dma-mapping.h 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494
  1. #ifndef ASMARM_DMA_MAPPING_H
  2. #define ASMARM_DMA_MAPPING_H
  3. #ifdef __KERNEL__
  4. #include <linux/mm_types.h>
  5. #include <linux/scatterlist.h>
  6. #include <asm-generic/dma-coherent.h>
  7. #include <asm/memory.h>
  8. /*
  9. * page_to_dma/dma_to_virt/virt_to_dma are architecture private functions
  10. * used internally by the DMA-mapping API to provide DMA addresses. They
  11. * must not be used by drivers.
  12. */
  13. #ifndef __arch_page_to_dma
  14. static inline dma_addr_t page_to_dma(struct device *dev, struct page *page)
  15. {
  16. return (dma_addr_t)__pfn_to_bus(page_to_pfn(page));
  17. }
  18. static inline struct page *dma_to_page(struct device *dev, dma_addr_t addr)
  19. {
  20. return pfn_to_page(__bus_to_pfn(addr));
  21. }
  22. static inline void *dma_to_virt(struct device *dev, dma_addr_t addr)
  23. {
  24. return (void *)__bus_to_virt(addr);
  25. }
  26. static inline dma_addr_t virt_to_dma(struct device *dev, void *addr)
  27. {
  28. return (dma_addr_t)__virt_to_bus((unsigned long)(addr));
  29. }
  30. #else
  31. static inline dma_addr_t page_to_dma(struct device *dev, struct page *page)
  32. {
  33. return __arch_page_to_dma(dev, page);
  34. }
  35. static inline struct page *dma_to_page(struct device *dev, dma_addr_t addr)
  36. {
  37. return __arch_dma_to_page(dev, addr);
  38. }
  39. static inline void *dma_to_virt(struct device *dev, dma_addr_t addr)
  40. {
  41. return __arch_dma_to_virt(dev, addr);
  42. }
  43. static inline dma_addr_t virt_to_dma(struct device *dev, void *addr)
  44. {
  45. return __arch_virt_to_dma(dev, addr);
  46. }
  47. #endif
  48. /*
  49. * The DMA API is built upon the notion of "buffer ownership". A buffer
  50. * is either exclusively owned by the CPU (and therefore may be accessed
  51. * by it) or exclusively owned by the DMA device. These helper functions
  52. * represent the transitions between these two ownership states.
  53. *
  54. * Note, however, that on later ARMs, this notion does not work due to
  55. * speculative prefetches. We model our approach on the assumption that
  56. * the CPU does do speculative prefetches, which means we clean caches
  57. * before transfers and delay cache invalidation until transfer completion.
  58. *
  59. * Private support functions: these are not part of the API and are
  60. * liable to change. Drivers must not use these.
  61. */
  62. static inline void __dma_single_cpu_to_dev(const void *kaddr, size_t size,
  63. enum dma_data_direction dir)
  64. {
  65. extern void ___dma_single_cpu_to_dev(const void *, size_t,
  66. enum dma_data_direction);
  67. if (!arch_is_coherent())
  68. ___dma_single_cpu_to_dev(kaddr, size, dir);
  69. }
  70. static inline void __dma_single_dev_to_cpu(const void *kaddr, size_t size,
  71. enum dma_data_direction dir)
  72. {
  73. extern void ___dma_single_dev_to_cpu(const void *, size_t,
  74. enum dma_data_direction);
  75. if (!arch_is_coherent())
  76. ___dma_single_dev_to_cpu(kaddr, size, dir);
  77. }
  78. static inline void __dma_page_cpu_to_dev(struct page *page, unsigned long off,
  79. size_t size, enum dma_data_direction dir)
  80. {
  81. extern void ___dma_page_cpu_to_dev(struct page *, unsigned long,
  82. size_t, enum dma_data_direction);
  83. if (!arch_is_coherent())
  84. ___dma_page_cpu_to_dev(page, off, size, dir);
  85. }
  86. static inline void __dma_page_dev_to_cpu(struct page *page, unsigned long off,
  87. size_t size, enum dma_data_direction dir)
  88. {
  89. extern void ___dma_page_dev_to_cpu(struct page *, unsigned long,
  90. size_t, enum dma_data_direction);
  91. if (!arch_is_coherent())
  92. ___dma_page_dev_to_cpu(page, off, size, dir);
  93. }
  94. /*
  95. * Return whether the given device DMA address mask can be supported
  96. * properly. For example, if your device can only drive the low 24-bits
  97. * during bus mastering, then you would pass 0x00ffffff as the mask
  98. * to this function.
  99. *
  100. * FIXME: This should really be a platform specific issue - we should
  101. * return false if GFP_DMA allocations may not satisfy the supplied 'mask'.
