clock-sh7785.c 6.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230
  1. /*
  2. * arch/sh/kernel/cpu/sh4a/clock-sh7785.c
  3. *
  4. * SH7785 support for the clock framework
  5. *
  6. * Copyright (C) 2007 - 2010 Paul Mundt
  7. *
  8. * This file is subject to the terms and conditions of the GNU General Public
  9. * License. See the file "COPYING" in the main directory of this archive
  10. * for more details.
  11. */
  12. #include <linux/init.h>
  13. #include <linux/kernel.h>
  14. #include <linux/clk.h>
  15. #include <linux/io.h>
  16. #include <linux/cpufreq.h>
  17. #include <asm/clkdev.h>
  18. #include <asm/clock.h>
  19. #include <asm/freq.h>
  20. #include <cpu/sh7785.h>
  21. /*
  22. * Default rate for the root input clock, reset this with clk_set_rate()
  23. * from the platform code.
  24. */
  25. static struct clk extal_clk = {
  26. .rate = 33333333,
  27. };
  28. static unsigned long pll_recalc(struct clk *clk)
  29. {
  30. int multiplier;
  31. multiplier = test_mode_pin(MODE_PIN4) ? 36 : 72;
  32. return clk->parent->rate * multiplier;
  33. }
  34. static struct clk_ops pll_clk_ops = {
  35. .recalc = pll_recalc,
  36. };
  37. static struct clk pll_clk = {
  38. .ops = &pll_clk_ops,
  39. .parent = &extal_clk,
  40. .flags = CLK_ENABLE_ON_INIT,
  41. };
  42. static struct clk *clks[] = {
  43. &extal_clk,
  44. &pll_clk,
  45. };
  46. static unsigned int div2[] = { 1, 2, 4, 6, 8, 12, 16, 18,
  47. 24, 32, 36, 48 };
  48. static struct clk_div_mult_table div4_div_mult_table = {
  49. .divisors = div2,
  50. .nr_divisors = ARRAY_SIZE(div2),
  51. };
  52. static struct clk_div4_table div4_table = {
  53. .div_mult_table = &div4_div_mult_table,
  54. };
  55. enum { DIV4_I, DIV4_U, DIV4_SH, DIV4_B, DIV4_DDR, DIV4_GA,
  56. DIV4_DU, DIV4_P, DIV4_NR };
  57. #define DIV4(_bit, _mask, _flags) \
  58. SH_CLK_DIV4(&pll_clk, FRQMR1, _bit, _mask, _flags)
  59. struct clk div4_clks[DIV4_NR] = {
  60. [DIV4_P] = DIV4(0, 0x0f80, 0),
  61. [DIV4_DU] = DIV4(4, 0x0ff0, 0),
  62. [DIV4_GA] = DIV4(8, 0x0030, 0),
  63. [DIV4_DDR] = DIV4(12, 0x000c, CLK_ENABLE_ON_INIT),
  64. [DIV4_B] = DIV4(16, 0x0fe0, CLK_ENABLE_ON_INIT),
  65. [DIV4_SH] = DIV4(20, 0x000c, CLK_ENABLE_ON_INIT),
  66. [DIV4_U] = DIV4(24, 0x000c, CLK_ENABLE_ON_INIT),
  67. [DIV4_I] = DIV4(28, 0x000e, CLK_ENABLE_ON_INIT),
  68. };
  69. #define MSTPCR0 0xffc80030
  70. #define MSTPCR1 0xffc80034
  71. enum { MSTP029, MSTP028, MSTP027, MSTP026, MSTP025, MSTP024,
