smp_64.c 35 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491
  1. /* smp.c: Sparc64 SMP support.
  2. *
  3. * Copyright (C) 1997, 2007, 2008 David S. Miller (davem@davemloft.net)
  4. */
  5. #include <linux/module.h>
  6. #include <linux/kernel.h>
  7. #include <linux/sched.h>
  8. #include <linux/mm.h>
  9. #include <linux/pagemap.h>
  10. #include <linux/threads.h>
  11. #include <linux/smp.h>
  12. #include <linux/interrupt.h>
  13. #include <linux/kernel_stat.h>
  14. #include <linux/delay.h>
  15. #include <linux/init.h>
  16. #include <linux/spinlock.h>
  17. #include <linux/fs.h>
  18. #include <linux/seq_file.h>
  19. #include <linux/cache.h>
  20. #include <linux/jiffies.h>
  21. #include <linux/profile.h>
  22. #include <linux/bootmem.h>
  23. #include <linux/vmalloc.h>
  24. #include <linux/ftrace.h>
  25. #include <linux/cpu.h>
  26. #include <linux/slab.h>
  27. #include <asm/head.h>
  28. #include <asm/ptrace.h>
  29. #include <asm/atomic.h>
  30. #include <asm/tlbflush.h>
  31. #include <asm/mmu_context.h>
  32. #include <asm/cpudata.h>
  33. #include <asm/hvtramp.h>
  34. #include <asm/io.h>
  35. #include <asm/timer.h>
  36. #include <asm/irq.h>
  37. #include <asm/irq_regs.h>
  38. #include <asm/page.h>
  39. #include <asm/pgtable.h>
  40. #include <asm/oplib.h>
  41. #include <asm/uaccess.h>
  42. #include <asm/starfire.h>
  43. #include <asm/tlb.h>
  44. #include <asm/sections.h>
  45. #include <asm/prom.h>
  46. #include <asm/mdesc.h>
  47. #include <asm/ldc.h>
  48. #include <asm/hypervisor.h>
  49. #include "cpumap.h"
  50. int sparc64_multi_core __read_mostly;
  51. DEFINE_PER_CPU(cpumask_t, cpu_sibling_map) = CPU_MASK_NONE;
  52. cpumask_t cpu_core_map[NR_CPUS] __read_mostly =
  53. { [0 ... NR_CPUS-1] = CPU_MASK_NONE };
  54. EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
  55. EXPORT_SYMBOL(cpu_core_map);
  56. static cpumask_t smp_commenced_mask;
  57. void smp_info(struct seq_file *m)
  58. {
  59. int i;
  60. seq_printf(m, "State:\n");
  61. for_each_online_cpu(i)
  62. seq_printf(m, "CPU%d:\t\tonline\n", i);
  63. }
  64. void smp_bogo(struct seq_file *m)
  65. {
  66. int i;
  67. for_each_online_cpu(i)
  68. seq_printf(m,
  69. "Cpu%dClkTck\t: %016lx\n",
  70. i, cpu_data(i).clock_tick);
  71. }
  72. extern void setup_sparc64_timer(void);
  73. static volatile unsigned long callin_flag = 0;
  74. void __cpuinit smp_callin(void)
  75. {
  76. int cpuid = hard_smp_processor_id();
  77. __local_per_cpu_offset = __per_cpu_offset(cpuid);
  78. if (tlb_type == hypervisor)
  79. sun4v_ktsb_register();
  80. __flush_tlb_all();
  81. setup_sparc64_timer();
  82. if (cheetah_pcache_forced_on)
  83. cheetah_enable_pcache();
  84. local_irq_enable();
  85. callin_flag = 1;
  86. __asm__ __volatile__("membar #Sync\n\t"
  87. "flush %%g6" : : : "memory");
  88. /* Clear this or we will die instantly when we
  89. * schedule back to this idler...
  90. */
  91. current_thread_info()->new_child = 0;
  92. /* Attach to the address space of init_task. */
  93. atomic_inc(&init_mm.mm_count);
  94. current->active_mm = &init_mm;
  95. /* inform the notifiers about the new cpu */
  96. notify_cpu_starting(cpuid);
  97. while (!cpu_isset(cpuid, smp_commenced_mask))
  98. rmb();
  99. ipi_call_lock_irq();
  100. cpu_set(cpuid, cpu_online_map);
  101. ipi_call_unlock_irq();
  102. /* idle thread is expected to have preempt disabled */
  103. preempt_disable();
  104. }
  105. void cpu_panic(void)
  106. {
  107. printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
  108. panic("SMP bolixed\n");
  109. }
  110. /* This tick register synchronization scheme is taken entirely from
  111. * the ia64 port, see arch/ia64/kernel/smpboot.c for details and credit.
