mmu-hash64.h 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588
  1. #ifndef _ASM_POWERPC_MMU_HASH64_H_
  2. #define _ASM_POWERPC_MMU_HASH64_H_
  3. /*
  4. * PowerPC64 memory management structures
  5. *
  6. * Dave Engebretsen & Mike Corrigan <{engebret|mikejc}@us.ibm.com>
  7. * PPC64 rework.
  8. *
  9. * This program is free software; you can redistribute it and/or
  10. * modify it under the terms of the GNU General Public License
  11. * as published by the Free Software Foundation; either version
  12. * 2 of the License, or (at your option) any later version.
  13. */
  14. #include <asm/asm-compat.h>
  15. #include <asm/page.h>
  16. /*
  17. * This is necessary to get the definition of PGTABLE_RANGE which we
  18. * need for various slices related matters. Note that this isn't the
  19. * complete pgtable.h but only a portion of it.
  20. */
  21. #include <asm/pgtable-ppc64.h>
  22. #include <asm/bug.h>
  23. /*
  24. * Segment table
  25. */
  26. #define STE_ESID_V 0x80
  27. #define STE_ESID_KS 0x20
  28. #define STE_ESID_KP 0x10
  29. #define STE_ESID_N 0x08
  30. #define STE_VSID_SHIFT 12
  31. /* Location of cpu0's segment table */
  32. #define STAB0_PAGE 0x8
  33. #define STAB0_OFFSET (STAB0_PAGE << 12)
  34. #define STAB0_PHYS_ADDR (STAB0_OFFSET + PHYSICAL_START)
  35. #ifndef __ASSEMBLY__
  36. extern char initial_stab[];
  37. #endif /* ! __ASSEMBLY */
  38. /*
  39. * SLB
  40. */
  41. #define SLB_NUM_BOLTED 3
  42. #define SLB_CACHE_ENTRIES 8
  43. #define SLB_MIN_SIZE 32
  44. /* Bits in the SLB ESID word */
  45. #define SLB_ESID_V ASM_CONST(0x0000000008000000) /* valid */
  46. /* Bits in the SLB VSID word */
  47. #define SLB_VSID_SHIFT 12
  48. #define SLB_VSID_SHIFT_1T 24
  49. #define SLB_VSID_SSIZE_SHIFT 62
  50. #define SLB_VSID_B ASM_CONST(0xc000000000000000)
  51. #define SLB_VSID_B_256M ASM_CONST(0x0000000000000000)
  52. #define SLB_VSID_B_1T ASM_CONST(0x4000000000000000)
  53. #define SLB_VSID_KS ASM_CONST(0x0000000000000800)
  54. #define SLB_VSID_KP ASM_CONST(0x0000000000000400)
  55. #define SLB_VSID_N ASM_CONST(0x0000000000000200) /* no-execute */
  56. #define SLB_VSID_L ASM_CONST(0x0000000000000100)
  57. #define SLB_VSID_C ASM_CONST(0x0000000000000080) /* class */
  58. #define SLB_VSID_LP ASM_CONST(0x0000000000000030)
  59. #define SLB_VSID_LP_00 ASM_CONST(0x0000000000000000)
  60. #define SLB_VSID_LP_01 ASM_CONST(0x0000000000000010)
  61. #define SLB_VSID_LP_10 ASM_CONST(0x0000000000000020)
  62. #define SLB_VSID_LP_11 ASM_CONST(0x0000000000000030)
  63. #define SLB_VSID_LLP (SLB_VSID_L|SLB_VSID_LP)
  64. #define SLB_VSID_KERNEL (SLB_VSID_KP)
  65. #define SLB_VSID_USER (SLB_VSID_KP|SLB_VSID_KS|SLB_VSID_C)
  66. #define SLBIE_C (0x08000000)
  67. #define SLBIE_SSIZE_SHIFT 25
  68. /*
  69. * Hash table
  70. */
  71. #define HPTES_PER_GROUP 8
  72. #define HPTE_V_SSIZE_SHIFT 62
  73. #define HPTE_V_AVPN_SHIFT 7
  74. #define HPTE_V_AVPN ASM_CONST(0x3fffffffffffff80)
  75. #define HPTE_V_AVPN_VAL(x) (((x) & HPTE_V_AVPN) >> HPTE_V_AVPN_SHIFT)
  76. #define HPTE_V_COMPARE(x,y) (!(((x) ^ (y)) & 0xffffffffffffff80UL))
  77. #define HPTE_V_BOLTED ASM_CONST(0x0000000000000010)
  78. #define HPTE_V_LOCK ASM_CONST(0x0000000000000008)
  79. #define HPTE_V_LARGE ASM_CONST(0x0000000000000004)
  80. #define HPTE_V_SECONDARY ASM_CONST(0x0000000000000002)
