svm.c 91 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * AMD SVM support
  5. *
  6. * Copyright (C) 2006 Qumranet, Inc.
  7. * Copyright 2010 Red Hat, Inc. and/or its affilates.
  8. *
  9. * Authors:
  10. * Yaniv Kamay <yaniv@qumranet.com>
  11. * Avi Kivity <avi@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include <linux/kvm_host.h>
  18. #include "irq.h"
  19. #include "mmu.h"
  20. #include "kvm_cache_regs.h"
  21. #include "x86.h"
  22. #include <linux/module.h>
  23. #include <linux/kernel.h>
  24. #include <linux/vmalloc.h>
  25. #include <linux/highmem.h>
  26. #include <linux/sched.h>
  27. #include <linux/ftrace_event.h>
  28. #include <linux/slab.h>
  29. #include <asm/tlbflush.h>
  30. #include <asm/desc.h>
  31. #include <asm/virtext.h>
  32. #include "trace.h"
  33. #define __ex(x) __kvm_handle_fault_on_reboot(x)
  34. MODULE_AUTHOR("Qumranet");
  35. MODULE_LICENSE("GPL");
  36. #define IOPM_ALLOC_ORDER 2
  37. #define MSRPM_ALLOC_ORDER 1
  38. #define SEG_TYPE_LDT 2
  39. #define SEG_TYPE_BUSY_TSS16 3
  40. #define SVM_FEATURE_NPT (1 << 0)
  41. #define SVM_FEATURE_LBRV (1 << 1)
  42. #define SVM_FEATURE_SVML (1 << 2)
  43. #define SVM_FEATURE_NRIP (1 << 3)
  44. #define SVM_FEATURE_PAUSE_FILTER (1 << 10)
  45. #define NESTED_EXIT_HOST 0 /* Exit handled on host level */
  46. #define NESTED_EXIT_DONE 1 /* Exit caused nested vmexit */
  47. #define NESTED_EXIT_CONTINUE 2 /* Further checks needed */
  48. #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
  49. static bool erratum_383_found __read_mostly;
  50. static const u32 host_save_user_msrs[] = {
  51. #ifdef CONFIG_X86_64
  52. MSR_STAR, MSR_LSTAR, MSR_CSTAR, MSR_SYSCALL_MASK, MSR_KERNEL_GS_BASE,
  53. MSR_FS_BASE,
  54. #endif
  55. MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
  56. };
  57. #define NR_HOST_SAVE_USER_MSRS ARRAY_SIZE(host_save_user_msrs)
  58. struct kvm_vcpu;
  59. struct nested_state {
  60. struct vmcb *hsave;
  61. u64 hsave_msr;
  62. u64 vm_cr_msr;
  63. u64 vmcb;
  64. /* These are the merged vectors */
  65. u32 *msrpm;
  66. /* gpa pointers to the real vectors */
  67. u64 vmcb_msrpm;
  68. u64 vmcb_iopm;
  69. /* A VMEXIT is required but not yet emulated */
  70. bool exit_required;
  71. /* cache for intercepts of the guest */
  72. u16 intercept_cr_read;
  73. u16 intercept_cr_write;
  74. u16 intercept_dr_read;
  75. u16 intercept_dr_write;
  76. u32 intercept_exceptions;
  77. u64 intercept;
  78. };
  79. #define MSRPM_OFFSETS 16
  80. static u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
  81. struct vcpu_svm {
  82. struct kvm_vcpu vcpu;
  83. struct vmcb *vmcb;
  84. unsigned long vmcb_pa;
  85. struct svm_cpu_data *svm_data;
  86. uint64_t asid_generation;
  87. uint64_t sysenter_esp;
  88. uint64_t sysenter_eip;
  89. u64 next_rip;
  90. u64 host_user_msrs[NR_HOST_SAVE_USER_MSRS];
  91. u64 host_gs_base;
  92. u32 *msrpm;
  93. struct nested_state nested;
  94. bool nmi_singlestep;
  95. unsigned int3_injected;
  96. unsigned long int3_rip;
  97. };
  98. #define MSR_INVALID 0xffffffffU
  99. static struct svm_direct_access_msrs {
  100. u32 index; /* Index of the MSR */
  101. bool always; /* True if intercept is always on */
  102. } direct_access_msrs[] = {
  103. { .index = MSR_K6_STAR, .always = true },
  104. { .index = MSR_IA32_SYSENTER_CS, .always = true },
  105. #ifdef CONFIG_X86_64
  106. { .index = MSR_GS_BASE, .always = true },
  107. { .index = MSR_FS_BASE, .always = true },
  108. { .index = MSR_KERNEL_GS_BASE, .always = true },
  109. { .index = MSR_LSTAR, .always = true },
  110. { .index = MSR_CSTAR, .always = true },
  111. { .index = MSR_SYSCALL_MASK, .always = true },
  112. #endif
  113. { .index = MSR_IA32_LASTBRANCHFROMIP, .always = false },
  114. { .index = MSR_IA32_LASTBRANCHTOIP, .always = false },
  115. { .index = MSR_IA32_LASTINTFROMIP, .always = false },
  116. { .index = MSR_IA32_LASTINTTOIP, .always = false },
  117. { .index = MSR_INVALID, .always = false },
  118. };
  119. /* enable NPT for AMD64 and X86 with PAE */
  120. #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
  121. static bool npt_enabled = true;
  122. #else
  123. static bool npt_enabled;
  124. #endif
  125. static int npt = 1;
  126. module_param(npt, int, S_IRUGO);
  127. static int nested = 1;
  128. module_param(nested, int, S_IRUGO);
  129. static void svm_flush_tlb(struct kvm_vcpu *vcpu);
  130. static void svm_complete_interrupts(struct vcpu_svm *svm);
  131. static int nested_svm_exit_handled(struct vcpu_svm *svm);
  132. static int nested_svm_intercept(struct vcpu_svm *svm);
  133. static int nested_svm_vmexit(struct vcpu_svm *svm);
  134. static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
  135. bool has_error_code, u32 error_code);
  136. static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
  137. {
  138. return container_of(vcpu, struct vcpu_svm, vcpu);
  139. }
  140. static inline bool is_nested(struct vcpu_svm *svm)
  141. {
  142. return svm->nested.vmcb;
  143. }
  144. static inline void enable_gif(struct vcpu_svm *svm)
  145. {
  146. svm->vcpu.arch.hflags |= HF_GIF_MASK;
  147. }
  148. static inline void disable_gif(struct vcpu_svm *svm)
  149. {
  150. svm->vcpu.arch.hflags &= ~HF_GIF_MASK;
  151. }
  152. static inline bool gif_set(struct vcpu_svm *svm)
  153. {
  154. return !!(svm->vcpu.arch.hflags & HF_GIF_MASK);
  155. }
  156. static unsigned long iopm_base;
  157. struct kvm_ldttss_desc {
  158. u16 limit0;
  159. u16 base0;
  160. unsigned base1:8, type:5, dpl:2, p:1;
  161. unsigned limit1:4, zero0:3, g:1, base2:8;
  162. u32 base3;
  163. u32 zero1;
  164. } __attribute__((packed));
  165. struct svm_cpu_data {
  166. int cpu;
  167. u64 asid_generation;
  168. u32 max_asid;
  169. u32 next_asid;
  170. struct kvm_ldttss_desc *tss_desc;
  171. struct page *save_area;
  172. };
  173. static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
  174. static uint32_t svm_features;
  175. struct svm_init_data {
  176. int cpu;
  177. int r;
  178. };
  179. static u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
  180. #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
  181. #define MSRS_RANGE_SIZE 2048
  182. #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
  183. static u32 svm_msrpm_offset(u32 msr)
  184. {
  185. u32 offset;
  186. int i;
  187. for (i = 0; i < NUM_MSR_MAPS; i++) {
  188. if (msr < msrpm_ranges[i] ||
  189. msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
  190. continue;
  191. offset = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
  192. offset += (i * MSRS_RANGE_SIZE); /* add range offset */
  193. /* Now we have the u8 offset - but need the u32 offset */
  194. return offset / 4;
  195. }
  196. /* MSR not in any range */
  197. return MSR_INVALID;
  198. }
  199. #define MAX_INST_SIZE 15
  200. static inline u32 svm_has(u32 feat)
  201. {
  202. return svm_features & feat;
  203. }
  204. static inline void clgi(void)
  205. {
  206. asm volatile (__ex(SVM_CLGI));
  207. }
  208. static inline void stgi(void)
  209. {
  210. asm volatile (__ex(SVM_STGI));
  211. }
  212. static inline void invlpga(unsigned long addr, u32 asid)
  213. {
  214. asm volatile (__ex(SVM_INVLPGA) : : "a"(addr), "c"(asid));
  215. }
  216. static inline void force_new_asid(struct kvm_vcpu *vcpu)
  217. {
  218. to_svm(vcpu)->asid_generation--;
  219. }
  220. static inline void flush_guest_tlb(struct kvm_vcpu *vcpu)
  221. {
  222. force_new_asid(vcpu);
  223. }
  224. static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
  225. {
  226. vcpu->arch.efer = efer;
  227. if (!npt_enabled && !(efer & EFER_LMA))
  228. efer &= ~EFER_LME;
  229. to_svm(vcpu)->vmcb->save.efer = efer | EFER_SVME;
  230. }
  231. static int is_external_interrupt(u32 info)
  232. {
  233. info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
  234. return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
  235. }
  236. static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
  237. {
  238. struct vcpu_svm *svm = to_svm(vcpu);
  239. u32 ret = 0;
  240. if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
  241. ret |= KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
  242. return ret & mask;
  243. }
  244. static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
  245. {
  246. struct vcpu_svm *svm = to_svm(vcpu);
  247. if (mask == 0)
  248. svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
  249. else
  250. svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
  251. }
  252. static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
  253. {
  254. struct vcpu_svm *svm = to_svm(vcpu);
  255. if (svm->vmcb->control.next_rip != 0)
  256. svm->next_rip = svm->vmcb->control.next_rip;
  257. if (!svm->next_rip) {
  258. if (emulate_instruction(vcpu, 0, 0, EMULTYPE_SKIP) !=
  259. EMULATE_DONE)
  260. printk(KERN_DEBUG "%s: NOP\n", __func__);
  261. return;
  262. }
  263. if (svm->next_rip - kvm_rip_read(vcpu) > MAX_INST_SIZE)
  264. printk(KERN_ERR "%s: ip 0x%lx next 0x%llx\n",
  265. __func__, kvm_rip_read(vcpu), svm->next_rip);
  266. kvm_rip_write(vcpu, svm->next_rip);
  267. svm_set_interrupt_shadow(vcpu, 0);
  268. }
  269. static void svm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
  270. bool has_error_code, u32 error_code,
  271. bool reinject)
  272. {
  273. struct vcpu_svm *svm = to_svm(vcpu);
  274. /*
  275. * If we are within a nested VM we'd better #VMEXIT and let the guest
  276. * handle the exception
  277. */
  278. if (!reinject &&
  279. nested_svm_check_exception(svm, nr, has_error_code, error_code))
  280. return;
  281. if (nr == BP_VECTOR && !svm_has(SVM_FEATURE_NRIP)) {
  282. unsigned long rip, old_rip = kvm_rip_read(&svm->vcpu);
  283. /*
  284. * For guest debugging where we have to reinject #BP if some
  285. * INT3 is guest-owned:
  286. * Emulate nRIP by moving RIP forward. Will fail if injection
  287. * raises a fault that is not intercepted. Still better than
  288. * failing in all cases.
  289. */
  290. skip_emulated_instruction(&svm->vcpu);
  291. rip = kvm_rip_read(&svm->vcpu);
  292. svm->int3_rip = rip + svm->vmcb->save.cs.base;
  293. svm->int3_injected = rip - old_rip;
  294. }
  295. svm->vmcb->control.event_inj = nr
  296. | SVM_EVTINJ_VALID
  297. | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
  298. | SVM_EVTINJ_TYPE_EXEPT;
  299. svm->vmcb->control.event_inj_err = error_code;
  300. }
  301. static void svm_init_erratum_383(void)
  302. {
  303. u32 low, high;
  304. int err;
  305. u64 val;
  306. /* Only Fam10h is affected */
  307. if (boot_cpu_data.x86 != 0x10)
  308. return;
  309. /* Use _safe variants to not break nested virtualization */
  310. val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
  311. if (err)
  312. return;
  313. val |= (1ULL << 47);
  314. low = lower_32_bits(val);
  315. high = upper_32_bits(val);
  316. native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
  317. erratum_383_found = true;
  318. }
  319. static int has_svm(void)
  320. {
  321. const char *msg;
  322. if (!cpu_has_svm(&msg)) {
  323. printk(KERN_INFO "has_svm: %s\n", msg);
  324. return 0;
  325. }
  326. return 1;
  327. }
  328. static void svm_hardware_disable(void *garbage)
  329. {
  330. cpu_svm_disable();
  331. }
  332. static int svm_hardware_enable(void *garbage)
  333. {
  334. struct svm_cpu_data *sd;
  335. uint64_t efer;
  336. struct desc_ptr gdt_descr;
  337. struct desc_struct *gdt;
  338. int me = raw_smp_processor_id();
  339. rdmsrl(MSR_EFER, efer);
  340. if (efer & EFER_SVME)
  341. return -EBUSY;
  342. if (!has_svm()) {
  343. printk(KERN_ERR "svm_hardware_enable: err EOPNOTSUPP on %d\n",
  344. me);
  345. return -EINVAL;
  346. }
  347. sd = per_cpu(svm_data, me);
  348. if (!sd) {
  349. printk(KERN_ERR "svm_hardware_enable: svm_data is NULL on %d\n",
  350. me);
  351. return -EINVAL;
  352. }
  353. sd->asid_generation = 1;
  354. sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
  355. sd->next_asid = sd->max_asid + 1;
  356. native_store_gdt(&gdt_descr);
  357. gdt = (struct desc_struct *)gdt_descr.address;
  358. sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
  359. wrmsrl(MSR_EFER, efer | EFER_SVME);
  360. wrmsrl(MSR_VM_HSAVE_PA, page_to_pfn(sd->save_area) << PAGE_SHIFT);
  361. svm_init_erratum_383();
  362. return 0;
  363. }
  364. static void svm_cpu_uninit(int cpu)
  365. {
  366. struct svm_cpu_data *sd = per_cpu(svm_data, raw_smp_processor_id());
  367. if (!sd)
  368. return;
  369. per_cpu(svm_data, raw_smp_processor_id()) = NULL;
  370. __free_page(sd->save_area);
  371. kfree(sd);
  372. }
  373. static int svm_cpu_init(int cpu)
  374. {
  375. struct svm_cpu_data *sd;
  376. int r;
  377. sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
  378. if (!sd)
  379. return -ENOMEM;
  380. sd->cpu = cpu;
  381. sd->save_area = alloc_page(GFP_KERNEL);
  382. r = -ENOMEM;
  383. if (!sd->save_area)
  384. goto err_1;
  385. per_cpu(svm_data, cpu) = sd;
  386. return 0;
  387. err_1:
  388. kfree(sd);
  389. return r;
  390. }
  391. static bool valid_msr_intercept(u32 index)
  392. {
  393. int i;
  394. for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
  395. if (direct_access_msrs[i].index == index)
  396. return true;
  397. return false;
  398. }
  399. static void set_msr_interception(u32 *msrpm, unsigned msr,
  400. int read, int write)
  401. {
  402. u8 bit_read, bit_write;
  403. unsigned long tmp;
  404. u32 offset;
  405. /*
  406. * If this warning triggers extend the direct_access_msrs list at the
  407. * beginning of the file
  408. */
  409. WARN_ON(!valid_msr_intercept(msr));
  410. offset = svm_msrpm_offset(msr);
  411. bit_read = 2 * (msr & 0x0f);
  412. bit_write = 2 * (msr & 0x0f) + 1;
  413. tmp = msrpm[offset];
  414. BUG_ON(offset == MSR_INVALID);
  415. read ? clear_bit(bit_read, &tmp) : set_bit(bit_read, &tmp);
  416. write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
  417. msrpm[offset] = tmp;
  418. }
  419. static void svm_vcpu_init_msrpm(u32 *msrpm)
  420. {
  421. int i;
  422. memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
  423. for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
  424. if (!direct_access_msrs[i].always)
  425. continue;
  426. set_msr_interception(msrpm, direct_access_msrs[i].index, 1, 1);
  427. }
  428. }
  429. static void add_msr_offset(u32 offset)
  430. {
  431. int i;
  432. for (i = 0; i < MSRPM_OFFSETS; ++i) {
  433. /* Offset already in list? */
  434. if (msrpm_offsets[i] == offset)
  435. return;
  436. /* Slot used by another offset? */
  437. if (msrpm_offsets[i] != MSR_INVALID)
  438. continue;
  439. /* Add offset to list */
  440. msrpm_offsets[i] = offset;
  441. return;
  442. }
  443. /*
  444. * If this BUG triggers the msrpm_offsets table has an overflow. Just
  445. * increase MSRPM_OFFSETS in this case.