  102. */
  103. static inline int dma_supported(struct device *dev, u64 mask)
  104. {
  105. if (mask < ISA_DMA_THRESHOLD)
  106. return 0;
  107. return 1;
  108. }
  109. static inline int dma_set_mask(struct device *dev, u64 dma_mask)
  110. {
  111. #ifdef CONFIG_DMABOUNCE
  112. if (dev->archdata.dmabounce) {
  113. if (dma_mask >= ISA_DMA_THRESHOLD)
  114. return 0;
  115. else
  116. return -EIO;
  117. }
  118. #endif
  119. if (!dev->dma_mask || !dma_supported(dev, dma_mask))
  120. return -EIO;
  121. *dev->dma_mask = dma_mask;
  122. return 0;
  123. }
  124. static inline int dma_get_cache_alignment(void)
  125. {
  126. return 32;
  127. }
  128. static inline int dma_is_consistent(struct device *dev, dma_addr_t handle)
  129. {
  130. return !!arch_is_coherent();
  131. }
  132. /*
  133. * DMA errors are defined by all-bits-set in the DMA address.
  134. */
  135. static inline int dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
  136. {
  137. return dma_addr == ~0;
  138. }
  139. /*
  140. * Dummy noncoherent implementation. We don't provide a dma_cache_sync
  141. * function so drivers using this API are highlighted with build warnings.
  142. */
  143. static inline void *dma_alloc_noncoherent(struct device *dev, size_t size,
  144. dma_addr_t *handle, gfp_t gfp)
  145. {
  146. return NULL;
  147. }
  148. static inline void dma_free_noncoherent(struct device *dev, size_t size,
  149. void *cpu_addr, dma_addr_t handle)
  150. {
  151. }
  152. /**
  153. * dma_alloc_coherent - allocate consistent memory for DMA
  154. * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
  155. * @size: required memory size
  156. * @handle: bus-specific DMA address
  157. *
  158. * Allocate some uncached, unbuffered memory for a device for
  159. * performing DMA. This function allocates pages, and will
  160. * return the CPU-viewed address, and sets @handle to be the
  161. * device-viewed address.
  162. */
  163. extern void *dma_alloc_coherent(struct device *, size_t, dma_addr_t *, gfp_t);
  164. /**
  165. * dma_free_coherent - free memory allocated by dma_alloc_coherent
  166. * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
  167. * @size: size of memory originally requested in dma_alloc_coherent
  168. * @cpu_addr: CPU-view address returned from dma_alloc_coherent
  169. * @handle: device-view address returned from dma_alloc_coherent
  170. *
  171. * Free (and unmap) a DMA buffer previously allocated by
  172. * dma_alloc_coherent().
  173. *
  174. * References to memory and mappings associated with cpu_addr/handle
  175. * during and after this call executing are illegal.
  176. */
  177. extern void dma_free_coherent(struct device *, size_t, void *, dma_addr_t);
  178. /**
  179. * dma_mmap_coherent - map a coherent DMA allocation into user space
  180. * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
  181. * @vma: vm_area_struct describing requested user mapping
  182. * @cpu_addr: kernel CPU-view address returned from dma_alloc_coherent
  183. * @handle: device-view address returned from dma_alloc_coherent
  184. * @size: size of memory originally requested in dma_alloc_coherent
  185. *
  186. * Map a coherent DMA buffer previously allocated by dma_alloc_coherent
  187. * into user space. The coherent DMA buffer must not be freed by the
  188. * driver until the user space mapping has been released.
  189. */
  190. int dma_mmap_coherent(struct device *, struct vm_area_struct *,
  191. void *, dma_addr_t, size_t);
  192. /**
  193. * dma_alloc_writecombine - allocate writecombining memory for DMA
  194. * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
  195. * @size: required memory size
  196. * @handle: bus-specific DMA address
  197. *
  198. * Allocate some uncached, buffered memory for a device for
  199. * performing DMA. This function allocates pages, and will
  200. * return the CPU-viewed address, and sets @handle to be the
  201. * device-viewed address.
  202. */
  203. extern void *dma_alloc_writecombine(struct device *, size_t, dma_addr_t *,
  204. gfp_t);
  205. #define dma_free_writecombine(dev,size,cpu_addr,handle) \
  206. dma_free_coherent(dev,size,cpu_addr,handle)
  207. int dma_mmap_writecombine(struct device *, struct vm_area_struct *,
  208. void *, dma_addr_t, size_t);
  209. #ifdef CONFIG_DMABOUNCE
  210. /*
  211. * For SA-1111, IXP425, and ADI systems the dma-mapping functions are "magic"
  212. * and utilize bounce buffers as needed to work around limited DMA windows.
  213. *
  214. * On the SA-1111, a bug limits DMA to only certain regions of RAM.