  112. *
  113. * The only change I've made is to rework it so that the master
  114. * initiates the synchonization instead of the slave. -DaveM
  115. */
  116. #define MASTER 0
  117. #define SLAVE (SMP_CACHE_BYTES/sizeof(unsigned long))
  118. #define NUM_ROUNDS 64 /* magic value */
  119. #define NUM_ITERS 5 /* likewise */
  120. static DEFINE_SPINLOCK(itc_sync_lock);
  121. static unsigned long go[SLAVE + 1];
  122. #define DEBUG_TICK_SYNC 0
  123. static inline long get_delta (long *rt, long *master)
  124. {
  125. unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
  126. unsigned long tcenter, t0, t1, tm;
  127. unsigned long i;
  128. for (i = 0; i < NUM_ITERS; i++) {
  129. t0 = tick_ops->get_tick();
  130. go[MASTER] = 1;
  131. membar_safe("#StoreLoad");
  132. while (!(tm = go[SLAVE]))
  133. rmb();
  134. go[SLAVE] = 0;
  135. wmb();
  136. t1 = tick_ops->get_tick();
  137. if (t1 - t0 < best_t1 - best_t0)
  138. best_t0 = t0, best_t1 = t1, best_tm = tm;
  139. }
  140. *rt = best_t1 - best_t0;
  141. *master = best_tm - best_t0;
  142. /* average best_t0 and best_t1 without overflow: */
  143. tcenter = (best_t0/2 + best_t1/2);
  144. if (best_t0 % 2 + best_t1 % 2 == 2)
  145. tcenter++;
  146. return tcenter - best_tm;
  147. }
  148. void smp_synchronize_tick_client(void)
  149. {
  150. long i, delta, adj, adjust_latency = 0, done = 0;
  151. unsigned long flags, rt, master_time_stamp, bound;
  152. #if DEBUG_TICK_SYNC
  153. struct {
  154. long rt; /* roundtrip time */
  155. long master; /* master's timestamp */
  156. long diff; /* difference between midpoint and master's timestamp */
  157. long lat; /* estimate of itc adjustment latency */
  158. } t[NUM_ROUNDS];
  159. #endif
  160. go[MASTER] = 1;
  161. while (go[MASTER])
  162. rmb();
  163. local_irq_save(flags);
  164. {
  165. for (i = 0; i < NUM_ROUNDS; i++) {
  166. delta = get_delta(&rt, &master_time_stamp);
  167. if (delta == 0) {
  168. done = 1; /* let's lock on to this... */
  169. bound = rt;
  170. }
  171. if (!done) {
  172. if (i > 0) {
  173. adjust_latency += -delta;
  174. adj = -delta + adjust_latency/4;
  175. } else
  176. adj = -delta;
  177. tick_ops->add_tick(adj);
  178. }
  179. #if DEBUG_TICK_SYNC
  180. t[i].rt = rt;
  181. t[i].master = master_time_stamp;
  182. t[i].diff = delta;
  183. t[i].lat = adjust_latency/4;
  184. #endif
  185. }
  186. }
  187. local_irq_restore(flags);
  188. #if DEBUG_TICK_SYNC
  189. for (i = 0; i < NUM_ROUNDS; i++)
  190. printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
  191. t[i].rt, t[i].master, t[i].diff, t[i].lat);
  192. #endif
  193. printk(KERN_INFO "CPU %d: synchronized TICK with master CPU "
  194. "(last diff %ld cycles, maxerr %lu cycles)\n",
  195. smp_processor_id(), delta, rt);
  196. }
  197. static void smp_start_sync_tick_client(int cpu);
  198. static void smp_synchronize_one_tick(int cpu)
  199. {
  200. unsigned long flags, i;
  201. go[MASTER] = 0;
  202. smp_start_sync_tick_client(cpu);
  203. /* wait for client to be ready */
  204. while (!go[MASTER])
  205. rmb();
  206. /* now let the client proceed into his loop */
  207. go[MASTER] = 0;
  208. membar_safe("#StoreLoad");
  209. spin_lock_irqsave(&itc_sync_lock, flags);
  210. {
  211. for (i = 0; i < NUM_ROUNDS*NUM_ITERS; i++) {
  212. while (!go[MASTER])
  213. rmb();
  214. go[MASTER] = 0;
  215. wmb();
  216. go[SLAVE] = tick_ops->get_tick();
  217. membar_safe("#StoreLoad");
  218. }
  219. }
  220. spin_unlock_irqrestore(&itc_sync_lock, flags);
  221. }
  222. #if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
  223. /* XXX Put this in some common place. XXX */
  224. static unsigned long kimage_addr_to_ra(void *p)
  225. {
  226. unsigned long val = (unsigned long) p;
  227. return kern_base + (val - KERNBASE);
  228. }
  229. static void __cpuinit ldom_startcpu_cpuid(unsigned int cpu, unsigned long thread_reg, void **descrp)
  230. {
  231. extern unsigned long sparc64_ttable_tl0;
  232. extern unsigned long kern_locked_tte_data;
  233. struct hvtramp_descr *hdesc;
  234. unsigned long trampoline_ra;
  235. struct trap_per_cpu *tb;
  236. u64 tte_vaddr, tte_data;
  237. unsigned long hv_err;
  238. int i;
  239. hdesc = kzalloc(sizeof(*hdesc) +
  240. (sizeof(struct hvtramp_mapping) *
  241. num_kernel_image_mappings - 1),
  242. GFP_KERNEL);
  243. if (!hdesc) {
  244. printk(KERN_ERR "ldom_startcpu_cpuid: Cannot allocate "
  245. "hvtramp_descr.\n");
  246. return;
  247. }
  248. *descrp = hdesc;
  249. hdesc->cpu = cpu;
  250. hdesc->num_mappings = num_kernel_image_mappings;
  251. tb = &trap_block[cpu];
  252. hdesc->fault_info_va = (unsigned long) &tb->fault_info;
  253. hdesc->fault_info_pa = kimage_addr_to_ra(&tb->fault_info);
  254. hdesc->thread_reg = thread_reg;
  255. tte_vaddr = (unsigned long) KERNBASE;
  256. tte_data = kern_locked_tte_data;
  257. for (i = 0; i < hdesc->num_mappings; i++) {
  258. hdesc->maps[i].vaddr = tte_vaddr;
  259. hdesc->maps[i].tte = tte_data;
  260. tte_vaddr += 0x400000;
  261. tte_data += 0x400000;
  262. }
  263. trampoline_ra = kimage_addr_to_ra(hv_cpu_startup);
  264. hv_err = sun4v_cpu_start(cpu, trampoline_ra,
  265. kimage_addr_to_ra(&sparc64_ttable_tl0),
  266. __pa(hdesc));
  267. if (hv_err)
  268. printk(KERN_ERR "ldom_startcpu_cpuid: sun4v_cpu_start() "
  269. "gives error %lu\n", hv_err);
  270. }
  271. #endif
  272. extern unsigned long sparc64_cpu_startup;
  273. /* The OBP cpu startup callback truncates the 3rd arg cookie to
  274. * 32-bits (I think) so to be safe we have it read the pointer
  275. * contained here so we work on >4GB machines. -DaveM
  276. */
  277. static struct thread_info *cpu_new_thread = NULL;
  278. static int __cpuinit smp_boot_one_cpu(unsigned int cpu)
  279. {
  280. unsigned long entry =
  281. (unsigned long)(&sparc64_cpu_startup);
  282. unsigned long cookie =
  283. (unsigned long)(&cpu_new_thread);
  284. struct task_struct *p;
  285. void *descr = NULL;
  286. int timeout, ret;
  287. p = fork_idle(cpu);
  288. if (IS_ERR(p))
  289. return PTR_ERR(p);
  290. callin_flag = 0;
  291. cpu_new_thread = task_thread_info(p);
  292. if (tlb_type == hypervisor) {
  293. #if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
  294. if (ldom_domaining_enabled)
  295. ldom_startcpu_cpuid(cpu,
  296. (unsigned long) cpu_new_thread,
  297. &descr);
  298. else
  299. #endif
  300. prom_startcpu_cpuid(cpu, entry, cookie);
  301. } else {
  302. struct device_node *dp = of_find_node_by_cpuid(cpu);
  303. prom_startcpu(dp->phandle, entry, cookie);
  304. }
  305. for (timeout = 0; timeout < 50000; timeout++) {
  306. if (callin_flag)
  307. break;
  308. udelay(100);
  309. }
  310. if (callin_flag) {
  311. ret = 0;
  312. } else {
  313. printk("Processor %d is stuck.\n", cpu);
  314. ret = -ENODEV;
  315. }
  316. cpu_new_thread = NULL;
  317. kfree(descr);
  318. return ret;
  319. }
  320. static void spitfire_xcall_helper(u64 data0, u64 data1, u64 data2, u64 pstate, unsigned long cpu)
  321. {
  322. u64 result, target;
  323. int stuck, tmp;
  324. if (this_is_starfire) {
  325. /* map to real upaid */
  326. cpu = (((cpu & 0x3c) << 1) |
  327. ((cpu & 0x40) >> 4) |
  328. (cpu & 0x3));
  329. }
  330. target = (cpu << 14) | 0x70;
  331. again:
  332. /* Ok, this is the real Spitfire Errata #54.
