dma-mapping.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631
  1. /*
  2. * linux/arch/arm/mm/dma-mapping.c
  3. *
  4. * Copyright (C) 2000-2004 Russell King
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License version 2 as
  8. * published by the Free Software Foundation.
  9. *
  10. * DMA uncached mapping support.
  11. */
  12. #include <linux/module.h>
  13. #include <linux/mm.h>
  14. #include <linux/gfp.h>
  15. #include <linux/errno.h>
  16. #include <linux/list.h>
  17. #include <linux/init.h>
  18. #include <linux/device.h>
  19. #include <linux/dma-mapping.h>
  20. #include <asm/memory.h>
  21. #include <asm/highmem.h>
  22. #include <asm/cacheflush.h>
  23. #include <asm/tlbflush.h>
  24. #include <asm/sizes.h>
  25. static u64 get_coherent_dma_mask(struct device *dev)
  26. {
  27. u64 mask = ISA_DMA_THRESHOLD;
  28. if (dev) {
  29. mask = dev->coherent_dma_mask;
  30. /*
  31. * Sanity check the DMA mask - it must be non-zero, and
  32. * must be able to be satisfied by a DMA allocation.
  33. */
  34. if (mask == 0) {
  35. dev_warn(dev, "coherent DMA mask is unset\n");
  36. return 0;
  37. }
  38. if ((~mask) & ISA_DMA_THRESHOLD) {
  39. dev_warn(dev, "coherent DMA mask %#llx is smaller "
  40. "than system GFP_DMA mask %#llx\n",
  41. mask, (unsigned long long)ISA_DMA_THRESHOLD);
  42. return 0;
  43. }
  44. }
  45. return mask;
  46. }
  47. /*
  48. * Allocate a DMA buffer for 'dev' of size 'size' using the
  49. * specified gfp mask. Note that 'size' must be page aligned.
  50. */
  51. static struct page *__dma_alloc_buffer(struct device *dev, size_t size, gfp_t gfp)
  52. {
  53. unsigned long order = get_order(size);
  54. struct page *page, *p, *e;
  55. void *ptr;
  56. u64 mask = get_coherent_dma_mask(dev);
  57. #ifdef CONFIG_DMA_API_DEBUG
  58. u64 limit = (mask + 1) & ~mask;
  59. if (limit && size >= limit) {
  60. dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
  61. size, mask);
  62. return NULL;
  63. }
  64. #endif
  65. if (!mask)
  66. return NULL;
  67. if (mask < 0xffffffffULL)
  68. gfp |= GFP_DMA;
  69. page = alloc_pages(gfp, order);
  70. if (!page)
  71. return NULL;
  72. /*
  73. * Now split the huge page and free the excess pages
  74. */
  75. split_page(page, order);
  76. for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
  77. __free_page(p);
  78. /*
  79. * Ensure that the allocated pages are zeroed, and that any data
  80. * lurking in the kernel direct-mapped region is invalidated.
  81. */
  82. ptr = page_address(page);
  83. memset(ptr, 0, size);
  84. dmac_flush_range(ptr, ptr + size);
  85. outer_flush_range(__pa(ptr), __pa(ptr) + size);
  86. return page;
  87. }
  88. /*
  89. * Free a DMA buffer. 'size' must be page aligned.
  90. */
  91. static void __dma_free_buffer(struct page *page, size_t size)
  92. {
  93. struct page *e = page + (size >> PAGE_SHIFT);
  94. while (page < e) {
  95. __free_page(page);
  96. page++;
  97. }
  98. }
  99. #ifdef CONFIG_MMU
  100. /* Sanity check size */
  101. #if (CONSISTENT_DMA_SIZE % SZ_2M)
  102. #error "CONSISTENT_DMA_SIZE must be multiple of 2MiB"
  103. #endif
  104. #define CONSISTENT_OFFSET(x) (((unsigned long)(x) - CONSISTENT_BASE) >> PAGE_SHIFT)
  105. #define CONSISTENT_PTE_INDEX(x) (((unsigned long)(x) - CONSISTENT_BASE) >> PGDIR_SHIFT)
  106. #define NUM_CONSISTENT_PTES (CONSISTENT_DMA_SIZE >> PGDIR_SHIFT)
  107. /*
  108. * These are the page tables (2MB each) covering uncached, DMA consistent allocations
  109. */
  110. static pte_t *consistent_pte[NUM_CONSISTENT_PTES];
  111. #include "vmregion.h"
  112. static struct arm_vmregion_head consistent_head = {
  113. .vm_lock = __SPIN_LOCK_UNLOCKED(&consistent_head.vm_lock),
  114. .vm_list = LIST_HEAD_INIT(consistent_head.vm_list),
  115. .vm_start = CONSISTENT_BASE,
  116. .vm_end = CONSISTENT_END,
  117. };
  118. #ifdef CONFIG_HUGETLB_PAGE
  119. #error ARM Coherent DMA allocator does not (yet) support huge TLB
  120. #endif
  121. /*
  122. * Initialise the consistent memory allocation.
