time.c 33 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287
  1. /*
  2. * Common time routines among all ppc machines.
  3. *
  4. * Written by Cort Dougan (cort@cs.nmt.edu) to merge
  5. * Paul Mackerras' version and mine for PReP and Pmac.
  6. * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
  7. * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
  8. *
  9. * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
  10. * to make clock more stable (2.4.0-test5). The only thing
  11. * that this code assumes is that the timebases have been synchronized
  12. * by firmware on SMP and are never stopped (never do sleep
  13. * on SMP then, nap and doze are OK).
  14. *
  15. * Speeded up do_gettimeofday by getting rid of references to
  16. * xtime (which required locks for consistency). (mikejc@us.ibm.com)
  17. *
  18. * TODO (not necessarily in this file):
  19. * - improve precision and reproducibility of timebase frequency
  20. * measurement at boot time. (for iSeries, we calibrate the timebase
  21. * against the Titan chip's clock.)
  22. * - for astronomical applications: add a new function to get
  23. * non ambiguous timestamps even around leap seconds. This needs
  24. * a new timestamp format and a good name.
  25. *
  26. * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
  27. * "A Kernel Model for Precision Timekeeping" by Dave Mills
  28. *
  29. * This program is free software; you can redistribute it and/or
  30. * modify it under the terms of the GNU General Public License
  31. * as published by the Free Software Foundation; either version
  32. * 2 of the License, or (at your option) any later version.
  33. */
  34. #include <linux/errno.h>
  35. #include <linux/module.h>
  36. #include <linux/sched.h>
  37. #include <linux/kernel.h>
  38. #include <linux/param.h>
  39. #include <linux/string.h>
  40. #include <linux/mm.h>
  41. #include <linux/interrupt.h>
  42. #include <linux/timex.h>
  43. #include <linux/kernel_stat.h>
  44. #include <linux/time.h>
  45. #include <linux/init.h>
  46. #include <linux/profile.h>
  47. #include <linux/cpu.h>
  48. #include <linux/security.h>
  49. #include <linux/percpu.h>
  50. #include <linux/rtc.h>
  51. #include <linux/jiffies.h>
  52. #include <linux/posix-timers.h>
  53. #include <linux/irq.h>
  54. #include <linux/delay.h>
  55. #include <linux/perf_event.h>
  56. #include <asm/trace.h>
  57. #include <asm/io.h>
  58. #include <asm/processor.h>
  59. #include <asm/nvram.h>
  60. #include <asm/cache.h>
  61. #include <asm/machdep.h>
  62. #include <asm/uaccess.h>
  63. #include <asm/time.h>
  64. #include <asm/prom.h>
  65. #include <asm/irq.h>
  66. #include <asm/div64.h>
  67. #include <asm/smp.h>
  68. #include <asm/vdso_datapage.h>
  69. #include <asm/firmware.h>
  70. #include <asm/cputime.h>
  71. #ifdef CONFIG_PPC_ISERIES
  72. #include <asm/iseries/it_lp_queue.h>
  73. #include <asm/iseries/hv_call_xm.h>
  74. #endif
  75. /* powerpc clocksource/clockevent code */
  76. #include <linux/clockchips.h>
  77. #include <linux/clocksource.h>
  78. static cycle_t rtc_read(struct clocksource *);
  79. static struct clocksource clocksource_rtc = {
  80. .name = "rtc",
  81. .rating = 400,
  82. .flags = CLOCK_SOURCE_IS_CONTINUOUS,
  83. .mask = CLOCKSOURCE_MASK(64),
  84. .shift = 22,
  85. .mult = 0, /* To be filled in */
  86. .read = rtc_read,
  87. };
  88. static cycle_t timebase_read(struct clocksource *);
  89. static struct clocksource clocksource_timebase = {
  90. .name = "timebase",
  91. .rating = 400,
  92. .flags = CLOCK_SOURCE_IS_CONTINUOUS,
  93. .mask = CLOCKSOURCE_MASK(64),
  94. .shift = 22,
  95. .mult = 0, /* To be filled in */
  96. .read = timebase_read,
  97. };
  98. #define DECREMENTER_MAX 0x7fffffff
  99. static int decrementer_set_next_event(unsigned long evt,
  100. struct clock_event_device *dev);
  101. static void decrementer_set_mode(enum clock_event_mode mode,
  102. struct clock_event_device *dev);
  103. static struct clock_event_device decrementer_clockevent = {
  104. .name = "decrementer",
  105. .rating = 200,
  106. .shift = 0, /* To be filled in */
  107. .mult = 0, /* To be filled in */
  108. .irq = 0,
  109. .set_next_event = decrementer_set_next_event,
  110. .set_mode = decrementer_set_mode,
  111. .features = CLOCK_EVT_FEAT_ONESHOT,
  112. };
  113. struct decrementer_clock {
  114. struct clock_event_device event;
  115. u64 next_tb;
  116. };
  117. static DEFINE_PER_CPU(struct decrementer_clock, decrementers);
  118. #ifdef CONFIG_PPC_ISERIES
  119. static unsigned long __initdata iSeries_recal_titan;
  120. static signed long __initdata iSeries_recal_tb;
  121. /* Forward declaration is only needed for iSereis compiles */
  122. static void __init clocksource_init(void);
  123. #endif
  124. #define XSEC_PER_SEC (1024*1024)
  125. #ifdef CONFIG_PPC64
  126. #define SCALE_XSEC(xsec, max) (((xsec) * max) / XSEC_PER_SEC)
  127. #else
  128. /* compute ((xsec << 12) * max) >> 32 */
  129. #define SCALE_XSEC(xsec, max) mulhwu((xsec) << 12, max)
  130. #endif
  131. unsigned long tb_ticks_per_jiffy;
  132. unsigned long tb_ticks_per_usec = 100; /* sane default */
  133. EXPORT_SYMBOL(tb_ticks_per_usec);
  134. unsigned long tb_ticks_per_sec;
  135. EXPORT_SYMBOL(tb_ticks_per_sec); /* for cputime_t conversions */
  136. u64 tb_to_xs;
  137. unsigned tb_to_us;
  138. #define TICKLEN_SCALE NTP_SCALE_SHIFT
  139. static u64 last_tick_len; /* units are ns / 2^TICKLEN_SCALE */
  140. static u64 ticklen_to_xs; /* 0.64 fraction */
  141. /* If last_tick_len corresponds to about 1/HZ seconds, then
  142. last_tick_len << TICKLEN_SHIFT will be about 2^63. */
  143. #define TICKLEN_SHIFT (63 - 30 - TICKLEN_SCALE + SHIFT_HZ)
  144. DEFINE_SPINLOCK(rtc_lock);
  145. EXPORT_SYMBOL_GPL(rtc_lock);
  146. static u64 tb_to_ns_scale __read_mostly;
  147. static unsigned tb_to_ns_shift __read_mostly;
  148. static unsigned long boot_tb __read_mostly;
  149. extern struct timezone sys_tz;
  150. static long timezone_offset;
  151. unsigned long ppc_proc_freq;
  152. EXPORT_SYMBOL(ppc_proc_freq);
  153. unsigned long ppc_tb_freq;
  154. static u64 tb_last_jiffy __cacheline_aligned_in_smp;
  155. static DEFINE_PER_CPU(u64, last_jiffy);
  156. #ifdef CONFIG_VIRT_CPU_ACCOUNTING
  157. /*
  158. * Factors for converting from cputime_t (timebase ticks) to
  159. * jiffies, milliseconds, seconds, and clock_t (1/USER_HZ seconds).
