machine_kexec_64.c 8.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339
  1. /*
  2. * PPC64 code to handle Linux booting another kernel.
  3. *
  4. * Copyright (C) 2004-2005, IBM Corp.
  5. *
  6. * Created by: Milton D Miller II
  7. *
  8. * This source code is licensed under the GNU General Public License,
  9. * Version 2. See the file COPYING for more details.
  10. */
  11. #include <linux/kexec.h>
  12. #include <linux/smp.h>
  13. #include <linux/thread_info.h>
  14. #include <linux/init_task.h>
  15. #include <linux/errno.h>
  16. #include <asm/page.h>
  17. #include <asm/current.h>
  18. #include <asm/machdep.h>
  19. #include <asm/cacheflush.h>
  20. #include <asm/paca.h>
  21. #include <asm/mmu.h>
  22. #include <asm/sections.h> /* _end */
  23. #include <asm/prom.h>
  24. #include <asm/smp.h>
  25. int default_machine_kexec_prepare(struct kimage *image)
  26. {
  27. int i;
  28. unsigned long begin, end; /* limits of segment */
  29. unsigned long low, high; /* limits of blocked memory range */
  30. struct device_node *node;
  31. const unsigned long *basep;
  32. const unsigned int *sizep;
  33. if (!ppc_md.hpte_clear_all)
  34. return -ENOENT;
  35. /*
  36. * Since we use the kernel fault handlers and paging code to
  37. * handle the virtual mode, we must make sure no destination
  38. * overlaps kernel static data or bss.
  39. */
  40. for (i = 0; i < image->nr_segments; i++)
  41. if (image->segment[i].mem < __pa(_end))
  42. return -ETXTBSY;
  43. /*
  44. * For non-LPAR, we absolutely can not overwrite the mmu hash
  45. * table, since we are still using the bolted entries in it to
  46. * do the copy. Check that here.
  47. *
  48. * It is safe if the end is below the start of the blocked
  49. * region (end <= low), or if the beginning is after the
  50. * end of the blocked region (begin >= high). Use the
  51. * boolean identity !(a || b) === (!a && !b).
  52. */
  53. if (htab_address) {
  54. low = __pa(htab_address);
  55. high = low + htab_size_bytes;
  56. for (i = 0; i < image->nr_segments; i++) {
  57. begin = image->segment[i].mem;
  58. end = begin + image->segment[i].memsz;
  59. if ((begin < high) && (end > low))
  60. return -ETXTBSY;
  61. }
  62. }
  63. /* We also should not overwrite the tce tables */
  64. for (node = of_find_node_by_type(NULL, "pci"); node != NULL;
  65. node = of_find_node_by_type(node, "pci")) {
  66. basep = of_get_property(node, "linux,tce-base", NULL);
  67. sizep = of_get_property(node, "linux,tce-size", NULL);
  68. if (basep == NULL || sizep == NULL)
  69. continue;
  70. low = *basep;
  71. high = low + (*sizep);
  72. for (i = 0; i < image->nr_segments; i++) {
  73. begin = image->segment[i].mem;
  74. end = begin + image->segment[i].memsz;
  75. if ((begin < high) && (end > low))
  76. return -ETXTBSY;
  77. }
  78. }
  79. return 0;
  80. }
  81. #define IND_FLAGS (IND_DESTINATION | IND_INDIRECTION | IND_DONE | IND_SOURCE)
  82. static void copy_segments(unsigned long ind)
  83. {
  84. unsigned long entry;
  85. unsigned long *ptr;
  86. void *dest;
  87. void *addr;
  88. /*
  89. * We rely on kexec_load to create a lists that properly
  90. * initializes these pointers before they are used.
  91. * We will still crash if the list is wrong, but at least
  92. * the compiler will be quiet.