  72. MSTP021, MSTP020, MSTP017, MSTP016,
  73. MSTP013, MSTP012, MSTP009, MSTP008, MSTP003, MSTP002,
  74. MSTP119, MSTP117, MSTP105, MSTP104, MSTP100,
  75. MSTP_NR };
  76. static struct clk mstp_clks[MSTP_NR] = {
  77. /* MSTPCR0 */
  78. [MSTP029] = SH_CLK_MSTP32(&div4_clks[DIV4_P], MSTPCR0, 29, 0),
  79. [MSTP028] = SH_CLK_MSTP32(&div4_clks[DIV4_P], MSTPCR0, 28, 0),
  80. [MSTP027] = SH_CLK_MSTP32(&div4_clks[DIV4_P], MSTPCR0, 27, 0),
  81. [MSTP026] = SH_CLK_MSTP32(&div4_clks[DIV4_P], MSTPCR0, 26, 0),
  82. [MSTP025] = SH_CLK_MSTP32(&div4_clks[DIV4_P], MSTPCR0, 25, 0),
  83. [MSTP024] = SH_CLK_MSTP32(&div4_clks[DIV4_P], MSTPCR0, 24, 0),
  84. [MSTP021] = SH_CLK_MSTP32(&div4_clks[DIV4_P], MSTPCR0, 21, 0),
  85. [MSTP020] = SH_CLK_MSTP32(&div4_clks[DIV4_P], MSTPCR0, 20, 0),
  86. [MSTP017] = SH_CLK_MSTP32(&div4_clks[DIV4_P], MSTPCR0, 17, 0),
  87. [MSTP016] = SH_CLK_MSTP32(&div4_clks[DIV4_P], MSTPCR0, 16, 0),
  88. [MSTP013] = SH_CLK_MSTP32(&div4_clks[DIV4_P], MSTPCR0, 13, 0),
  89. [MSTP012] = SH_CLK_MSTP32(&div4_clks[DIV4_P], MSTPCR0, 12, 0),
  90. [MSTP009] = SH_CLK_MSTP32(&div4_clks[DIV4_P], MSTPCR0, 9, 0),
  91. [MSTP008] = SH_CLK_MSTP32(&div4_clks[DIV4_P], MSTPCR0, 8, 0),
  92. [MSTP003] = SH_CLK_MSTP32(&div4_clks[DIV4_P], MSTPCR0, 3, 0),
  93. [MSTP002] = SH_CLK_MSTP32(&div4_clks[DIV4_P], MSTPCR0, 2, 0),
  94. /* MSTPCR1 */
  95. [MSTP119] = SH_CLK_MSTP32(NULL, MSTPCR1, 19, 0),
  96. [MSTP117] = SH_CLK_MSTP32(NULL, MSTPCR1, 17, 0),
  97. [MSTP105] = SH_CLK_MSTP32(NULL, MSTPCR1, 5, 0),
  98. [MSTP104] = SH_CLK_MSTP32(NULL, MSTPCR1, 4, 0),
  99. [MSTP100] = SH_CLK_MSTP32(NULL, MSTPCR1, 0, 0),
  100. };
  101. #define CLKDEV_CON_ID(_id, _clk) { .con_id = _id, .clk = _clk }
  102. static struct clk_lookup lookups[] = {
  103. /* main clocks */
  104. CLKDEV_CON_ID("extal", &extal_clk),
  105. CLKDEV_CON_ID("pll_clk", &pll_clk),
  106. /* DIV4 clocks */
  107. CLKDEV_CON_ID("peripheral_clk", &div4_clks[DIV4_P]),
  108. CLKDEV_CON_ID("du_clk", &div4_clks[DIV4_DU]),
  109. CLKDEV_CON_ID("ga_clk", &div4_clks[DIV4_GA]),
  110. CLKDEV_CON_ID("ddr_clk", &div4_clks[DIV4_DDR]),
  111. CLKDEV_CON_ID("bus_clk", &div4_clks[DIV4_B]),
  112. CLKDEV_CON_ID("shyway_clk", &div4_clks[DIV4_SH]),
  113. CLKDEV_CON_ID("umem_clk", &div4_clks[DIV4_U]),
  114. CLKDEV_CON_ID("cpu_clk", &div4_clks[DIV4_I]),
  115. /* MSTP32 clocks */
  116. {
  117. /* SCIF5 */
  118. .dev_id = "sh-sci.5",
  119. .con_id = "sci_fck",
  120. .clk = &mstp_clks[MSTP029],
  121. }, {
  122. /* SCIF4 */
