book3s_32_mmu.c 9.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396
  1. /*
  2. * This program is free software; you can redistribute it and/or modify
  3. * it under the terms of the GNU General Public License, version 2, as
  4. * published by the Free Software Foundation.
  5. *
  6. * This program is distributed in the hope that it will be useful,
  7. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  8. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  9. * GNU General Public License for more details.
  10. *
  11. * You should have received a copy of the GNU General Public License
  12. * along with this program; if not, write to the Free Software
  13. * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
  14. *
  15. * Copyright SUSE Linux Products GmbH 2009
  16. *
  17. * Authors: Alexander Graf <agraf@suse.de>
  18. */
  19. #include <linux/types.h>
  20. #include <linux/string.h>
  21. #include <linux/kvm.h>
  22. #include <linux/kvm_host.h>
  23. #include <linux/highmem.h>
  24. #include <asm/tlbflush.h>
  25. #include <asm/kvm_ppc.h>
  26. #include <asm/kvm_book3s.h>
  27. /* #define DEBUG_MMU */
  28. /* #define DEBUG_MMU_PTE */
  29. /* #define DEBUG_MMU_PTE_IP 0xfff14c40 */
  30. #ifdef DEBUG_MMU
  31. #define dprintk(X...) printk(KERN_INFO X)
  32. #else
  33. #define dprintk(X...) do { } while(0)
  34. #endif
  35. #ifdef DEBUG_MMU_PTE
  36. #define dprintk_pte(X...) printk(KERN_INFO X)
  37. #else
  38. #define dprintk_pte(X...) do { } while(0)
  39. #endif
  40. #define PTEG_FLAG_ACCESSED 0x00000100
  41. #define PTEG_FLAG_DIRTY 0x00000080
  42. #ifndef SID_SHIFT
  43. #define SID_SHIFT 28
  44. #endif
  45. static inline bool check_debug_ip(struct kvm_vcpu *vcpu)
  46. {
  47. #ifdef DEBUG_MMU_PTE_IP
  48. return vcpu->arch.pc == DEBUG_MMU_PTE_IP;
  49. #else
  50. return true;
  51. #endif
  52. }
  53. static int kvmppc_mmu_book3s_32_xlate_bat(struct kvm_vcpu *vcpu, gva_t eaddr,
  54. struct kvmppc_pte *pte, bool data);
  55. static int kvmppc_mmu_book3s_32_esid_to_vsid(struct kvm_vcpu *vcpu, ulong esid,
  56. u64 *vsid);
  57. static struct kvmppc_sr *find_sr(struct kvmppc_vcpu_book3s *vcpu_book3s, gva_t eaddr)
  58. {
  59. return &vcpu_book3s->sr[(eaddr >> 28) & 0xf];
  60. }
  61. static u64 kvmppc_mmu_book3s_32_ea_to_vp(struct kvm_vcpu *vcpu, gva_t eaddr,
  62. bool data)
  63. {
  64. u64 vsid;
  65. struct kvmppc_pte pte;
  66. if (!kvmppc_mmu_book3s_32_xlate_bat(vcpu, eaddr, &pte, data))
  67. return pte.vpage;
  68. kvmppc_mmu_book3s_32_esid_to_vsid(vcpu, eaddr >> SID_SHIFT, &vsid);
  69. return (((u64)eaddr >> 12) & 0xffff) | (vsid << 16);
  70. }
  71. static void kvmppc_mmu_book3s_32_reset_msr(struct kvm_vcpu *vcpu)
  72. {
  73. kvmppc_set_msr(vcpu, 0);
  74. }