  446. */
  447. BUG();
  448. }
  449. static void init_msrpm_offsets(void)
  450. {
  451. int i;
  452. memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
  453. for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
  454. u32 offset;
  455. offset = svm_msrpm_offset(direct_access_msrs[i].index);
  456. BUG_ON(offset == MSR_INVALID);
  457. add_msr_offset(offset);
  458. }
  459. }
  460. static void svm_enable_lbrv(struct vcpu_svm *svm)
  461. {
  462. u32 *msrpm = svm->msrpm;
  463. svm->vmcb->control.lbr_ctl = 1;
  464. set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
  465. set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
  466. set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
  467. set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
  468. }
  469. static void svm_disable_lbrv(struct vcpu_svm *svm)
  470. {
  471. u32 *msrpm = svm->msrpm;
  472. svm->vmcb->control.lbr_ctl = 0;
  473. set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
  474. set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
  475. set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
  476. set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
  477. }
  478. static __init int svm_hardware_setup(void)
  479. {
  480. int cpu;
  481. struct page *iopm_pages;
  482. void *iopm_va;
  483. int r;
  484. iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
  485. if (!iopm_pages)
  486. return -ENOMEM;
  487. iopm_va = page_address(iopm_pages);
  488. memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
  489. iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
  490. init_msrpm_offsets();
  491. if (boot_cpu_has(X86_FEATURE_NX))
  492. kvm_enable_efer_bits(EFER_NX);
  493. if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
  494. kvm_enable_efer_bits(EFER_FFXSR);
  495. if (nested) {
  496. printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
  497. kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
  498. }
  499. for_each_possible_cpu(cpu) {
  500. r = svm_cpu_init(cpu);
  501. if (r)
  502. goto err;
  503. }
  504. svm_features = cpuid_edx(SVM_CPUID_FUNC);
  505. if (!svm_has(SVM_FEATURE_NPT))
  506. npt_enabled = false;
  507. if (npt_enabled && !npt) {
  508. printk(KERN_INFO "kvm: Nested Paging disabled\n");
  509. npt_enabled = false;
  510. }
  511. if (npt_enabled) {
  512. printk(KERN_INFO "kvm: Nested Paging enabled\n");
  513. kvm_enable_tdp();
  514. } else
  515. kvm_disable_tdp();
  516. return 0;
  517. err:
  518. __free_pages(iopm_pages, IOPM_ALLOC_ORDER);
  519. iopm_base = 0;
  520. return r;
  521. }
  522. static __exit void svm_hardware_unsetup(void)
  523. {
  524. int cpu;
  525. for_each_possible_cpu(cpu)
  526. svm_cpu_uninit(cpu);
  527. __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
  528. iopm_base = 0;
  529. }
  530. static void init_seg(struct vmcb_seg *seg)
  531. {
  532. seg->selector = 0;
  533. seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
  534. SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
  535. seg->limit = 0xffff;
  536. seg->base = 0;
  537. }
  538. static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
  539. {
  540. seg->selector = 0;
  541. seg->attrib = SVM_SELECTOR_P_MASK | type;
  542. seg->limit = 0xffff;
  543. seg->base = 0;
  544. }
  545. static void init_vmcb(struct vcpu_svm *svm)
  546. {
  547. struct vmcb_control_area *control = &svm->vmcb->control;
  548. struct vmcb_save_area *save = &svm->vmcb->save;
  549. svm->vcpu.fpu_active = 1;
  550. control->intercept_cr_read = INTERCEPT_CR0_MASK |
  551. INTERCEPT_CR3_MASK |
  552. INTERCEPT_CR4_MASK;
  553. control->intercept_cr_write = INTERCEPT_CR0_MASK |
  554. INTERCEPT_CR3_MASK |
  555. INTERCEPT_CR4_MASK |
  556. INTERCEPT_CR8_MASK;
  557. control->intercept_dr_read = INTERCEPT_DR0_MASK |
  558. INTERCEPT_DR1_MASK |
  559. INTERCEPT_DR2_MASK |
  560. INTERCEPT_DR3_MASK |
  561. INTERCEPT_DR4_MASK |
  562. INTERCEPT_DR5_MASK |
  563. INTERCEPT_DR6_MASK |
  564. INTERCEPT_DR7_MASK;
  565. control->intercept_dr_write = INTERCEPT_DR0_MASK |
  566. INTERCEPT_DR1_MASK |
  567. INTERCEPT_DR2_MASK |
  568. INTERCEPT_DR3_MASK |
  569. INTERCEPT_DR4_MASK |
  570. INTERCEPT_DR5_MASK |
  571. INTERCEPT_DR6_MASK |
  572. INTERCEPT_DR7_MASK;
  573. control->intercept_exceptions = (1 << PF_VECTOR) |
  574. (1 << UD_VECTOR) |
  575. (1 << MC_VECTOR);
  576. control->intercept = (1ULL << INTERCEPT_INTR) |
  577. (1ULL << INTERCEPT_NMI) |
  578. (1ULL << INTERCEPT_SMI) |
  579. (1ULL << INTERCEPT_SELECTIVE_CR0) |
  580. (1ULL << INTERCEPT_CPUID) |
  581. (1ULL << INTERCEPT_INVD) |
  582. (1ULL << INTERCEPT_HLT) |
  583. (1ULL << INTERCEPT_INVLPG) |
  584. (1ULL << INTERCEPT_INVLPGA) |
  585. (1ULL << INTERCEPT_IOIO_PROT) |
  586. (1ULL << INTERCEPT_MSR_PROT) |
  587. (1ULL << INTERCEPT_TASK_SWITCH) |
  588. (1ULL << INTERCEPT_SHUTDOWN) |
  589. (1ULL << INTERCEPT_VMRUN) |
  590. (1ULL << INTERCEPT_VMMCALL) |
  591. (1ULL << INTERCEPT_VMLOAD) |
  592. (1ULL << INTERCEPT_VMSAVE) |
  593. (1ULL << INTERCEPT_STGI) |
  594. (1ULL << INTERCEPT_CLGI) |
  595. (1ULL << INTERCEPT_SKINIT) |
  596. (1ULL << INTERCEPT_WBINVD) |
  597. (1ULL << INTERCEPT_MONITOR) |
  598. (1ULL << INTERCEPT_MWAIT);
  599. control->iopm_base_pa = iopm_base;
  600. control->msrpm_base_pa = __pa(svm->msrpm);
  601. control->tsc_offset = 0;
  602. control->int_ctl = V_INTR_MASKING_MASK;
  603. init_seg(&save->es);
  604. init_seg(&save->ss);
  605. init_seg(&save->ds);
  606. init_seg(&save->fs);
  607. init_seg(&save->gs);
  608. save->cs.selector = 0xf000;
  609. /* Executable/Readable Code Segment */
  610. save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
  611. SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
  612. save->cs.limit = 0xffff;
  613. /*
  614. * cs.base should really be 0xffff0000, but vmx can't handle that, so
  615. * be consistent with it.
  616. *
  617. * Replace when we have real mode working for vmx.
  618. */
  619. save->cs.base = 0xf0000;
  620. save->gdtr.limit = 0xffff;
  621. save->idtr.limit = 0xffff;
  622. init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
  623. init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
  624. save->efer = EFER_SVME;
  625. save->dr6 = 0xffff0ff0;
  626. save->dr7 = 0x400;
  627. save->rflags = 2;
  628. save->rip = 0x0000fff0;
  629. svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
  630. /*
  631. * This is the guest-visible cr0 value.
  632. * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0.
  633. */
  634. svm->vcpu.arch.cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
  635. (void)kvm_set_cr0(&svm->vcpu, svm->vcpu.arch.cr0);
  636. save->cr4 = X86_CR4_PAE;
  637. /* rdx = ?? */
  638. if (npt_enabled) {
  639. /* Setup VMCB for Nested Paging */
  640. control->nested_ctl = 1;
  641. control->intercept &= ~((1ULL << INTERCEPT_TASK_SWITCH) |
  642. (1ULL << INTERCEPT_INVLPG));
  643. control->intercept_exceptions &= ~(1 << PF_VECTOR);
  644. control->intercept_cr_read &= ~INTERCEPT_CR3_MASK;
  645. control->intercept_cr_write &= ~INTERCEPT_CR3_MASK;
  646. save->g_pat = 0x0007040600070406ULL;
  647. save->cr3 = 0;
  648. save->cr4 = 0;
  649. }
  650. force_new_asid(&svm->vcpu);
  651. svm->nested.vmcb = 0;
  652. svm->vcpu.arch.hflags = 0;
  653. if (svm_has(SVM_FEATURE_PAUSE_FILTER)) {
  654. control->pause_filter_count = 3000;
  655. control->intercept |= (1ULL << INTERCEPT_PAUSE);
  656. }
  657. enable_gif(svm);
  658. }
  659. static int svm_vcpu_reset(struct kvm_vcpu *vcpu)
  660. {
  661. struct vcpu_svm *svm = to_svm(vcpu);
  662. init_vmcb(svm);
  663. if (!kvm_vcpu_is_bsp(vcpu)) {
  664. kvm_rip_write(vcpu, 0);
  665. svm->vmcb->save.cs.base = svm->vcpu.arch.sipi_vector << 12;
  666. svm->vmcb->save.cs.selector = svm->vcpu.arch.sipi_vector << 8;
  667. }
  668. vcpu->arch.regs_avail = ~0;
  669. vcpu->arch.regs_dirty = ~0;
  670. return 0;
  671. }
  672. static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id)
  673. {
  674. struct vcpu_svm *svm;
  675. struct page *page;
  676. struct page *msrpm_pages;
  677. struct page *hsave_page;
  678. struct page *nested_msrpm_pages;
  679. int err;
  680. svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
  681. if (!svm) {
  682. err = -ENOMEM;
  683. goto out;
  684. }
  685. err = kvm_vcpu_init(&svm->vcpu, kvm, id);
  686. if (err)
  687. goto free_svm;
  688. err = -ENOMEM;
  689. page = alloc_page(GFP_KERNEL);
  690. if (!page)
  691. goto uninit;
  692. msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
  693. if (!msrpm_pages)
  694. goto free_page1;
  695. nested_msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
  696. if (!nested_msrpm_pages)
  697. goto free_page2;
  698. hsave_page = alloc_page(GFP_KERNEL);
  699. if (!hsave_page)
  700. goto free_page3;
  701. svm->nested.hsave = page_address(hsave_page);
  702. svm->msrpm = page_address(msrpm_pages);
  703. svm_vcpu_init_msrpm(svm->msrpm);
  704. svm->nested.msrpm = page_address(nested_msrpm_pages);
  705. svm_vcpu_init_msrpm(svm->nested.msrpm);
  706. svm->vmcb = page_address(page);
  707. clear_page(svm->vmcb);
  708. svm->vmcb_pa = page_to_pfn(page) << PAGE_SHIFT;
  709. svm->asid_generation = 0;
  710. init_vmcb(svm);
  711. err = fx_init(&svm->vcpu);
  712. if (err)
  713. goto free_page4;
  714. svm->vcpu.arch.apic_base = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
  715. if (kvm_vcpu_is_bsp(&svm->vcpu))
  716. svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
  717. return &svm->vcpu;
  718. free_page4:
  719. __free_page(hsave_page);
  720. free_page3:
  721. __free_pages(nested_msrpm_pages, MSRPM_ALLOC_ORDER);
  722. free_page2:
  723. __free_pages(msrpm_pages, MSRPM_ALLOC_ORDER);
  724. free_page1:
  725. __free_page(page);
  726. uninit:
  727. kvm_vcpu_uninit(&svm->vcpu);
  728. free_svm:
  729. kmem_cache_free(kvm_vcpu_cache, svm);
  730. out:
  731. return ERR_PTR(err);
  732. }
  733. static void svm_free_vcpu(struct kvm_vcpu *vcpu)
  734. {
  735. struct vcpu_svm *svm = to_svm(vcpu);
  736. __free_page(pfn_to_page(svm->vmcb_pa >> PAGE_SHIFT));
  737. __free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
  738. __free_page(virt_to_page(svm->nested.hsave));
  739. __free_pages(virt_to_page(svm->nested.msrpm), MSRPM_ALLOC_ORDER);
  740. kvm_vcpu_uninit(vcpu);
  741. kmem_cache_free(kvm_vcpu_cache, svm);
  742. }
  743. static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  744. {
  745. struct vcpu_svm *svm = to_svm(vcpu);
  746. int i;
  747. if (unlikely(cpu != vcpu->cpu)) {
  748. u64 delta;
  749. if (check_tsc_unstable()) {
  750. /*
  751. * Make sure that the guest sees a monotonically
  752. * increasing TSC.
  753. */
  754. delta = vcpu->arch.host_tsc - native_read_tsc();
  755. svm->vmcb->control.tsc_offset += delta;
  756. if (is_nested(svm))
  757. svm->nested.hsave->control.tsc_offset += delta;
  758. }
  759. vcpu->cpu = cpu;
  760. kvm_migrate_timers(vcpu);
  761. svm->asid_generation = 0;
  762. }
  763. for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
  764. rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
  765. }
  766. static void svm_vcpu_put(struct kvm_vcpu *vcpu)
  767. {
  768. struct vcpu_svm *svm = to_svm(vcpu);
  769. int i;
  770. ++vcpu->stat.host_state_reload;
  771. for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
  772. wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
  773. vcpu->arch.host_tsc = native_read_tsc();
  774. }
  775. static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
  776. {
  777. return to_svm(vcpu)->vmcb->save.rflags;
  778. }
  779. static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  780. {
  781. to_svm(vcpu)->vmcb->save.rflags = rflags;
  782. }
  783. static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
  784. {
  785. switch (reg) {
  786. case VCPU_EXREG_PDPTR:
  787. BUG_ON(!npt_enabled);
  788. load_pdptrs(vcpu, vcpu->arch.cr3);
  789. break;
  790. default:
  791. BUG();
  792. }
  793. }
  794. static void svm_set_vintr(struct vcpu_svm *svm)
  795. {
  796. svm->vmcb->control.intercept |= 1ULL << INTERCEPT_VINTR;
  797. }
  798. static void svm_clear_vintr(struct vcpu_svm *svm)
  799. {
  800. svm->vmcb->control.intercept &= ~(1ULL << INTERCEPT_VINTR);
  801. }
  802. static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
  803. {
  804. struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
  805. switch (seg) {
  806. case VCPU_SREG_CS: return &save->cs;
  807. case VCPU_SREG_DS: return &save->ds;
  808. case VCPU_SREG_ES: return &save->es;
  809. case VCPU_SREG_FS: return &save->fs;
  810. case VCPU_SREG_GS: return &save->gs;
  811. case VCPU_SREG_SS: return &save->ss;
  812. case VCPU_SREG_TR: return &save->tr;
  813. case VCPU_SREG_LDTR: return &save->ldtr;
  814. }
  815. BUG();
  816. return NULL;
  817. }
  818. static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
  819. {
  820. struct vmcb_seg *s = svm_seg(vcpu, seg);
  821. return s->base;
  822. }
  823. static void svm_get_segment(struct kvm_vcpu *vcpu,
  824. struct kvm_segment *var, int seg)
  825. {
  826. struct vmcb_seg *s = svm_seg(vcpu, seg);
  827. var->base = s->base;
  828. var->limit = s->limit;
  829. var->selector = s->selector;
  830. var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
  831. var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
  832. var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
  833. var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
  834. var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
  835. var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
  836. var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
  837. var->g = (s->attrib >> SVM_SELECTOR_G_SHIFT) & 1;
  838. /*
  839. * AMD's VMCB does not have an explicit unusable field, so emulate it
  840. * for cross vendor migration purposes by "not present"
  841. */
  842. var->unusable = !var->present || (var->type == 0);
  843. switch (seg) {
  844. case VCPU_SREG_CS:
  845. /*
  846. * SVM always stores 0 for the 'G' bit in the CS selector in
  847. * the VMCB on a VMEXIT. This hurts cross-vendor migration:
  848. * Intel's VMENTRY has a check on the 'G' bit.