  81. #define HPTE_V_VALID ASM_CONST(0x0000000000000001)
  82. #define HPTE_R_PP0 ASM_CONST(0x8000000000000000)
  83. #define HPTE_R_TS ASM_CONST(0x4000000000000000)
  84. #define HPTE_R_KEY_HI ASM_CONST(0x3000000000000000)
  85. #define HPTE_R_RPN_SHIFT 12
  86. #define HPTE_R_RPN ASM_CONST(0x0ffffffffffff000)
  87. #define HPTE_R_PP ASM_CONST(0x0000000000000003)
  88. #define HPTE_R_N ASM_CONST(0x0000000000000004)
  89. #define HPTE_R_G ASM_CONST(0x0000000000000008)
  90. #define HPTE_R_M ASM_CONST(0x0000000000000010)
  91. #define HPTE_R_I ASM_CONST(0x0000000000000020)
  92. #define HPTE_R_W ASM_CONST(0x0000000000000040)
  93. #define HPTE_R_WIMG ASM_CONST(0x0000000000000078)
  94. #define HPTE_R_C ASM_CONST(0x0000000000000080)
  95. #define HPTE_R_R ASM_CONST(0x0000000000000100)
  96. #define HPTE_R_KEY_LO ASM_CONST(0x0000000000000e00)
  97. #define HPTE_V_1TB_SEG ASM_CONST(0x4000000000000000)
  98. #define HPTE_V_VRMA_MASK ASM_CONST(0x4001ffffff000000)
  99. /* Values for PP (assumes Ks=0, Kp=1) */
  100. #define PP_RWXX 0 /* Supervisor read/write, User none */
  101. #define PP_RWRX 1 /* Supervisor read/write, User read */
  102. #define PP_RWRW 2 /* Supervisor read/write, User read/write */
  103. #define PP_RXRX 3 /* Supervisor read, User read */
  104. #define PP_RXXX (HPTE_R_PP0 | 2) /* Supervisor read, user none */
  105. /* Fields for tlbiel instruction in architecture 2.06 */
  106. #define TLBIEL_INVAL_SEL_MASK 0xc00 /* invalidation selector */
  107. #define TLBIEL_INVAL_PAGE 0x000 /* invalidate a single page */
  108. #define TLBIEL_INVAL_SET_LPID 0x800 /* invalidate a set for current LPID */
  109. #define TLBIEL_INVAL_SET 0xc00 /* invalidate a set for all LPIDs */
  110. #define TLBIEL_INVAL_SET_MASK 0xfff000 /* set number to inval. */
  111. #define TLBIEL_INVAL_SET_SHIFT 12
  112. #define POWER7_TLB_SETS 128 /* # sets in POWER7 TLB */
  113. #ifndef __ASSEMBLY__
  114. struct hash_pte {
  115. unsigned long v;
  116. unsigned long r;
  117. };
  118. extern struct hash_pte *htab_address;
  119. extern unsigned long htab_size_bytes;
  120. extern unsigned long htab_hash_mask;
  121. /*
  122. * Page size definition
  123. *
  124. * shift : is the "PAGE_SHIFT" value for that page size
  125. * sllp : is a bit mask with the value of SLB L || LP to be or'ed
  126. * directly to a slbmte "vsid" value
  127. * penc : is the HPTE encoding mask for the "LP" field:
  128. *
  129. */
  130. struct mmu_psize_def
  131. {
  132. unsigned int shift; /* number of bits */
  133. unsigned int penc; /* HPTE encoding */
  134. unsigned int tlbiel; /* tlbiel supported for that page size */
  135. unsigned long avpnm; /* bits to mask out in AVPN in the HPTE */
  136. unsigned long sllp; /* SLB L||LP (exact mask to use in slbmte) */
  137. };
  138. extern struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT];
  139. static inline int shift_to_mmu_psize(unsigned int shift)
  140. {
  141. int psize;
  142. for (psize = 0; psize < MMU_PAGE_COUNT; ++psize)
  143. if (mmu_psize_defs[psize].shift == shift)
  144. return psize;
  145. return -1;
  146. }
  147. static inline unsigned int mmu_psize_to_shift(unsigned int mmu_psize)
  148. {
  149. if (mmu_psize_defs[mmu_psize].shift)
  150. return mmu_psize_defs[mmu_psize].shift;
  151. BUG();
  152. }
  153. #endif /* __ASSEMBLY__ */
  154. /*
  155. * Segment sizes.