  93. */
  94. ptr = NULL;
  95. dest = NULL;
  96. for (entry = ind; !(entry & IND_DONE); entry = *ptr++) {
  97. addr = __va(entry & PAGE_MASK);
  98. switch (entry & IND_FLAGS) {
  99. case IND_DESTINATION:
  100. dest = addr;
  101. break;
  102. case IND_INDIRECTION:
  103. ptr = addr;
  104. break;
  105. case IND_SOURCE:
  106. copy_page(dest, addr);
  107. dest += PAGE_SIZE;
  108. }
  109. }
  110. }
  111. void kexec_copy_flush(struct kimage *image)
  112. {
  113. long i, nr_segments = image->nr_segments;
  114. struct kexec_segment ranges[KEXEC_SEGMENT_MAX];
  115. /* save the ranges on the stack to efficiently flush the icache */
  116. memcpy(ranges, image->segment, sizeof(ranges));
  117. /*
  118. * After this call we may not use anything allocated in dynamic
  119. * memory, including *image.
  120. *
  121. * Only globals and the stack are allowed.
  122. */
  123. copy_segments(image->head);
  124. /*
  125. * we need to clear the icache for all dest pages sometime,
  126. * including ones that were in place on the original copy
  127. */
  128. for (i = 0; i < nr_segments; i++)
  129. flush_icache_range((unsigned long)__va(ranges[i].mem),
  130. (unsigned long)__va(ranges[i].mem + ranges[i].memsz));
  131. }
  132. #ifdef CONFIG_SMP
  133. static int kexec_all_irq_disabled = 0;
  134. static void kexec_smp_down(void *arg)
  135. {
  136. local_irq_disable();
  137. mb(); /* make sure our irqs are disabled before we say they are */
  138. get_paca()->kexec_state = KEXEC_STATE_IRQS_OFF;
  139. while(kexec_all_irq_disabled == 0)
  140. cpu_relax();
  141. mb(); /* make sure all irqs are disabled before this */
  142. /*
  143. * Now every CPU has IRQs off, we can clear out any pending
  144. * IPIs and be sure that no more will come in after this.
  145. */
  146. if (ppc_md.kexec_cpu_down)
  147. ppc_md.kexec_cpu_down(0, 1);
  148. kexec_smp_wait();
  149. /* NOTREACHED */
  150. }
  151. static void kexec_prepare_cpus_wait(int wait_state)
  152. {
  153. int my_cpu, i, notified=-1;
  154. my_cpu = get_cpu();
  155. /* Make sure each CPU has atleast made it to the state we need */
  156. for_each_online_cpu(i) {
  157. if (i == my_cpu)
  158. continue;
  159. while (paca[i].kexec_state < wait_state) {
  160. barrier();
  161. if (i != notified) {
  162. printk( "kexec: waiting for cpu %d (physical"
  163. " %d) to enter %i state\n",
  164. i, paca[i].hw_cpu_id, wait_state);
  165. notified = i;
  166. }
  167. }
  168. }
  169. mb();
  170. }
  171. static void kexec_prepare_cpus(void)
  172. {
  173. smp_call_function(kexec_smp_down, NULL, /* wait */0);
  174. local_irq_disable();
  175. mb(); /* make sure IRQs are disabled before we say they are */
  176. get_paca()->kexec_state = KEXEC_STATE_IRQS_OFF;
  177. kexec_prepare_cpus_wait(KEXEC_STATE_IRQS_OFF);
  178. /* we are sure every CPU has IRQs off at this point */
  179. kexec_all_irq_disabled = 1;
  180. /* after we tell the others to go down */
  181. if (ppc_md.kexec_cpu_down)
  182. ppc_md.kexec_cpu_down(0, 0);
  183. /* Before removing MMU mapings make sure all CPUs have entered real mode */
  184. kexec_prepare_cpus_wait(KEXEC_STATE_REAL_MODE);
  185. put_cpu();
  186. }
  187. #else /* ! SMP */
  188. static void kexec_prepare_cpus(void)
  189. {
  190. /*
  191. * move the secondarys to us so that we can copy
  192. * the new kernel 0-0x100 safely
  193. *
  194. * do this if kexec in setup.c ?