  160. * These are all stored as 0.64 fixed-point binary fractions.
  161. */
  162. u64 __cputime_jiffies_factor;
  163. EXPORT_SYMBOL(__cputime_jiffies_factor);
  164. u64 __cputime_msec_factor;
  165. EXPORT_SYMBOL(__cputime_msec_factor);
  166. u64 __cputime_sec_factor;
  167. EXPORT_SYMBOL(__cputime_sec_factor);
  168. u64 __cputime_clockt_factor;
  169. EXPORT_SYMBOL(__cputime_clockt_factor);
  170. DEFINE_PER_CPU(unsigned long, cputime_last_delta);
  171. DEFINE_PER_CPU(unsigned long, cputime_scaled_last_delta);
  172. cputime_t cputime_one_jiffy;
  173. static void calc_cputime_factors(void)
  174. {
  175. struct div_result res;
  176. div128_by_32(HZ, 0, tb_ticks_per_sec, &res);
  177. __cputime_jiffies_factor = res.result_low;
  178. div128_by_32(1000, 0, tb_ticks_per_sec, &res);
  179. __cputime_msec_factor = res.result_low;
  180. div128_by_32(1, 0, tb_ticks_per_sec, &res);
  181. __cputime_sec_factor = res.result_low;
  182. div128_by_32(USER_HZ, 0, tb_ticks_per_sec, &res);
  183. __cputime_clockt_factor = res.result_low;
  184. }
  185. /*
  186. * Read the PURR on systems that have it, otherwise the timebase.
  187. */
  188. static u64 read_purr(void)
  189. {
  190. if (cpu_has_feature(CPU_FTR_PURR))
  191. return mfspr(SPRN_PURR);
  192. return mftb();
  193. }
  194. /*
  195. * Read the SPURR on systems that have it, otherwise the purr
  196. */
  197. static u64 read_spurr(u64 purr)
  198. {
  199. /*
  200. * cpus without PURR won't have a SPURR
  201. * We already know the former when we use this, so tell gcc
  202. */
  203. if (cpu_has_feature(CPU_FTR_PURR) && cpu_has_feature(CPU_FTR_SPURR))
  204. return mfspr(SPRN_SPURR);
  205. return purr;
  206. }
  207. /*
  208. * Account time for a transition between system, hard irq
  209. * or soft irq state.
  210. */
  211. void account_system_vtime(struct task_struct *tsk)
  212. {
  213. u64 now, nowscaled, delta, deltascaled, sys_time;
  214. unsigned long flags;
  215. local_irq_save(flags);
  216. now = read_purr();
  217. nowscaled = read_spurr(now);
  218. delta = now - get_paca()->startpurr;
  219. deltascaled = nowscaled - get_paca()->startspurr;
  220. get_paca()->startpurr = now;
  221. get_paca()->startspurr = nowscaled;
  222. if (!in_interrupt()) {
  223. /* deltascaled includes both user and system time.
  224. * Hence scale it based on the purr ratio to estimate
  225. * the system time */
  226. sys_time = get_paca()->system_time;
  227. if (get_paca()->user_time)
  228. deltascaled = deltascaled * sys_time /
  229. (sys_time + get_paca()->user_time);
  230. delta += sys_time;
  231. get_paca()->system_time = 0;
  232. }
  233. if (in_irq() || idle_task(smp_processor_id()) != tsk)
  234. account_system_time(tsk, 0, delta, deltascaled);
  235. else
  236. account_idle_time(delta);
  237. __get_cpu_var(cputime_last_delta) = delta;
  238. __get_cpu_var(cputime_scaled_last_delta) = deltascaled;
  239. local_irq_restore(flags);
  240. }
  241. EXPORT_SYMBOL_GPL(account_system_vtime);
  242. /*
  243. * Transfer the user and system times accumulated in the paca
  244. * by the exception entry and exit code to the generic process
  245. * user and system time records.
  246. * Must be called with interrupts disabled.
  247. */
  248. void account_process_tick(struct task_struct *tsk, int user_tick)
  249. {
  250. cputime_t utime, utimescaled;
  251. utime = get_paca()->user_time;
  252. get_paca()->user_time = 0;
  253. utimescaled = cputime_to_scaled(utime);
  254. account_user_time(tsk, utime, utimescaled);
  255. }
  256. /*
  257. * Stuff for accounting stolen time.