  75. static hva_t kvmppc_mmu_book3s_32_get_pteg(struct kvmppc_vcpu_book3s *vcpu_book3s,
  76. struct kvmppc_sr *sre, gva_t eaddr,
  77. bool primary)
  78. {
  79. u32 page, hash, pteg, htabmask;
  80. hva_t r;
  81. page = (eaddr & 0x0FFFFFFF) >> 12;
  82. htabmask = ((vcpu_book3s->sdr1 & 0x1FF) << 16) | 0xFFC0;
  83. hash = ((sre->vsid ^ page) << 6);
  84. if (!primary)
  85. hash = ~hash;
  86. hash &= htabmask;
  87. pteg = (vcpu_book3s->sdr1 & 0xffff0000) | hash;
  88. dprintk("MMU: pc=0x%lx eaddr=0x%lx sdr1=0x%llx pteg=0x%x vsid=0x%x\n",
  89. vcpu_book3s->vcpu.arch.pc, eaddr, vcpu_book3s->sdr1, pteg,
  90. sre->vsid);
  91. r = gfn_to_hva(vcpu_book3s->vcpu.kvm, pteg >> PAGE_SHIFT);
  92. if (kvm_is_error_hva(r))
  93. return r;
  94. return r | (pteg & ~PAGE_MASK);
  95. }
  96. static u32 kvmppc_mmu_book3s_32_get_ptem(struct kvmppc_sr *sre, gva_t eaddr,
  97. bool primary)
  98. {
  99. return ((eaddr & 0x0fffffff) >> 22) | (sre->vsid << 7) |
  100. (primary ? 0 : 0x40) | 0x80000000;
  101. }
  102. static int kvmppc_mmu_book3s_32_xlate_bat(struct kvm_vcpu *vcpu, gva_t eaddr,
  103. struct kvmppc_pte *pte, bool data)
  104. {
  105. struct kvmppc_vcpu_book3s *vcpu_book3s = to_book3s(vcpu);
  106. struct kvmppc_bat *bat;
  107. int i;
  108. for (i = 0; i < 8; i++) {
  109. if (data)
  110. bat = &vcpu_book3s->dbat[i];
  111. else
  112. bat = &vcpu_book3s->ibat[i];
  113. if (vcpu->arch.msr & MSR_PR) {
  114. if (!bat->vp)
  115. continue;
  116. } else {
  117. if (!bat->vs)
  118. continue;
  119. }
  120. if (check_debug_ip(vcpu))
  121. {
  122. dprintk_pte("%cBAT %02d: 0x%lx - 0x%x (0x%x)\n",
  123. data ? 'd' : 'i', i, eaddr, bat->bepi,
  124. bat->bepi_mask);
  125. }
  126. if ((eaddr & bat->bepi_mask) == bat->bepi) {
  127. u64 vsid;
  128. kvmppc_mmu_book3s_32_esid_to_vsid(vcpu,
  129. eaddr >> SID_SHIFT, &vsid);
  130. vsid <<= 16;
  131. pte->vpage = (((u64)eaddr >> 12) & 0xffff) | vsid;
  132. pte->raddr = bat->brpn | (eaddr & ~bat->bepi_mask);
  133. pte->may_read = bat->pp;
  134. pte->may_write = bat->pp > 1;
  135. pte->may_execute = true;
  136. if (!pte->may_read) {
  137. printk(KERN_INFO "BAT is not readable!\n");
  138. continue;
  139. }
  140. if (!pte->may_write) {
  141. /* let's treat r/o BATs as not-readable for now */
  142. dprintk_pte("BAT is read-only!\n");
  143. continue;
  144. }
  145. return 0;
  146. }
  147. }
  148. return -ENOENT;
  149. }
  150. static int kvmppc_mmu_book3s_32_xlate_pte(struct kvm_vcpu *vcpu, gva_t eaddr,
  151. struct kvmppc_pte *pte, bool data,
  152. bool primary)
  153. {
  154. struct kvmppc_vcpu_book3s *vcpu_book3s = to_book3s(vcpu);
  155. struct kvmppc_sr *sre;
  156. hva_t ptegp;
  157. u32 pteg[16];
  158. u32 ptem = 0;
  159. int i;
  160. int found = 0;
  161. sre = find_sr(vcpu_book3s, eaddr);