  849. */
  850. var->g = s->limit > 0xfffff;
  851. break;
  852. case VCPU_SREG_TR:
  853. /*
  854. * Work around a bug where the busy flag in the tr selector
  855. * isn't exposed
  856. */
  857. var->type |= 0x2;
  858. break;
  859. case VCPU_SREG_DS:
  860. case VCPU_SREG_ES:
  861. case VCPU_SREG_FS:
  862. case VCPU_SREG_GS:
  863. /*
  864. * The accessed bit must always be set in the segment
  865. * descriptor cache, although it can be cleared in the
  866. * descriptor, the cached bit always remains at 1. Since
  867. * Intel has a check on this, set it here to support
  868. * cross-vendor migration.
  869. */
  870. if (!var->unusable)
  871. var->type |= 0x1;
  872. break;
  873. case VCPU_SREG_SS:
  874. /*
  875. * On AMD CPUs sometimes the DB bit in the segment
  876. * descriptor is left as 1, although the whole segment has
  877. * been made unusable. Clear it here to pass an Intel VMX
  878. * entry check when cross vendor migrating.
  879. */
  880. if (var->unusable)
  881. var->db = 0;
  882. break;
  883. }
  884. }
  885. static int svm_get_cpl(struct kvm_vcpu *vcpu)
  886. {
  887. struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
  888. return save->cpl;
  889. }
  890. static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
  891. {
  892. struct vcpu_svm *svm = to_svm(vcpu);
  893. dt->size = svm->vmcb->save.idtr.limit;
  894. dt->address = svm->vmcb->save.idtr.base;
  895. }
  896. static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
  897. {
  898. struct vcpu_svm *svm = to_svm(vcpu);
  899. svm->vmcb->save.idtr.limit = dt->size;
  900. svm->vmcb->save.idtr.base = dt->address ;
  901. }
  902. static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
  903. {
  904. struct vcpu_svm *svm = to_svm(vcpu);
  905. dt->size = svm->vmcb->save.gdtr.limit;
  906. dt->address = svm->vmcb->save.gdtr.base;
  907. }
  908. static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
  909. {
  910. struct vcpu_svm *svm = to_svm(vcpu);
  911. svm->vmcb->save.gdtr.limit = dt->size;
  912. svm->vmcb->save.gdtr.base = dt->address ;
  913. }
  914. static void svm_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
  915. {
  916. }
  917. static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
  918. {
  919. }
  920. static void update_cr0_intercept(struct vcpu_svm *svm)
  921. {
  922. struct vmcb *vmcb = svm->vmcb;
  923. ulong gcr0 = svm->vcpu.arch.cr0;
  924. u64 *hcr0 = &svm->vmcb->save.cr0;
  925. if (!svm->vcpu.fpu_active)
  926. *hcr0 |= SVM_CR0_SELECTIVE_MASK;
  927. else
  928. *hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK)
  929. | (gcr0 & SVM_CR0_SELECTIVE_MASK);
  930. if (gcr0 == *hcr0 && svm->vcpu.fpu_active) {
  931. vmcb->control.intercept_cr_read &= ~INTERCEPT_CR0_MASK;
  932. vmcb->control.intercept_cr_write &= ~INTERCEPT_CR0_MASK;
  933. if (is_nested(svm)) {
  934. struct vmcb *hsave = svm->nested.hsave;
  935. hsave->control.intercept_cr_read &= ~INTERCEPT_CR0_MASK;
  936. hsave->control.intercept_cr_write &= ~INTERCEPT_CR0_MASK;
  937. vmcb->control.intercept_cr_read |= svm->nested.intercept_cr_read;
  938. vmcb->control.intercept_cr_write |= svm->nested.intercept_cr_write;
  939. }
  940. } else {
  941. svm->vmcb->control.intercept_cr_read |= INTERCEPT_CR0_MASK;
  942. svm->vmcb->control.intercept_cr_write |= INTERCEPT_CR0_MASK;
  943. if (is_nested(svm)) {
  944. struct vmcb *hsave = svm->nested.hsave;
  945. hsave->control.intercept_cr_read |= INTERCEPT_CR0_MASK;
  946. hsave->control.intercept_cr_write |= INTERCEPT_CR0_MASK;
  947. }
  948. }
  949. }
  950. static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  951. {
  952. struct vcpu_svm *svm = to_svm(vcpu);
  953. if (is_nested(svm)) {
  954. /*
  955. * We are here because we run in nested mode, the host kvm
  956. * intercepts cr0 writes but the l1 hypervisor does not.
  957. * But the L1 hypervisor may intercept selective cr0 writes.
  958. * This needs to be checked here.
  959. */
  960. unsigned long old, new;
  961. /* Remove bits that would trigger a real cr0 write intercept */
  962. old = vcpu->arch.cr0 & SVM_CR0_SELECTIVE_MASK;
  963. new = cr0 & SVM_CR0_SELECTIVE_MASK;
  964. if (old == new) {
  965. /* cr0 write with ts and mp unchanged */
  966. svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
  967. if (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE)
  968. return;
  969. }
  970. }
  971. #ifdef CONFIG_X86_64
  972. if (vcpu->arch.efer & EFER_LME) {
  973. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
  974. vcpu->arch.efer |= EFER_LMA;
  975. svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
  976. }
  977. if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
  978. vcpu->arch.efer &= ~EFER_LMA;
  979. svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
  980. }
  981. }
  982. #endif
  983. vcpu->arch.cr0 = cr0;
  984. if (!npt_enabled)
  985. cr0 |= X86_CR0_PG | X86_CR0_WP;
  986. if (!vcpu->fpu_active)
  987. cr0 |= X86_CR0_TS;
  988. /*
  989. * re-enable caching here because the QEMU bios
  990. * does not do it - this results in some delay at
  991. * reboot
  992. */
  993. cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
  994. svm->vmcb->save.cr0 = cr0;
  995. update_cr0_intercept(svm);
  996. }
  997. static void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  998. {
  999. unsigned long host_cr4_mce = read_cr4() & X86_CR4_MCE;
  1000. unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4;
  1001. if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
  1002. force_new_asid(vcpu);
  1003. vcpu->arch.cr4 = cr4;
  1004. if (!npt_enabled)
  1005. cr4 |= X86_CR4_PAE;
  1006. cr4 |= host_cr4_mce;
  1007. to_svm(vcpu)->vmcb->save.cr4 = cr4;
  1008. }
  1009. static void svm_set_segment(struct kvm_vcpu *vcpu,
  1010. struct kvm_segment *var, int seg)
  1011. {
  1012. struct vcpu_svm *svm = to_svm(vcpu);
  1013. struct vmcb_seg *s = svm_seg(vcpu, seg);
  1014. s->base = var->base;
  1015. s->limit = var->limit;
  1016. s->selector = var->selector;
  1017. if (var->unusable)
  1018. s->attrib = 0;
  1019. else {
  1020. s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
  1021. s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
  1022. s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
  1023. s->attrib |= (var->present & 1) << SVM_SELECTOR_P_SHIFT;
  1024. s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
  1025. s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
  1026. s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
  1027. s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
  1028. }
  1029. if (seg == VCPU_SREG_CS)
  1030. svm->vmcb->save.cpl
  1031. = (svm->vmcb->save.cs.attrib
  1032. >> SVM_SELECTOR_DPL_SHIFT) & 3;
  1033. }
  1034. static void update_db_intercept(struct kvm_vcpu *vcpu)
  1035. {
  1036. struct vcpu_svm *svm = to_svm(vcpu);
  1037. svm->vmcb->control.intercept_exceptions &=
  1038. ~((1 << DB_VECTOR) | (1 << BP_VECTOR));
  1039. if (svm->nmi_singlestep)
  1040. svm->vmcb->control.intercept_exceptions |= (1 << DB_VECTOR);
  1041. if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
  1042. if (vcpu->guest_debug &
  1043. (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
  1044. svm->vmcb->control.intercept_exceptions |=
  1045. 1 << DB_VECTOR;
  1046. if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
  1047. svm->vmcb->control.intercept_exceptions |=
  1048. 1 << BP_VECTOR;
  1049. } else
  1050. vcpu->guest_debug = 0;
  1051. }
  1052. static void svm_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
  1053. {
  1054. struct vcpu_svm *svm = to_svm(vcpu);
  1055. if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
  1056. svm->vmcb->save.dr7 = dbg->arch.debugreg[7];
  1057. else
  1058. svm->vmcb->save.dr7 = vcpu->arch.dr7;
  1059. update_db_intercept(vcpu);
  1060. }
  1061. static void load_host_msrs(struct kvm_vcpu *vcpu)
  1062. {
  1063. #ifdef CONFIG_X86_64
  1064. wrmsrl(MSR_GS_BASE, to_svm(vcpu)->host_gs_base);
  1065. #endif
  1066. }
  1067. static void save_host_msrs(struct kvm_vcpu *vcpu)
  1068. {
  1069. #ifdef CONFIG_X86_64
  1070. rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host_gs_base);
  1071. #endif
  1072. }
  1073. static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
  1074. {
  1075. if (sd->next_asid > sd->max_asid) {
  1076. ++sd->asid_generation;
  1077. sd->next_asid = 1;
  1078. svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
  1079. }
  1080. svm->asid_generation = sd->asid_generation;
  1081. svm->vmcb->control.asid = sd->next_asid++;
  1082. }
  1083. static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
  1084. {
  1085. struct vcpu_svm *svm = to_svm(vcpu);
  1086. svm->vmcb->save.dr7 = value;
  1087. }
  1088. static int pf_interception(struct vcpu_svm *svm)
  1089. {
  1090. u64 fault_address;
  1091. u32 error_code;
  1092. fault_address = svm->vmcb->control.exit_info_2;
  1093. error_code = svm->vmcb->control.exit_info_1;
  1094. trace_kvm_page_fault(fault_address, error_code);
  1095. if (!npt_enabled && kvm_event_needs_reinjection(&svm->vcpu))
  1096. kvm_mmu_unprotect_page_virt(&svm->vcpu, fault_address);
  1097. return kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code);
  1098. }
  1099. static int db_interception(struct vcpu_svm *svm)
  1100. {
  1101. struct kvm_run *kvm_run = svm->vcpu.run;
  1102. if (!(svm->vcpu.guest_debug &
  1103. (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
  1104. !svm->nmi_singlestep) {
  1105. kvm_queue_exception(&svm->vcpu, DB_VECTOR);
  1106. return 1;
  1107. }
  1108. if (svm->nmi_singlestep) {
  1109. svm->nmi_singlestep = false;
  1110. if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP))
  1111. svm->vmcb->save.rflags &=
  1112. ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
  1113. update_db_intercept(&svm->vcpu);
  1114. }
  1115. if (svm->vcpu.guest_debug &
  1116. (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
  1117. kvm_run->exit_reason = KVM_EXIT_DEBUG;
  1118. kvm_run->debug.arch.pc =
  1119. svm->vmcb->save.cs.base + svm->vmcb->save.rip;
  1120. kvm_run->debug.arch.exception = DB_VECTOR;
  1121. return 0;
  1122. }
  1123. return 1;
  1124. }
  1125. static int bp_interception(struct vcpu_svm *svm)
  1126. {
  1127. struct kvm_run *kvm_run = svm->vcpu.run;
  1128. kvm_run->exit_reason = KVM_EXIT_DEBUG;
  1129. kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
  1130. kvm_run->debug.arch.exception = BP_VECTOR;
  1131. return 0;
  1132. }
  1133. static int ud_interception(struct vcpu_svm *svm)
  1134. {
  1135. int er;
  1136. er = emulate_instruction(&svm->vcpu, 0, 0, EMULTYPE_TRAP_UD);
  1137. if (er != EMULATE_DONE)
  1138. kvm_queue_exception(&svm->vcpu, UD_VECTOR);
  1139. return 1;
  1140. }
  1141. static void svm_fpu_activate(struct kvm_vcpu *vcpu)
  1142. {
  1143. struct vcpu_svm *svm = to_svm(vcpu);
  1144. u32 excp;
  1145. if (is_nested(svm)) {
  1146. u32 h_excp, n_excp;
  1147. h_excp = svm->nested.hsave->control.intercept_exceptions;
  1148. n_excp = svm->nested.intercept_exceptions;
  1149. h_excp &= ~(1 << NM_VECTOR);
  1150. excp = h_excp | n_excp;
  1151. } else {
  1152. excp = svm->vmcb->control.intercept_exceptions;
  1153. excp &= ~(1 << NM_VECTOR);
  1154. }
  1155. svm->vmcb->control.intercept_exceptions = excp;
  1156. svm->vcpu.fpu_active = 1;
  1157. update_cr0_intercept(svm);
  1158. }
  1159. static int nm_interception(struct vcpu_svm *svm)
  1160. {
  1161. svm_fpu_activate(&svm->vcpu);
  1162. return 1;
  1163. }
  1164. static bool is_erratum_383(void)
  1165. {
  1166. int err, i;
  1167. u64 value;
  1168. if (!erratum_383_found)
  1169. return false;
  1170. value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
  1171. if (err)
  1172. return false;
  1173. /* Bit 62 may or may not be set for this mce */
  1174. value &= ~(1ULL << 62);
  1175. if (value != 0xb600000000010015ULL)
  1176. return false;
  1177. /* Clear MCi_STATUS registers */
  1178. for (i = 0; i < 6; ++i)
  1179. native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
  1180. value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
  1181. if (!err) {
  1182. u32 low, high;
  1183. value &= ~(1ULL << 2);
  1184. low = lower_32_bits(value);
  1185. high = upper_32_bits(value);
  1186. native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
  1187. }
  1188. /* Flush tlb to evict multi-match entries */
  1189. __flush_tlb_all();
  1190. return true;
  1191. }
  1192. static void svm_handle_mce(struct vcpu_svm *svm)
  1193. {
  1194. if (is_erratum_383()) {
  1195. /*
  1196. * Erratum 383 triggered. Guest state is corrupt so kill the
  1197. * guest.
  1198. */
  1199. pr_err("KVM: Guest triggered AMD Erratum 383\n");
  1200. kvm_make_request(KVM_REQ_TRIPLE_FAULT, &svm->vcpu);
  1201. return;
  1202. }
  1203. /*
  1204. * On an #MC intercept the MCE handler is not called automatically in
  1205. * the host. So do it by hand here.
  1206. */
  1207. asm volatile (
  1208. "int $0x12\n");
  1209. /* not sure if we ever come back to this point */
  1210. return;
  1211. }
  1212. static int mc_interception(struct vcpu_svm *svm)
  1213. {
  1214. return 1;
  1215. }
  1216. static int shutdown_interception(struct vcpu_svm *svm)
  1217. {
  1218. struct kvm_run *kvm_run = svm->vcpu.run;
  1219. /*
  1220. * VMCB is undefined after a SHUTDOWN intercept
  1221. * so reinitialize it.