  215. * On the IXP425, the PCI inbound window is 64MB (256MB total RAM)
  216. * On some ADI engineering systems, PCI inbound window is 32MB (12MB total RAM)
  217. *
  218. * The following are helper functions used by the dmabounce subystem
  219. *
  220. */
  221. /**
  222. * dmabounce_register_dev
  223. *
  224. * @dev: valid struct device pointer
  225. * @small_buf_size: size of buffers to use with small buffer pool
  226. * @large_buf_size: size of buffers to use with large buffer pool (can be 0)
  227. *
  228. * This function should be called by low-level platform code to register
  229. * a device as requireing DMA buffer bouncing. The function will allocate
  230. * appropriate DMA pools for the device.
  231. *
  232. */
  233. extern int dmabounce_register_dev(struct device *, unsigned long,
  234. unsigned long);
  235. /**
  236. * dmabounce_unregister_dev
  237. *
  238. * @dev: valid struct device pointer
  239. *
  240. * This function should be called by low-level platform code when device
  241. * that was previously registered with dmabounce_register_dev is removed
  242. * from the system.
  243. *
  244. */
  245. extern void dmabounce_unregister_dev(struct device *);
  246. /**
  247. * dma_needs_bounce
  248. *
  249. * @dev: valid struct device pointer
  250. * @dma_handle: dma_handle of unbounced buffer
  251. * @size: size of region being mapped
  252. *
  253. * Platforms that utilize the dmabounce mechanism must implement
  254. * this function.
  255. *
  256. * The dmabounce routines call this function whenever a dma-mapping
  257. * is requested to determine whether a given buffer needs to be bounced
  258. * or not. The function must return 0 if the buffer is OK for
  259. * DMA access and 1 if the buffer needs to be bounced.
  260. *
  261. */
  262. extern int dma_needs_bounce(struct device*, dma_addr_t, size_t);
  263. /*
  264. * The DMA API, implemented by dmabounce.c. See below for descriptions.
  265. */
  266. extern dma_addr_t dma_map_single(struct device *, void *, size_t,
  267. enum dma_data_direction);
  268. extern void dma_unmap_single(struct device *, dma_addr_t, size_t,
  269. enum dma_data_direction);
  270. extern dma_addr_t dma_map_page(struct device *, struct page *,
  271. unsigned long, size_t, enum dma_data_direction);
  272. extern void dma_unmap_page(struct device *, dma_addr_t, size_t,
  273. enum dma_data_direction);
  274. /*
  275. * Private functions
  276. */
  277. int dmabounce_sync_for_cpu(struct device *, dma_addr_t, unsigned long,
  278. size_t, enum dma_data_direction);
  279. int dmabounce_sync_for_device(struct device *, dma_addr_t, unsigned long,
  280. size_t, enum dma_data_direction);
  281. #else
  282. static inline int dmabounce_sync_for_cpu(struct device *d, dma_addr_t addr,
  283. unsigned long offset, size_t size, enum dma_data_direction dir)
  284. {
  285. return 1;
  286. }
  287. static inline int dmabounce_sync_for_device(struct device *d, dma_addr_t addr,
  288. unsigned long offset, size_t size, enum dma_data_direction dir)
  289. {
  290. return 1;
  291. }
  292. /**
  293. * dma_map_single - map a single buffer for streaming DMA
  294. * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
  295. * @cpu_addr: CPU direct mapped address of buffer
  296. * @size: size of buffer to map
  297. * @dir: DMA transfer direction
  298. *
  299. * Ensure that any data held in the cache is appropriately discarded
  300. * or written back.
  301. *
  302. * The device owns this memory once this call has completed. The CPU
  303. * can regain ownership by calling dma_unmap_single() or
  304. * dma_sync_single_for_cpu().
  305. */
  306. static inline dma_addr_t dma_map_single(struct device *dev, void *cpu_addr,
  307. size_t size, enum dma_data_direction dir)
  308. {
  309. BUG_ON(!valid_dma_direction(dir));
  310. __dma_single_cpu_to_dev(cpu_addr, size, dir);
  311. return virt_to_dma(dev, cpu_addr);
  312. }
  313. /**
  314. * dma_map_page - map a portion of a page for streaming DMA
  315. * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
  316. * @page: page that buffer resides in
  317. * @offset: offset into page for start of buffer
  318. * @size: size of buffer to map
  319. * @dir: DMA transfer direction
  320. *
  321. * Ensure that any data held in the cache is appropriately discarded
  322. * or written back.
  323. *
  324. * The device owns this memory once this call has completed. The CPU
  325. * can regain ownership by calling dma_unmap_page().
