i8259.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595
  1. /*
  2. * 8259 interrupt controller emulation
  3. *
  4. * Copyright (c) 2003-2004 Fabrice Bellard
  5. * Copyright (c) 2007 Intel Corporation
  6. * Copyright 2009 Red Hat, Inc. and/or its affilates.
  7. *
  8. * Permission is hereby granted, free of charge, to any person obtaining a copy
  9. * of this software and associated documentation files (the "Software"), to deal
  10. * in the Software without restriction, including without limitation the rights
  11. * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  12. * copies of the Software, and to permit persons to whom the Software is
  13. * furnished to do so, subject to the following conditions:
  14. *
  15. * The above copyright notice and this permission notice shall be included in
  16. * all copies or substantial portions of the Software.
  17. *
  18. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  19. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  20. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  21. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  22. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  23. * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  24. * THE SOFTWARE.
  25. * Authors:
  26. * Yaozu (Eddie) Dong <Eddie.dong@intel.com>
  27. * Port from Qemu.
  28. */
  29. #include <linux/mm.h>
  30. #include <linux/slab.h>
  31. #include <linux/bitops.h>
  32. #include "irq.h"
  33. #include <linux/kvm_host.h>
  34. #include "trace.h"
  35. static void pic_irq_request(struct kvm *kvm, int level);
  36. static void pic_lock(struct kvm_pic *s)
  37. __acquires(&s->lock)
  38. {
  39. raw_spin_lock(&s->lock);
  40. }
  41. static void pic_unlock(struct kvm_pic *s)
  42. __releases(&s->lock)
  43. {
  44. bool wakeup = s->wakeup_needed;
  45. struct kvm_vcpu *vcpu, *found = NULL;
  46. int i;
  47. s->wakeup_needed = false;
  48. raw_spin_unlock(&s->lock);
  49. if (wakeup) {
  50. kvm_for_each_vcpu(i, vcpu, s->kvm) {
  51. if (kvm_apic_accept_pic_intr(vcpu)) {
  52. found = vcpu;
  53. break;
  54. }
  55. }
  56. if (!found)
  57. found = s->kvm->bsp_vcpu;
  58. kvm_vcpu_kick(found);
  59. }
  60. }
  61. static void pic_clear_isr(struct kvm_kpic_state *s, int irq)
  62. {
  63. s->isr &= ~(1 << irq);
  64. s->isr_ack |= (1 << irq);
  65. if (s != &s->pics_state->pics[0])
  66. irq += 8;
  67. /*
  68. * We are dropping lock while calling ack notifiers since ack
  69. * notifier callbacks for assigned devices call into PIC recursively.
  70. * Other interrupt may be delivered to PIC while lock is dropped but
  71. * it should be safe since PIC state is already updated at this stage.
  72. */
  73. pic_unlock(s->pics_state);
  74. kvm_notify_acked_irq(s->pics_state->kvm, SELECT_PIC(irq), irq);
  75. pic_lock(s->pics_state);
  76. }
  77. void kvm_pic_clear_isr_ack(struct kvm *kvm)
  78. {
  79. struct kvm_pic *s = pic_irqchip(kvm);
  80. pic_lock(s);
  81. s->pics[0].isr_ack = 0xff;
  82. s->pics[1].isr_ack = 0xff;
  83. pic_unlock(s);
  84. }
  85. /*