  333. * One must read back from a UDB internal register
  334. * after writes to the UDB interrupt dispatch, but
  335. * before the membar Sync for that write.
  336. * So we use the high UDB control register (ASI 0x7f,
  337. * ADDR 0x20) for the dummy read. -DaveM
  338. */
  339. tmp = 0x40;
  340. __asm__ __volatile__(
  341. "wrpr %1, %2, %%pstate\n\t"
  342. "stxa %4, [%0] %3\n\t"
  343. "stxa %5, [%0+%8] %3\n\t"
  344. "add %0, %8, %0\n\t"
  345. "stxa %6, [%0+%8] %3\n\t"
  346. "membar #Sync\n\t"
  347. "stxa %%g0, [%7] %3\n\t"
  348. "membar #Sync\n\t"
  349. "mov 0x20, %%g1\n\t"
  350. "ldxa [%%g1] 0x7f, %%g0\n\t"
  351. "membar #Sync"
  352. : "=r" (tmp)
  353. : "r" (pstate), "i" (PSTATE_IE), "i" (ASI_INTR_W),
  354. "r" (data0), "r" (data1), "r" (data2), "r" (target),
  355. "r" (0x10), "0" (tmp)
  356. : "g1");
  357. /* NOTE: PSTATE_IE is still clear. */
  358. stuck = 100000;
  359. do {
  360. __asm__ __volatile__("ldxa [%%g0] %1, %0"
  361. : "=r" (result)
  362. : "i" (ASI_INTR_DISPATCH_STAT));
  363. if (result == 0) {
  364. __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
  365. : : "r" (pstate));
  366. return;
  367. }
  368. stuck -= 1;
  369. if (stuck == 0)
  370. break;
  371. } while (result & 0x1);
  372. __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
  373. : : "r" (pstate));
  374. if (stuck == 0) {
  375. printk("CPU[%d]: mondo stuckage result[%016llx]\n",
  376. smp_processor_id(), result);
  377. } else {
  378. udelay(2);
  379. goto again;
  380. }
  381. }
  382. static void spitfire_xcall_deliver(struct trap_per_cpu *tb, int cnt)
  383. {
  384. u64 *mondo, data0, data1, data2;
  385. u16 *cpu_list;
  386. u64 pstate;
  387. int i;
  388. __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
  389. cpu_list = __va(tb->cpu_list_pa);
  390. mondo = __va(tb->cpu_mondo_block_pa);
  391. data0 = mondo[0];
  392. data1 = mondo[1];
  393. data2 = mondo[2];
  394. for (i = 0; i < cnt; i++)
  395. spitfire_xcall_helper(data0, data1, data2, pstate, cpu_list[i]);
  396. }
  397. /* Cheetah now allows to send the whole 64-bytes of data in the interrupt
  398. * packet, but we have no use for that. However we do take advantage of
  399. * the new pipelining feature (ie. dispatch to multiple cpus simultaneously).
  400. */
  401. static void cheetah_xcall_deliver(struct trap_per_cpu *tb, int cnt)
  402. {
  403. int nack_busy_id, is_jbus, need_more;
  404. u64 *mondo, pstate, ver, busy_mask;
  405. u16 *cpu_list;
  406. cpu_list = __va(tb->cpu_list_pa);
  407. mondo = __va(tb->cpu_mondo_block_pa);
  408. /* Unfortunately, someone at Sun had the brilliant idea to make the
  409. * busy/nack fields hard-coded by ITID number for this Ultra-III
  410. * derivative processor.
  411. */
  412. __asm__ ("rdpr %%ver, %0" : "=r" (ver));
  413. is_jbus = ((ver >> 32) == __JALAPENO_ID ||
  414. (ver >> 32) == __SERRANO_ID);
  415. __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
  416. retry:
  417. need_more = 0;
  418. __asm__ __volatile__("wrpr %0, %1, %%pstate\n\t"
  419. : : "r" (pstate), "i" (PSTATE_IE));
  420. /* Setup the dispatch data registers. */
  421. __asm__ __volatile__("stxa %0, [%3] %6\n\t"
  422. "stxa %1, [%4] %6\n\t"
  423. "stxa %2, [%5] %6\n\t"
  424. "membar #Sync\n\t"
  425. : /* no outputs */
  426. : "r" (mondo[0]), "r" (mondo[1]), "r" (mondo[2]),
  427. "r" (0x40), "r" (0x50), "r" (0x60),
  428. "i" (ASI_INTR_W));
  429. nack_busy_id = 0;
  430. busy_mask = 0;
  431. {
  432. int i;
  433. for (i = 0; i < cnt; i++) {
  434. u64 target, nr;
  435. nr = cpu_list[i];
  436. if (nr == 0xffff)
  437. continue;
  438. target = (nr << 14) | 0x70;
  439. if (is_jbus) {
  440. busy_mask |= (0x1UL << (nr * 2));
  441. } else {
  442. target |= (nack_busy_id << 24);
  443. busy_mask |= (0x1UL <<
  444. (nack_busy_id * 2));
  445. }
  446. __asm__ __volatile__(
  447. "stxa %%g0, [%0] %1\n\t"
  448. "membar #Sync\n\t"
  449. : /* no outputs */
  450. : "r" (target), "i" (ASI_INTR_W));
  451. nack_busy_id++;
  452. if (nack_busy_id == 32) {
  453. need_more = 1;
  454. break;
  455. }
  456. }
  457. }
  458. /* Now, poll for completion. */
  459. {
  460. u64 dispatch_stat, nack_mask;
  461. long stuck;
  462. stuck = 100000 * nack_busy_id;
  463. nack_mask = busy_mask << 1;
  464. do {
  465. __asm__ __volatile__("ldxa [%%g0] %1, %0"
  466. : "=r" (dispatch_stat)
  467. : "i" (ASI_INTR_DISPATCH_STAT));
  468. if (!(dispatch_stat & (busy_mask | nack_mask))) {
  469. __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
  470. : : "r" (pstate));
  471. if (unlikely(need_more)) {
  472. int i, this_cnt = 0;
  473. for (i = 0; i < cnt; i++) {
  474. if (cpu_list[i] == 0xffff)
  475. continue;
  476. cpu_list[i] = 0xffff;
  477. this_cnt++;
  478. if (this_cnt == 32)
  479. break;
  480. }
  481. goto retry;
  482. }
  483. return;
  484. }
  485. if (!--stuck)
  486. break;
  487. } while (dispatch_stat & busy_mask);
  488. __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
  489. : : "r" (pstate));
  490. if (dispatch_stat & busy_mask) {
  491. /* Busy bits will not clear, continue instead
  492. * of freezing up on this cpu.