  258. */
  259. struct cpu_purr_data {
  260. int initialized; /* thread is running */
  261. u64 tb; /* last TB value read */
  262. u64 purr; /* last PURR value read */
  263. u64 spurr; /* last SPURR value read */
  264. };
  265. /*
  266. * Each entry in the cpu_purr_data array is manipulated only by its
  267. * "owner" cpu -- usually in the timer interrupt but also occasionally
  268. * in process context for cpu online. As long as cpus do not touch
  269. * each others' cpu_purr_data, disabling local interrupts is
  270. * sufficient to serialize accesses.
  271. */
  272. static DEFINE_PER_CPU(struct cpu_purr_data, cpu_purr_data);
  273. static void snapshot_tb_and_purr(void *data)
  274. {
  275. unsigned long flags;
  276. struct cpu_purr_data *p = &__get_cpu_var(cpu_purr_data);
  277. local_irq_save(flags);
  278. p->tb = get_tb_or_rtc();
  279. p->purr = mfspr(SPRN_PURR);
  280. wmb();
  281. p->initialized = 1;
  282. local_irq_restore(flags);
  283. }
  284. /*
  285. * Called during boot when all cpus have come up.
  286. */
  287. void snapshot_timebases(void)
  288. {
  289. if (!cpu_has_feature(CPU_FTR_PURR))
  290. return;
  291. on_each_cpu(snapshot_tb_and_purr, NULL, 1);
  292. }
  293. /*
  294. * Must be called with interrupts disabled.
  295. */
  296. void calculate_steal_time(void)
  297. {
  298. u64 tb, purr;
  299. s64 stolen;
  300. struct cpu_purr_data *pme;
  301. pme = &__get_cpu_var(cpu_purr_data);
  302. if (!pme->initialized)
  303. return; /* !CPU_FTR_PURR or early in early boot */
  304. tb = mftb();
  305. purr = mfspr(SPRN_PURR);
  306. stolen = (tb - pme->tb) - (purr - pme->purr);
  307. if (stolen > 0) {
  308. if (idle_task(smp_processor_id()) != current)
  309. account_steal_time(stolen);
  310. else
  311. account_idle_time(stolen);
  312. }
  313. pme->tb = tb;
  314. pme->purr = purr;
  315. }
  316. #ifdef CONFIG_PPC_SPLPAR
  317. /*
  318. * Must be called before the cpu is added to the online map when
  319. * a cpu is being brought up at runtime.
  320. */
  321. static void snapshot_purr(void)
  322. {
  323. struct cpu_purr_data *pme;
  324. unsigned long flags;
  325. if (!cpu_has_feature(CPU_FTR_PURR))
  326. return;
  327. local_irq_save(flags);
  328. pme = &__get_cpu_var(cpu_purr_data);
  329. pme->tb = mftb();
  330. pme->purr = mfspr(SPRN_PURR);
  331. pme->initialized = 1;
  332. local_irq_restore(flags);
  333. }
  334. #endif /* CONFIG_PPC_SPLPAR */
  335. #else /* ! CONFIG_VIRT_CPU_ACCOUNTING */
  336. #define calc_cputime_factors()
  337. #define calculate_steal_time() do { } while (0)
  338. #endif
  339. #if !(defined(CONFIG_VIRT_CPU_ACCOUNTING) && defined(CONFIG_PPC_SPLPAR))
  340. #define snapshot_purr() do { } while (0)
  341. #endif
  342. /*
  343. * Called when a cpu comes up after the system has finished booting,
  344. * i.e. as a result of a hotplug cpu action.
  345. */
  346. void snapshot_timebase(void)
  347. {
  348. __get_cpu_var(last_jiffy) = get_tb_or_rtc();
  349. snapshot_purr();
  350. }
  351. void __delay(unsigned long loops)
  352. {
  353. unsigned long start;
  354. int diff;
  355. if (__USE_RTC()) {
  356. start = get_rtcl();
  357. do {
  358. /* the RTCL register wraps at 1000000000 */
  359. diff = get_rtcl() - start;
  360. if (diff < 0)
  361. diff += 1000000000;
  362. } while (diff < loops);
  363. } else {
  364. start = get_tbl();
  365. while (get_tbl() - start < loops)
  366. HMT_low();
  367. HMT_medium();
  368. }
  369. }
  370. EXPORT_SYMBOL(__delay);
  371. void udelay(unsigned long usecs)
  372. {
  373. __delay(tb_ticks_per_usec * usecs);
  374. }
  375. EXPORT_SYMBOL(udelay);
  376. static inline void update_gtod(u64 new_tb_stamp, u64 new_stamp_xsec,
  377. u64 new_tb_to_xs)
  378. {
  379. /*
  380. * tb_update_count is used to allow the userspace gettimeofday code
  381. * to assure itself that it sees a consistent view of the tb_to_xs and
  382. * stamp_xsec variables. It reads the tb_update_count, then reads
  383. * tb_to_xs and stamp_xsec and then reads tb_update_count again. If
  384. * the two values of tb_update_count match and are even then the
  385. * tb_to_xs and stamp_xsec values are consistent. If not, then it
  386. * loops back and reads them again until this criteria is met.
  387. * We expect the caller to have done the first increment of
  388. * vdso_data->tb_update_count already.
  389. */
  390. vdso_data->tb_orig_stamp = new_tb_stamp;
  391. vdso_data->stamp_xsec = new_stamp_xsec;
  392. vdso_data->tb_to_xs = new_tb_to_xs;
  393. vdso_data->wtom_clock_sec = wall_to_monotonic.tv_sec;
  394. vdso_data->wtom_clock_nsec = wall_to_monotonic.tv_nsec;
  395. vdso_data->stamp_xtime = xtime;
  396. smp_wmb();
  397. ++(vdso_data->tb_update_count);
  398. }
  399. #ifdef CONFIG_SMP
  400. unsigned long profile_pc(struct pt_regs *regs)
  401. {
  402. unsigned long pc = instruction_pointer(regs);
  403. if (in_lock_functions(pc))
  404. return regs->link;
  405. return pc;
  406. }
  407. EXPORT_SYMBOL(profile_pc);
  408. #endif
  409. #ifdef CONFIG_PPC_ISERIES
  410. /*
  411. * This function recalibrates the timebase based on the 49-bit time-of-day
  412. * value in the Titan chip. The Titan is much more accurate than the value
  413. * returned by the service processor for the timebase frequency.