  123. */
  124. static int __init consistent_init(void)
  125. {
  126. int ret = 0;
  127. pgd_t *pgd;
  128. pmd_t *pmd;
  129. pte_t *pte;
  130. int i = 0;
  131. u32 base = CONSISTENT_BASE;
  132. do {
  133. pgd = pgd_offset(&init_mm, base);
  134. pmd = pmd_alloc(&init_mm, pgd, base);
  135. if (!pmd) {
  136. printk(KERN_ERR "%s: no pmd tables\n", __func__);
  137. ret = -ENOMEM;
  138. break;
  139. }
  140. WARN_ON(!pmd_none(*pmd));
  141. pte = pte_alloc_kernel(pmd, base);
  142. if (!pte) {
  143. printk(KERN_ERR "%s: no pte tables\n", __func__);
  144. ret = -ENOMEM;
  145. break;
  146. }
  147. consistent_pte[i++] = pte;
  148. base += (1 << PGDIR_SHIFT);
  149. } while (base < CONSISTENT_END);
  150. return ret;
  151. }
  152. core_initcall(consistent_init);
  153. static void *
  154. __dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot)
  155. {
  156. struct arm_vmregion *c;
  157. size_t align;
  158. int bit;
  159. if (!consistent_pte[0]) {
  160. printk(KERN_ERR "%s: not initialised\n", __func__);
  161. dump_stack();
  162. return NULL;
  163. }
  164. /*
  165. * Align the virtual region allocation - maximum alignment is
  166. * a section size, minimum is a page size. This helps reduce
  167. * fragmentation of the DMA space, and also prevents allocations
  168. * smaller than a section from crossing a section boundary.
  169. */
  170. bit = fls(size - 1) + 1;
  171. if (bit > SECTION_SHIFT)
  172. bit = SECTION_SHIFT;
  173. align = 1 << bit;
  174. /*
  175. * Allocate a virtual address in the consistent mapping region.
  176. */
  177. c = arm_vmregion_alloc(&consistent_head, align, size,
  178. gfp & ~(__GFP_DMA | __GFP_HIGHMEM));
  179. if (c) {
  180. pte_t *pte;
  181. int idx = CONSISTENT_PTE_INDEX(c->vm_start);
  182. u32 off = CONSISTENT_OFFSET(c->vm_start) & (PTRS_PER_PTE-1);
  183. pte = consistent_pte[idx] + off;
  184. c->vm_pages = page;
  185. do {
  186. BUG_ON(!pte_none(*pte));
  187. set_pte_ext(pte, mk_pte(page, prot), 0);
  188. page++;
  189. pte++;
  190. off++;
  191. if (off >= PTRS_PER_PTE) {
  192. off = 0;
  193. pte = consistent_pte[++idx];
  194. }
  195. } while (size -= PAGE_SIZE);
  196. return (void *)c->vm_start;
  197. }
  198. return NULL;
  199. }
  200. static void __dma_free_remap(void *cpu_addr, size_t size)
  201. {
  202. struct arm_vmregion *c;
  203. unsigned long addr;
  204. pte_t *ptep;
  205. int idx;
  206. u32 off;
  207. c = arm_vmregion_find_remove(&consistent_head, (unsigned long)cpu_addr);
  208. if (!c) {
  209. printk(KERN_ERR "%s: trying to free invalid coherent area: %p\n",
  210. __func__, cpu_addr);
  211. dump_stack();
  212. return;
  213. }
  214. if ((c->vm_end - c->vm_start) != size) {
  215. printk(KERN_ERR "%s: freeing wrong coherent size (%ld != %d)\n",
  216. __func__, c->vm_end - c->vm_start, size);
  217. dump_stack();
  218. size = c->vm_end - c->vm_start;
  219. }
  220. idx = CONSISTENT_PTE_INDEX(c->vm_start);
  221. off = CONSISTENT_OFFSET(c->vm_start) & (PTRS_PER_PTE-1);
  222. ptep = consistent_pte[idx] + off;
  223. addr = c->vm_start;
  224. do {
  225. pte_t pte = ptep_get_and_clear(&init_mm, addr, ptep);
  226. ptep++;
  227. addr += PAGE_SIZE;
  228. off++;
  229. if (off >= PTRS_PER_PTE) {
  230. off = 0;
  231. ptep = consistent_pte[++idx];
  232. }
  233. if (pte_none(pte) || !pte_present(pte))