  86. * set irq level. If an edge is detected, then the IRR is set to 1
  87. */
  88. static inline int pic_set_irq1(struct kvm_kpic_state *s, int irq, int level)
  89. {
  90. int mask, ret = 1;
  91. mask = 1 << irq;
  92. if (s->elcr & mask) /* level triggered */
  93. if (level) {
  94. ret = !(s->irr & mask);
  95. s->irr |= mask;
  96. s->last_irr |= mask;
  97. } else {
  98. s->irr &= ~mask;
  99. s->last_irr &= ~mask;
  100. }
  101. else /* edge triggered */
  102. if (level) {
  103. if ((s->last_irr & mask) == 0) {
  104. ret = !(s->irr & mask);
  105. s->irr |= mask;
  106. }
  107. s->last_irr |= mask;
  108. } else
  109. s->last_irr &= ~mask;
  110. return (s->imr & mask) ? -1 : ret;
  111. }
  112. /*
  113. * return the highest priority found in mask (highest = smallest
  114. * number). Return 8 if no irq
  115. */
  116. static inline int get_priority(struct kvm_kpic_state *s, int mask)
  117. {
  118. int priority;
  119. if (mask == 0)
  120. return 8;
  121. priority = 0;
  122. while ((mask & (1 << ((priority + s->priority_add) & 7))) == 0)
  123. priority++;
  124. return priority;
  125. }
  126. /*
  127. * return the pic wanted interrupt. return -1 if none
  128. */
  129. static int pic_get_irq(struct kvm_kpic_state *s)
  130. {
  131. int mask, cur_priority, priority;
  132. mask = s->irr & ~s->imr;
  133. priority = get_priority(s, mask);
  134. if (priority == 8)
  135. return -1;
  136. /*
  137. * compute current priority. If special fully nested mode on the
  138. * master, the IRQ coming from the slave is not taken into account
  139. * for the priority computation.
  140. */
  141. mask = s->isr;
  142. if (s->special_fully_nested_mode && s == &s->pics_state->pics[0])
  143. mask &= ~(1 << 2);
  144. cur_priority = get_priority(s, mask);
  145. if (priority < cur_priority)
  146. /*
  147. * higher priority found: an irq should be generated
  148. */
  149. return (priority + s->priority_add) & 7;
  150. else
  151. return -1;
  152. }
  153. /*
  154. * raise irq to CPU if necessary. must be called every time the active
  155. * irq may change
  156. */
  157. static void pic_update_irq(struct kvm_pic *s)
  158. {
  159. int irq2, irq;
  160. irq2 = pic_get_irq(&s->pics[1]);
  161. if (irq2 >= 0) {
  162. /*
  163. * if irq request by slave pic, signal master PIC
  164. */
  165. pic_set_irq1(&s->pics[0], 2, 1);
  166. pic_set_irq1(&s->pics[0], 2, 0);
  167. }
  168. irq = pic_get_irq(&s->pics[0]);
  169. pic_irq_request(s->kvm, irq >= 0);
  170. }
  171. void kvm_pic_update_irq(struct kvm_pic *s)
  172. {
  173. pic_lock(s);
  174. pic_update_irq(s);
  175. pic_unlock(s);
  176. }
  177. int kvm_pic_set_irq(void *opaque, int irq, int level)
  178. {
  179. struct kvm_pic *s = opaque;
  180. int ret = -1;
  181. pic_lock(s);
  182. if (irq >= 0 && irq < PIC_NUM_PINS) {
  183. ret = pic_set_irq1(&s->pics[irq >> 3], irq & 7, level);
  184. pic_update_irq(s);
  185. trace_kvm_pic_set_irq(irq >> 3, irq & 7, s->pics[irq >> 3].elcr,
  186. s->pics[irq >> 3].imr, ret == 0);
  187. }
  188. pic_unlock(s);
  189. return ret;
  190. }
  191. /*