  414. */
  415. static int __init iSeries_tb_recal(void)
  416. {
  417. struct div_result divres;
  418. unsigned long titan, tb;
  419. /* Make sure we only run on iSeries */
  420. if (!firmware_has_feature(FW_FEATURE_ISERIES))
  421. return -ENODEV;
  422. tb = get_tb();
  423. titan = HvCallXm_loadTod();
  424. if ( iSeries_recal_titan ) {
  425. unsigned long tb_ticks = tb - iSeries_recal_tb;
  426. unsigned long titan_usec = (titan - iSeries_recal_titan) >> 12;
  427. unsigned long new_tb_ticks_per_sec = (tb_ticks * USEC_PER_SEC)/titan_usec;
  428. unsigned long new_tb_ticks_per_jiffy =
  429. DIV_ROUND_CLOSEST(new_tb_ticks_per_sec, HZ);
  430. long tick_diff = new_tb_ticks_per_jiffy - tb_ticks_per_jiffy;
  431. char sign = '+';
  432. /* make sure tb_ticks_per_sec and tb_ticks_per_jiffy are consistent */
  433. new_tb_ticks_per_sec = new_tb_ticks_per_jiffy * HZ;
  434. if ( tick_diff < 0 ) {
  435. tick_diff = -tick_diff;
  436. sign = '-';
  437. }
  438. if ( tick_diff ) {
  439. if ( tick_diff < tb_ticks_per_jiffy/25 ) {
  440. printk( "Titan recalibrate: new tb_ticks_per_jiffy = %lu (%c%ld)\n",
  441. new_tb_ticks_per_jiffy, sign, tick_diff );
  442. tb_ticks_per_jiffy = new_tb_ticks_per_jiffy;
  443. tb_ticks_per_sec = new_tb_ticks_per_sec;
  444. calc_cputime_factors();
  445. div128_by_32( XSEC_PER_SEC, 0, tb_ticks_per_sec, &divres );
  446. tb_to_xs = divres.result_low;
  447. vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
  448. vdso_data->tb_to_xs = tb_to_xs;
  449. setup_cputime_one_jiffy();
  450. }
  451. else {
  452. printk( "Titan recalibrate: FAILED (difference > 4 percent)\n"
  453. " new tb_ticks_per_jiffy = %lu\n"
  454. " old tb_ticks_per_jiffy = %lu\n",
  455. new_tb_ticks_per_jiffy, tb_ticks_per_jiffy );
  456. }
  457. }
  458. }
  459. iSeries_recal_titan = titan;
  460. iSeries_recal_tb = tb;
  461. /* Called here as now we know accurate values for the timebase */
  462. clocksource_init();
  463. return 0;
  464. }
  465. late_initcall(iSeries_tb_recal);
  466. /* Called from platform early init */
  467. void __init iSeries_time_init_early(void)
  468. {
  469. iSeries_recal_tb = get_tb();
  470. iSeries_recal_titan = HvCallXm_loadTod();
  471. }
  472. #endif /* CONFIG_PPC_ISERIES */
  473. #ifdef CONFIG_PERF_EVENTS
  474. /*
  475. * 64-bit uses a byte in the PACA, 32-bit uses a per-cpu variable...
  476. */
  477. #ifdef CONFIG_PPC64
  478. static inline unsigned long test_perf_event_pending(void)
  479. {
  480. unsigned long x;
  481. asm volatile("lbz %0,%1(13)"
  482. : "=r" (x)
  483. : "i" (offsetof(struct paca_struct, perf_event_pending)));
  484. return x;
  485. }
  486. static inline void set_perf_event_pending_flag(void)
  487. {
  488. asm volatile("stb %0,%1(13)" : :
  489. "r" (1),
  490. "i" (offsetof(struct paca_struct, perf_event_pending)));
  491. }
  492. static inline void clear_perf_event_pending(void)
  493. {
  494. asm volatile("stb %0,%1(13)" : :
  495. "r" (0),
  496. "i" (offsetof(struct paca_struct, perf_event_pending)));
  497. }
  498. #else /* 32-bit */
  499. DEFINE_PER_CPU(u8, perf_event_pending);
  500. #define set_perf_event_pending_flag() __get_cpu_var(perf_event_pending) = 1
  501. #define test_perf_event_pending() __get_cpu_var(perf_event_pending)
  502. #define clear_perf_event_pending() __get_cpu_var(perf_event_pending) = 0
  503. #endif /* 32 vs 64 bit */
  504. void set_perf_event_pending(void)
  505. {
  506. preempt_disable();
  507. set_perf_event_pending_flag();
  508. set_dec(1);
  509. preempt_enable();
  510. }
  511. #else /* CONFIG_PERF_EVENTS */
  512. #define test_perf_event_pending() 0
  513. #define clear_perf_event_pending()
  514. #endif /* CONFIG_PERF_EVENTS */
  515. /*
  516. * For iSeries shared processors, we have to let the hypervisor
  517. * set the hardware decrementer. We set a virtual decrementer
  518. * in the lppaca and call the hypervisor if the virtual
  519. * decrementer is less than the current value in the hardware
  520. * decrementer. (almost always the new decrementer value will
  521. * be greater than the current hardware decementer so the hypervisor
  522. * call will not be needed)
  523. */
  524. /*
  525. * timer_interrupt - gets called when the decrementer overflows,
  526. * with interrupts disabled.