  162. dprintk_pte("SR 0x%lx: vsid=0x%x, raw=0x%x\n", eaddr >> 28,
  163. sre->vsid, sre->raw);
  164. pte->vpage = kvmppc_mmu_book3s_32_ea_to_vp(vcpu, eaddr, data);
  165. ptegp = kvmppc_mmu_book3s_32_get_pteg(vcpu_book3s, sre, eaddr, primary);
  166. if (kvm_is_error_hva(ptegp)) {
  167. printk(KERN_INFO "KVM: Invalid PTEG!\n");
  168. goto no_page_found;
  169. }
  170. ptem = kvmppc_mmu_book3s_32_get_ptem(sre, eaddr, primary);
  171. if(copy_from_user(pteg, (void __user *)ptegp, sizeof(pteg))) {
  172. printk(KERN_ERR "KVM: Can't copy data from 0x%lx!\n", ptegp);
  173. goto no_page_found;
  174. }
  175. for (i=0; i<16; i+=2) {
  176. if (ptem == pteg[i]) {
  177. u8 pp;
  178. pte->raddr = (pteg[i+1] & ~(0xFFFULL)) | (eaddr & 0xFFF);
  179. pp = pteg[i+1] & 3;
  180. if ((sre->Kp && (vcpu->arch.msr & MSR_PR)) ||
  181. (sre->Ks && !(vcpu->arch.msr & MSR_PR)))
  182. pp |= 4;
  183. pte->may_write = false;
  184. pte->may_read = false;
  185. pte->may_execute = true;
  186. switch (pp) {
  187. case 0:
  188. case 1:
  189. case 2:
  190. case 6:
  191. pte->may_write = true;
  192. case 3:
  193. case 5:
  194. case 7:
  195. pte->may_read = true;
  196. break;
  197. }
  198. if ( !pte->may_read )
  199. continue;
  200. dprintk_pte("MMU: Found PTE -> %x %x - %x\n",
  201. pteg[i], pteg[i+1], pp);
  202. found = 1;
  203. break;
  204. }
  205. }
  206. /* Update PTE C and A bits, so the guest's swapper knows we used the
  207. page */
  208. if (found) {
  209. u32 oldpte = pteg[i+1];
  210. if (pte->may_read)
  211. pteg[i+1] |= PTEG_FLAG_ACCESSED;
  212. if (pte->may_write)
  213. pteg[i+1] |= PTEG_FLAG_DIRTY;
  214. else
  215. dprintk_pte("KVM: Mapping read-only page!\n");
  216. /* Write back into the PTEG */
  217. if (pteg[i+1] != oldpte)
  218. copy_to_user((void __user *)ptegp, pteg, sizeof(pteg));
  219. return 0;
  220. }
  221. no_page_found:
  222. if (check_debug_ip(vcpu)) {
  223. dprintk_pte("KVM MMU: No PTE found (sdr1=0x%llx ptegp=0x%lx)\n",
  224. to_book3s(vcpu)->sdr1, ptegp);
  225. for (i=0; i<16; i+=2) {
  226. dprintk_pte(" %02d: 0x%x - 0x%x (0x%llx)\n",
  227. i, pteg[i], pteg[i+1], ptem);
  228. }
  229. }
  230. return -ENOENT;
  231. }
  232. static int kvmppc_mmu_book3s_32_xlate(struct kvm_vcpu *vcpu, gva_t eaddr,
  233. struct kvmppc_pte *pte, bool data)
  234. {
  235. int r;
  236. pte->eaddr = eaddr;
  237. r = kvmppc_mmu_book3s_32_xlate_bat(vcpu, eaddr, pte, data);
  238. if (r < 0)
  239. r = kvmppc_mmu_book3s_32_xlate_pte(vcpu, eaddr, pte, data, true);
  240. if (r < 0)
  241. r = kvmppc_mmu_book3s_32_xlate_pte(vcpu, eaddr, pte, data, false);
  242. return r;
  243. }
  244. static u32 kvmppc_mmu_book3s_32_mfsrin(struct kvm_vcpu *vcpu, u32 srnum)
  245. {
  246. return to_book3s(vcpu)->sr[srnum].raw;