  326. */
  327. static inline dma_addr_t dma_map_page(struct device *dev, struct page *page,
  328. unsigned long offset, size_t size, enum dma_data_direction dir)
  329. {
  330. BUG_ON(!valid_dma_direction(dir));
  331. __dma_page_cpu_to_dev(page, offset, size, dir);
  332. return page_to_dma(dev, page) + offset;
  333. }
  334. /**
  335. * dma_unmap_single - unmap a single buffer previously mapped
  336. * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
  337. * @handle: DMA address of buffer
  338. * @size: size of buffer (same as passed to dma_map_single)
  339. * @dir: DMA transfer direction (same as passed to dma_map_single)
  340. *
  341. * Unmap a single streaming mode DMA translation. The handle and size
  342. * must match what was provided in the previous dma_map_single() call.
  343. * All other usages are undefined.
  344. *
  345. * After this call, reads by the CPU to the buffer are guaranteed to see
  346. * whatever the device wrote there.
  347. */
  348. static inline void dma_unmap_single(struct device *dev, dma_addr_t handle,
  349. size_t size, enum dma_data_direction dir)
  350. {
  351. __dma_single_dev_to_cpu(dma_to_virt(dev, handle), size, dir);
  352. }
  353. /**
  354. * dma_unmap_page - unmap a buffer previously mapped through dma_map_page()
  355. * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
  356. * @handle: DMA address of buffer
  357. * @size: size of buffer (same as passed to dma_map_page)
  358. * @dir: DMA transfer direction (same as passed to dma_map_page)
  359. *
  360. * Unmap a page streaming mode DMA translation. The handle and size
  361. * must match what was provided in the previous dma_map_page() call.
  362. * All other usages are undefined.
  363. *
  364. * After this call, reads by the CPU to the buffer are guaranteed to see
  365. * whatever the device wrote there.
  366. */
  367. static inline void dma_unmap_page(struct device *dev, dma_addr_t handle,
  368. size_t size, enum dma_data_direction dir)
  369. {
  370. __dma_page_dev_to_cpu(dma_to_page(dev, handle), handle & ~PAGE_MASK,
  371. size, dir);
  372. }
  373. #endif /* CONFIG_DMABOUNCE */
  374. /**
  375. * dma_sync_single_range_for_cpu
  376. * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
  377. * @handle: DMA address of buffer
  378. * @offset: offset of region to start sync
  379. * @size: size of region to sync
  380. * @dir: DMA transfer direction (same as passed to dma_map_single)
  381. *
  382. * Make physical memory consistent for a single streaming mode DMA
  383. * translation after a transfer.
  384. *
  385. * If you perform a dma_map_single() but wish to interrogate the
  386. * buffer using the cpu, yet do not wish to teardown the PCI dma
  387. * mapping, you must call this function before doing so. At the
  388. * next point you give the PCI dma address back to the card, you
  389. * must first the perform a dma_sync_for_device, and then the
  390. * device again owns the buffer.
  391. */
  392. static inline void dma_sync_single_range_for_cpu(struct device *dev,
  393. dma_addr_t handle, unsigned long offset, size_t size,
  394. enum dma_data_direction dir)
  395. {
  396. BUG_ON(!valid_dma_direction(dir));
  397. if (!dmabounce_sync_for_cpu(dev, handle, offset, size, dir))
  398. return;
  399. __dma_single_dev_to_cpu(dma_to_virt(dev, handle) + offset, size, dir);
  400. }
  401. static inline void dma_sync_single_range_for_device(struct device *dev,
  402. dma_addr_t handle, unsigned long offset, size_t size,
  403. enum dma_data_direction dir)
  404. {
  405. BUG_ON(!valid_dma_direction(dir));
  406. if (!dmabounce_sync_for_device(dev, handle, offset, size, dir))
  407. return;
  408. __dma_single_cpu_to_dev(dma_to_virt(dev, handle) + offset, size, dir);
  409. }
  410. static inline void dma_sync_single_for_cpu(struct device *dev,
  411. dma_addr_t handle, size_t size, enum dma_data_direction dir)
  412. {
  413. dma_sync_single_range_for_cpu(dev, handle, 0, size, dir);
  414. }
  415. static inline void dma_sync_single_for_device(struct device *dev,
  416. dma_addr_t handle, size_t size, enum dma_data_direction dir)
  417. {
  418. dma_sync_single_range_for_device(dev, handle, 0, size, dir);
  419. }
  420. /*
  421. * The scatter list versions of the above methods.
  422. */
  423. extern int dma_map_sg(struct device *, struct scatterlist *, int,
  424. enum dma_data_direction);
  425. extern void dma_unmap_sg(struct device *, struct scatterlist *, int,
  426. enum dma_data_direction);
  427. extern void dma_sync_sg_for_cpu(struct device *, struct scatterlist *, int,
  428. enum dma_data_direction);
  429. extern void dma_sync_sg_for_device(struct device *, struct scatterlist *, int,
  430. enum dma_data_direction);
  431. #endif /* __KERNEL__ */
  432. #endif