  234. printk(KERN_CRIT "%s: bad page in kernel page table\n",
  235. __func__);
  236. } while (size -= PAGE_SIZE);
  237. flush_tlb_kernel_range(c->vm_start, c->vm_end);
  238. arm_vmregion_free(&consistent_head, c);
  239. }
  240. #else /* !CONFIG_MMU */
  241. #define __dma_alloc_remap(page, size, gfp, prot) page_address(page)
  242. #define __dma_free_remap(addr, size) do { } while (0)
  243. #endif /* CONFIG_MMU */
  244. static void *
  245. __dma_alloc(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp,
  246. pgprot_t prot)
  247. {
  248. struct page *page;
  249. void *addr;
  250. *handle = ~0;
  251. size = PAGE_ALIGN(size);
  252. page = __dma_alloc_buffer(dev, size, gfp);
  253. if (!page)
  254. return NULL;
  255. if (!arch_is_coherent())
  256. addr = __dma_alloc_remap(page, size, gfp, prot);
  257. else
  258. addr = page_address(page);
  259. if (addr)
  260. *handle = page_to_dma(dev, page);
  261. return addr;
  262. }
  263. /*
  264. * Allocate DMA-coherent memory space and return both the kernel remapped
  265. * virtual and bus address for that space.
  266. */
  267. void *
  268. dma_alloc_coherent(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp)
  269. {
  270. void *memory;
  271. if (dma_alloc_from_coherent(dev, size, handle, &memory))
  272. return memory;
  273. return __dma_alloc(dev, size, handle, gfp,
  274. pgprot_dmacoherent(pgprot_kernel));
  275. }
  276. EXPORT_SYMBOL(dma_alloc_coherent);
  277. /*
  278. * Allocate a writecombining region, in much the same way as
  279. * dma_alloc_coherent above.
  280. */
  281. void *
  282. dma_alloc_writecombine(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp)
  283. {
  284. return __dma_alloc(dev, size, handle, gfp,
  285. pgprot_writecombine(pgprot_kernel));
  286. }
  287. EXPORT_SYMBOL(dma_alloc_writecombine);
  288. static int dma_mmap(struct device *dev, struct vm_area_struct *vma,
  289. void *cpu_addr, dma_addr_t dma_addr, size_t size)
  290. {
  291. int ret = -ENXIO;
  292. #ifdef CONFIG_MMU
  293. unsigned long user_size, kern_size;
  294. struct arm_vmregion *c;
  295. user_size = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
  296. c = arm_vmregion_find(&consistent_head, (unsigned long)cpu_addr);
  297. if (c) {
  298. unsigned long off = vma->vm_pgoff;
  299. kern_size = (c->vm_end - c->vm_start) >> PAGE_SHIFT;
  300. if (off < kern_size &&
  301. user_size <= (kern_size - off)) {
  302. ret = remap_pfn_range(vma, vma->vm_start,
  303. page_to_pfn(c->vm_pages) + off,
  304. user_size << PAGE_SHIFT,
  305. vma->vm_page_prot);
  306. }
  307. }
  308. #endif /* CONFIG_MMU */
  309. return ret;
  310. }
  311. int dma_mmap_coherent(struct device *dev, struct vm_area_struct *vma,
  312. void *cpu_addr, dma_addr_t dma_addr, size_t size)
  313. {
  314. vma->vm_page_prot = pgprot_dmacoherent(vma->vm_page_prot);
  315. return dma_mmap(dev, vma, cpu_addr, dma_addr, size);
  316. }
  317. EXPORT_SYMBOL(dma_mmap_coherent);
  318. int dma_mmap_writecombine(struct device *dev, struct vm_area_struct *vma,
  319. void *cpu_addr, dma_addr_t dma_addr, size_t size)
  320. {
  321. vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
  322. return dma_mmap(dev, vma, cpu_addr, dma_addr, size);
  323. }
  324. EXPORT_SYMBOL(dma_mmap_writecombine);
  325. /*
  326. * free a page as defined by the above mapping.