  1222. */
  1223. clear_page(svm->vmcb);
  1224. init_vmcb(svm);
  1225. kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
  1226. return 0;
  1227. }
  1228. static int io_interception(struct vcpu_svm *svm)
  1229. {
  1230. struct kvm_vcpu *vcpu = &svm->vcpu;
  1231. u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
  1232. int size, in, string;
  1233. unsigned port;
  1234. ++svm->vcpu.stat.io_exits;
  1235. string = (io_info & SVM_IOIO_STR_MASK) != 0;
  1236. in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
  1237. if (string || in)
  1238. return emulate_instruction(vcpu, 0, 0, 0) == EMULATE_DONE;
  1239. port = io_info >> 16;
  1240. size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
  1241. svm->next_rip = svm->vmcb->control.exit_info_2;
  1242. skip_emulated_instruction(&svm->vcpu);
  1243. return kvm_fast_pio_out(vcpu, size, port);
  1244. }
  1245. static int nmi_interception(struct vcpu_svm *svm)
  1246. {
  1247. return 1;
  1248. }
  1249. static int intr_interception(struct vcpu_svm *svm)
  1250. {
  1251. ++svm->vcpu.stat.irq_exits;
  1252. return 1;
  1253. }
  1254. static int nop_on_interception(struct vcpu_svm *svm)
  1255. {
  1256. return 1;
  1257. }
  1258. static int halt_interception(struct vcpu_svm *svm)
  1259. {
  1260. svm->next_rip = kvm_rip_read(&svm->vcpu) + 1;
  1261. skip_emulated_instruction(&svm->vcpu);
  1262. return kvm_emulate_halt(&svm->vcpu);
  1263. }
  1264. static int vmmcall_interception(struct vcpu_svm *svm)
  1265. {
  1266. svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
  1267. skip_emulated_instruction(&svm->vcpu);
  1268. kvm_emulate_hypercall(&svm->vcpu);
  1269. return 1;
  1270. }
  1271. static int nested_svm_check_permissions(struct vcpu_svm *svm)
  1272. {
  1273. if (!(svm->vcpu.arch.efer & EFER_SVME)
  1274. || !is_paging(&svm->vcpu)) {
  1275. kvm_queue_exception(&svm->vcpu, UD_VECTOR);
  1276. return 1;
  1277. }
  1278. if (svm->vmcb->save.cpl) {
  1279. kvm_inject_gp(&svm->vcpu, 0);
  1280. return 1;
  1281. }
  1282. return 0;
  1283. }
  1284. static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
  1285. bool has_error_code, u32 error_code)
  1286. {
  1287. int vmexit;
  1288. if (!is_nested(svm))
  1289. return 0;
  1290. svm->vmcb->control.exit_code = SVM_EXIT_EXCP_BASE + nr;
  1291. svm->vmcb->control.exit_code_hi = 0;
  1292. svm->vmcb->control.exit_info_1 = error_code;
  1293. svm->vmcb->control.exit_info_2 = svm->vcpu.arch.cr2;
  1294. vmexit = nested_svm_intercept(svm);
  1295. if (vmexit == NESTED_EXIT_DONE)
  1296. svm->nested.exit_required = true;
  1297. return vmexit;
  1298. }
  1299. /* This function returns true if it is save to enable the irq window */
  1300. static inline bool nested_svm_intr(struct vcpu_svm *svm)
  1301. {
  1302. if (!is_nested(svm))
  1303. return true;
  1304. if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
  1305. return true;
  1306. if (!(svm->vcpu.arch.hflags & HF_HIF_MASK))
  1307. return false;
  1308. svm->vmcb->control.exit_code = SVM_EXIT_INTR;
  1309. svm->vmcb->control.exit_info_1 = 0;
  1310. svm->vmcb->control.exit_info_2 = 0;
  1311. if (svm->nested.intercept & 1ULL) {
  1312. /*
  1313. * The #vmexit can't be emulated here directly because this
  1314. * code path runs with irqs and preemtion disabled. A
  1315. * #vmexit emulation might sleep. Only signal request for
  1316. * the #vmexit here.
  1317. */
  1318. svm->nested.exit_required = true;
  1319. trace_kvm_nested_intr_vmexit(svm->vmcb->save.rip);
  1320. return false;
  1321. }
  1322. return true;
  1323. }
  1324. /* This function returns true if it is save to enable the nmi window */
  1325. static inline bool nested_svm_nmi(struct vcpu_svm *svm)
  1326. {
  1327. if (!is_nested(svm))
  1328. return true;
  1329. if (!(svm->nested.intercept & (1ULL << INTERCEPT_NMI)))
  1330. return true;
  1331. svm->vmcb->control.exit_code = SVM_EXIT_NMI;
  1332. svm->nested.exit_required = true;
  1333. return false;
  1334. }
  1335. static void *nested_svm_map(struct vcpu_svm *svm, u64 gpa, struct page **_page)
  1336. {
  1337. struct page *page;
  1338. might_sleep();
  1339. page = gfn_to_page(svm->vcpu.kvm, gpa >> PAGE_SHIFT);
  1340. if (is_error_page(page))
  1341. goto error;
  1342. *_page = page;
  1343. return kmap(page);
  1344. error:
  1345. kvm_release_page_clean(page);
  1346. kvm_inject_gp(&svm->vcpu, 0);
  1347. return NULL;
  1348. }
  1349. static void nested_svm_unmap(struct page *page)
  1350. {
  1351. kunmap(page);
  1352. kvm_release_page_dirty(page);
  1353. }
  1354. static int nested_svm_intercept_ioio(struct vcpu_svm *svm)
  1355. {
  1356. unsigned port;
  1357. u8 val, bit;
  1358. u64 gpa;
  1359. if (!(svm->nested.intercept & (1ULL << INTERCEPT_IOIO_PROT)))
  1360. return NESTED_EXIT_HOST;
  1361. port = svm->vmcb->control.exit_info_1 >> 16;
  1362. gpa = svm->nested.vmcb_iopm + (port / 8);
  1363. bit = port % 8;
  1364. val = 0;
  1365. if (kvm_read_guest(svm->vcpu.kvm, gpa, &val, 1))
  1366. val &= (1 << bit);
  1367. return val ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
  1368. }
  1369. static int nested_svm_exit_handled_msr(struct vcpu_svm *svm)
  1370. {
  1371. u32 offset, msr, value;
  1372. int write, mask;
  1373. if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
  1374. return NESTED_EXIT_HOST;
  1375. msr = svm->vcpu.arch.regs[VCPU_REGS_RCX];
  1376. offset = svm_msrpm_offset(msr);
  1377. write = svm->vmcb->control.exit_info_1 & 1;
  1378. mask = 1 << ((2 * (msr & 0xf)) + write);
  1379. if (offset == MSR_INVALID)
  1380. return NESTED_EXIT_DONE;
  1381. /* Offset is in 32 bit units but need in 8 bit units */
  1382. offset *= 4;
  1383. if (kvm_read_guest(svm->vcpu.kvm, svm->nested.vmcb_msrpm + offset, &value, 4))
  1384. return NESTED_EXIT_DONE;
  1385. return (value & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
  1386. }
  1387. static int nested_svm_exit_special(struct vcpu_svm *svm)
  1388. {
  1389. u32 exit_code = svm->vmcb->control.exit_code;
  1390. switch (exit_code) {
  1391. case SVM_EXIT_INTR:
  1392. case SVM_EXIT_NMI:
  1393. case SVM_EXIT_EXCP_BASE + MC_VECTOR:
  1394. return NESTED_EXIT_HOST;
  1395. case SVM_EXIT_NPF:
  1396. /* For now we are always handling NPFs when using them */
  1397. if (npt_enabled)
  1398. return NESTED_EXIT_HOST;
  1399. break;
  1400. case SVM_EXIT_EXCP_BASE + PF_VECTOR:
  1401. /* When we're shadowing, trap PFs */
  1402. if (!npt_enabled)
  1403. return NESTED_EXIT_HOST;
  1404. break;
  1405. case SVM_EXIT_EXCP_BASE + NM_VECTOR:
  1406. nm_interception(svm);
  1407. break;
  1408. default:
  1409. break;
  1410. }
  1411. return NESTED_EXIT_CONTINUE;
  1412. }
  1413. /*
  1414. * If this function returns true, this #vmexit was already handled
  1415. */
  1416. static int nested_svm_intercept(struct vcpu_svm *svm)
  1417. {
  1418. u32 exit_code = svm->vmcb->control.exit_code;
  1419. int vmexit = NESTED_EXIT_HOST;
  1420. switch (exit_code) {
  1421. case SVM_EXIT_MSR:
  1422. vmexit = nested_svm_exit_handled_msr(svm);
  1423. break;
  1424. case SVM_EXIT_IOIO:
  1425. vmexit = nested_svm_intercept_ioio(svm);
  1426. break;
  1427. case SVM_EXIT_READ_CR0 ... SVM_EXIT_READ_CR8: {
  1428. u32 cr_bits = 1 << (exit_code - SVM_EXIT_READ_CR0);
  1429. if (svm->nested.intercept_cr_read & cr_bits)
  1430. vmexit = NESTED_EXIT_DONE;
  1431. break;
  1432. }
  1433. case SVM_EXIT_WRITE_CR0 ... SVM_EXIT_WRITE_CR8: {
  1434. u32 cr_bits = 1 << (exit_code - SVM_EXIT_WRITE_CR0);
  1435. if (svm->nested.intercept_cr_write & cr_bits)
  1436. vmexit = NESTED_EXIT_DONE;
  1437. break;
  1438. }
  1439. case SVM_EXIT_READ_DR0 ... SVM_EXIT_READ_DR7: {
  1440. u32 dr_bits = 1 << (exit_code - SVM_EXIT_READ_DR0);
  1441. if (svm->nested.intercept_dr_read & dr_bits)
  1442. vmexit = NESTED_EXIT_DONE;
  1443. break;
  1444. }
  1445. case SVM_EXIT_WRITE_DR0 ... SVM_EXIT_WRITE_DR7: {
  1446. u32 dr_bits = 1 << (exit_code - SVM_EXIT_WRITE_DR0);
  1447. if (svm->nested.intercept_dr_write & dr_bits)
  1448. vmexit = NESTED_EXIT_DONE;
  1449. break;
  1450. }
  1451. case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: {
  1452. u32 excp_bits = 1 << (exit_code - SVM_EXIT_EXCP_BASE);
  1453. if (svm->nested.intercept_exceptions & excp_bits)
  1454. vmexit = NESTED_EXIT_DONE;
  1455. break;
  1456. }
  1457. case SVM_EXIT_ERR: {
  1458. vmexit = NESTED_EXIT_DONE;
  1459. break;
  1460. }
  1461. default: {
  1462. u64 exit_bits = 1ULL << (exit_code - SVM_EXIT_INTR);
  1463. if (svm->nested.intercept & exit_bits)
  1464. vmexit = NESTED_EXIT_DONE;
  1465. }
  1466. }
  1467. return vmexit;
  1468. }
  1469. static int nested_svm_exit_handled(struct vcpu_svm *svm)
  1470. {
  1471. int vmexit;
  1472. vmexit = nested_svm_intercept(svm);
  1473. if (vmexit == NESTED_EXIT_DONE)
  1474. nested_svm_vmexit(svm);
  1475. return vmexit;
  1476. }
  1477. static inline void copy_vmcb_control_area(struct vmcb *dst_vmcb, struct vmcb *from_vmcb)
  1478. {
  1479. struct vmcb_control_area *dst = &dst_vmcb->control;
  1480. struct vmcb_control_area *from = &from_vmcb->control;
  1481. dst->intercept_cr_read = from->intercept_cr_read;
  1482. dst->intercept_cr_write = from->intercept_cr_write;
  1483. dst->intercept_dr_read = from->intercept_dr_read;
  1484. dst->intercept_dr_write = from->intercept_dr_write;
  1485. dst->intercept_exceptions = from->intercept_exceptions;
  1486. dst->intercept = from->intercept;
  1487. dst->iopm_base_pa = from->iopm_base_pa;
  1488. dst->msrpm_base_pa = from->msrpm_base_pa;
  1489. dst->tsc_offset = from->tsc_offset;
  1490. dst->asid = from->asid;
  1491. dst->tlb_ctl = from->tlb_ctl;
  1492. dst->int_ctl = from->int_ctl;
  1493. dst->int_vector = from->int_vector;
  1494. dst->int_state = from->int_state;
  1495. dst->exit_code = from->exit_code;
  1496. dst->exit_code_hi = from->exit_code_hi;
  1497. dst->exit_info_1 = from->exit_info_1;
  1498. dst->exit_info_2 = from->exit_info_2;
  1499. dst->exit_int_info = from->exit_int_info;
  1500. dst->exit_int_info_err = from->exit_int_info_err;
  1501. dst->nested_ctl = from->nested_ctl;
  1502. dst->event_inj = from->event_inj;
  1503. dst->event_inj_err = from->event_inj_err;
  1504. dst->nested_cr3 = from->nested_cr3;
  1505. dst->lbr_ctl = from->lbr_ctl;
  1506. }
  1507. static int nested_svm_vmexit(struct vcpu_svm *svm)
  1508. {
  1509. struct vmcb *nested_vmcb;
  1510. struct vmcb *hsave = svm->nested.hsave;
  1511. struct vmcb *vmcb = svm->vmcb;
  1512. struct page *page;
  1513. trace_kvm_nested_vmexit_inject(vmcb->control.exit_code,
  1514. vmcb->control.exit_info_1,
  1515. vmcb->control.exit_info_2,
  1516. vmcb->control.exit_int_info,
  1517. vmcb->control.exit_int_info_err);
  1518. nested_vmcb = nested_svm_map(svm, svm->nested.vmcb, &page);
  1519. if (!nested_vmcb)
  1520. return 1;
  1521. /* Exit nested SVM mode */
  1522. svm->nested.vmcb = 0;
  1523. /* Give the current vmcb to the guest */
  1524. disable_gif(svm);
  1525. nested_vmcb->save.es = vmcb->save.es;
  1526. nested_vmcb->save.cs = vmcb->save.cs;
  1527. nested_vmcb->save.ss = vmcb->save.ss;
  1528. nested_vmcb->save.ds = vmcb->save.ds;
  1529. nested_vmcb->save.gdtr = vmcb->save.gdtr;
  1530. nested_vmcb->save.idtr = vmcb->save.idtr;
  1531. nested_vmcb->save.cr0 = kvm_read_cr0(&svm->vcpu);
  1532. nested_vmcb->save.cr3 = svm->vcpu.arch.cr3;
  1533. nested_vmcb->save.cr2 = vmcb->save.cr2;
  1534. nested_vmcb->save.cr4 = svm->vcpu.arch.cr4;
  1535. nested_vmcb->save.rflags = vmcb->save.rflags;
  1536. nested_vmcb->save.rip = vmcb->save.rip;
  1537. nested_vmcb->save.rsp = vmcb->save.rsp;
  1538. nested_vmcb->save.rax = vmcb->save.rax;
  1539. nested_vmcb->save.dr7 = vmcb->save.dr7;
  1540. nested_vmcb->save.dr6 = vmcb->save.dr6;
  1541. nested_vmcb->save.cpl = vmcb->save.cpl;
  1542. nested_vmcb->control.int_ctl = vmcb->control.int_ctl;
  1543. nested_vmcb->control.int_vector = vmcb->control.int_vector;
  1544. nested_vmcb->control.int_state = vmcb->control.int_state;
  1545. nested_vmcb->control.exit_code = vmcb->control.exit_code;
  1546. nested_vmcb->control.exit_code_hi = vmcb->control.exit_code_hi;
  1547. nested_vmcb->control.exit_info_1 = vmcb->control.exit_info_1;
  1548. nested_vmcb->control.exit_info_2 = vmcb->control.exit_info_2;
  1549. nested_vmcb->control.exit_int_info = vmcb->control.exit_int_info;
  1550. nested_vmcb->control.exit_int_info_err = vmcb->control.exit_int_info_err;
  1551. /*
  1552. * If we emulate a VMRUN/#VMEXIT in the same host #vmexit cycle we have
  1553. * to make sure that we do not lose injected events. So check event_inj
  1554. * here and copy it to exit_int_info if it is valid.
  1555. * Exit_int_info and event_inj can't be both valid because the case
  1556. * below only happens on a VMRUN instruction intercept which has
  1557. * no valid exit_int_info set.
