the rest of the fairly chaotic boot setup
  1215. * occurs.
  1216. */
  1217. /*
  1218. * The stack protector is a weird thing where gcc places a canary
  1219. * value on the stack and then checks it on return. This file is
  1220. * compiled with -fno-stack-protector it, so we got this far without
  1221. * problems. The value of the canary is kept at offset 20 from the
  1222. * %gs register, so we need to set that up before calling C functions
  1223. * in other files.
  1224. */
  1225. setup_stack_canary_segment(0);
  1226. /*
  1227. * We could just call load_stack_canary_segment(), but we might as well
  1228. * call switch_to_new_gdt() which loads the whole table and sets up the
  1229. * per-cpu segment descriptor register %fs as well.
  1230. */
  1231. switch_to_new_gdt(0);
  1232. /* We actually boot with all memory mapped, but let's say 128MB. */
  1233. max_pfn_mapped = (128*1024*1024) >> PAGE_SHIFT;
  1234. /*
  1235. * The Host<->Guest Switcher lives at the top of our address space, and
  1236. * the Host told us how big it is when we made LGUEST_INIT hypercall:
  1237. * it put the answer in lguest_data.reserve_mem
  1238. */
  1239. reserve_top_address(lguest_data.reserve_mem);
  1240. /*
  1241. * If we don't initialize the lock dependency checker now, it crashes
  1242. * atomic_notifier_chain_register, then paravirt_disable_iospace.
  1243. */
  1244. lockdep_init();
  1245. /* Hook in our special panic hypercall code. */
  1246. atomic_notifier_chain_register(&panic_notifier_list, &paniced);
  1247. /*
  1248. * The IDE code spends about 3 seconds probing for disks: if we reserve
  1249. * all the I/O ports up front it can't get them and so doesn't probe.
  1250. * Other device drivers are similar (but less severe). This cuts the
  1251. * kernel boot time on my machine from 4.1 seconds to 0.45 seconds.
  1252. */
  1253. paravirt_disable_iospace();
  1254. /*
  1255. * This is messy CPU setup stuff which the native boot code does before
  1256. * start_kernel, so we have to do, too:
  1257. */
  1258. cpu_detect(&new_cpu_data);
  1259. /* head.S usually sets up the first capability word, so do it here. */
  1260. new_cpu_data.x86_capability[0] = cpuid_edx(1);
  1261. /* Math is always hard! */
  1262. new_cpu_data.hard_math = 1;
  1263. /* We don't have features. We have puppies! Puppies! */
  1264. #ifdef CONFIG_X86_MCE
  1265. mce_disabled = 1;
  1266. #endif
  1267. #ifdef CONFIG_ACPI
  1268. acpi_disabled = 1;
  1269. #endif
  1270. /*
  1271. * We set the preferred console to "hvc". This is the "hypervisor
  1272. * virtual console" driver written by the PowerPC people, which we also
  1273. * adapted for lguest's use.
  1274. */
  1275. add_preferred_console("hvc", 0, NULL);
  1276. /* Register our very early console. */
  1277. virtio_cons_early_init(early_put_chars);
  1278. /*
  1279. * Last of all, we set the power management poweroff hook to point to
  1280. * the Guest routine to power off, and the reboot hook to our restart
  1281. * routine.
  1282. */
  1283. pm_power_off = lguest_power_off;
  1284. machine_ops.restart = lguest_restart;
  1285. /*
  1286. * Now we're set up, call i386_start_kernel() in head32.c and we proceed
  1287. * to boot as normal. It never returns.
  1288. */
  1289. i386_start_kernel();
  1290. }
  1291. /*
  1292. * This marks the end of stage II of our journey, The Guest.
  1293. *
  1294. * It is now time for us to explore the layer of virtual drivers and complete
  1295. * our understanding of the Guest in "make Drivers".
  1296. */