  327. * Must not be called with IRQs disabled.
  328. */
  329. void dma_free_coherent(struct device *dev, size_t size, void *cpu_addr, dma_addr_t handle)
  330. {
  331. WARN_ON(irqs_disabled());
  332. if (dma_release_from_coherent(dev, get_order(size), cpu_addr))
  333. return;
  334. size = PAGE_ALIGN(size);
  335. if (!arch_is_coherent())
  336. __dma_free_remap(cpu_addr, size);
  337. __dma_free_buffer(dma_to_page(dev, handle), size);
  338. }
  339. EXPORT_SYMBOL(dma_free_coherent);
  340. /*
  341. * Make an area consistent for devices.
  342. * Note: Drivers should NOT use this function directly, as it will break
  343. * platforms with CONFIG_DMABOUNCE.
  344. * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
  345. */
  346. void ___dma_single_cpu_to_dev(const void *kaddr, size_t size,
  347. enum dma_data_direction dir)
  348. {
  349. unsigned long paddr;
  350. BUG_ON(!virt_addr_valid(kaddr) || !virt_addr_valid(kaddr + size - 1));
  351. dmac_map_area(kaddr, size, dir);
  352. paddr = __pa(kaddr);
  353. if (dir == DMA_FROM_DEVICE) {
  354. outer_inv_range(paddr, paddr + size);
  355. } else {
  356. outer_clean_range(paddr, paddr + size);
  357. }
  358. /* FIXME: non-speculating: flush on bidirectional mappings? */
  359. }
  360. EXPORT_SYMBOL(___dma_single_cpu_to_dev);
  361. void ___dma_single_dev_to_cpu(const void *kaddr, size_t size,
  362. enum dma_data_direction dir)
  363. {
  364. BUG_ON(!virt_addr_valid(kaddr) || !virt_addr_valid(kaddr + size - 1));
  365. /* FIXME: non-speculating: not required */
  366. /* don't bother invalidating if DMA to device */
  367. if (dir != DMA_TO_DEVICE) {
  368. unsigned long paddr = __pa(kaddr);
  369. outer_inv_range(paddr, paddr + size);
  370. }
  371. dmac_unmap_area(kaddr, size, dir);
  372. }
  373. EXPORT_SYMBOL(___dma_single_dev_to_cpu);
  374. static void dma_cache_maint_page(struct page *page, unsigned long offset,
  375. size_t size, enum dma_data_direction dir,
  376. void (*op)(const void *, size_t, int))
  377. {
  378. /*
  379. * A single sg entry may refer to multiple physically contiguous
  380. * pages. But we still need to process highmem pages individually.
  381. * If highmem is not configured then the bulk of this loop gets
  382. * optimized out.
  383. */
  384. size_t left = size;
  385. do {
  386. size_t len = left;
  387. void *vaddr;
  388. if (PageHighMem(page)) {
  389. if (len + offset > PAGE_SIZE) {
  390. if (offset >= PAGE_SIZE) {
  391. page += offset / PAGE_SIZE;
  392. offset %= PAGE_SIZE;
  393. }
  394. len = PAGE_SIZE - offset;
  395. }
  396. vaddr = kmap_high_get(page);
  397. if (vaddr) {
  398. vaddr += offset;
  399. op(vaddr, len, dir);
  400. kunmap_high(page);
  401. } else if (cache_is_vipt()) {
  402. pte_t saved_pte;
  403. vaddr = kmap_high_l1_vipt(page, &saved_pte);
  404. op(vaddr + offset, len, dir);
  405. kunmap_high_l1_vipt(page, saved_pte);
  406. }
  407. } else {
  408. vaddr = page_address(page) + offset;
  409. op(vaddr, len, dir);
  410. }
  411. offset = 0;
  412. page++;
  413. left -= len;
  414. } while (left);
  415. }
  416. void ___dma_page_cpu_to_dev(struct page *page, unsigned long off,
  417. size_t size, enum dma_data_direction dir)
  418. {
  419. unsigned long paddr;
  420. dma_cache_maint_page(page, off, size, dir, dmac_map_area);
  421. paddr = page_to_phys(page) + off;
  422. if (dir == DMA_FROM_DEVICE) {
  423. outer_inv_range(paddr, paddr + size);
  424. } else {
  425. outer_clean_range(paddr, paddr + size);
  426. }
  427. /* FIXME: non-speculating: flush on bidirectional mappings? */
  428. }
  429. EXPORT_SYMBOL(___dma_page_cpu_to_dev);
  430. void ___dma_page_dev_to_cpu(struct page *page, unsigned long off,
  431. size_t size, enum dma_data_direction dir)
  432. {
  433. unsigned long paddr = page_to_phys(page) + off;
  434. /* FIXME: non-speculating: not required */
  435. /* don't bother invalidating if DMA to device */
  436. if (dir != DMA_TO_DEVICE)
  437. outer_inv_range(paddr, paddr + size);
  438. dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
  439. }
  440. EXPORT_SYMBOL(___dma_page_dev_to_cpu);
  441. /**
  442. * dma_map_sg - map a set of SG buffers for streaming mode DMA
  443. * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
  444. * @sg: list of buffers
  445. * @nents: number of buffers to map
  446. * @dir: DMA transfer direction
  447. *
  448. * Map a set of buffers described by scatterlist in streaming mode for DMA.