  527. */
  528. void timer_interrupt(struct pt_regs * regs)
  529. {
  530. struct pt_regs *old_regs;
  531. struct decrementer_clock *decrementer = &__get_cpu_var(decrementers);
  532. struct clock_event_device *evt = &decrementer->event;
  533. u64 now;
  534. trace_timer_interrupt_entry(regs);
  535. __get_cpu_var(irq_stat).timer_irqs++;
  536. /* Ensure a positive value is written to the decrementer, or else
  537. * some CPUs will continuue to take decrementer exceptions */
  538. set_dec(DECREMENTER_MAX);
  539. #ifdef CONFIG_PPC32
  540. if (atomic_read(&ppc_n_lost_interrupts) != 0)
  541. do_IRQ(regs);
  542. #endif
  543. now = get_tb_or_rtc();
  544. if (now < decrementer->next_tb) {
  545. /* not time for this event yet */
  546. now = decrementer->next_tb - now;
  547. if (now <= DECREMENTER_MAX)
  548. set_dec((int)now);
  549. trace_timer_interrupt_exit(regs);
  550. return;
  551. }
  552. old_regs = set_irq_regs(regs);
  553. irq_enter();
  554. calculate_steal_time();
  555. if (test_perf_event_pending()) {
  556. clear_perf_event_pending();
  557. perf_event_do_pending();
  558. }
  559. #ifdef CONFIG_PPC_ISERIES
  560. if (firmware_has_feature(FW_FEATURE_ISERIES))
  561. get_lppaca()->int_dword.fields.decr_int = 0;
  562. #endif
  563. if (evt->event_handler)
  564. evt->event_handler(evt);
  565. #ifdef CONFIG_PPC_ISERIES
  566. if (firmware_has_feature(FW_FEATURE_ISERIES) && hvlpevent_is_pending())
  567. process_hvlpevents();
  568. #endif
  569. #ifdef CONFIG_PPC64
  570. /* collect purr register values often, for accurate calculations */
  571. if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
  572. struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
  573. cu->current_tb = mfspr(SPRN_PURR);
  574. }
  575. #endif
  576. irq_exit();
  577. set_irq_regs(old_regs);
  578. trace_timer_interrupt_exit(regs);
  579. }
  580. void wakeup_decrementer(void)
  581. {
  582. unsigned long ticks;
  583. /*
  584. * The timebase gets saved on sleep and restored on wakeup,
  585. * so all we need to do is to reset the decrementer.
  586. */
  587. ticks = tb_ticks_since(__get_cpu_var(last_jiffy));
  588. if (ticks < tb_ticks_per_jiffy)
  589. ticks = tb_ticks_per_jiffy - ticks;
  590. else
  591. ticks = 1;
  592. set_dec(ticks);
  593. }
  594. #ifdef CONFIG_SUSPEND
  595. void generic_suspend_disable_irqs(void)
  596. {
  597. preempt_disable();
  598. /* Disable the decrementer, so that it doesn't interfere
  599. * with suspending.
  600. */
  601. set_dec(0x7fffffff);
  602. local_irq_disable();
  603. set_dec(0x7fffffff);
  604. }
  605. void generic_suspend_enable_irqs(void)
  606. {
  607. wakeup_decrementer();
  608. local_irq_enable();
  609. preempt_enable();
  610. }
  611. /* Overrides the weak version in kernel/power/main.c */
  612. void arch_suspend_disable_irqs(void)
  613. {
  614. if (ppc_md.suspend_disable_irqs)
  615. ppc_md.suspend_disable_irqs();
  616. generic_suspend_disable_irqs();
  617. }
  618. /* Overrides the weak version in kernel/power/main.c */
  619. void arch_suspend_enable_irqs(void)
  620. {
  621. generic_suspend_enable_irqs();
  622. if (ppc_md.suspend_enable_irqs)
  623. ppc_md.suspend_enable_irqs();
  624. }
  625. #endif
  626. #ifdef CONFIG_SMP
  627. void __init smp_space_timers(unsigned int max_cpus)
  628. {
  629. int i;
  630. u64 previous_tb = per_cpu(last_jiffy, boot_cpuid);
  631. /* make sure tb > per_cpu(last_jiffy, cpu) for all cpus always */
  632. previous_tb -= tb_ticks_per_jiffy;
  633. for_each_possible_cpu(i) {
  634. if (i == boot_cpuid)
  635. continue;
  636. per_cpu(last_jiffy, i) = previous_tb;
  637. }
  638. }
  639. #endif
  640. /*
  641. * Scheduler clock - returns current time in nanosec units.
  642. *
  643. * Note: mulhdu(a, b) (multiply high double unsigned) returns
  644. * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
  645. * are 64-bit unsigned numbers.