  493. */
  494. printk("CPU[%d]: mondo stuckage result[%016llx]\n",
  495. smp_processor_id(), dispatch_stat);
  496. } else {
  497. int i, this_busy_nack = 0;
  498. /* Delay some random time with interrupts enabled
  499. * to prevent deadlock.
  500. */
  501. udelay(2 * nack_busy_id);
  502. /* Clear out the mask bits for cpus which did not
  503. * NACK us.
  504. */
  505. for (i = 0; i < cnt; i++) {
  506. u64 check_mask, nr;
  507. nr = cpu_list[i];
  508. if (nr == 0xffff)
  509. continue;
  510. if (is_jbus)
  511. check_mask = (0x2UL << (2*nr));
  512. else
  513. check_mask = (0x2UL <<
  514. this_busy_nack);
  515. if ((dispatch_stat & check_mask) == 0)
  516. cpu_list[i] = 0xffff;
  517. this_busy_nack += 2;
  518. if (this_busy_nack == 64)
  519. break;
  520. }
  521. goto retry;
  522. }
  523. }
  524. }
  525. /* Multi-cpu list version. */
  526. static void hypervisor_xcall_deliver(struct trap_per_cpu *tb, int cnt)
  527. {
  528. int retries, this_cpu, prev_sent, i, saw_cpu_error;
  529. unsigned long status;
  530. u16 *cpu_list;
  531. this_cpu = smp_processor_id();
  532. cpu_list = __va(tb->cpu_list_pa);
  533. saw_cpu_error = 0;
  534. retries = 0;
  535. prev_sent = 0;
  536. do {
  537. int forward_progress, n_sent;
  538. status = sun4v_cpu_mondo_send(cnt,
  539. tb->cpu_list_pa,
  540. tb->cpu_mondo_block_pa);
  541. /* HV_EOK means all cpus received the xcall, we're done. */
  542. if (likely(status == HV_EOK))
  543. break;
  544. /* First, see if we made any forward progress.
  545. *
  546. * The hypervisor indicates successful sends by setting
  547. * cpu list entries to the value 0xffff.
  548. */
  549. n_sent = 0;
  550. for (i = 0; i < cnt; i++) {
  551. if (likely(cpu_list[i] == 0xffff))
  552. n_sent++;
  553. }
  554. forward_progress = 0;
  555. if (n_sent > prev_sent)
  556. forward_progress = 1;
  557. prev_sent = n_sent;
  558. /* If we get a HV_ECPUERROR, then one or more of the cpus
  559. * in the list are in error state. Use the cpu_state()
  560. * hypervisor call to find out which cpus are in error state.
  561. */
  562. if (unlikely(status == HV_ECPUERROR)) {
  563. for (i = 0; i < cnt; i++) {
  564. long err;
  565. u16 cpu;
  566. cpu = cpu_list[i];
  567. if (cpu == 0xffff)
  568. continue;
  569. err = sun4v_cpu_state(cpu);
  570. if (err == HV_CPU_STATE_ERROR) {
  571. saw_cpu_error = (cpu + 1);
  572. cpu_list[i] = 0xffff;
  573. }
  574. }
  575. } else if (unlikely(status != HV_EWOULDBLOCK))
  576. goto fatal_mondo_error;
  577. /* Don't bother rewriting the CPU list, just leave the
  578. * 0xffff and non-0xffff entries in there and the
  579. * hypervisor will do the right thing.
  580. *
  581. * Only advance timeout state if we didn't make any
  582. * forward progress.
  583. */
  584. if (unlikely(!forward_progress)) {
  585. if (unlikely(++retries > 10000))
  586. goto fatal_mondo_timeout;
  587. /* Delay a little bit to let other cpus catch up
  588. * on their cpu mondo queue work.
  589. */
  590. udelay(2 * cnt);
  591. }
  592. } while (1);
  593. if (unlikely(saw_cpu_error))
  594. goto fatal_mondo_cpu_error;
  595. return;
  596. fatal_mondo_cpu_error:
  597. printk(KERN_CRIT "CPU[%d]: SUN4V mondo cpu error, some target cpus "
  598. "(including %d) were in error state\n",
  599. this_cpu, saw_cpu_error - 1);
  600. return;
  601. fatal_mondo_timeout:
  602. printk(KERN_CRIT "CPU[%d]: SUN4V mondo timeout, no forward "
  603. " progress after %d retries.\n",
  604. this_cpu, retries);
  605. goto dump_cpu_list_and_out;
  606. fatal_mondo_error:
  607. printk(KERN_CRIT "CPU[%d]: Unexpected SUN4V mondo error %lu\n",
  608. this_cpu, status);
  609. printk(KERN_CRIT "CPU[%d]: Args were cnt(%d) cpulist_pa(%lx) "
  610. "mondo_block_pa(%lx)\n",
  611. this_cpu, cnt, tb->cpu_list_pa, tb->cpu_mondo_block_pa);
  612. dump_cpu_list_and_out:
  613. printk(KERN_CRIT "CPU[%d]: CPU list [ ", this_cpu);
  614. for (i = 0; i < cnt; i++)
  615. printk("%u ", cpu_list[i]);
  616. printk("]\n");
  617. }
  618. static void (*xcall_deliver_impl)(struct trap_per_cpu *, int);
  619. static void xcall_deliver(u64 data0, u64 data1, u64 data2, const cpumask_t *mask)
  620. {
  621. struct trap_per_cpu *tb;
  622. int this_cpu, i, cnt;
  623. unsigned long flags;
  624. u16 *cpu_list;
  625. u64 *mondo;
  626. /* We have to do this whole thing with interrupts fully disabled.
  627. * Otherwise if we send an xcall from interrupt context it will
  628. * corrupt both our mondo block and cpu list state.
  629. *
  630. * One consequence of this is that we cannot use timeout mechanisms
  631. * that depend upon interrupts being delivered locally. So, for
  632. * example, we cannot sample jiffies and expect it to advance.