  449. * This is the scatter-gather version of the dma_map_single interface.
  450. * Here the scatter gather list elements are each tagged with the
  451. * appropriate dma address and length. They are obtained via
  452. * sg_dma_{address,length}.
  453. *
  454. * Device ownership issues as mentioned for dma_map_single are the same
  455. * here.
  456. */
  457. int dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
  458. enum dma_data_direction dir)
  459. {
  460. struct scatterlist *s;
  461. int i, j;
  462. for_each_sg(sg, s, nents, i) {
  463. s->dma_address = dma_map_page(dev, sg_page(s), s->offset,
  464. s->length, dir);
  465. if (dma_mapping_error(dev, s->dma_address))
  466. goto bad_mapping;
  467. }
  468. return nents;
  469. bad_mapping:
  470. for_each_sg(sg, s, i, j)
  471. dma_unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir);
  472. return 0;
  473. }
  474. EXPORT_SYMBOL(dma_map_sg);
  475. /**
  476. * dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
  477. * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
  478. * @sg: list of buffers
  479. * @nents: number of buffers to unmap (returned from dma_map_sg)
  480. * @dir: DMA transfer direction (same as was passed to dma_map_sg)
  481. *
  482. * Unmap a set of streaming mode DMA translations. Again, CPU access
  483. * rules concerning calls here are the same as for dma_unmap_single().
  484. */
  485. void dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
  486. enum dma_data_direction dir)
  487. {
  488. struct scatterlist *s;
  489. int i;
  490. for_each_sg(sg, s, nents, i)
  491. dma_unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir);
  492. }
  493. EXPORT_SYMBOL(dma_unmap_sg);
  494. /**
  495. * dma_sync_sg_for_cpu
  496. * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
  497. * @sg: list of buffers
  498. * @nents: number of buffers to map (returned from dma_map_sg)
  499. * @dir: DMA transfer direction (same as was passed to dma_map_sg)
  500. */
  501. void dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
  502. int nents, enum dma_data_direction dir)
  503. {
  504. struct scatterlist *s;
  505. int i;
  506. for_each_sg(sg, s, nents, i) {
  507. if (!dmabounce_sync_for_cpu(dev, sg_dma_address(s), 0,
  508. sg_dma_len(s), dir))
  509. continue;
  510. __dma_page_dev_to_cpu(sg_page(s), s->offset,
  511. s->length, dir);
  512. }
  513. }
  514. EXPORT_SYMBOL(dma_sync_sg_for_cpu);
  515. /**
  516. * dma_sync_sg_for_device
  517. * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
  518. * @sg: list of buffers
  519. * @nents: number of buffers to map (returned from dma_map_sg)
  520. * @dir: DMA transfer direction (same as was passed to dma_map_sg)
  521. */
  522. void dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
  523. int nents, enum dma_data_direction dir)
  524. {
  525. struct scatterlist *s;
  526. int i;
  527. for_each_sg(sg, s, nents, i) {
  528. if (!dmabounce_sync_for_device(dev, sg_dma_address(s), 0,
  529. sg_dma_len(s), dir))
  530. continue;
  531. __dma_page_cpu_to_dev(sg_page(s), s->offset,
  532. s->length, dir);
  533. }
  534. }
  535. EXPORT_SYMBOL(dma_sync_sg_for_device);