  646. */
  647. unsigned long long sched_clock(void)
  648. {
  649. if (__USE_RTC())
  650. return get_rtc();
  651. return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
  652. }
  653. static int __init get_freq(char *name, int cells, unsigned long *val)
  654. {
  655. struct device_node *cpu;
  656. const unsigned int *fp;
  657. int found = 0;
  658. /* The cpu node should have timebase and clock frequency properties */
  659. cpu = of_find_node_by_type(NULL, "cpu");
  660. if (cpu) {
  661. fp = of_get_property(cpu, name, NULL);
  662. if (fp) {
  663. found = 1;
  664. *val = of_read_ulong(fp, cells);
  665. }
  666. of_node_put(cpu);
  667. }
  668. return found;
  669. }
  670. /* should become __cpuinit when secondary_cpu_time_init also is */
  671. void start_cpu_decrementer(void)
  672. {
  673. #if defined(CONFIG_BOOKE) || defined(CONFIG_40x)
  674. /* Clear any pending timer interrupts */
  675. mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);
  676. /* Enable decrementer interrupt */
  677. mtspr(SPRN_TCR, TCR_DIE);
  678. #endif /* defined(CONFIG_BOOKE) || defined(CONFIG_40x) */
  679. }
  680. void __init generic_calibrate_decr(void)
  681. {
  682. ppc_tb_freq = DEFAULT_TB_FREQ; /* hardcoded default */
  683. if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
  684. !get_freq("timebase-frequency", 1, &ppc_tb_freq)) {
  685. printk(KERN_ERR "WARNING: Estimating decrementer frequency "
  686. "(not found)\n");
  687. }
  688. ppc_proc_freq = DEFAULT_PROC_FREQ; /* hardcoded default */
  689. if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
  690. !get_freq("clock-frequency", 1, &ppc_proc_freq)) {
  691. printk(KERN_ERR "WARNING: Estimating processor frequency "
  692. "(not found)\n");
  693. }
  694. }
  695. int update_persistent_clock(struct timespec now)
  696. {
  697. struct rtc_time tm;
  698. if (!ppc_md.set_rtc_time)
  699. return 0;
  700. to_tm(now.tv_sec + 1 + timezone_offset, &tm);
  701. tm.tm_year -= 1900;
  702. tm.tm_mon -= 1;
  703. return ppc_md.set_rtc_time(&tm);
  704. }
  705. static void __read_persistent_clock(struct timespec *ts)
  706. {
  707. struct rtc_time tm;
  708. static int first = 1;
  709. ts->tv_nsec = 0;
  710. /* XXX this is a litle fragile but will work okay in the short term */
  711. if (first) {
  712. first = 0;
  713. if (ppc_md.time_init)
  714. timezone_offset = ppc_md.time_init();
  715. /* get_boot_time() isn't guaranteed to be safe to call late */
  716. if (ppc_md.get_boot_time) {
  717. ts->tv_sec = ppc_md.get_boot_time() - timezone_offset;
  718. return;
  719. }
  720. }
  721. if (!ppc_md.get_rtc_time) {
  722. ts->tv_sec = 0;
  723. return;
  724. }
  725. ppc_md.get_rtc_time(&tm);
  726. ts->tv_sec = mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
  727. tm.tm_hour, tm.tm_min, tm.tm_sec);
  728. }
  729. void read_persistent_clock(struct timespec *ts)
  730. {
  731. __read_persistent_clock(ts);
  732. /* Sanitize it in case real time clock is set below EPOCH */
  733. if (ts->tv_sec < 0) {
  734. ts->tv_sec = 0;
  735. ts->tv_nsec = 0;
  736. }
  737. }
  738. /* clocksource code */
  739. static cycle_t rtc_read(struct clocksource *cs)
  740. {
  741. return (cycle_t)get_rtc();
  742. }
  743. static cycle_t timebase_read(struct clocksource *cs)
  744. {
  745. return (cycle_t)get_tb();
  746. }
  747. void update_vsyscall(struct timespec *wall_time, struct clocksource *clock,
  748. u32 mult)
  749. {
  750. u64 t2x, stamp_xsec;
  751. if (clock != &clocksource_timebase)
  752. return;
  753. /* Make userspace gettimeofday spin until we're done. */
  754. ++vdso_data->tb_update_count;
  755. smp_mb();
  756. /* XXX this assumes clock->shift == 22 */
  757. /* 4611686018 ~= 2^(20+64-22) / 1e9 */
  758. t2x = (u64) mult * 4611686018ULL;
  759. stamp_xsec = (u64) xtime.tv_nsec * XSEC_PER_SEC;
  760. do_div(stamp_xsec, 1000000000);
  761. stamp_xsec += (u64) xtime.tv_sec * XSEC_PER_SEC;
  762. update_gtod(clock->cycle_last, stamp_xsec, t2x);
  763. }
  764. void update_vsyscall_tz(void)
  765. {
  766. /* Make userspace gettimeofday spin until we're done. */
  767. ++vdso_data->tb_update_count;
  768. smp_mb();
  769. vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
  770. vdso_data->tz_dsttime = sys_tz.tz_dsttime;
  771. smp_mb();
  772. ++vdso_data->tb_update_count;
  773. }
  774. static void __init clocksource_init(void)
  775. {
  776. struct clocksource *clock;
  777. if (__USE_RTC())
  778. clock = &clocksource_rtc;
  779. else
  780. clock = &clocksource_timebase;
  781. clock->mult = clocksource_hz2mult(tb_ticks_per_sec, clock->shift);
  782. if (clocksource_register(clock)) {
  783. printk(KERN_ERR "clocksource: %s is already registered\n",
  784. clock->name);
  785. return;
  786. }
  787. printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n",
  788. clock->name, clock->mult, clock->shift);
  789. }
  790. static int decrementer_set_next_event(unsigned long evt,
  791. struct clock_event_device *dev)