  1558. */
  1559. if (vmcb->control.event_inj & SVM_EVTINJ_VALID) {
  1560. struct vmcb_control_area *nc = &nested_vmcb->control;
  1561. nc->exit_int_info = vmcb->control.event_inj;
  1562. nc->exit_int_info_err = vmcb->control.event_inj_err;
  1563. }
  1564. nested_vmcb->control.tlb_ctl = 0;
  1565. nested_vmcb->control.event_inj = 0;
  1566. nested_vmcb->control.event_inj_err = 0;
  1567. /* We always set V_INTR_MASKING and remember the old value in hflags */
  1568. if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
  1569. nested_vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK;
  1570. /* Restore the original control entries */
  1571. copy_vmcb_control_area(vmcb, hsave);
  1572. kvm_clear_exception_queue(&svm->vcpu);
  1573. kvm_clear_interrupt_queue(&svm->vcpu);
  1574. /* Restore selected save entries */
  1575. svm->vmcb->save.es = hsave->save.es;
  1576. svm->vmcb->save.cs = hsave->save.cs;
  1577. svm->vmcb->save.ss = hsave->save.ss;
  1578. svm->vmcb->save.ds = hsave->save.ds;
  1579. svm->vmcb->save.gdtr = hsave->save.gdtr;
  1580. svm->vmcb->save.idtr = hsave->save.idtr;
  1581. svm->vmcb->save.rflags = hsave->save.rflags;
  1582. svm_set_efer(&svm->vcpu, hsave->save.efer);
  1583. svm_set_cr0(&svm->vcpu, hsave->save.cr0 | X86_CR0_PE);
  1584. svm_set_cr4(&svm->vcpu, hsave->save.cr4);
  1585. if (npt_enabled) {
  1586. svm->vmcb->save.cr3 = hsave->save.cr3;
  1587. svm->vcpu.arch.cr3 = hsave->save.cr3;
  1588. } else {
  1589. (void)kvm_set_cr3(&svm->vcpu, hsave->save.cr3);
  1590. }
  1591. kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, hsave->save.rax);
  1592. kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, hsave->save.rsp);
  1593. kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, hsave->save.rip);
  1594. svm->vmcb->save.dr7 = 0;
  1595. svm->vmcb->save.cpl = 0;
  1596. svm->vmcb->control.exit_int_info = 0;
  1597. nested_svm_unmap(page);
  1598. kvm_mmu_reset_context(&svm->vcpu);
  1599. kvm_mmu_load(&svm->vcpu);
  1600. return 0;
  1601. }
  1602. static bool nested_svm_vmrun_msrpm(struct vcpu_svm *svm)
  1603. {
  1604. /*
  1605. * This function merges the msr permission bitmaps of kvm and the
  1606. * nested vmcb. It is omptimized in that it only merges the parts where
  1607. * the kvm msr permission bitmap may contain zero bits
  1608. */
  1609. int i;
  1610. if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
  1611. return true;
  1612. for (i = 0; i < MSRPM_OFFSETS; i++) {
  1613. u32 value, p;
  1614. u64 offset;
  1615. if (msrpm_offsets[i] == 0xffffffff)
  1616. break;
  1617. p = msrpm_offsets[i];
  1618. offset = svm->nested.vmcb_msrpm + (p * 4);
  1619. if (kvm_read_guest(svm->vcpu.kvm, offset, &value, 4))
  1620. return false;
  1621. svm->nested.msrpm[p] = svm->msrpm[p] | value;
  1622. }
  1623. svm->vmcb->control.msrpm_base_pa = __pa(svm->nested.msrpm);
  1624. return true;
  1625. }
  1626. static bool nested_svm_vmrun(struct vcpu_svm *svm)
  1627. {
  1628. struct vmcb *nested_vmcb;
  1629. struct vmcb *hsave = svm->nested.hsave;
  1630. struct vmcb *vmcb = svm->vmcb;
  1631. struct page *page;
  1632. u64 vmcb_gpa;
  1633. vmcb_gpa = svm->vmcb->save.rax;
  1634. nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
  1635. if (!nested_vmcb)
  1636. return false;
  1637. trace_kvm_nested_vmrun(svm->vmcb->save.rip - 3, vmcb_gpa,
  1638. nested_vmcb->save.rip,
  1639. nested_vmcb->control.int_ctl,
  1640. nested_vmcb->control.event_inj,
  1641. nested_vmcb->control.nested_ctl);
  1642. trace_kvm_nested_intercepts(nested_vmcb->control.intercept_cr_read,
  1643. nested_vmcb->control.intercept_cr_write,
  1644. nested_vmcb->control.intercept_exceptions,
  1645. nested_vmcb->control.intercept);
  1646. /* Clear internal status */
  1647. kvm_clear_exception_queue(&svm->vcpu);
  1648. kvm_clear_interrupt_queue(&svm->vcpu);
  1649. /*
  1650. * Save the old vmcb, so we don't need to pick what we save, but can
  1651. * restore everything when a VMEXIT occurs
  1652. */
  1653. hsave->save.es = vmcb->save.es;
  1654. hsave->save.cs = vmcb->save.cs;
  1655. hsave->save.ss = vmcb->save.ss;
  1656. hsave->save.ds = vmcb->save.ds;
  1657. hsave->save.gdtr = vmcb->save.gdtr;
  1658. hsave->save.idtr = vmcb->save.idtr;
  1659. hsave->save.efer = svm->vcpu.arch.efer;
  1660. hsave->save.cr0 = kvm_read_cr0(&svm->vcpu);
  1661. hsave->save.cr4 = svm->vcpu.arch.cr4;
  1662. hsave->save.rflags = vmcb->save.rflags;
  1663. hsave->save.rip = svm->next_rip;
  1664. hsave->save.rsp = vmcb->save.rsp;
  1665. hsave->save.rax = vmcb->save.rax;
  1666. if (npt_enabled)
  1667. hsave->save.cr3 = vmcb->save.cr3;
  1668. else
  1669. hsave->save.cr3 = svm->vcpu.arch.cr3;
  1670. copy_vmcb_control_area(hsave, vmcb);
  1671. if (svm->vmcb->save.rflags & X86_EFLAGS_IF)
  1672. svm->vcpu.arch.hflags |= HF_HIF_MASK;
  1673. else
  1674. svm->vcpu.arch.hflags &= ~HF_HIF_MASK;
  1675. /* Load the nested guest state */
  1676. svm->vmcb->save.es = nested_vmcb->save.es;
  1677. svm->vmcb->save.cs = nested_vmcb->save.cs;
  1678. svm->vmcb->save.ss = nested_vmcb->save.ss;
  1679. svm->vmcb->save.ds = nested_vmcb->save.ds;
  1680. svm->vmcb->save.gdtr = nested_vmcb->save.gdtr;
  1681. svm->vmcb->save.idtr = nested_vmcb->save.idtr;
  1682. svm->vmcb->save.rflags = nested_vmcb->save.rflags;
  1683. svm_set_efer(&svm->vcpu, nested_vmcb->save.efer);
  1684. svm_set_cr0(&svm->vcpu, nested_vmcb->save.cr0);
  1685. svm_set_cr4(&svm->vcpu, nested_vmcb->save.cr4);
  1686. if (npt_enabled) {
  1687. svm->vmcb->save.cr3 = nested_vmcb->save.cr3;
  1688. svm->vcpu.arch.cr3 = nested_vmcb->save.cr3;
  1689. } else
  1690. (void)kvm_set_cr3(&svm->vcpu, nested_vmcb->save.cr3);
  1691. /* Guest paging mode is active - reset mmu */
  1692. kvm_mmu_reset_context(&svm->vcpu);
  1693. svm->vmcb->save.cr2 = svm->vcpu.arch.cr2 = nested_vmcb->save.cr2;
  1694. kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, nested_vmcb->save.rax);
  1695. kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, nested_vmcb->save.rsp);
  1696. kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, nested_vmcb->save.rip);
  1697. /* In case we don't even reach vcpu_run, the fields are not updated */
  1698. svm->vmcb->save.rax = nested_vmcb->save.rax;
  1699. svm->vmcb->save.rsp = nested_vmcb->save.rsp;
  1700. svm->vmcb->save.rip = nested_vmcb->save.rip;
  1701. svm->vmcb->save.dr7 = nested_vmcb->save.dr7;
  1702. svm->vmcb->save.dr6 = nested_vmcb->save.dr6;
  1703. svm->vmcb->save.cpl = nested_vmcb->save.cpl;
  1704. svm->nested.vmcb_msrpm = nested_vmcb->control.msrpm_base_pa & ~0x0fffULL;
  1705. svm->nested.vmcb_iopm = nested_vmcb->control.iopm_base_pa & ~0x0fffULL;
  1706. /* cache intercepts */
  1707. svm->nested.intercept_cr_read = nested_vmcb->control.intercept_cr_read;
  1708. svm->nested.intercept_cr_write = nested_vmcb->control.intercept_cr_write;
  1709. svm->nested.intercept_dr_read = nested_vmcb->control.intercept_dr_read;
  1710. svm->nested.intercept_dr_write = nested_vmcb->control.intercept_dr_write;
  1711. svm->nested.intercept_exceptions = nested_vmcb->control.intercept_exceptions;
  1712. svm->nested.intercept = nested_vmcb->control.intercept;
  1713. force_new_asid(&svm->vcpu);
  1714. svm->vmcb->control.int_ctl = nested_vmcb->control.int_ctl | V_INTR_MASKING_MASK;
  1715. if (nested_vmcb->control.int_ctl & V_INTR_MASKING_MASK)
  1716. svm->vcpu.arch.hflags |= HF_VINTR_MASK;
  1717. else
  1718. svm->vcpu.arch.hflags &= ~HF_VINTR_MASK;
  1719. if (svm->vcpu.arch.hflags & HF_VINTR_MASK) {
  1720. /* We only want the cr8 intercept bits of the guest */
  1721. svm->vmcb->control.intercept_cr_read &= ~INTERCEPT_CR8_MASK;
  1722. svm->vmcb->control.intercept_cr_write &= ~INTERCEPT_CR8_MASK;
  1723. }
  1724. /* We don't want to see VMMCALLs from a nested guest */
  1725. svm->vmcb->control.intercept &= ~(1ULL << INTERCEPT_VMMCALL);
  1726. /*
  1727. * We don't want a nested guest to be more powerful than the guest, so
  1728. * all intercepts are ORed
  1729. */
  1730. svm->vmcb->control.intercept_cr_read |=
  1731. nested_vmcb->control.intercept_cr_read;
  1732. svm->vmcb->control.intercept_cr_write |=
  1733. nested_vmcb->control.intercept_cr_write;
  1734. svm->vmcb->control.intercept_dr_read |=
  1735. nested_vmcb->control.intercept_dr_read;
  1736. svm->vmcb->control.intercept_dr_write |=
  1737. nested_vmcb->control.intercept_dr_write;
  1738. svm->vmcb->control.intercept_exceptions |=
  1739. nested_vmcb->control.intercept_exceptions;
  1740. svm->vmcb->control.intercept |= nested_vmcb->control.intercept;
  1741. svm->vmcb->control.lbr_ctl = nested_vmcb->control.lbr_ctl;
  1742. svm->vmcb->control.int_vector = nested_vmcb->control.int_vector;
  1743. svm->vmcb->control.int_state = nested_vmcb->control.int_state;
  1744. svm->vmcb->control.tsc_offset += nested_vmcb->control.tsc_offset;
  1745. svm->vmcb->control.event_inj = nested_vmcb->control.event_inj;
  1746. svm->vmcb->control.event_inj_err = nested_vmcb->control.event_inj_err;
  1747. nested_svm_unmap(page);
  1748. /* nested_vmcb is our indicator if nested SVM is activated */
  1749. svm->nested.vmcb = vmcb_gpa;
  1750. enable_gif(svm);
  1751. return true;
  1752. }
  1753. static void nested_svm_vmloadsave(struct vmcb *from_vmcb, struct vmcb *to_vmcb)
  1754. {
  1755. to_vmcb->save.fs = from_vmcb->save.fs;
  1756. to_vmcb->save.gs = from_vmcb->save.gs;
  1757. to_vmcb->save.tr = from_vmcb->save.tr;
  1758. to_vmcb->save.ldtr = from_vmcb->save.ldtr;
  1759. to_vmcb->save.kernel_gs_base = from_vmcb->save.kernel_gs_base;
  1760. to_vmcb->save.star = from_vmcb->save.star;
  1761. to_vmcb->save.lstar = from_vmcb->save.lstar;
  1762. to_vmcb->save.cstar = from_vmcb->save.cstar;
  1763. to_vmcb->save.sfmask = from_vmcb->save.sfmask;
  1764. to_vmcb->save.sysenter_cs = from_vmcb->save.sysenter_cs;
  1765. to_vmcb->save.sysenter_esp = from_vmcb->save.sysenter_esp;
  1766. to_vmcb->save.sysenter_eip = from_vmcb->save.sysenter_eip;
  1767. }
  1768. static int vmload_interception(struct vcpu_svm *svm)
  1769. {
  1770. struct vmcb *nested_vmcb;
  1771. struct page *page;
  1772. if (nested_svm_check_permissions(svm))
  1773. return 1;
  1774. svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
  1775. skip_emulated_instruction(&svm->vcpu);
  1776. nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
  1777. if (!nested_vmcb)
  1778. return 1;
  1779. nested_svm_vmloadsave(nested_vmcb, svm->vmcb);
  1780. nested_svm_unmap(page);
  1781. return 1;
  1782. }
  1783. static int vmsave_interception(struct vcpu_svm *svm)
  1784. {
  1785. struct vmcb *nested_vmcb;
  1786. struct page *page;
  1787. if (nested_svm_check_permissions(svm))
  1788. return 1;
  1789. svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
  1790. skip_emulated_instruction(&svm->vcpu);
  1791. nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
  1792. if (!nested_vmcb)
  1793. return 1;
  1794. nested_svm_vmloadsave(svm->vmcb, nested_vmcb);
  1795. nested_svm_unmap(page);
  1796. return 1;
  1797. }
  1798. static int vmrun_interception(struct vcpu_svm *svm)
  1799. {
  1800. if (nested_svm_check_permissions(svm))
  1801. return 1;
  1802. svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
  1803. skip_emulated_instruction(&svm->vcpu);
  1804. if (!nested_svm_vmrun(svm))
  1805. return 1;
  1806. if (!nested_svm_vmrun_msrpm(svm))
  1807. goto failed;
  1808. return 1;
  1809. failed:
  1810. svm->vmcb->control.exit_code = SVM_EXIT_ERR;
  1811. svm->vmcb->control.exit_code_hi = 0;
  1812. svm->vmcb->control.exit_info_1 = 0;
  1813. svm->vmcb->control.exit_info_2 = 0;
  1814. nested_svm_vmexit(svm);
  1815. return 1;
  1816. }
  1817. static int stgi_interception(struct vcpu_svm *svm)
  1818. {
  1819. if (nested_svm_check_permissions(svm))
  1820. return 1;
  1821. svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
  1822. skip_emulated_instruction(&svm->vcpu);
  1823. enable_gif(svm);
  1824. return 1;
  1825. }
  1826. static int clgi_interception(struct vcpu_svm *svm)
  1827. {
  1828. if (nested_svm_check_permissions(svm))
  1829. return 1;
  1830. svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
  1831. skip_emulated_instruction(&svm->vcpu);
  1832. disable_gif(svm);
  1833. /* After a CLGI no interrupts should come */
  1834. svm_clear_vintr(svm);
  1835. svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
  1836. return 1;
  1837. }
  1838. static int invlpga_interception(struct vcpu_svm *svm)
  1839. {
  1840. struct kvm_vcpu *vcpu = &svm->vcpu;
  1841. trace_kvm_invlpga(svm->vmcb->save.rip, vcpu->arch.regs[VCPU_REGS_RCX],
  1842. vcpu->arch.regs[VCPU_REGS_RAX]);
  1843. /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
  1844. kvm_mmu_invlpg(vcpu, vcpu->arch.regs[VCPU_REGS_RAX]);
  1845. svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
  1846. skip_emulated_instruction(&svm->vcpu);
  1847. return 1;
  1848. }
  1849. static int skinit_interception(struct vcpu_svm *svm)
  1850. {
  1851. trace_kvm_skinit(svm->vmcb->save.rip, svm->vcpu.arch.regs[VCPU_REGS_RAX]);
  1852. kvm_queue_exception(&svm->vcpu, UD_VECTOR);
  1853. return 1;
  1854. }
  1855. static int invalid_op_interception(struct vcpu_svm *svm)
  1856. {
  1857. kvm_queue_exception(&svm->vcpu, UD_VECTOR);
  1858. return 1;
  1859. }
  1860. static int task_switch_interception(struct vcpu_svm *svm)
  1861. {
  1862. u16 tss_selector;
  1863. int reason;
  1864. int int_type = svm->vmcb->control.exit_int_info &
  1865. SVM_EXITINTINFO_TYPE_MASK;
  1866. int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
  1867. uint32_t type =
  1868. svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
  1869. uint32_t idt_v =
  1870. svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
  1871. bool has_error_code = false;
  1872. u32 error_code = 0;
  1873. tss_selector = (u16)svm->vmcb->control.exit_info_1;
  1874. if (svm->vmcb->control.exit_info_2 &
  1875. (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
  1876. reason = TASK_SWITCH_IRET;
  1877. else if (svm->vmcb->control.exit_info_2 &
  1878. (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
  1879. reason = TASK_SWITCH_JMP;
  1880. else if (idt_v)
  1881. reason = TASK_SWITCH_GATE;
  1882. else
  1883. reason = TASK_SWITCH_CALL;
  1884. if (reason == TASK_SWITCH_GATE) {
  1885. switch (type) {
  1886. case SVM_EXITINTINFO_TYPE_NMI:
  1887. svm->vcpu.arch.nmi_injected = false;
  1888. break;
  1889. case SVM_EXITINTINFO_TYPE_EXEPT:
  1890. if (svm->vmcb->control.exit_info_2 &
  1891. (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
  1892. has_error_code = true;
  1893. error_code =
  1894. (u32)svm->vmcb->control.exit_info_2;
  1895. }
  1896. kvm_clear_exception_queue(&svm->vcpu);
  1897. break;
  1898. case SVM_EXITINTINFO_TYPE_INTR:
  1899. kvm_clear_interrupt_queue(&svm->vcpu);
  1900. break;
  1901. default:
  1902. break;
  1903. }
  1904. }
  1905. if (reason != TASK_SWITCH_GATE ||
  1906. int_type == SVM_EXITINTINFO_TYPE_SOFT ||
  1907. (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
  1908. (int_vec == OF_VECTOR || int_vec == BP_VECTOR)))
  1909. skip_emulated_instruction(&svm->vcpu);
  1910. if (kvm_task_switch(&svm->vcpu, tss_selector, reason,
  1911. has_error_code, error_code) == EMULATE_FAIL) {
  1912. svm->vcpu.run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  1913. svm->vcpu.run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
  1914. svm->vcpu.run->internal.ndata = 0;
  1915. return 0;
  1916. }
  1917. return 1;
  1918. }
  1919. static int cpuid_interception(struct vcpu_svm *svm)
  1920. {
  1921. svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
  1922. kvm_emulate_cpuid(&svm->vcpu);
  1923. return 1;
  1924. }
  1925. static int iret_interception(struct vcpu_svm *svm)
  1926. {
  1927. ++svm->vcpu.stat.nmi_window_exits;
  1928. svm->vmcb->control.intercept &= ~(1ULL << INTERCEPT_IRET);
  1929. svm->vcpu.arch.hflags |= HF_IRET_MASK;
  1930. return 1;
  1931. }
  1932. static int invlpg_interception(struct vcpu_svm *svm)
  1933. {
  1934. return emulate_instruction(&svm->vcpu, 0, 0, 0) == EMULATE_DONE;
  1935. }
  1936. static int emulate_on_interception(struct vcpu_svm *svm)
  1937. {
  1938. return emulate_instruction(&svm->vcpu, 0, 0, 0) == EMULATE_DONE;
  1939. }
  1940. static int cr8_write_interception(struct vcpu_svm *svm)
  1941. {
  1942. struct kvm_run *kvm_run = svm->vcpu.run;
  1943. u8 cr8_prev = kvm_get_cr8(&svm->vcpu);
  1944. /* instruction emulation calls kvm_set_cr8() */
  1945. emulate_instruction(&svm->vcpu, 0, 0, 0);
  1946. if (irqchip_in_kernel(svm->vcpu.kvm)) {
  1947. svm->vmcb->control.intercept_cr_write &= ~INTERCEPT_CR8_MASK;
  1948. return 1;
  1949. }
  1950. if (cr8_prev <= kvm_get_cr8(&svm->vcpu))
  1951. return 1;
  1952. kvm_run->exit_reason = KVM_EXIT_SET_TPR;
  1953. return 0;
  1954. }
  1955. static int svm_get_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 *data)
  1956. {
  1957. struct vcpu_svm *svm = to_svm(vcpu);
  1958. switch (ecx) {
  1959. case MSR_IA32_TSC: {
  1960. u64 tsc_offset;
  1961. if (is_nested(svm))
  1962. tsc_offset = svm->nested.hsave->control.tsc_offset;
  1963. else
  1964. tsc_offset = svm->vmcb->control.tsc_offset;
  1965. *data = tsc_offset + native_read_tsc();
  1966. break;
  1967. }
  1968. case MSR_K6_STAR:
  1969. *data = svm->vmcb->save.star;
  1970. break;
  1971. #ifdef CONFIG_X86_64
  1972. case MSR_LSTAR:
  1973. *data = svm->vmcb->save.lstar;
  1974. break;
  1975. case MSR_CSTAR:
  1976. *data = svm->vmcb->save.cstar;
  1977. break;
  1978. case MSR_KERNEL_GS_BASE:
  1979. *data = svm->vmcb->save.kernel_gs_base;
  1980. break;
  1981. case MSR_SYSCALL_MASK:
  1982. *data = svm->vmcb->save.sfmask;
  1983. break;
  1984. #endif
  1985. case MSR_IA32_SYSENTER_CS:
  1986. *data = svm->vmcb->save.sysenter_cs;
  1987. break;
  1988. case MSR_IA32_SYSENTER_EIP:
  1989. *data = svm->sysenter_eip;
  1990. break;
  1991. case MSR_IA32_SYSENTER_ESP:
  1992. *data = svm->sysenter_esp;
  1993. break;
  1994. /*
  1995. * Nobody will change the following 5 values in the VMCB so we can
  1996. * safely return them on rdmsr. They will always be 0 until LBRV is
  1997. * implemented.