  195. *
  196. * We need to release the cpus if we are ever going from an
  197. * UP to an SMP kernel.
  198. */
  199. smp_release_cpus();
  200. if (ppc_md.kexec_cpu_down)
  201. ppc_md.kexec_cpu_down(0, 0);
  202. local_irq_disable();
  203. }
  204. #endif /* SMP */
  205. /*
  206. * kexec thread structure and stack.
  207. *
  208. * We need to make sure that this is 16384-byte aligned due to the
  209. * way process stacks are handled. It also must be statically allocated
  210. * or allocated as part of the kimage, because everything else may be
  211. * overwritten when we copy the kexec image. We piggyback on the
  212. * "init_task" linker section here to statically allocate a stack.
  213. *
  214. * We could use a smaller stack if we don't care about anything using
  215. * current, but that audit has not been performed.
  216. */
  217. static union thread_union kexec_stack __init_task_data =
  218. { };
  219. /* Our assembly helper, in kexec_stub.S */
  220. extern NORET_TYPE void kexec_sequence(void *newstack, unsigned long start,
  221. void *image, void *control,
  222. void (*clear_all)(void)) ATTRIB_NORET;
  223. /* too late to fail here */
  224. void default_machine_kexec(struct kimage *image)
  225. {
  226. /* prepare control code if any */
  227. /*
  228. * If the kexec boot is the normal one, need to shutdown other cpus
  229. * into our wait loop and quiesce interrupts.
  230. * Otherwise, in the case of crashed mode (crashing_cpu >= 0),
  231. * stopping other CPUs and collecting their pt_regs is done before
  232. * using debugger IPI.
  233. */
  234. if (crashing_cpu == -1)
  235. kexec_prepare_cpus();
  236. /* switch to a staticly allocated stack. Based on irq stack code.
  237. * XXX: the task struct will likely be invalid once we do the copy!
  238. */
  239. kexec_stack.thread_info.task = current_thread_info()->task;
  240. kexec_stack.thread_info.flags = 0;
  241. /* Some things are best done in assembly. Finding globals with
  242. * a toc is easier in C, so pass in what we can.
  243. */
  244. kexec_sequence(&kexec_stack, image->start, image,
  245. page_address(image->control_code_page),
  246. ppc_md.hpte_clear_all);
  247. /* NOTREACHED */
  248. }
  249. /* Values we need to export to the second kernel via the device tree. */
  250. static unsigned long htab_base;
  251. static struct property htab_base_prop = {
  252. .name = "linux,htab-base",
  253. .length = sizeof(unsigned long),
  254. .value = &htab_base,
  255. };
  256. static struct property htab_size_prop = {
  257. .name = "linux,htab-size",
  258. .length = sizeof(unsigned long),
  259. .value = &htab_size_bytes,
  260. };
  261. static int __init export_htab_values(void)
  262. {
  263. struct device_node *node;
  264. struct property *prop;
  265. /* On machines with no htab htab_address is NULL */
  266. if (!htab_address)
  267. return -ENODEV;
  268. node = of_find_node_by_path("/chosen");
  269. if (!node)
  270. return -ENODEV;
  271. /* remove any stale propertys so ours can be found */
  272. prop = of_find_property(node, htab_base_prop.name, NULL);
  273. if (prop)
  274. prom_remove_property(node, prop);
  275. prop = of_find_property(node, htab_size_prop.name, NULL);
  276. if (prop)
  277. prom_remove_property(node, prop);
  278. htab_base = __pa(htab_address);
  279. prom_add_property(node, &htab_base_prop);
  280. prom_add_property(node, &htab_size_prop);
  281. of_node_put(node);
  282. return 0;
  283. }
  284. late_initcall(export_htab_values);