  792. {
  793. __get_cpu_var(decrementers).next_tb = get_tb_or_rtc() + evt;
  794. set_dec(evt);
  795. return 0;
  796. }
  797. static void decrementer_set_mode(enum clock_event_mode mode,
  798. struct clock_event_device *dev)
  799. {
  800. if (mode != CLOCK_EVT_MODE_ONESHOT)
  801. decrementer_set_next_event(DECREMENTER_MAX, dev);
  802. }
  803. static inline uint64_t div_sc64(unsigned long ticks, unsigned long nsec,
  804. int shift)
  805. {
  806. uint64_t tmp = ((uint64_t)ticks) << shift;
  807. do_div(tmp, nsec);
  808. return tmp;
  809. }
  810. static void __init setup_clockevent_multiplier(unsigned long hz)
  811. {
  812. u64 mult, shift = 32;
  813. while (1) {
  814. mult = div_sc64(hz, NSEC_PER_SEC, shift);
  815. if (mult && (mult >> 32UL) == 0UL)
  816. break;
  817. shift--;
  818. }
  819. decrementer_clockevent.shift = shift;
  820. decrementer_clockevent.mult = mult;
  821. }
  822. static void register_decrementer_clockevent(int cpu)
  823. {
  824. struct clock_event_device *dec = &per_cpu(decrementers, cpu).event;
  825. *dec = decrementer_clockevent;
  826. dec->cpumask = cpumask_of(cpu);
  827. printk_once(KERN_DEBUG "clockevent: %s mult[%x] shift[%d] cpu[%d]\n",
  828. dec->name, dec->mult, dec->shift, cpu);
  829. clockevents_register_device(dec);
  830. }
  831. static void __init init_decrementer_clockevent(void)
  832. {
  833. int cpu = smp_processor_id();
  834. setup_clockevent_multiplier(ppc_tb_freq);
  835. decrementer_clockevent.max_delta_ns =
  836. clockevent_delta2ns(DECREMENTER_MAX, &decrementer_clockevent);
  837. decrementer_clockevent.min_delta_ns =
  838. clockevent_delta2ns(2, &decrementer_clockevent);
  839. register_decrementer_clockevent(cpu);
  840. }
  841. void secondary_cpu_time_init(void)
  842. {
  843. /* Start the decrementer on CPUs that have manual control
  844. * such as BookE
  845. */
  846. start_cpu_decrementer();
  847. /* FIME: Should make unrelatred change to move snapshot_timebase
  848. * call here ! */
  849. register_decrementer_clockevent(smp_processor_id());
  850. }
  851. /* This function is only called on the boot processor */
  852. void __init time_init(void)
  853. {
  854. unsigned long flags;
  855. struct div_result res;
  856. u64 scale, x;
  857. unsigned shift;
  858. if (__USE_RTC()) {
  859. /* 601 processor: dec counts down by 128 every 128ns */
  860. ppc_tb_freq = 1000000000;
  861. tb_last_jiffy = get_rtcl();
  862. } else {
  863. /* Normal PowerPC with timebase register */
  864. ppc_md.calibrate_decr();
  865. printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
  866. ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
  867. printk(KERN_DEBUG "time_init: processor frequency = %lu.%.6lu MHz\n",
  868. ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
  869. tb_last_jiffy = get_tb();
  870. }
  871. tb_ticks_per_jiffy = ppc_tb_freq / HZ;
  872. tb_ticks_per_sec = ppc_tb_freq;
  873. tb_ticks_per_usec = ppc_tb_freq / 1000000;
  874. tb_to_us = mulhwu_scale_factor(ppc_tb_freq, 1000000);
  875. calc_cputime_factors();
  876. setup_cputime_one_jiffy();
  877. /*
  878. * Calculate the length of each tick in ns. It will not be
  879. * exactly 1e9/HZ unless ppc_tb_freq is divisible by HZ.
  880. * We compute 1e9 * tb_ticks_per_jiffy / ppc_tb_freq,
  881. * rounded up.
  882. */
  883. x = (u64) NSEC_PER_SEC * tb_ticks_per_jiffy + ppc_tb_freq - 1;
  884. do_div(x, ppc_tb_freq);
  885. tick_nsec = x;
  886. last_tick_len = x << TICKLEN_SCALE;
  887. /*
  888. * Compute ticklen_to_xs, which is a factor which gets multiplied
  889. * by (last_tick_len << TICKLEN_SHIFT) to get a tb_to_xs value.
  890. * It is computed as:
  891. * ticklen_to_xs = 2^N / (tb_ticks_per_jiffy * 1e9)
  892. * where N = 64 + 20 - TICKLEN_SCALE - TICKLEN_SHIFT
  893. * which turns out to be N = 51 - SHIFT_HZ.
  894. * This gives the result as a 0.64 fixed-point fraction.
  895. * That value is reduced by an offset amounting to 1 xsec per
  896. * 2^31 timebase ticks to avoid problems with time going backwards
  897. * by 1 xsec when we do timer_recalc_offset due to losing the
  898. * fractional xsec. That offset is equal to ppc_tb_freq/2^51
  899. * since there are 2^20 xsec in a second.
  900. */
  901. div128_by_32((1ULL << 51) - ppc_tb_freq, 0,
  902. tb_ticks_per_jiffy << SHIFT_HZ, &res);
  903. div128_by_32(res.result_high, res.result_low, NSEC_PER_SEC, &res);
  904. ticklen_to_xs = res.result_low;
  905. /* Compute tb_to_xs from tick_nsec */
  906. tb_to_xs = mulhdu(last_tick_len << TICKLEN_SHIFT, ticklen_to_xs);
  907. /*
  908. * Compute scale factor for sched_clock.
  909. * The calibrate_decr() function has set tb_ticks_per_sec,
  910. * which is the timebase frequency.
  911. * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
  912. * the 128-bit result as a 64.64 fixed-point number.
  913. * We then shift that number right until it is less than 1.0,
  914. * giving us the scale factor and shift count to use in
  915. * sched_clock().