  156. * These are the values used by hardware in the B field of
  157. * SLB entries and the first dword of MMU hashtable entries.
  158. * The B field is 2 bits; the values 2 and 3 are unused and reserved.
  159. */
  160. #define MMU_SEGSIZE_256M 0
  161. #define MMU_SEGSIZE_1T 1
  162. /*
  163. * encode page number shift.
  164. * in order to fit the 78 bit va in a 64 bit variable we shift the va by
  165. * 12 bits. This enable us to address upto 76 bit va.
  166. * For hpt hash from a va we can ignore the page size bits of va and for
  167. * hpte encoding we ignore up to 23 bits of va. So ignoring lower 12 bits ensure
  168. * we work in all cases including 4k page size.
  169. */
  170. #define VPN_SHIFT 12
  171. #ifndef __ASSEMBLY__
  172. static inline int segment_shift(int ssize)
  173. {
  174. if (ssize == MMU_SEGSIZE_256M)
  175. return SID_SHIFT;
  176. return SID_SHIFT_1T;
  177. }
  178. /*
  179. * The current system page and segment sizes
  180. */
  181. extern int mmu_linear_psize;
  182. extern int mmu_virtual_psize;
  183. extern int mmu_vmalloc_psize;
  184. extern int mmu_vmemmap_psize;
  185. extern int mmu_io_psize;
  186. extern int mmu_kernel_ssize;
  187. extern int mmu_highuser_ssize;
  188. extern u16 mmu_slb_size;
  189. extern unsigned long tce_alloc_start, tce_alloc_end;
  190. /*
  191. * If the processor supports 64k normal pages but not 64k cache
  192. * inhibited pages, we have to be prepared to switch processes
  193. * to use 4k pages when they create cache-inhibited mappings.
  194. * If this is the case, mmu_ci_restrictions will be set to 1.
  195. */
  196. extern int mmu_ci_restrictions;
  197. /*
  198. * This computes the AVPN and B fields of the first dword of a HPTE,
  199. * for use when we want to match an existing PTE. The bottom 7 bits
  200. * of the returned value are zero.
  201. */
  202. static inline unsigned long hpte_encode_avpn(unsigned long vpn, int psize,
  203. int ssize)
  204. {
  205. unsigned long v;
  206. /*
  207. * The AVA field omits the low-order 23 bits of the 78 bits VA.
  208. * These bits are not needed in the PTE, because the
  209. * low-order b of these bits are part of the byte offset
  210. * into the virtual page and, if b < 23, the high-order
  211. * 23-b of these bits are always used in selecting the
  212. * PTEGs to be searched
  213. */
  214. v = (vpn >> (23 - VPN_SHIFT)) & ~(mmu_psize_defs[psize].avpnm);
  215. v <<= HPTE_V_AVPN_SHIFT;
  216. v |= ((unsigned long) ssize) << HPTE_V_SSIZE_SHIFT;
  217. return v;
  218. }
  219. /*
  220. * This function sets the AVPN and L fields of the HPTE appropriately
  221. * for the page size
  222. */
  223. static inline unsigned long hpte_encode_v(unsigned long vpn,
  224. int psize, int ssize)
  225. {
  226. unsigned long v;
  227. v = hpte_encode_avpn(vpn, psize, ssize);
  228. if (psize != MMU_PAGE_4K)
  229. v |= HPTE_V_LARGE;
  230. return v;
  231. }
  232. /*
  233. * This function sets the ARPN, and LP fields of the HPTE appropriately
  234. * for the page size. We assume the pa is already "clean" that is properly
  235. * aligned for the requested page size
  236. */
  237. static inline unsigned long hpte_encode_r(unsigned long pa, int psize)
  238. {
  239. unsigned long r;
  240. /* A 4K page needs no special encoding */
  241. if (psize == MMU_PAGE_4K)
  242. return pa & HPTE_R_RPN;
  243. else {
  244. unsigned int penc = mmu_psize_defs[psize].penc;
  245. unsigned int shift = mmu_psize_defs[psize].shift;
  246. return (pa & ~((1ul << shift) - 1)) | (penc << 12);
  247. }
  248. return r;
  249. }
  250. /*
  251. * Build a VPN_SHIFT bit shifted va given VSID, EA and segment size.