  633. *
  634. * Fortunately, udelay() uses %stick/%tick so we can use that.
  635. */
  636. local_irq_save(flags);
  637. this_cpu = smp_processor_id();
  638. tb = &trap_block[this_cpu];
  639. mondo = __va(tb->cpu_mondo_block_pa);
  640. mondo[0] = data0;
  641. mondo[1] = data1;
  642. mondo[2] = data2;
  643. wmb();
  644. cpu_list = __va(tb->cpu_list_pa);
  645. /* Setup the initial cpu list. */
  646. cnt = 0;
  647. for_each_cpu(i, mask) {
  648. if (i == this_cpu || !cpu_online(i))
  649. continue;
  650. cpu_list[cnt++] = i;
  651. }
  652. if (cnt)
  653. xcall_deliver_impl(tb, cnt);
  654. local_irq_restore(flags);
  655. }
  656. /* Send cross call to all processors mentioned in MASK_P
  657. * except self. Really, there are only two cases currently,
  658. * "&cpu_online_map" and "&mm->cpu_vm_mask".
  659. */
  660. static void smp_cross_call_masked(unsigned long *func, u32 ctx, u64 data1, u64 data2, const cpumask_t *mask)
  661. {
  662. u64 data0 = (((u64)ctx)<<32 | (((u64)func) & 0xffffffff));
  663. xcall_deliver(data0, data1, data2, mask);
  664. }
  665. /* Send cross call to all processors except self. */
  666. static void smp_cross_call(unsigned long *func, u32 ctx, u64 data1, u64 data2)
  667. {
  668. smp_cross_call_masked(func, ctx, data1, data2, &cpu_online_map);
  669. }
  670. extern unsigned long xcall_sync_tick;
  671. static void smp_start_sync_tick_client(int cpu)
  672. {
  673. xcall_deliver((u64) &xcall_sync_tick, 0, 0,
  674. &cpumask_of_cpu(cpu));
  675. }
  676. extern unsigned long xcall_call_function;
  677. void arch_send_call_function_ipi_mask(const struct cpumask *mask)
  678. {
  679. xcall_deliver((u64) &xcall_call_function, 0, 0, mask);
  680. }
  681. extern unsigned long xcall_call_function_single;
  682. void arch_send_call_function_single_ipi(int cpu)
  683. {
  684. xcall_deliver((u64) &xcall_call_function_single, 0, 0,
  685. &cpumask_of_cpu(cpu));
  686. }
  687. void __irq_entry smp_call_function_client(int irq, struct pt_regs *regs)
  688. {
  689. clear_softint(1 << irq);
  690. generic_smp_call_function_interrupt();
  691. }
  692. void __irq_entry smp_call_function_single_client(int irq, struct pt_regs *regs)
  693. {
  694. clear_softint(1 << irq);
  695. generic_smp_call_function_single_interrupt();
  696. }
  697. static void tsb_sync(void *info)
  698. {
  699. struct trap_per_cpu *tp = &trap_block[raw_smp_processor_id()];
  700. struct mm_struct *mm = info;
  701. /* It is not valid to test "currrent->active_mm == mm" here.
  702. *
  703. * The value of "current" is not changed atomically with
  704. * switch_mm(). But that's OK, we just need to check the
  705. * current cpu's trap block PGD physical address.
  706. */
  707. if (tp->pgd_paddr == __pa(mm->pgd))
  708. tsb_context_switch(mm);
  709. }
  710. void smp_tsb_sync(struct mm_struct *mm)
  711. {
  712. smp_call_function_many(mm_cpumask(mm), tsb_sync, mm, 1);
  713. }
  714. extern unsigned long xcall_flush_tlb_mm;
  715. extern unsigned long xcall_flush_tlb_pending;
  716. extern unsigned long xcall_flush_tlb_kernel_range;
  717. extern unsigned long xcall_fetch_glob_regs;
  718. extern unsigned long xcall_receive_signal;
  719. extern unsigned long xcall_new_mmu_context_version;
  720. #ifdef CONFIG_KGDB
  721. extern unsigned long xcall_kgdb_capture;
  722. #endif
  723. #ifdef DCACHE_ALIASING_POSSIBLE
  724. extern unsigned long xcall_flush_dcache_page_cheetah;
  725. #endif
  726. extern unsigned long xcall_flush_dcache_page_spitfire;
  727. #ifdef CONFIG_DEBUG_DCFLUSH
  728. extern atomic_t dcpage_flushes;
  729. extern atomic_t dcpage_flushes_xcall;
  730. #endif
  731. static inline void __local_flush_dcache_page(struct page *page)
  732. {
  733. #ifdef DCACHE_ALIASING_POSSIBLE
  734. __flush_dcache_page(page_address(page),
  735. ((tlb_type == spitfire) &&
  736. page_mapping(page) != NULL));
  737. #else
  738. if (page_mapping(page) != NULL &&
  739. tlb_type == spitfire)
  740. __flush_icache_page(__pa(page_address(page)));
  741. #endif
  742. }
  743. void smp_flush_dcache_page_impl(struct page *page, int cpu)
  744. {
  745. int this_cpu;
  746. if (tlb_type == hypervisor)
  747. return;
  748. #ifdef CONFIG_DEBUG_DCFLUSH
  749. atomic_inc(&dcpage_flushes);
  750. #endif
  751. this_cpu = get_cpu();
  752. if (cpu == this_cpu) {
  753. __local_flush_dcache_page(page);
  754. } else if (cpu_online(cpu)) {
  755. void *pg_addr = page_address(page);
  756. u64 data0 = 0;
  757. if (tlb_type == spitfire) {
  758. data0 = ((u64)&xcall_flush_dcache_page_spitfire);
  759. if (page_mapping(page) != NULL)
  760. data0 |= ((u64)1 << 32);
  761. } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
  762. #ifdef DCACHE_ALIASING_POSSIBLE
  763. data0 = ((u64)&xcall_flush_dcache_page_cheetah);
  764. #endif
  765. }
  766. if (data0) {
  767. xcall_deliver(data0, __pa(pg_addr),
  768. (u64) pg_addr, &cpumask_of_cpu(cpu));
  769. #ifdef CONFIG_DEBUG_DCFLUSH
  770. atomic_inc(&dcpage_flushes_xcall);
  771. #endif
  772. }
  773. }
  774. put_cpu();
  775. }
  776. void flush_dcache_page_all(struct mm_struct *mm, struct page *page)
  777. {
  778. void *pg_addr;
  779. int this_cpu;
  780. u64 data0;
  781. if (tlb_type == hypervisor)
  782. return;
  783. this_cpu = get_cpu();
  784. #ifdef CONFIG_DEBUG_DCFLUSH
  785. atomic_inc(&dcpage_flushes);
  786. #endif
  787. data0 = 0;
  788. pg_addr = page_address(page);
  789. if (tlb_type == spitfire) {
  790. data0 = ((u64)&xcall_flush_dcache_page_spitfire);
  791. if (page_mapping(page) != NULL)
  792. data0 |= ((u64)1 << 32);
  793. } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
  794. #ifdef DCACHE_ALIASING_POSSIBLE
  795. data0 = ((u64)&xcall_flush_dcache_page_cheetah);
  796. #endif
  797. }
  798. if (data0) {
  799. xcall_deliver(data0, __pa(pg_addr),
  800. (u64) pg_addr, &cpu_online_map);
  801. #ifdef CONFIG_DEBUG_DCFLUSH
  802. atomic_inc(&dcpage_flushes_xcall);
  803. #endif
  804. }
  805. __local_flush_dcache_page(page);
  806. put_cpu();
  807. }
  808. void __irq_entry smp_new_mmu_context_version_client(int irq, struct pt_regs *regs)
  809. {
  810. struct mm_struct *mm;
  811. unsigned long flags;
  812. clear_softint(1 << irq);
  813. /* See if we need to allocate a new TLB context because
  814. * the version of the one we are using is now out of date.