  123. .dev_id = "sh-sci.4",
  124. .con_id = "sci_fck",
  125. .clk = &mstp_clks[MSTP028],
  126. }, {
  127. /* SCIF3 */
  128. .dev_id = "sh-sci.3",
  129. .con_id = "sci_fck",
  130. .clk = &mstp_clks[MSTP027],
  131. }, {
  132. /* SCIF2 */
  133. .dev_id = "sh-sci.2",
  134. .con_id = "sci_fck",
  135. .clk = &mstp_clks[MSTP026],
  136. }, {
  137. /* SCIF1 */
  138. .dev_id = "sh-sci.1",
  139. .con_id = "sci_fck",
  140. .clk = &mstp_clks[MSTP025],
  141. }, {
  142. /* SCIF0 */
  143. .dev_id = "sh-sci.0",
  144. .con_id = "sci_fck",
  145. .clk = &mstp_clks[MSTP024],
  146. },
  147. CLKDEV_CON_ID("ssi1_fck", &mstp_clks[MSTP021]),
  148. CLKDEV_CON_ID("ssi0_fck", &mstp_clks[MSTP020]),
  149. CLKDEV_CON_ID("hac1_fck", &mstp_clks[MSTP017]),
  150. CLKDEV_CON_ID("hac0_fck", &mstp_clks[MSTP016]),
  151. CLKDEV_CON_ID("mmcif_fck", &mstp_clks[MSTP013]),
  152. CLKDEV_CON_ID("flctl_fck", &mstp_clks[MSTP012]),
  153. {
  154. /* TMU0 */
  155. .dev_id = "sh_tmu.0",
  156. .con_id = "tmu_fck",
  157. .clk = &mstp_clks[MSTP008],
  158. }, {
  159. /* TMU1 */
  160. .dev_id = "sh_tmu.1",
  161. .con_id = "tmu_fck",
  162. .clk = &mstp_clks[MSTP008],
  163. }, {
  164. /* TMU2 */
  165. .dev_id = "sh_tmu.2",
  166. .con_id = "tmu_fck",
  167. .clk = &mstp_clks[MSTP008],
  168. }, {
  169. /* TMU3 */
  170. .dev_id = "sh_tmu.3",
  171. .con_id = "tmu_fck",
  172. .clk = &mstp_clks[MSTP009],
  173. }, {
  174. /* TMU4 */
  175. .dev_id = "sh_tmu.4",
  176. .con_id = "tmu_fck",
  177. .clk = &mstp_clks[MSTP009],
  178. }, {
  179. /* TMU5 */
  180. .dev_id = "sh_tmu.5",
  181. .con_id = "tmu_fck",
  182. .clk = &mstp_clks[MSTP009],
  183. },
  184. CLKDEV_CON_ID("siof_fck", &mstp_clks[MSTP003]),
  185. CLKDEV_CON_ID("hspi_fck", &mstp_clks[MSTP002]),
  186. CLKDEV_CON_ID("hudi_fck", &mstp_clks[MSTP119]),
  187. CLKDEV_CON_ID("ubc_fck", &mstp_clks[MSTP117]),
  188. CLKDEV_CON_ID("dmac_11_6_fck", &mstp_clks[MSTP105]),
  189. CLKDEV_CON_ID("dmac_5_0_fck", &mstp_clks[MSTP104]),
  190. CLKDEV_CON_ID("gdta_fck", &mstp_clks[MSTP100]),
  191. };
  192. int __init arch_clk_init(void)
  193. {
  194. int i, ret = 0;
  195. for (i = 0; i < ARRAY_SIZE(clks); i++)
  196. ret |= clk_register(clks[i]);
  197. for (i = 0; i < ARRAY_SIZE(lookups); i++)
  198. clkdev_add(&lookups[i]);
  199. if (!ret)
  200. ret = sh_clk_div4_register(div4_clks, ARRAY_SIZE(div4_clks),
  201. &div4_table);
  202. if (!ret)
  203. ret = sh_clk_mstp32_register(mstp_clks, MSTP_NR);
  204. return ret;
  205. }