  252. */
  253. static inline unsigned long hpt_vpn(unsigned long ea,
  254. unsigned long vsid, int ssize)
  255. {
  256. unsigned long mask;
  257. int s_shift = segment_shift(ssize);
  258. mask = (1ul << (s_shift - VPN_SHIFT)) - 1;
  259. return (vsid << (s_shift - VPN_SHIFT)) | ((ea >> VPN_SHIFT) & mask);
  260. }
  261. /*
  262. * This hashes a virtual address
  263. */
  264. static inline unsigned long hpt_hash(unsigned long vpn,
  265. unsigned int shift, int ssize)
  266. {
  267. int mask;
  268. unsigned long hash, vsid;
  269. /* VPN_SHIFT can be atmost 12 */
  270. if (ssize == MMU_SEGSIZE_256M) {
  271. mask = (1ul << (SID_SHIFT - VPN_SHIFT)) - 1;
  272. hash = (vpn >> (SID_SHIFT - VPN_SHIFT)) ^
  273. ((vpn & mask) >> (shift - VPN_SHIFT));
  274. } else {
  275. mask = (1ul << (SID_SHIFT_1T - VPN_SHIFT)) - 1;
  276. vsid = vpn >> (SID_SHIFT_1T - VPN_SHIFT);
  277. hash = vsid ^ (vsid << 25) ^
  278. ((vpn & mask) >> (shift - VPN_SHIFT)) ;
  279. }
  280. return hash & 0x7fffffffffUL;
  281. }
  282. extern int __hash_page_4K(unsigned long ea, unsigned long access,
  283. unsigned long vsid, pte_t *ptep, unsigned long trap,
  284. unsigned int local, int ssize, int subpage_prot);
  285. extern int __hash_page_64K(unsigned long ea, unsigned long access,
  286. unsigned long vsid, pte_t *ptep, unsigned long trap,
  287. unsigned int local, int ssize);
  288. struct mm_struct;
  289. unsigned int hash_page_do_lazy_icache(unsigned int pp, pte_t pte, int trap);
  290. extern int hash_page(unsigned long ea, unsigned long access, unsigned long trap);
  291. int __hash_page_huge(unsigned long ea, unsigned long access, unsigned long vsid,
  292. pte_t *ptep, unsigned long trap, int local, int ssize,
  293. unsigned int shift, unsigned int mmu_psize);
  294. extern void hash_failure_debug(unsigned long ea, unsigned long access,
  295. unsigned long vsid, unsigned long trap,
  296. int ssize, int psize, unsigned long pte);
  297. extern int htab_bolt_mapping(unsigned long vstart, unsigned long vend,
  298. unsigned long pstart, unsigned long prot,
  299. int psize, int ssize);
  300. extern void add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages);
  301. extern void demote_segment_4k(struct mm_struct *mm, unsigned long addr);
  302. extern void hpte_init_native(void);
  303. extern void hpte_init_lpar(void);
  304. extern void hpte_init_beat(void);
  305. extern void hpte_init_beat_v3(void);
  306. extern void stabs_alloc(void);
  307. extern void slb_initialize(void);
  308. extern void slb_flush_and_rebolt(void);
  309. extern void stab_initialize(unsigned long stab);
  310. extern void slb_vmalloc_update(void);
  311. extern void slb_set_size(u16 size);
  312. #endif /* __ASSEMBLY__ */
  313. /*
  314. * VSID allocation (256MB segment)
  315. *
  316. * We first generate a 37-bit "proto-VSID". Proto-VSIDs are generated
  317. * from mmu context id and effective segment id of the address.
  318. *
  319. * For user processes max context id is limited to ((1ul << 19) - 5)
  320. * for kernel space, we use the top 4 context ids to map address as below
  321. * NOTE: each context only support 64TB now.