  192. * acknowledge interrupt 'irq'
  193. */
  194. static inline void pic_intack(struct kvm_kpic_state *s, int irq)
  195. {
  196. s->isr |= 1 << irq;
  197. /*
  198. * We don't clear a level sensitive interrupt here
  199. */
  200. if (!(s->elcr & (1 << irq)))
  201. s->irr &= ~(1 << irq);
  202. if (s->auto_eoi) {
  203. if (s->rotate_on_auto_eoi)
  204. s->priority_add = (irq + 1) & 7;
  205. pic_clear_isr(s, irq);
  206. }
  207. }
  208. int kvm_pic_read_irq(struct kvm *kvm)
  209. {
  210. int irq, irq2, intno;
  211. struct kvm_pic *s = pic_irqchip(kvm);
  212. pic_lock(s);
  213. irq = pic_get_irq(&s->pics[0]);
  214. if (irq >= 0) {
  215. pic_intack(&s->pics[0], irq);
  216. if (irq == 2) {
  217. irq2 = pic_get_irq(&s->pics[1]);
  218. if (irq2 >= 0)
  219. pic_intack(&s->pics[1], irq2);
  220. else
  221. /*
  222. * spurious IRQ on slave controller
  223. */
  224. irq2 = 7;
  225. intno = s->pics[1].irq_base + irq2;
  226. irq = irq2 + 8;
  227. } else
  228. intno = s->pics[0].irq_base + irq;
  229. } else {
  230. /*
  231. * spurious IRQ on host controller
  232. */
  233. irq = 7;
  234. intno = s->pics[0].irq_base + irq;
  235. }
  236. pic_update_irq(s);
  237. pic_unlock(s);
  238. return intno;
  239. }
  240. void kvm_pic_reset(struct kvm_kpic_state *s)
  241. {
  242. int irq;
  243. struct kvm_vcpu *vcpu0 = s->pics_state->kvm->bsp_vcpu;
  244. u8 irr = s->irr, isr = s->imr;
  245. s->last_irr = 0;
  246. s->irr = 0;
  247. s->imr = 0;
  248. s->isr = 0;
  249. s->isr_ack = 0xff;
  250. s->priority_add = 0;
  251. s->irq_base = 0;
  252. s->read_reg_select = 0;
  253. s->poll = 0;
  254. s->special_mask = 0;
  255. s->init_state = 0;
  256. s->auto_eoi = 0;
  257. s->rotate_on_auto_eoi = 0;
  258. s->special_fully_nested_mode = 0;
  259. s->init4 = 0;
  260. for (irq = 0; irq < PIC_NUM_PINS/2; irq++) {
  261. if (vcpu0 && kvm_apic_accept_pic_intr(vcpu0))
  262. if (irr & (1 << irq) || isr & (1 << irq)) {
  263. pic_clear_isr(s, irq);
  264. }
  265. }
  266. }
  267. static void pic_ioport_write(void *opaque, u32 addr, u32 val)
  268. {
  269. struct kvm_kpic_state *s = opaque;
  270. int priority, cmd, irq;
  271. addr &= 1;
  272. if (addr == 0) {
  273. if (val & 0x10) {
  274. kvm_pic_reset(s); /* init */
  275. /*
  276. * deassert a pending interrupt
  277. */
  278. pic_irq_request(s->pics_state->kvm, 0);
  279. s->init_state = 1;
  280. s->init4 = val & 1;
  281. if (val & 0x02)
  282. printk(KERN_ERR "single mode not supported");
  283. if (val & 0x08)
  284. printk(KERN_ERR
  285. "level sensitive irq not supported");
  286. } else if (val & 0x08) {
  287. if (val & 0x04)
  288. s->poll = 1;
  289. if (val & 0x02)
  290. s->read_reg_select = val & 1;
  291. if (val & 0x40)
  292. s->special_mask = (val >> 5) & 1;
  293. } else {
  294. cmd = val >> 5;
  295. switch (cmd) {
  296. case 0:
  297. case 4:
  298. s->rotate_on_auto_eoi = cmd >> 2;
  299. break;
  300. case 1: /* end of interrupt */
  301. case 5:
  302. priority = get_priority(s, s->isr);
  303. if (priority != 8) {
  304. irq = (priority + s->priority_add) & 7;