  1998. */
  1999. case MSR_IA32_DEBUGCTLMSR:
  2000. *data = svm->vmcb->save.dbgctl;
  2001. break;
  2002. case MSR_IA32_LASTBRANCHFROMIP:
  2003. *data = svm->vmcb->save.br_from;
  2004. break;
  2005. case MSR_IA32_LASTBRANCHTOIP:
  2006. *data = svm->vmcb->save.br_to;
  2007. break;
  2008. case MSR_IA32_LASTINTFROMIP:
  2009. *data = svm->vmcb->save.last_excp_from;
  2010. break;
  2011. case MSR_IA32_LASTINTTOIP:
  2012. *data = svm->vmcb->save.last_excp_to;
  2013. break;
  2014. case MSR_VM_HSAVE_PA:
  2015. *data = svm->nested.hsave_msr;
  2016. break;
  2017. case MSR_VM_CR:
  2018. *data = svm->nested.vm_cr_msr;
  2019. break;
  2020. case MSR_IA32_UCODE_REV:
  2021. *data = 0x01000065;
  2022. break;
  2023. default:
  2024. return kvm_get_msr_common(vcpu, ecx, data);
  2025. }
  2026. return 0;
  2027. }
  2028. static int rdmsr_interception(struct vcpu_svm *svm)
  2029. {
  2030. u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
  2031. u64 data;
  2032. if (svm_get_msr(&svm->vcpu, ecx, &data)) {
  2033. trace_kvm_msr_read_ex(ecx);
  2034. kvm_inject_gp(&svm->vcpu, 0);
  2035. } else {
  2036. trace_kvm_msr_read(ecx, data);
  2037. svm->vcpu.arch.regs[VCPU_REGS_RAX] = data & 0xffffffff;
  2038. svm->vcpu.arch.regs[VCPU_REGS_RDX] = data >> 32;
  2039. svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
  2040. skip_emulated_instruction(&svm->vcpu);
  2041. }
  2042. return 1;
  2043. }
  2044. static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
  2045. {
  2046. struct vcpu_svm *svm = to_svm(vcpu);
  2047. int svm_dis, chg_mask;
  2048. if (data & ~SVM_VM_CR_VALID_MASK)
  2049. return 1;
  2050. chg_mask = SVM_VM_CR_VALID_MASK;
  2051. if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
  2052. chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
  2053. svm->nested.vm_cr_msr &= ~chg_mask;
  2054. svm->nested.vm_cr_msr |= (data & chg_mask);
  2055. svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
  2056. /* check for svm_disable while efer.svme is set */
  2057. if (svm_dis && (vcpu->arch.efer & EFER_SVME))
  2058. return 1;
  2059. return 0;
  2060. }
  2061. static int svm_set_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 data)
  2062. {
  2063. struct vcpu_svm *svm = to_svm(vcpu);
  2064. switch (ecx) {
  2065. case MSR_IA32_TSC: {
  2066. u64 tsc_offset = data - native_read_tsc();
  2067. u64 g_tsc_offset = 0;
  2068. if (is_nested(svm)) {
  2069. g_tsc_offset = svm->vmcb->control.tsc_offset -
  2070. svm->nested.hsave->control.tsc_offset;
  2071. svm->nested.hsave->control.tsc_offset = tsc_offset;
  2072. }
  2073. svm->vmcb->control.tsc_offset = tsc_offset + g_tsc_offset;
  2074. break;
  2075. }
  2076. case MSR_K6_STAR:
  2077. svm->vmcb->save.star = data;
  2078. break;
  2079. #ifdef CONFIG_X86_64
  2080. case MSR_LSTAR:
  2081. svm->vmcb->save.lstar = data;
  2082. break;
  2083. case MSR_CSTAR:
  2084. svm->vmcb->save.cstar = data;
  2085. break;
  2086. case MSR_KERNEL_GS_BASE:
  2087. svm->vmcb->save.kernel_gs_base = data;
  2088. break;
  2089. case MSR_SYSCALL_MASK:
  2090. svm->vmcb->save.sfmask = data;
  2091. break;
  2092. #endif
  2093. case MSR_IA32_SYSENTER_CS:
  2094. svm->vmcb->save.sysenter_cs = data;
  2095. break;
  2096. case MSR_IA32_SYSENTER_EIP:
  2097. svm->sysenter_eip = data;
  2098. svm->vmcb->save.sysenter_eip = data;
  2099. break;
  2100. case MSR_IA32_SYSENTER_ESP:
  2101. svm->sysenter_esp = data;
  2102. svm->vmcb->save.sysenter_esp = data;
  2103. break;
  2104. case MSR_IA32_DEBUGCTLMSR:
  2105. if (!svm_has(SVM_FEATURE_LBRV)) {
  2106. pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
  2107. __func__, data);
  2108. break;
  2109. }
  2110. if (data & DEBUGCTL_RESERVED_BITS)
  2111. return 1;
  2112. svm->vmcb->save.dbgctl = data;
  2113. if (data & (1ULL<<0))
  2114. svm_enable_lbrv(svm);
  2115. else
  2116. svm_disable_lbrv(svm);
  2117. break;
  2118. case MSR_VM_HSAVE_PA:
  2119. svm->nested.hsave_msr = data;
  2120. break;
  2121. case MSR_VM_CR:
  2122. return svm_set_vm_cr(vcpu, data);
  2123. case MSR_VM_IGNNE:
  2124. pr_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
  2125. break;
  2126. default:
  2127. return kvm_set_msr_common(vcpu, ecx, data);
  2128. }
  2129. return 0;
  2130. }
  2131. static int wrmsr_interception(struct vcpu_svm *svm)
  2132. {
  2133. u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
  2134. u64 data = (svm->vcpu.arch.regs[VCPU_REGS_RAX] & -1u)
  2135. | ((u64)(svm->vcpu.arch.regs[VCPU_REGS_RDX] & -1u) << 32);
  2136. svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
  2137. if (svm_set_msr(&svm->vcpu, ecx, data)) {
  2138. trace_kvm_msr_write_ex(ecx, data);
  2139. kvm_inject_gp(&svm->vcpu, 0);
  2140. } else {
  2141. trace_kvm_msr_write(ecx, data);
  2142. skip_emulated_instruction(&svm->vcpu);
  2143. }
  2144. return 1;
  2145. }
  2146. static int msr_interception(struct vcpu_svm *svm)
  2147. {
  2148. if (svm->vmcb->control.exit_info_1)
  2149. return wrmsr_interception(svm);
  2150. else
  2151. return rdmsr_interception(svm);
  2152. }
  2153. static int interrupt_window_interception(struct vcpu_svm *svm)
  2154. {
  2155. struct kvm_run *kvm_run = svm->vcpu.run;
  2156. svm_clear_vintr(svm);
  2157. svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
  2158. /*
  2159. * If the user space waits to inject interrupts, exit as soon as
  2160. * possible
  2161. */
  2162. if (!irqchip_in_kernel(svm->vcpu.kvm) &&
  2163. kvm_run->request_interrupt_window &&
  2164. !kvm_cpu_has_interrupt(&svm->vcpu)) {
  2165. ++svm->vcpu.stat.irq_window_exits;
  2166. kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
  2167. return 0;
  2168. }
  2169. return 1;
  2170. }
  2171. static int pause_interception(struct vcpu_svm *svm)
  2172. {
  2173. kvm_vcpu_on_spin(&(svm->vcpu));
  2174. return 1;
  2175. }
  2176. static int (*svm_exit_handlers[])(struct vcpu_svm *svm) = {
  2177. [SVM_EXIT_READ_CR0] = emulate_on_interception,
  2178. [SVM_EXIT_READ_CR3] = emulate_on_interception,
  2179. [SVM_EXIT_READ_CR4] = emulate_on_interception,
  2180. [SVM_EXIT_READ_CR8] = emulate_on_interception,
  2181. [SVM_EXIT_CR0_SEL_WRITE] = emulate_on_interception,
  2182. [SVM_EXIT_WRITE_CR0] = emulate_on_interception,
  2183. [SVM_EXIT_WRITE_CR3] = emulate_on_interception,
  2184. [SVM_EXIT_WRITE_CR4] = emulate_on_interception,
  2185. [SVM_EXIT_WRITE_CR8] = cr8_write_interception,
  2186. [SVM_EXIT_READ_DR0] = emulate_on_interception,
  2187. [SVM_EXIT_READ_DR1] = emulate_on_interception,
  2188. [SVM_EXIT_READ_DR2] = emulate_on_interception,
  2189. [SVM_EXIT_READ_DR3] = emulate_on_interception,
  2190. [SVM_EXIT_READ_DR4] = emulate_on_interception,
  2191. [SVM_EXIT_READ_DR5] = emulate_on_interception,
  2192. [SVM_EXIT_READ_DR6] = emulate_on_interception,
  2193. [SVM_EXIT_READ_DR7] = emulate_on_interception,
  2194. [SVM_EXIT_WRITE_DR0] = emulate_on_interception,
  2195. [SVM_EXIT_WRITE_DR1] = emulate_on_interception,
  2196. [SVM_EXIT_WRITE_DR2] = emulate_on_interception,
  2197. [SVM_EXIT_WRITE_DR3] = emulate_on_interception,
  2198. [SVM_EXIT_WRITE_DR4] = emulate_on_interception,
  2199. [SVM_EXIT_WRITE_DR5] = emulate_on_interception,
  2200. [SVM_EXIT_WRITE_DR6] = emulate_on_interception,
  2201. [SVM_EXIT_WRITE_DR7] = emulate_on_interception,
  2202. [SVM_EXIT_EXCP_BASE + DB_VECTOR] = db_interception,
  2203. [SVM_EXIT_EXCP_BASE + BP_VECTOR] = bp_interception,
  2204. [SVM_EXIT_EXCP_BASE + UD_VECTOR] = ud_interception,
  2205. [SVM_EXIT_EXCP_BASE + PF_VECTOR] = pf_interception,
  2206. [SVM_EXIT_EXCP_BASE + NM_VECTOR] = nm_interception,
  2207. [SVM_EXIT_EXCP_BASE + MC_VECTOR] = mc_interception,
  2208. [SVM_EXIT_INTR] = intr_interception,
  2209. [SVM_EXIT_NMI] = nmi_interception,
  2210. [SVM_EXIT_SMI] = nop_on_interception,
  2211. [SVM_EXIT_INIT] = nop_on_interception,
  2212. [SVM_EXIT_VINTR] = interrupt_window_interception,
  2213. [SVM_EXIT_CPUID] = cpuid_interception,
  2214. [SVM_EXIT_IRET] = iret_interception,
  2215. [SVM_EXIT_INVD] = emulate_on_interception,
  2216. [SVM_EXIT_PAUSE] = pause_interception,
  2217. [SVM_EXIT_HLT] = halt_interception,
  2218. [SVM_EXIT_INVLPG] = invlpg_interception,
  2219. [SVM_EXIT_INVLPGA] = invlpga_interception,
  2220. [SVM_EXIT_IOIO] = io_interception,
  2221. [SVM_EXIT_MSR] = msr_interception,
  2222. [SVM_EXIT_TASK_SWITCH] = task_switch_interception,
  2223. [SVM_EXIT_SHUTDOWN] = shutdown_interception,
  2224. [SVM_EXIT_VMRUN] = vmrun_interception,
  2225. [SVM_EXIT_VMMCALL] = vmmcall_interception,
  2226. [SVM_EXIT_VMLOAD] = vmload_interception,
  2227. [SVM_EXIT_VMSAVE] = vmsave_interception,
  2228. [SVM_EXIT_STGI] = stgi_interception,
  2229. [SVM_EXIT_CLGI] = clgi_interception,
  2230. [SVM_EXIT_SKINIT] = skinit_interception,
  2231. [SVM_EXIT_WBINVD] = emulate_on_interception,
  2232. [SVM_EXIT_MONITOR] = invalid_op_interception,
  2233. [SVM_EXIT_MWAIT] = invalid_op_interception,
  2234. [SVM_EXIT_NPF] = pf_interception,
  2235. };
  2236. void dump_vmcb(struct kvm_vcpu *vcpu)
  2237. {
  2238. struct vcpu_svm *svm = to_svm(vcpu);
  2239. struct vmcb_control_area *control = &svm->vmcb->control;
  2240. struct vmcb_save_area *save = &svm->vmcb->save;
  2241. pr_err("VMCB Control Area:\n");
  2242. pr_err("cr_read: %04x\n", control->intercept_cr_read);
  2243. pr_err("cr_write: %04x\n", control->intercept_cr_write);
  2244. pr_err("dr_read: %04x\n", control->intercept_dr_read);
  2245. pr_err("dr_write: %04x\n", control->intercept_dr_write);
  2246. pr_err("exceptions: %08x\n", control->intercept_exceptions);
  2247. pr_err("intercepts: %016llx\n", control->intercept);
  2248. pr_err("pause filter count: %d\n", control->pause_filter_count);
  2249. pr_err("iopm_base_pa: %016llx\n", control->iopm_base_pa);
  2250. pr_err("msrpm_base_pa: %016llx\n", control->msrpm_base_pa);
  2251. pr_err("tsc_offset: %016llx\n", control->tsc_offset);
  2252. pr_err("asid: %d\n", control->asid);
  2253. pr_err("tlb_ctl: %d\n", control->tlb_ctl);
  2254. pr_err("int_ctl: %08x\n", control->int_ctl);
  2255. pr_err("int_vector: %08x\n", control->int_vector);
  2256. pr_err("int_state: %08x\n", control->int_state);
  2257. pr_err("exit_code: %08x\n", control->exit_code);
  2258. pr_err("exit_info1: %016llx\n", control->exit_info_1);
  2259. pr_err("exit_info2: %016llx\n", control->exit_info_2);
  2260. pr_err("exit_int_info: %08x\n", control->exit_int_info);
  2261. pr_err("exit_int_info_err: %08x\n", control->exit_int_info_err);
  2262. pr_err("nested_ctl: %lld\n", control->nested_ctl);
  2263. pr_err("nested_cr3: %016llx\n", control->nested_cr3);
  2264. pr_err("event_inj: %08x\n", control->event_inj);
  2265. pr_err("event_inj_err: %08x\n", control->event_inj_err);
  2266. pr_err("lbr_ctl: %lld\n", control->lbr_ctl);
  2267. pr_err("next_rip: %016llx\n", control->next_rip);
  2268. pr_err("VMCB State Save Area:\n");
  2269. pr_err("es: s: %04x a: %04x l: %08x b: %016llx\n",
  2270. save->es.selector, save->es.attrib,
  2271. save->es.limit, save->es.base);
  2272. pr_err("cs: s: %04x a: %04x l: %08x b: %016llx\n",
  2273. save->cs.selector, save->cs.attrib,
  2274. save->cs.limit, save->cs.base);
  2275. pr_err("ss: s: %04x a: %04x l: %08x b: %016llx\n",
  2276. save->ss.selector, save->ss.attrib,
  2277. save->ss.limit, save->ss.base);
  2278. pr_err("ds: s: %04x a: %04x l: %08x b: %016llx\n",
  2279. save->ds.selector, save->ds.attrib,
  2280. save->ds.limit, save->ds.base);
  2281. pr_err("fs: s: %04x a: %04x l: %08x b: %016llx\n",
  2282. save->fs.selector, save->fs.attrib,
  2283. save->fs.limit, save->fs.base);
  2284. pr_err("gs: s: %04x a: %04x l: %08x b: %016llx\n",
  2285. save->gs.selector, save->gs.attrib,
  2286. save->gs.limit, save->gs.base);
  2287. pr_err("gdtr: s: %04x a: %04x l: %08x b: %016llx\n",