  815. */
  816. mm = current->active_mm;
  817. if (unlikely(!mm || (mm == &init_mm)))
  818. return;
  819. spin_lock_irqsave(&mm->context.lock, flags);
  820. if (unlikely(!CTX_VALID(mm->context)))
  821. get_new_mmu_context(mm);
  822. spin_unlock_irqrestore(&mm->context.lock, flags);
  823. load_secondary_context(mm);
  824. __flush_tlb_mm(CTX_HWBITS(mm->context),
  825. SECONDARY_CONTEXT);
  826. }
  827. void smp_new_mmu_context_version(void)
  828. {
  829. smp_cross_call(&xcall_new_mmu_context_version, 0, 0, 0);
  830. }
  831. #ifdef CONFIG_KGDB
  832. void kgdb_roundup_cpus(unsigned long flags)
  833. {
  834. smp_cross_call(&xcall_kgdb_capture, 0, 0, 0);
  835. }
  836. #endif
  837. void smp_fetch_global_regs(void)
  838. {
  839. smp_cross_call(&xcall_fetch_glob_regs, 0, 0, 0);
  840. }
  841. /* We know that the window frames of the user have been flushed
  842. * to the stack before we get here because all callers of us
  843. * are flush_tlb_*() routines, and these run after flush_cache_*()
  844. * which performs the flushw.
  845. *
  846. * The SMP TLB coherency scheme we use works as follows:
  847. *
  848. * 1) mm->cpu_vm_mask is a bit mask of which cpus an address
  849. * space has (potentially) executed on, this is the heuristic
  850. * we use to avoid doing cross calls.
  851. *
  852. * Also, for flushing from kswapd and also for clones, we
  853. * use cpu_vm_mask as the list of cpus to make run the TLB.
  854. *
  855. * 2) TLB context numbers are shared globally across all processors
  856. * in the system, this allows us to play several games to avoid
  857. * cross calls.
  858. *
  859. * One invariant is that when a cpu switches to a process, and
  860. * that processes tsk->active_mm->cpu_vm_mask does not have the
  861. * current cpu's bit set, that tlb context is flushed locally.
  862. *
  863. * If the address space is non-shared (ie. mm->count == 1) we avoid
  864. * cross calls when we want to flush the currently running process's
  865. * tlb state. This is done by clearing all cpu bits except the current
  866. * processor's in current->mm->cpu_vm_mask and performing the
  867. * flush locally only. This will force any subsequent cpus which run
  868. * this task to flush the context from the local tlb if the process
  869. * migrates to another cpu (again).
  870. *
  871. * 3) For shared address spaces (threads) and swapping we bite the
  872. * bullet for most cases and perform the cross call (but only to
  873. * the cpus listed in cpu_vm_mask).
  874. *
  875. * The performance gain from "optimizing" away the cross call for threads is
  876. * questionable (in theory the big win for threads is the massive sharing of
  877. * address space state across processors).
  878. */
  879. /* This currently is only used by the hugetlb arch pre-fault
  880. * hook on UltraSPARC-III+ and later when changing the pagesize
  881. * bits of the context register for an address space.
  882. */
  883. void smp_flush_tlb_mm(struct mm_struct *mm)
  884. {
  885. u32 ctx = CTX_HWBITS(mm->context);
  886. int cpu = get_cpu();
  887. if (atomic_read(&mm->mm_users) == 1) {
  888. cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
  889. goto local_flush_and_out;
  890. }
  891. smp_cross_call_masked(&xcall_flush_tlb_mm,
  892. ctx, 0, 0,
  893. mm_cpumask(mm));
  894. local_flush_and_out:
  895. __flush_tlb_mm(ctx, SECONDARY_CONTEXT);
  896. put_cpu();
  897. }
  898. void smp_flush_tlb_pending(struct mm_struct *mm, unsigned long nr, unsigned long *vaddrs)
  899. {
  900. u32 ctx = CTX_HWBITS(mm->context);
  901. int cpu = get_cpu();
  902. if (mm == current->mm && atomic_read(&mm->mm_users) == 1)
  903. cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
  904. else
  905. smp_cross_call_masked(&xcall_flush_tlb_pending,
  906. ctx, nr, (unsigned long) vaddrs,
  907. mm_cpumask(mm));
  908. __flush_tlb_pending(ctx, nr, vaddrs);
  909. put_cpu();
  910. }
  911. void smp_flush_tlb_kernel_range(unsigned long start, unsigned long end)
  912. {
  913. start &= PAGE_MASK;
  914. end = PAGE_ALIGN(end);
  915. if (start != end) {
  916. smp_cross_call(&xcall_flush_tlb_kernel_range,
  917. 0, start, end);
  918. __flush_tlb_kernel_range(start, end);
  919. }
  920. }
  921. /* CPU capture. */
  922. /* #define CAPTURE_DEBUG */
  923. extern unsigned long xcall_capture;
  924. static atomic_t smp_capture_depth = ATOMIC_INIT(0);
  925. static atomic_t smp_capture_registry = ATOMIC_INIT(0);
  926. static unsigned long penguins_are_doing_time;
  927. void smp_capture(void)
  928. {
  929. int result = atomic_add_ret(1, &smp_capture_depth);
  930. if (result == 1) {
  931. int ncpus = num_online_cpus();
  932. #ifdef CAPTURE_DEBUG
  933. printk("CPU[%d]: Sending penguins to jail...",
  934. smp_processor_id());
  935. #endif
  936. penguins_are_doing_time = 1;
  937. atomic_inc(&smp_capture_registry);
  938. smp_cross_call(&xcall_capture, 0, 0, 0);
  939. while (atomic_read(&smp_capture_registry) != ncpus)
  940. rmb();
  941. #ifdef CAPTURE_DEBUG
  942. printk("done\n");
  943. #endif
  944. }
  945. }
  946. void smp_release(void)
  947. {
  948. if (atomic_dec_and_test(&smp_capture_depth)) {
  949. #ifdef CAPTURE_DEBUG
  950. printk("CPU[%d]: Giving pardon to "
  951. "imprisoned penguins\n",
  952. smp_processor_id());
  953. #endif
  954. penguins_are_doing_time = 0;
  955. membar_safe("#StoreLoad");
  956. atomic_dec(&smp_capture_registry);
  957. }
  958. }
  959. /* Imprisoned penguins run with %pil == PIL_NORMAL_MAX, but PSTATE_IE
  960. * set, so they can service tlb flush xcalls...