  247. }
  248. static void kvmppc_mmu_book3s_32_mtsrin(struct kvm_vcpu *vcpu, u32 srnum,
  249. ulong value)
  250. {
  251. struct kvmppc_sr *sre;
  252. sre = &to_book3s(vcpu)->sr[srnum];
  253. /* Flush any left-over shadows from the previous SR */
  254. /* XXX Not necessary? */
  255. /* kvmppc_mmu_pte_flush(vcpu, ((u64)sre->vsid) << 28, 0xf0000000ULL); */
  256. /* And then put in the new SR */
  257. sre->raw = value;
  258. sre->vsid = (value & 0x0fffffff);
  259. sre->valid = (value & 0x80000000) ? false : true;
  260. sre->Ks = (value & 0x40000000) ? true : false;
  261. sre->Kp = (value & 0x20000000) ? true : false;
  262. sre->nx = (value & 0x10000000) ? true : false;
  263. /* Map the new segment */
  264. kvmppc_mmu_map_segment(vcpu, srnum << SID_SHIFT);
  265. }
  266. static void kvmppc_mmu_book3s_32_tlbie(struct kvm_vcpu *vcpu, ulong ea, bool large)
  267. {
  268. kvmppc_mmu_pte_flush(vcpu, ea, 0x0FFFF000);
  269. }
  270. static int kvmppc_mmu_book3s_32_esid_to_vsid(struct kvm_vcpu *vcpu, ulong esid,
  271. u64 *vsid)
  272. {
  273. ulong ea = esid << SID_SHIFT;
  274. struct kvmppc_sr *sr;
  275. u64 gvsid = esid;
  276. if (vcpu->arch.msr & (MSR_DR|MSR_IR)) {
  277. sr = find_sr(to_book3s(vcpu), ea);
  278. if (sr->valid)
  279. gvsid = sr->vsid;
  280. }
  281. /* In case we only have one of MSR_IR or MSR_DR set, let's put
  282. that in the real-mode context (and hope RM doesn't access
  283. high memory) */
  284. switch (vcpu->arch.msr & (MSR_DR|MSR_IR)) {
  285. case 0:
  286. *vsid = VSID_REAL | esid;
  287. break;
  288. case MSR_IR:
  289. *vsid = VSID_REAL_IR | gvsid;
  290. break;
  291. case MSR_DR:
  292. *vsid = VSID_REAL_DR | gvsid;
  293. break;
  294. case MSR_DR|MSR_IR:
  295. if (sr->valid)
  296. *vsid = sr->vsid;
  297. else
  298. *vsid = VSID_BAT | gvsid;
  299. break;
  300. default:
  301. BUG();
  302. }
  303. if (vcpu->arch.msr & MSR_PR)
  304. *vsid |= VSID_PR;
  305. return 0;
  306. }
  307. static bool kvmppc_mmu_book3s_32_is_dcbz32(struct kvm_vcpu *vcpu)
  308. {
  309. return true;
  310. }
  311. void kvmppc_mmu_book3s_32_init(struct kvm_vcpu *vcpu)
  312. {
  313. struct kvmppc_mmu *mmu = &vcpu->arch.mmu;
  314. mmu->mtsrin = kvmppc_mmu_book3s_32_mtsrin;
  315. mmu->mfsrin = kvmppc_mmu_book3s_32_mfsrin;
  316. mmu->xlate = kvmppc_mmu_book3s_32_xlate;
  317. mmu->reset_msr = kvmppc_mmu_book3s_32_reset_msr;
  318. mmu->tlbie = kvmppc_mmu_book3s_32_tlbie;
  319. mmu->esid_to_vsid = kvmppc_mmu_book3s_32_esid_to_vsid;
  320. mmu->ea_to_vp = kvmppc_mmu_book3s_32_ea_to_vp;
  321. mmu->is_dcbz32 = kvmppc_mmu_book3s_32_is_dcbz32;
  322. mmu->slbmte = NULL;
  323. mmu->slbmfee = NULL;
  324. mmu->slbmfev = NULL;
  325. mmu->slbie = NULL;
  326. mmu->slbia = NULL;
  327. }