  305. if (cmd == 5)
  306. s->priority_add = (irq + 1) & 7;
  307. pic_clear_isr(s, irq);
  308. pic_update_irq(s->pics_state);
  309. }
  310. break;
  311. case 3:
  312. irq = val & 7;
  313. pic_clear_isr(s, irq);
  314. pic_update_irq(s->pics_state);
  315. break;
  316. case 6:
  317. s->priority_add = (val + 1) & 7;
  318. pic_update_irq(s->pics_state);
  319. break;
  320. case 7:
  321. irq = val & 7;
  322. s->priority_add = (irq + 1) & 7;
  323. pic_clear_isr(s, irq);
  324. pic_update_irq(s->pics_state);
  325. break;
  326. default:
  327. break; /* no operation */
  328. }
  329. }
  330. } else
  331. switch (s->init_state) {
  332. case 0: { /* normal mode */
  333. u8 imr_diff = s->imr ^ val,
  334. off = (s == &s->pics_state->pics[0]) ? 0 : 8;
  335. s->imr = val;
  336. for (irq = 0; irq < PIC_NUM_PINS/2; irq++)
  337. if (imr_diff & (1 << irq))
  338. kvm_fire_mask_notifiers(
  339. s->pics_state->kvm,
  340. SELECT_PIC(irq + off),
  341. irq + off,
  342. !!(s->imr & (1 << irq)));
  343. pic_update_irq(s->pics_state);
  344. break;
  345. }
  346. case 1:
  347. s->irq_base = val & 0xf8;
  348. s->init_state = 2;
  349. break;
  350. case 2:
  351. if (s->init4)
  352. s->init_state = 3;
  353. else
  354. s->init_state = 0;
  355. break;
  356. case 3:
  357. s->special_fully_nested_mode = (val >> 4) & 1;
  358. s->auto_eoi = (val >> 1) & 1;
  359. s->init_state = 0;
  360. break;
  361. }
  362. }
  363. static u32 pic_poll_read(struct kvm_kpic_state *s, u32 addr1)
  364. {
  365. int ret;
  366. ret = pic_get_irq(s);
  367. if (ret >= 0) {
  368. if (addr1 >> 7) {
  369. s->pics_state->pics[0].isr &= ~(1 << 2);
  370. s->pics_state->pics[0].irr &= ~(1 << 2);
  371. }
  372. s->irr &= ~(1 << ret);
  373. pic_clear_isr(s, ret);
  374. if (addr1 >> 7 || ret != 2)
  375. pic_update_irq(s->pics_state);
  376. } else {
  377. ret = 0x07;
  378. pic_update_irq(s->pics_state);
  379. }
  380. return ret;
  381. }
  382. static u32 pic_ioport_read(void *opaque, u32 addr1)
  383. {
  384. struct kvm_kpic_state *s = opaque;
  385. unsigned int addr;
  386. int ret;
  387. addr = addr1;
  388. addr &= 1;
  389. if (s->poll) {
  390. ret = pic_poll_read(s, addr1);
  391. s->poll = 0;
  392. } else
  393. if (addr == 0)
  394. if (s->read_reg_select)
  395. ret = s->isr;
  396. else
  397. ret = s->irr;
  398. else
  399. ret = s->imr;
  400. return ret;
  401. }
  402. static void elcr_ioport_write(void *opaque, u32 addr, u32 val)
  403. {
  404. struct kvm_kpic_state *s = opaque;
  405. s->elcr = val & s->elcr_mask;
  406. }
  407. static u32 elcr_ioport_read(void *opaque, u32 addr1)
  408. {
  409. struct kvm_kpic_state *s = opaque;
  410. return s->elcr;
  411. }
  412. static int picdev_in_range(gpa_t addr)
  413. {
  414. switch (addr) {
  415. case 0x20:
  416. case 0x21:
  417. case 0xa0:
  418. case 0xa1:
  419. case 0x4d0:
  420. case 0x4d1:
  421. return 1;
  422. default:
  423. return 0;
  424. }
  425. }
  426. static inline struct kvm_pic *to_pic(struct kvm_io_device *dev)
  427. {
  428. return container_of(dev, struct kvm_pic, dev);