  2288. save->gdtr.selector, save->gdtr.attrib,
  2289. save->gdtr.limit, save->gdtr.base);
  2290. pr_err("ldtr: s: %04x a: %04x l: %08x b: %016llx\n",
  2291. save->ldtr.selector, save->ldtr.attrib,
  2292. save->ldtr.limit, save->ldtr.base);
  2293. pr_err("idtr: s: %04x a: %04x l: %08x b: %016llx\n",
  2294. save->idtr.selector, save->idtr.attrib,
  2295. save->idtr.limit, save->idtr.base);
  2296. pr_err("tr: s: %04x a: %04x l: %08x b: %016llx\n",
  2297. save->tr.selector, save->tr.attrib,
  2298. save->tr.limit, save->tr.base);
  2299. pr_err("cpl: %d efer: %016llx\n",
  2300. save->cpl, save->efer);
  2301. pr_err("cr0: %016llx cr2: %016llx\n",
  2302. save->cr0, save->cr2);
  2303. pr_err("cr3: %016llx cr4: %016llx\n",
  2304. save->cr3, save->cr4);
  2305. pr_err("dr6: %016llx dr7: %016llx\n",
  2306. save->dr6, save->dr7);
  2307. pr_err("rip: %016llx rflags: %016llx\n",
  2308. save->rip, save->rflags);
  2309. pr_err("rsp: %016llx rax: %016llx\n",
  2310. save->rsp, save->rax);
  2311. pr_err("star: %016llx lstar: %016llx\n",
  2312. save->star, save->lstar);
  2313. pr_err("cstar: %016llx sfmask: %016llx\n",
  2314. save->cstar, save->sfmask);
  2315. pr_err("kernel_gs_base: %016llx sysenter_cs: %016llx\n",
  2316. save->kernel_gs_base, save->sysenter_cs);
  2317. pr_err("sysenter_esp: %016llx sysenter_eip: %016llx\n",
  2318. save->sysenter_esp, save->sysenter_eip);
  2319. pr_err("gpat: %016llx dbgctl: %016llx\n",
  2320. save->g_pat, save->dbgctl);
  2321. pr_err("br_from: %016llx br_to: %016llx\n",
  2322. save->br_from, save->br_to);
  2323. pr_err("excp_from: %016llx excp_to: %016llx\n",
  2324. save->last_excp_from, save->last_excp_to);
  2325. }
  2326. static int handle_exit(struct kvm_vcpu *vcpu)
  2327. {
  2328. struct vcpu_svm *svm = to_svm(vcpu);
  2329. struct kvm_run *kvm_run = vcpu->run;
  2330. u32 exit_code = svm->vmcb->control.exit_code;
  2331. trace_kvm_exit(exit_code, vcpu);
  2332. if (!(svm->vmcb->control.intercept_cr_write & INTERCEPT_CR0_MASK))
  2333. vcpu->arch.cr0 = svm->vmcb->save.cr0;
  2334. if (npt_enabled)
  2335. vcpu->arch.cr3 = svm->vmcb->save.cr3;
  2336. if (unlikely(svm->nested.exit_required)) {
  2337. nested_svm_vmexit(svm);
  2338. svm->nested.exit_required = false;
  2339. return 1;
  2340. }
  2341. if (is_nested(svm)) {
  2342. int vmexit;
  2343. trace_kvm_nested_vmexit(svm->vmcb->save.rip, exit_code,
  2344. svm->vmcb->control.exit_info_1,
  2345. svm->vmcb->control.exit_info_2,
  2346. svm->vmcb->control.exit_int_info,
  2347. svm->vmcb->control.exit_int_info_err);
  2348. vmexit = nested_svm_exit_special(svm);
  2349. if (vmexit == NESTED_EXIT_CONTINUE)
  2350. vmexit = nested_svm_exit_handled(svm);
  2351. if (vmexit == NESTED_EXIT_DONE)
  2352. return 1;
  2353. }
  2354. svm_complete_interrupts(svm);
  2355. if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
  2356. kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
  2357. kvm_run->fail_entry.hardware_entry_failure_reason
  2358. = svm->vmcb->control.exit_code;
  2359. pr_err("KVM: FAILED VMRUN WITH VMCB:\n");
  2360. dump_vmcb(vcpu);
  2361. return 0;
  2362. }
  2363. if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
  2364. exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
  2365. exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH)
  2366. printk(KERN_ERR "%s: unexpected exit_ini_info 0x%x "
  2367. "exit_code 0x%x\n",
  2368. __func__, svm->vmcb->control.exit_int_info,
  2369. exit_code);
  2370. if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
  2371. || !svm_exit_handlers[exit_code]) {
  2372. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  2373. kvm_run->hw.hardware_exit_reason = exit_code;
  2374. return 0;
  2375. }
  2376. return svm_exit_handlers[exit_code](svm);
  2377. }
  2378. static void reload_tss(struct kvm_vcpu *vcpu)
  2379. {
  2380. int cpu = raw_smp_processor_id();
  2381. struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
  2382. sd->tss_desc->type = 9; /* available 32/64-bit TSS */
  2383. load_TR_desc();
  2384. }
  2385. static void pre_svm_run(struct vcpu_svm *svm)
  2386. {
  2387. int cpu = raw_smp_processor_id();
  2388. struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
  2389. svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
  2390. /* FIXME: handle wraparound of asid_generation */
  2391. if (svm->asid_generation != sd->asid_generation)
  2392. new_asid(svm, sd);
  2393. }
  2394. static void svm_inject_nmi(struct kvm_vcpu *vcpu)
  2395. {
  2396. struct vcpu_svm *svm = to_svm(vcpu);
  2397. svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
  2398. vcpu->arch.hflags |= HF_NMI_MASK;
  2399. svm->vmcb->control.intercept |= (1ULL << INTERCEPT_IRET);
  2400. ++vcpu->stat.nmi_injections;
  2401. }
  2402. static inline void svm_inject_irq(struct vcpu_svm *svm, int irq)
  2403. {
  2404. struct vmcb_control_area *control;
  2405. control = &svm->vmcb->control;
  2406. control->int_vector = irq;
  2407. control->int_ctl &= ~V_INTR_PRIO_MASK;
  2408. control->int_ctl |= V_IRQ_MASK |
  2409. ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
  2410. }
  2411. static void svm_set_irq(struct kvm_vcpu *vcpu)
  2412. {
  2413. struct vcpu_svm *svm = to_svm(vcpu);
  2414. BUG_ON(!(gif_set(svm)));
  2415. trace_kvm_inj_virq(vcpu->arch.interrupt.nr);
  2416. ++vcpu->stat.irq_injections;
  2417. svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
  2418. SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
  2419. }
  2420. static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
  2421. {
  2422. struct vcpu_svm *svm = to_svm(vcpu);
  2423. if (is_nested(svm) && (vcpu->arch.hflags & HF_VINTR_MASK))
  2424. return;
  2425. if (irr == -1)
  2426. return;
  2427. if (tpr >= irr)
  2428. svm->vmcb->control.intercept_cr_write |= INTERCEPT_CR8_MASK;
  2429. }
  2430. static int svm_nmi_allowed(struct kvm_vcpu *vcpu)
  2431. {
  2432. struct vcpu_svm *svm = to_svm(vcpu);
  2433. struct vmcb *vmcb = svm->vmcb;
  2434. int ret;
  2435. ret = !(vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) &&
  2436. !(svm->vcpu.arch.hflags & HF_NMI_MASK);
  2437. ret = ret && gif_set(svm) && nested_svm_nmi(svm);
  2438. return ret;
  2439. }
  2440. static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
  2441. {
  2442. struct vcpu_svm *svm = to_svm(vcpu);
  2443. return !!(svm->vcpu.arch.hflags & HF_NMI_MASK);
  2444. }
  2445. static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
  2446. {
  2447. struct vcpu_svm *svm = to_svm(vcpu);
  2448. if (masked) {
  2449. svm->vcpu.arch.hflags |= HF_NMI_MASK;
  2450. svm->vmcb->control.intercept |= (1ULL << INTERCEPT_IRET);
  2451. } else {
  2452. svm->vcpu.arch.hflags &= ~HF_NMI_MASK;
  2453. svm->vmcb->control.intercept &= ~(1ULL << INTERCEPT_IRET);
  2454. }
  2455. }
  2456. static int svm_interrupt_allowed(struct kvm_vcpu *vcpu)
  2457. {
  2458. struct vcpu_svm *svm = to_svm(vcpu);
  2459. struct vmcb *vmcb = svm->vmcb;
  2460. int ret;
  2461. if (!gif_set(svm) ||
  2462. (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK))
  2463. return 0;
  2464. ret = !!(vmcb->save.rflags & X86_EFLAGS_IF);
  2465. if (is_nested(svm))
  2466. return ret && !(svm->vcpu.arch.hflags & HF_VINTR_MASK);
  2467. return ret;
  2468. }
  2469. static void enable_irq_window(struct kvm_vcpu *vcpu)
  2470. {
  2471. struct vcpu_svm *svm = to_svm(vcpu);
  2472. /*
  2473. * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
  2474. * 1, because that's a separate STGI/VMRUN intercept. The next time we
  2475. * get that intercept, this function will be called again though and
  2476. * we'll get the vintr intercept.
  2477. */
  2478. if (gif_set(svm) && nested_svm_intr(svm)) {
  2479. svm_set_vintr(svm);
  2480. svm_inject_irq(svm, 0x0);
  2481. }
  2482. }
  2483. static void enable_nmi_window(struct kvm_vcpu *vcpu)
  2484. {
  2485. struct vcpu_svm *svm = to_svm(vcpu);
  2486. if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK))
  2487. == HF_NMI_MASK)
  2488. return; /* IRET will cause a vm exit */
  2489. /*
  2490. * Something prevents NMI from been injected. Single step over possible
  2491. * problem (IRET or exception injection or interrupt shadow)
  2492. */
  2493. svm->nmi_singlestep = true;
  2494. svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
  2495. update_db_intercept(vcpu);
  2496. }
  2497. static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
  2498. {
  2499. return 0;
  2500. }
  2501. static void svm_flush_tlb(struct kvm_vcpu *vcpu)
  2502. {
  2503. force_new_asid(vcpu);
  2504. }
  2505. static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
  2506. {
  2507. }
  2508. static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
  2509. {
  2510. struct vcpu_svm *svm = to_svm(vcpu);
  2511. if (is_nested(svm) && (vcpu->arch.hflags & HF_VINTR_MASK))
  2512. return;
  2513. if (!(svm->vmcb->control.intercept_cr_write & INTERCEPT_CR8_MASK)) {
  2514. int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
  2515. kvm_set_cr8(vcpu, cr8);
  2516. }
  2517. }
  2518. static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
  2519. {
  2520. struct vcpu_svm *svm = to_svm(vcpu);
  2521. u64 cr8;
  2522. if (is_nested(svm) && (vcpu->arch.hflags & HF_VINTR_MASK))
  2523. return;
  2524. cr8 = kvm_get_cr8(vcpu);
  2525. svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
  2526. svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
  2527. }
  2528. static void svm_complete_interrupts(struct vcpu_svm *svm)
  2529. {
  2530. u8 vector;
  2531. int type;
  2532. u32 exitintinfo = svm->vmcb->control.exit_int_info;
  2533. unsigned int3_injected = svm->int3_injected;
  2534. svm->int3_injected = 0;
  2535. if (svm->vcpu.arch.hflags & HF_IRET_MASK)
  2536. svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
  2537. svm->vcpu.arch.nmi_injected = false;
  2538. kvm_clear_exception_queue(&svm->vcpu);
  2539. kvm_clear_interrupt_queue(&svm->vcpu);
  2540. if (!(exitintinfo & SVM_EXITINTINFO_VALID))
  2541. return;
  2542. vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
  2543. type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
  2544. switch (type) {
  2545. case SVM_EXITINTINFO_TYPE_NMI:
  2546. svm->vcpu.arch.nmi_injected = true;
  2547. break;
  2548. case SVM_EXITINTINFO_TYPE_EXEPT:
  2549. /*
  2550. * In case of software exceptions, do not reinject the vector,
  2551. * but re-execute the instruction instead. Rewind RIP first
  2552. * if we emulated INT3 before.
  2553. */
  2554. if (kvm_exception_is_soft(vector)) {
  2555. if (vector == BP_VECTOR && int3_injected &&
  2556. kvm_is_linear_rip(&svm->vcpu, svm->int3_rip))
  2557. kvm_rip_write(&svm->vcpu,
  2558. kvm_rip_read(&svm->vcpu) -
  2559. int3_injected);
  2560. break;
  2561. }
  2562. if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
  2563. u32 err = svm->vmcb->control.exit_int_info_err;
  2564. kvm_requeue_exception_e(&svm->vcpu, vector, err);
  2565. } else
  2566. kvm_requeue_exception(&svm->vcpu, vector);
  2567. break;
  2568. case SVM_EXITINTINFO_TYPE_INTR:
  2569. kvm_queue_interrupt(&svm->vcpu, vector, false);
  2570. break;
  2571. default:
  2572. break;
  2573. }
  2574. }
  2575. #ifdef CONFIG_X86_64
  2576. #define R "r"
  2577. #else
  2578. #define R "e"
  2579. #endif
  2580. static void svm_vcpu_run(struct kvm_vcpu *vcpu)
  2581. {
  2582. struct vcpu_svm *svm = to_svm(vcpu);
  2583. u16 fs_selector;
  2584. u16 gs_selector;
  2585. u16 ldt_selector;
  2586. svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
  2587. svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
  2588. svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
  2589. /*
  2590. * A vmexit emulation is required before the vcpu can be executed
  2591. * again.