  916. */
  917. div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
  918. scale = res.result_low;
  919. for (shift = 0; res.result_high != 0; ++shift) {
  920. scale = (scale >> 1) | (res.result_high << 63);
  921. res.result_high >>= 1;
  922. }
  923. tb_to_ns_scale = scale;
  924. tb_to_ns_shift = shift;
  925. /* Save the current timebase to pretty up CONFIG_PRINTK_TIME */
  926. boot_tb = get_tb_or_rtc();
  927. write_seqlock_irqsave(&xtime_lock, flags);
  928. /* If platform provided a timezone (pmac), we correct the time */
  929. if (timezone_offset) {
  930. sys_tz.tz_minuteswest = -timezone_offset / 60;
  931. sys_tz.tz_dsttime = 0;
  932. }
  933. vdso_data->tb_orig_stamp = tb_last_jiffy;
  934. vdso_data->tb_update_count = 0;
  935. vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
  936. vdso_data->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC;
  937. vdso_data->tb_to_xs = tb_to_xs;
  938. write_sequnlock_irqrestore(&xtime_lock, flags);
  939. /* Start the decrementer on CPUs that have manual control
  940. * such as BookE
  941. */
  942. start_cpu_decrementer();
  943. /* Register the clocksource, if we're not running on iSeries */
  944. if (!firmware_has_feature(FW_FEATURE_ISERIES))
  945. clocksource_init();
  946. init_decrementer_clockevent();
  947. }
  948. #define FEBRUARY 2
  949. #define STARTOFTIME 1970
  950. #define SECDAY 86400L
  951. #define SECYR (SECDAY * 365)
  952. #define leapyear(year) ((year) % 4 == 0 && \
  953. ((year) % 100 != 0 || (year) % 400 == 0))
  954. #define days_in_year(a) (leapyear(a) ? 366 : 365)
  955. #define days_in_month(a) (month_days[(a) - 1])
  956. static int month_days[12] = {
  957. 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
  958. };
  959. /*
  960. * This only works for the Gregorian calendar - i.e. after 1752 (in the UK)
  961. */
  962. void GregorianDay(struct rtc_time * tm)
  963. {
  964. int leapsToDate;
  965. int lastYear;
  966. int day;
  967. int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };
  968. lastYear = tm->tm_year - 1;
  969. /*
  970. * Number of leap corrections to apply up to end of last year
  971. */
  972. leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400;
  973. /*
  974. * This year is a leap year if it is divisible by 4 except when it is
  975. * divisible by 100 unless it is divisible by 400
  976. *
  977. * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was
  978. */
  979. day = tm->tm_mon > 2 && leapyear(tm->tm_year);
  980. day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] +
  981. tm->tm_mday;
  982. tm->tm_wday = day % 7;
  983. }
  984. void to_tm(int tim, struct rtc_time * tm)
  985. {
  986. register int i;
  987. register long hms, day;
  988. day = tim / SECDAY;
  989. hms = tim % SECDAY;
  990. /* Hours, minutes, seconds are easy */
  991. tm->tm_hour = hms / 3600;
  992. tm->tm_min = (hms % 3600) / 60;
  993. tm->tm_sec = (hms % 3600) % 60;
  994. /* Number of years in days */
  995. for (i = STARTOFTIME; day >= days_in_year(i); i++)
  996. day -= days_in_year(i);
  997. tm->tm_year = i;
  998. /* Number of months in days left */
  999. if (leapyear(tm->tm_year))
  1000. days_in_month(FEBRUARY) = 29;
  1001. for (i = 1; day >= days_in_month(i); i++)
  1002. day -= days_in_month(i);
  1003. days_in_month(FEBRUARY) = 28;
  1004. tm->tm_mon = i;
  1005. /* Days are what is left over (+1) from all that. */
  1006. tm->tm_mday = day + 1;
  1007. /*
  1008. * Determine the day of week
  1009. */
  1010. GregorianDay(tm);
  1011. }
  1012. /* Auxiliary function to compute scaling factors */
  1013. /* Actually the choice of a timebase running at 1/4 the of the bus
  1014. * frequency giving resolution of a few tens of nanoseconds is quite nice.
  1015. * It makes this computation very precise (27-28 bits typically) which
  1016. * is optimistic considering the stability of most processor clock
  1017. * oscillators and the precision with which the timebase frequency
  1018. * is measured but does not harm.
  1019. */
  1020. unsigned mulhwu_scale_factor(unsigned inscale, unsigned outscale)
  1021. {
  1022. unsigned mlt=0, tmp, err;
  1023. /* No concern for performance, it's done once: use a stupid
  1024. * but safe and compact method to find the multiplier.
  1025. */
  1026. for (tmp = 1U<<31; tmp != 0; tmp >>= 1) {
  1027. if (mulhwu(inscale, mlt|tmp) < outscale)
  1028. mlt |= tmp;
  1029. }
  1030. /* We might still be off by 1 for the best approximation.
  1031. * A side effect of this is that if outscale is too large
  1032. * the returned value will be zero.
  1033. * Many corner cases have been checked and seem to work,
  1034. * some might have been forgotten in the test however.
  1035. */
  1036. err = inscale * (mlt+1);
  1037. if (err <= inscale/2)
  1038. mlt++;
  1039. return mlt;
  1040. }
  1041. /*
  1042. * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
  1043. * result.
  1044. */
  1045. void div128_by_32(u64 dividend_high, u64 dividend_low,
  1046. unsigned divisor, struct div_result *dr)
  1047. {
  1048. unsigned long a, b, c, d;
  1049. unsigned long w, x, y, z;
  1050. u64 ra, rb, rc;
  1051. a = dividend_high >> 32;
  1052. b = dividend_high & 0xffffffff;
  1053. c = dividend_low >> 32;
  1054. d = dividend_low & 0xffffffff;
  1055. w = a / divisor;
  1056. ra = ((u64)(a - (w * divisor)) << 32) + b;
  1057. rb = ((u64) do_div(ra, divisor) << 32) + c;
  1058. x = ra;
  1059. rc = ((u64) do_div(rb, divisor) << 32) + d;
  1060. y = rb;
  1061. do_div(rc, divisor);
  1062. z = rc;
  1063. dr->result_high = ((u64)w << 32) + x;
  1064. dr->result_low = ((u64)y << 32) + z;
  1065. }
  1066. /* We don't need to calibrate delay, we use the CPU timebase for that */
  1067. void calibrate_delay(void)
  1068. {
  1069. /* Some generic code (such as spinlock debug) use loops_per_jiffy
  1070. * as the number of __delay(1) in a jiffy, so make it so
  1071. */
  1072. loops_per_jiffy = tb_ticks_per_jiffy;
  1073. }
  1074. static int __init rtc_init(void)
  1075. {
  1076. struct platform_device *pdev;
  1077. if (!ppc_md.get_rtc_time)
  1078. return -ENODEV;
  1079. pdev = platform_device_register_simple("rtc-generic", -1, NULL, 0);
  1080. if (IS_ERR(pdev))
  1081. return PTR_ERR(pdev);
  1082. return 0;
  1083. }
  1084. module_init(rtc_init);