  961. */
  962. extern void prom_world(int);
  963. void __irq_entry smp_penguin_jailcell(int irq, struct pt_regs *regs)
  964. {
  965. clear_softint(1 << irq);
  966. preempt_disable();
  967. __asm__ __volatile__("flushw");
  968. prom_world(1);
  969. atomic_inc(&smp_capture_registry);
  970. membar_safe("#StoreLoad");
  971. while (penguins_are_doing_time)
  972. rmb();
  973. atomic_dec(&smp_capture_registry);
  974. prom_world(0);
  975. preempt_enable();
  976. }
  977. /* /proc/profile writes can call this, don't __init it please. */
  978. int setup_profiling_timer(unsigned int multiplier)
  979. {
  980. return -EINVAL;
  981. }
  982. void __init smp_prepare_cpus(unsigned int max_cpus)
  983. {
  984. }
  985. void __devinit smp_prepare_boot_cpu(void)
  986. {
  987. }
  988. void __init smp_setup_processor_id(void)
  989. {
  990. if (tlb_type == spitfire)
  991. xcall_deliver_impl = spitfire_xcall_deliver;
  992. else if (tlb_type == cheetah || tlb_type == cheetah_plus)
  993. xcall_deliver_impl = cheetah_xcall_deliver;
  994. else
  995. xcall_deliver_impl = hypervisor_xcall_deliver;
  996. }
  997. void __devinit smp_fill_in_sib_core_maps(void)
  998. {
  999. unsigned int i;
  1000. for_each_present_cpu(i) {
  1001. unsigned int j;
  1002. cpus_clear(cpu_core_map[i]);
  1003. if (cpu_data(i).core_id == 0) {
  1004. cpu_set(i, cpu_core_map[i]);
  1005. continue;
  1006. }
  1007. for_each_present_cpu(j) {
  1008. if (cpu_data(i).core_id ==
  1009. cpu_data(j).core_id)
  1010. cpu_set(j, cpu_core_map[i]);
  1011. }
  1012. }
  1013. for_each_present_cpu(i) {
  1014. unsigned int j;
  1015. cpus_clear(per_cpu(cpu_sibling_map, i));
  1016. if (cpu_data(i).proc_id == -1) {
  1017. cpu_set(i, per_cpu(cpu_sibling_map, i));
  1018. continue;
  1019. }
  1020. for_each_present_cpu(j) {
  1021. if (cpu_data(i).proc_id ==
  1022. cpu_data(j).proc_id)
  1023. cpu_set(j, per_cpu(cpu_sibling_map, i));
  1024. }
  1025. }
  1026. }
  1027. int __cpuinit __cpu_up(unsigned int cpu)
  1028. {
  1029. int ret = smp_boot_one_cpu(cpu);
  1030. if (!ret) {
  1031. cpu_set(cpu, smp_commenced_mask);
  1032. while (!cpu_isset(cpu, cpu_online_map))
  1033. mb();
  1034. if (!cpu_isset(cpu, cpu_online_map)) {
  1035. ret = -ENODEV;
  1036. } else {
  1037. /* On SUN4V, writes to %tick and %stick are
  1038. * not allowed.
  1039. */
  1040. if (tlb_type != hypervisor)
  1041. smp_synchronize_one_tick(cpu);
  1042. }
  1043. }
  1044. return ret;
  1045. }
  1046. #ifdef CONFIG_HOTPLUG_CPU
  1047. void cpu_play_dead(void)
  1048. {
  1049. int cpu = smp_processor_id();
  1050. unsigned long pstate;
  1051. idle_task_exit();
  1052. if (tlb_type == hypervisor) {
  1053. struct trap_per_cpu *tb = &trap_block[cpu];
  1054. sun4v_cpu_qconf(HV_CPU_QUEUE_CPU_MONDO,
  1055. tb->cpu_mondo_pa, 0);
  1056. sun4v_cpu_qconf(HV_CPU_QUEUE_DEVICE_MONDO,
  1057. tb->dev_mondo_pa, 0);
  1058. sun4v_cpu_qconf(HV_CPU_QUEUE_RES_ERROR,
  1059. tb->resum_mondo_pa, 0);
  1060. sun4v_cpu_qconf(HV_CPU_QUEUE_NONRES_ERROR,
  1061. tb->nonresum_mondo_pa, 0);
  1062. }
  1063. cpu_clear(cpu, smp_commenced_mask);
  1064. membar_safe("#Sync");
  1065. local_irq_disable();
  1066. __asm__ __volatile__(
  1067. "rdpr %%pstate, %0\n\t"
  1068. "wrpr %0, %1, %%pstate"
  1069. : "=r" (pstate)
  1070. : "i" (PSTATE_IE));
  1071. while (1)
  1072. barrier();
  1073. }
  1074. int __cpu_disable(void)
  1075. {
  1076. int cpu = smp_processor_id();
  1077. cpuinfo_sparc *c;
  1078. int i;
  1079. for_each_cpu_mask(i, cpu_core_map[cpu])
  1080. cpu_clear(cpu, cpu_core_map[i]);
  1081. cpus_clear(cpu_core_map[cpu]);
  1082. for_each_cpu_mask(i, per_cpu(cpu_sibling_map, cpu))
  1083. cpu_clear(cpu, per_cpu(cpu_sibling_map, i));
  1084. cpus_clear(per_cpu(cpu_sibling_map, cpu));
  1085. c = &cpu_data(cpu);
  1086. c->core_id = 0;
  1087. c->proc_id = -1;
  1088. smp_wmb();
  1089. /* Make sure no interrupts point to this cpu. */
  1090. fixup_irqs();
  1091. local_irq_enable();
  1092. mdelay(1);
  1093. local_irq_disable();
  1094. ipi_call_lock();
  1095. cpu_clear(cpu, cpu_online_map);
  1096. ipi_call_unlock();
  1097. cpu_map_rebuild();
  1098. return 0;
  1099. }
  1100. void __cpu_die(unsigned int cpu)
  1101. {
  1102. int i;
  1103. for (i = 0; i < 100; i++) {
  1104. smp_rmb();
  1105. if (!cpu_isset(cpu, smp_commenced_mask))
  1106. break;
  1107. msleep(100);
  1108. }
  1109. if (cpu_isset(cpu, smp_commenced_mask)) {
  1110. printk(KERN_ERR "CPU %u didn't die...\n", cpu);