  2592. */
  2593. if (unlikely(svm->nested.exit_required))
  2594. return;
  2595. pre_svm_run(svm);
  2596. sync_lapic_to_cr8(vcpu);
  2597. save_host_msrs(vcpu);
  2598. fs_selector = kvm_read_fs();
  2599. gs_selector = kvm_read_gs();
  2600. ldt_selector = kvm_read_ldt();
  2601. svm->vmcb->save.cr2 = vcpu->arch.cr2;
  2602. /* required for live migration with NPT */
  2603. if (npt_enabled)
  2604. svm->vmcb->save.cr3 = vcpu->arch.cr3;
  2605. clgi();
  2606. local_irq_enable();
  2607. asm volatile (
  2608. "push %%"R"bp; \n\t"
  2609. "mov %c[rbx](%[svm]), %%"R"bx \n\t"
  2610. "mov %c[rcx](%[svm]), %%"R"cx \n\t"
  2611. "mov %c[rdx](%[svm]), %%"R"dx \n\t"
  2612. "mov %c[rsi](%[svm]), %%"R"si \n\t"
  2613. "mov %c[rdi](%[svm]), %%"R"di \n\t"
  2614. "mov %c[rbp](%[svm]), %%"R"bp \n\t"
  2615. #ifdef CONFIG_X86_64
  2616. "mov %c[r8](%[svm]), %%r8 \n\t"
  2617. "mov %c[r9](%[svm]), %%r9 \n\t"
  2618. "mov %c[r10](%[svm]), %%r10 \n\t"
  2619. "mov %c[r11](%[svm]), %%r11 \n\t"
  2620. "mov %c[r12](%[svm]), %%r12 \n\t"
  2621. "mov %c[r13](%[svm]), %%r13 \n\t"
  2622. "mov %c[r14](%[svm]), %%r14 \n\t"
  2623. "mov %c[r15](%[svm]), %%r15 \n\t"
  2624. #endif
  2625. /* Enter guest mode */
  2626. "push %%"R"ax \n\t"
  2627. "mov %c[vmcb](%[svm]), %%"R"ax \n\t"
  2628. __ex(SVM_VMLOAD) "\n\t"
  2629. __ex(SVM_VMRUN) "\n\t"
  2630. __ex(SVM_VMSAVE) "\n\t"
  2631. "pop %%"R"ax \n\t"
  2632. /* Save guest registers, load host registers */
  2633. "mov %%"R"bx, %c[rbx](%[svm]) \n\t"
  2634. "mov %%"R"cx, %c[rcx](%[svm]) \n\t"
  2635. "mov %%"R"dx, %c[rdx](%[svm]) \n\t"
  2636. "mov %%"R"si, %c[rsi](%[svm]) \n\t"
  2637. "mov %%"R"di, %c[rdi](%[svm]) \n\t"
  2638. "mov %%"R"bp, %c[rbp](%[svm]) \n\t"
  2639. #ifdef CONFIG_X86_64
  2640. "mov %%r8, %c[r8](%[svm]) \n\t"
  2641. "mov %%r9, %c[r9](%[svm]) \n\t"
  2642. "mov %%r10, %c[r10](%[svm]) \n\t"
  2643. "mov %%r11, %c[r11](%[svm]) \n\t"
  2644. "mov %%r12, %c[r12](%[svm]) \n\t"
  2645. "mov %%r13, %c[r13](%[svm]) \n\t"
  2646. "mov %%r14, %c[r14](%[svm]) \n\t"
  2647. "mov %%r15, %c[r15](%[svm]) \n\t"
  2648. #endif
  2649. "pop %%"R"bp"
  2650. :
  2651. : [svm]"a"(svm),
  2652. [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
  2653. [rbx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBX])),
  2654. [rcx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RCX])),
  2655. [rdx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDX])),
  2656. [rsi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RSI])),
  2657. [rdi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDI])),
  2658. [rbp]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBP]))
  2659. #ifdef CONFIG_X86_64
  2660. , [r8]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R8])),
  2661. [r9]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R9])),
  2662. [r10]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R10])),
  2663. [r11]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R11])),
  2664. [r12]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R12])),
  2665. [r13]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R13])),
  2666. [r14]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R14])),
  2667. [r15]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R15]))
  2668. #endif
  2669. : "cc", "memory"
  2670. , R"bx", R"cx", R"dx", R"si", R"di"
  2671. #ifdef CONFIG_X86_64
  2672. , "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
  2673. #endif
  2674. );
  2675. vcpu->arch.cr2 = svm->vmcb->save.cr2;
  2676. vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
  2677. vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
  2678. vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
  2679. kvm_load_fs(fs_selector);
  2680. kvm_load_gs(gs_selector);
  2681. kvm_load_ldt(ldt_selector);
  2682. load_host_msrs(vcpu);
  2683. reload_tss(vcpu);
  2684. local_irq_disable();
  2685. stgi();
  2686. sync_cr8_to_lapic(vcpu);
  2687. svm->next_rip = 0;
  2688. if (npt_enabled) {
  2689. vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR);
  2690. vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR);
  2691. }
  2692. /*
  2693. * We need to handle MC intercepts here before the vcpu has a chance to
  2694. * change the physical cpu
  2695. */
  2696. if (unlikely(svm->vmcb->control.exit_code ==
  2697. SVM_EXIT_EXCP_BASE + MC_VECTOR))
  2698. svm_handle_mce(svm);
  2699. }
  2700. #undef R
  2701. static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
  2702. {
  2703. struct vcpu_svm *svm = to_svm(vcpu);
  2704. if (npt_enabled) {
  2705. svm->vmcb->control.nested_cr3 = root;
  2706. force_new_asid(vcpu);
  2707. return;
  2708. }
  2709. svm->vmcb->save.cr3 = root;
  2710. force_new_asid(vcpu);
  2711. }
  2712. static int is_disabled(void)
  2713. {
  2714. u64 vm_cr;
  2715. rdmsrl(MSR_VM_CR, vm_cr);
  2716. if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
  2717. return 1;
  2718. return 0;
  2719. }
  2720. static void
  2721. svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
  2722. {
  2723. /*
  2724. * Patch in the VMMCALL instruction:
  2725. */
  2726. hypercall[0] = 0x0f;
  2727. hypercall[1] = 0x01;
  2728. hypercall[2] = 0xd9;
  2729. }
  2730. static void svm_check_processor_compat(void *rtn)
  2731. {
  2732. *(int *)rtn = 0;
  2733. }
  2734. static bool svm_cpu_has_accelerated_tpr(void)
  2735. {
  2736. return false;
  2737. }
  2738. static int get_npt_level(void)
  2739. {
  2740. #ifdef CONFIG_X86_64
  2741. return PT64_ROOT_LEVEL;
  2742. #else
  2743. return PT32E_ROOT_LEVEL;
  2744. #endif
  2745. }
  2746. static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
  2747. {
  2748. return 0;
  2749. }
  2750. static void svm_cpuid_update(struct kvm_vcpu *vcpu)
  2751. {
  2752. }
  2753. static void svm_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
  2754. {
  2755. switch (func) {
  2756. case 0x8000000A:
  2757. entry->eax = 1; /* SVM revision 1 */
  2758. entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
  2759. ASID emulation to nested SVM */
  2760. entry->ecx = 0; /* Reserved */
  2761. entry->edx = 0; /* Do not support any additional features */
  2762. break;
  2763. }
  2764. }
  2765. static const struct trace_print_flags svm_exit_reasons_str[] = {
  2766. { SVM_EXIT_READ_CR0, "read_cr0" },
  2767. { SVM_EXIT_READ_CR3, "read_cr3" },
  2768. { SVM_EXIT_READ_CR4, "read_cr4" },
  2769. { SVM_EXIT_READ_CR8, "read_cr8" },
  2770. { SVM_EXIT_WRITE_CR0, "write_cr0" },
  2771. { SVM_EXIT_WRITE_CR3, "write_cr3" },
  2772. { SVM_EXIT_WRITE_CR4, "write_cr4" },
  2773. { SVM_EXIT_WRITE_CR8, "write_cr8" },
  2774. { SVM_EXIT_READ_DR0, "read_dr0" },
  2775. { SVM_EXIT_READ_DR1, "read_dr1" },
  2776. { SVM_EXIT_READ_DR2, "read_dr2" },
  2777. { SVM_EXIT_READ_DR3, "read_dr3" },
  2778. { SVM_EXIT_WRITE_DR0, "write_dr0" },
  2779. { SVM_EXIT_WRITE_DR1, "write_dr1" },
  2780. { SVM_EXIT_WRITE_DR2, "write_dr2" },
  2781. { SVM_EXIT_WRITE_DR3, "write_dr3" },
  2782. { SVM_EXIT_WRITE_DR5, "write_dr5" },
  2783. { SVM_EXIT_WRITE_DR7, "write_dr7" },
  2784. { SVM_EXIT_EXCP_BASE + DB_VECTOR, "DB excp" },
  2785. { SVM_EXIT_EXCP_BASE + BP_VECTOR, "BP excp" },
  2786. { SVM_EXIT_EXCP_BASE + UD_VECTOR, "UD excp" },
  2787. { SVM_EXIT_EXCP_BASE + PF_VECTOR, "PF excp" },
  2788. { SVM_EXIT_EXCP_BASE + NM_VECTOR, "NM excp" },
  2789. { SVM_EXIT_EXCP_BASE + MC_VECTOR, "MC excp" },
  2790. { SVM_EXIT_INTR, "interrupt" },
  2791. { SVM_EXIT_NMI, "nmi" },
  2792. { SVM_EXIT_SMI, "smi" },
  2793. { SVM_EXIT_INIT, "init" },
  2794. { SVM_EXIT_VINTR, "vintr" },
  2795. { SVM_EXIT_CPUID, "cpuid" },
  2796. { SVM_EXIT_INVD, "invd" },
  2797. { SVM_EXIT_HLT, "hlt" },
  2798. { SVM_EXIT_INVLPG, "invlpg" },
  2799. { SVM_EXIT_INVLPGA, "invlpga" },
  2800. { SVM_EXIT_IOIO, "io" },
  2801. { SVM_EXIT_MSR, "msr" },
  2802. { SVM_EXIT_TASK_SWITCH, "task_switch" },
  2803. { SVM_EXIT_SHUTDOWN, "shutdown" },
  2804. { SVM_EXIT_VMRUN, "vmrun" },
  2805. { SVM_EXIT_VMMCALL, "hypercall" },
  2806. { SVM_EXIT_VMLOAD, "vmload" },
  2807. { SVM_EXIT_VMSAVE, "vmsave" },
  2808. { SVM_EXIT_STGI, "stgi" },
  2809. { SVM_EXIT_CLGI, "clgi" },
  2810. { SVM_EXIT_SKINIT, "skinit" },
  2811. { SVM_EXIT_WBINVD, "wbinvd" },
  2812. { SVM_EXIT_MONITOR, "monitor" },
  2813. { SVM_EXIT_MWAIT, "mwait" },
  2814. { SVM_EXIT_NPF, "npf" },
  2815. { -1, NULL }
  2816. };
  2817. static int svm_get_lpage_level(void)
  2818. {
  2819. return PT_PDPE_LEVEL;
  2820. }
  2821. static bool svm_rdtscp_supported(void)
  2822. {
  2823. return false;
  2824. }
  2825. static bool svm_has_wbinvd_exit(void)
  2826. {
  2827. return true;
  2828. }
  2829. static void svm_fpu_deactivate(struct kvm_vcpu *vcpu)
  2830. {
  2831. struct vcpu_svm *svm = to_svm(vcpu);
  2832. svm->vmcb->control.intercept_exceptions |= 1 << NM_VECTOR;
  2833. if (is_nested(svm))
  2834. svm->nested.hsave->control.intercept_exceptions |= 1 << NM_VECTOR;
  2835. update_cr0_intercept(svm);
  2836. }
  2837. static struct kvm_x86_ops svm_x86_ops = {
  2838. .cpu_has_kvm_support = has_svm,
  2839. .disabled_by_bios = is_disabled,
  2840. .hardware_setup = svm_hardware_setup,
  2841. .hardware_unsetup = svm_hardware_unsetup,
  2842. .check_processor_compatibility = svm_check_processor_compat,
  2843. .hardware_enable = svm_hardware_enable,
  2844. .hardware_disable = svm_hardware_disable,
  2845. .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
  2846. .vcpu_create = svm_create_vcpu,
  2847. .vcpu_free = svm_free_vcpu,
  2848. .vcpu_reset = svm_vcpu_reset,
  2849. .prepare_guest_switch = svm_prepare_guest_switch,
  2850. .vcpu_load = svm_vcpu_load,
  2851. .vcpu_put = svm_vcpu_put,
  2852. .set_guest_debug = svm_guest_debug,
  2853. .get_msr = svm_get_msr,
  2854. .set_msr = svm_set_msr,
  2855. .get_segment_base = svm_get_segment_base,
  2856. .get_segment = svm_get_segment,
  2857. .set_segment = svm_set_segment,
  2858. .get_cpl = svm_get_cpl,
  2859. .get_cs_db_l_bits = kvm_get_cs_db_l_bits,
  2860. .decache_cr0_guest_bits = svm_decache_cr0_guest_bits,
  2861. .decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
  2862. .set_cr0 = svm_set_cr0,
  2863. .set_cr3 = svm_set_cr3,
  2864. .set_cr4 = svm_set_cr4,
  2865. .set_efer = svm_set_efer,
  2866. .get_idt = svm_get_idt,
  2867. .set_idt = svm_set_idt,
  2868. .get_gdt = svm_get_gdt,
  2869. .set_gdt = svm_set_gdt,
  2870. .set_dr7 = svm_set_dr7,
  2871. .cache_reg = svm_cache_reg,
  2872. .get_rflags = svm_get_rflags,
  2873. .set_rflags = svm_set_rflags,
  2874. .fpu_activate = svm_fpu_activate,
  2875. .fpu_deactivate = svm_fpu_deactivate,
  2876. .tlb_flush = svm_flush_tlb,
  2877. .run = svm_vcpu_run,
  2878. .handle_exit = handle_exit,
  2879. .skip_emulated_instruction = skip_emulated_instruction,
  2880. .set_interrupt_shadow = svm_set_interrupt_shadow,
  2881. .get_interrupt_shadow = svm_get_interrupt_shadow,
  2882. .patch_hypercall = svm_patch_hypercall,
  2883. .set_irq = svm_set_irq,
  2884. .set_nmi = svm_inject_nmi,
  2885. .queue_exception = svm_queue_exception,
  2886. .interrupt_allowed = svm_interrupt_allowed,
  2887. .nmi_allowed = svm_nmi_allowed,
  2888. .get_nmi_mask = svm_get_nmi_mask,
  2889. .set_nmi_mask = svm_set_nmi_mask,
  2890. .enable_nmi_window = enable_nmi_window,
  2891. .enable_irq_window = enable_irq_window,
  2892. .update_cr8_intercept = update_cr8_intercept,
  2893. .set_tss_addr = svm_set_tss_addr,
  2894. .get_tdp_level = get_npt_level,
  2895. .get_mt_mask = svm_get_mt_mask,
  2896. .exit_reasons_str = svm_exit_reasons_str,
  2897. .get_lpage_level = svm_get_lpage_level,
  2898. .cpuid_update = svm_cpuid_update,
  2899. .rdtscp_supported = svm_rdtscp_supported,
  2900. .set_supported_cpuid = svm_set_supported_cpuid,
  2901. .has_wbinvd_exit = svm_has_wbinvd_exit,
  2902. };
  2903. static int __init svm_init(void)
  2904. {
  2905. return kvm_init(&svm_x86_ops, sizeof(struct vcpu_svm),
  2906. __alignof__(struct vcpu_svm), THIS_MODULE);
  2907. }
  2908. static void __exit svm_exit(void)
  2909. {
  2910. kvm_exit();
  2911. }
  2912. module_init(svm_init)
  2913. module_exit(svm_exit)