  429. }
  430. static int picdev_write(struct kvm_io_device *this,
  431. gpa_t addr, int len, const void *val)
  432. {
  433. struct kvm_pic *s = to_pic(this);
  434. unsigned char data = *(unsigned char *)val;
  435. if (!picdev_in_range(addr))
  436. return -EOPNOTSUPP;
  437. if (len != 1) {
  438. if (printk_ratelimit())
  439. printk(KERN_ERR "PIC: non byte write\n");
  440. return 0;
  441. }
  442. pic_lock(s);
  443. switch (addr) {
  444. case 0x20:
  445. case 0x21:
  446. case 0xa0:
  447. case 0xa1:
  448. pic_ioport_write(&s->pics[addr >> 7], addr, data);
  449. break;
  450. case 0x4d0:
  451. case 0x4d1:
  452. elcr_ioport_write(&s->pics[addr & 1], addr, data);
  453. break;
  454. }
  455. pic_unlock(s);
  456. return 0;
  457. }
  458. static int picdev_read(struct kvm_io_device *this,
  459. gpa_t addr, int len, void *val)
  460. {
  461. struct kvm_pic *s = to_pic(this);
  462. unsigned char data = 0;
  463. if (!picdev_in_range(addr))
  464. return -EOPNOTSUPP;
  465. if (len != 1) {
  466. if (printk_ratelimit())
  467. printk(KERN_ERR "PIC: non byte read\n");
  468. return 0;
  469. }
  470. pic_lock(s);
  471. switch (addr) {
  472. case 0x20:
  473. case 0x21:
  474. case 0xa0:
  475. case 0xa1:
  476. data = pic_ioport_read(&s->pics[addr >> 7], addr);
  477. break;
  478. case 0x4d0:
  479. case 0x4d1:
  480. data = elcr_ioport_read(&s->pics[addr & 1], addr);
  481. break;
  482. }
  483. *(unsigned char *)val = data;
  484. pic_unlock(s);
  485. return 0;
  486. }
  487. /*
  488. * callback when PIC0 irq status changed
  489. */
  490. static void pic_irq_request(struct kvm *kvm, int level)
  491. {
  492. struct kvm_vcpu *vcpu = kvm->bsp_vcpu;
  493. struct kvm_pic *s = pic_irqchip(kvm);
  494. int irq = pic_get_irq(&s->pics[0]);
  495. s->output = level;
  496. if (vcpu && level && (s->pics[0].isr_ack & (1 << irq))) {
  497. s->pics[0].isr_ack &= ~(1 << irq);
  498. s->wakeup_needed = true;
  499. }
  500. }
  501. static const struct kvm_io_device_ops picdev_ops = {
  502. .read = picdev_read,
  503. .write = picdev_write,
  504. };
  505. struct kvm_pic *kvm_create_pic(struct kvm *kvm)
  506. {
  507. struct kvm_pic *s;
  508. int ret;
  509. s = kzalloc(sizeof(struct kvm_pic), GFP_KERNEL);
  510. if (!s)
  511. return NULL;
  512. raw_spin_lock_init(&s->lock);
  513. s->kvm = kvm;
  514. s->pics[0].elcr_mask = 0xf8;
  515. s->pics[1].elcr_mask = 0xde;
  516. s->pics[0].pics_state = s;
  517. s->pics[1].pics_state = s;
  518. /*
  519. * Initialize PIO device
  520. */
  521. kvm_iodevice_init(&s->dev, &picdev_ops);
  522. mutex_lock(&kvm->slots_lock);
  523. ret = kvm_io_bus_register_dev(kvm, KVM_PIO_BUS, &s->dev);
  524. mutex_unlock(&kvm->slots_lock);
  525. if (ret < 0) {
  526. kfree(s);
  527. return NULL;
  528. }
  529. return s;
  530. }
  531. void kvm_destroy_pic(struct kvm *kvm)
  532. {
  533. struct kvm_pic *vpic = kvm->arch.vpic;
  534. if (vpic) {
  535. kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, &vpic->dev);
  536. kvm->arch.vpic = NULL;
  537. kfree(vpic);
  538. }
  539. }