  1111. } else {
  1112. #if defined(CONFIG_SUN_LDOMS)
  1113. unsigned long hv_err;
  1114. int limit = 100;
  1115. do {
  1116. hv_err = sun4v_cpu_stop(cpu);
  1117. if (hv_err == HV_EOK) {
  1118. cpu_clear(cpu, cpu_present_map);
  1119. break;
  1120. }
  1121. } while (--limit > 0);
  1122. if (limit <= 0) {
  1123. printk(KERN_ERR "sun4v_cpu_stop() fails err=%lu\n",
  1124. hv_err);
  1125. }
  1126. #endif
  1127. }
  1128. }
  1129. #endif
  1130. void __init smp_cpus_done(unsigned int max_cpus)
  1131. {
  1132. }
  1133. void smp_send_reschedule(int cpu)
  1134. {
  1135. xcall_deliver((u64) &xcall_receive_signal, 0, 0,
  1136. &cpumask_of_cpu(cpu));
  1137. }
  1138. void __irq_entry smp_receive_signal_client(int irq, struct pt_regs *regs)
  1139. {
  1140. clear_softint(1 << irq);
  1141. }
  1142. /* This is a nop because we capture all other cpus
  1143. * anyways when making the PROM active.
  1144. */
  1145. void smp_send_stop(void)
  1146. {
  1147. }
  1148. /**
  1149. * pcpu_alloc_bootmem - NUMA friendly alloc_bootmem wrapper for percpu
  1150. * @cpu: cpu to allocate for
  1151. * @size: size allocation in bytes
  1152. * @align: alignment
  1153. *
  1154. * Allocate @size bytes aligned at @align for cpu @cpu. This wrapper
  1155. * does the right thing for NUMA regardless of the current
  1156. * configuration.
  1157. *
  1158. * RETURNS:
  1159. * Pointer to the allocated area on success, NULL on failure.
  1160. */
  1161. static void * __init pcpu_alloc_bootmem(unsigned int cpu, size_t size,
  1162. size_t align)
  1163. {
  1164. const unsigned long goal = __pa(MAX_DMA_ADDRESS);
  1165. #ifdef CONFIG_NEED_MULTIPLE_NODES
  1166. int node = cpu_to_node(cpu);
  1167. void *ptr;
  1168. if (!node_online(node) || !NODE_DATA(node)) {
  1169. ptr = __alloc_bootmem(size, align, goal);
  1170. pr_info("cpu %d has no node %d or node-local memory\n",
  1171. cpu, node);
  1172. pr_debug("per cpu data for cpu%d %lu bytes at %016lx\n",
  1173. cpu, size, __pa(ptr));
  1174. } else {
  1175. ptr = __alloc_bootmem_node(NODE_DATA(node),
  1176. size, align, goal);
  1177. pr_debug("per cpu data for cpu%d %lu bytes on node%d at "
  1178. "%016lx\n", cpu, size, node, __pa(ptr));
  1179. }
  1180. return ptr;
  1181. #else
  1182. return __alloc_bootmem(size, align, goal);
  1183. #endif
  1184. }
  1185. static void __init pcpu_free_bootmem(void *ptr, size_t size)
  1186. {
  1187. free_bootmem(__pa(ptr), size);
  1188. }
  1189. static int __init pcpu_cpu_distance(unsigned int from, unsigned int to)
  1190. {
  1191. if (cpu_to_node(from) == cpu_to_node(to))
  1192. return LOCAL_DISTANCE;
  1193. else
  1194. return REMOTE_DISTANCE;
  1195. }
  1196. static void __init pcpu_populate_pte(unsigned long addr)
  1197. {
  1198. pgd_t *pgd = pgd_offset_k(addr);
  1199. pud_t *pud;
  1200. pmd_t *pmd;
  1201. pud = pud_offset(pgd, addr);
  1202. if (pud_none(*pud)) {
  1203. pmd_t *new;
  1204. new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
  1205. pud_populate(&init_mm, pud, new);
  1206. }
  1207. pmd = pmd_offset(pud, addr);
  1208. if (!pmd_present(*pmd)) {
  1209. pte_t *new;
  1210. new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
  1211. pmd_populate_kernel(&init_mm, pmd, new);
  1212. }
  1213. }
  1214. void __init setup_per_cpu_areas(void)
  1215. {
  1216. unsigned long delta;
  1217. unsigned int cpu;
  1218. int rc = -EINVAL;
  1219. if (pcpu_chosen_fc != PCPU_FC_PAGE) {
  1220. rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
  1221. PERCPU_DYNAMIC_RESERVE, 4 << 20,
  1222. pcpu_cpu_distance,
  1223. pcpu_alloc_bootmem,
  1224. pcpu_free_bootmem);
  1225. if (rc)
  1226. pr_warning("PERCPU: %s allocator failed (%d), "
  1227. "falling back to page size\n",
  1228. pcpu_fc_names[pcpu_chosen_fc], rc);
  1229. }
  1230. if (rc < 0)
  1231. rc = pcpu_page_first_chunk(PERCPU_MODULE_RESERVE,
  1232. pcpu_alloc_bootmem,
  1233. pcpu_free_bootmem,
  1234. pcpu_populate_pte);
  1235. if (rc < 0)
  1236. panic("cannot initialize percpu area (err=%d)", rc);
  1237. delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
  1238. for_each_possible_cpu(cpu)
  1239. __per_cpu_offset(cpu) = delta + pcpu_unit_offsets[cpu];
  1240. /* Setup %g5 for the boot cpu. */
  1241. __local_per_cpu_offset = __per_cpu_offset(smp_processor_id());
  1242. of_fill_in_cpu_data();
  1243. if (tlb_type == hypervisor)
  1244. mdesc_fill_in_cpu_data(cpu_all_mask);
  1245. }