  322. * 0x7fffc - [ 0xc000000000000000 - 0xc0003fffffffffff ]
  323. * 0x7fffd - [ 0xd000000000000000 - 0xd0003fffffffffff ]
  324. * 0x7fffe - [ 0xe000000000000000 - 0xe0003fffffffffff ]
  325. * 0x7ffff - [ 0xf000000000000000 - 0xf0003fffffffffff ]
  326. *
  327. * The proto-VSIDs are then scrambled into real VSIDs with the
  328. * multiplicative hash:
  329. *
  330. * VSID = (proto-VSID * VSID_MULTIPLIER) % VSID_MODULUS
  331. *
  332. * VSID_MULTIPLIER is prime, so in particular it is
  333. * co-prime to VSID_MODULUS, making this a 1:1 scrambling function.
  334. * Because the modulus is 2^n-1 we can compute it efficiently without
  335. * a divide or extra multiply (see below). The scramble function gives
  336. * robust scattering in the hash table (at least based on some initial
  337. * results).
  338. *
  339. * We also consider VSID 0 special. We use VSID 0 for slb entries mapping
  340. * bad address. This enables us to consolidate bad address handling in
  341. * hash_page.
  342. *
  343. * We also need to avoid the last segment of the last context, because that
  344. * would give a protovsid of 0x1fffffffff. That will result in a VSID 0
  345. * because of the modulo operation in vsid scramble. But the vmemmap
  346. * (which is what uses region 0xf) will never be close to 64TB in size
  347. * (it's 56 bytes per page of system memory).
  348. */
  349. #define CONTEXT_BITS 19
  350. #define ESID_BITS 18
  351. #define ESID_BITS_1T 6
  352. /*
  353. * 256MB segment
  354. * The proto-VSID space has 2^(CONTEX_BITS + ESID_BITS) - 1 segments
  355. * available for user + kernel mapping. The top 4 contexts are used for
  356. * kernel mapping. Each segment contains 2^28 bytes. Each
  357. * context maps 2^46 bytes (64TB) so we can support 2^19-1 contexts
  358. * (19 == 37 + 28 - 46).
  359. */
  360. #define MAX_USER_CONTEXT ((ASM_CONST(1) << CONTEXT_BITS) - 5)
  361. /*
  362. * This should be computed such that protovosid * vsid_mulitplier
  363. * doesn't overflow 64 bits. It should also be co-prime to vsid_modulus
  364. */
  365. #define VSID_MULTIPLIER_256M ASM_CONST(12538073) /* 24-bit prime */
  366. #define VSID_BITS_256M (CONTEXT_BITS + ESID_BITS)
  367. #define VSID_MODULUS_256M ((1UL<<VSID_BITS_256M)-1)
  368. #define VSID_MULTIPLIER_1T ASM_CONST(12538073) /* 24-bit prime */
  369. #define VSID_BITS_1T (CONTEXT_BITS + ESID_BITS_1T)
  370. #define VSID_MODULUS_1T ((1UL<<VSID_BITS_1T)-1)
  371. #define USER_VSID_RANGE (1UL << (ESID_BITS + SID_SHIFT))
  372. /*
  373. * This macro generates asm code to compute the VSID scramble
  374. * function. Used in slb_allocate() and do_stab_bolted. The function
  375. * computed is: (protovsid*VSID_MULTIPLIER) % VSID_MODULUS
  376. *
  377. * rt = register continaing the proto-VSID and into which the
  378. * VSID will be stored
  379. * rx = scratch register (clobbered)
  380. *
  381. * - rt and rx must be different registers
  382. * - The answer will end up in the low VSID_BITS bits of rt. The higher
  383. * bits may contain other garbage, so you may need to mask the
  384. * result.
  385. */
  386. #define ASM_VSID_SCRAMBLE(rt, rx, size) \
  387. lis rx,VSID_MULTIPLIER_##size@h; \
  388. ori rx,rx,VSID_MULTIPLIER_##size@l; \
  389. mulld rt,rt,rx; /* rt = rt * MULTIPLIER */ \
  390. \
  391. srdi rx,rt,VSID_BITS_##size; \
  392. clrldi rt,rt,(64-VSID_BITS_##size); \
  393. add rt,rt,rx; /* add high and low bits */ \
  394. /* NOTE: explanation based on VSID_BITS_##size = 36 \
  395. * Now, r3 == VSID (mod 2^36-1), and lies between 0 and \
  396. * 2^36-1+2^28-1. That in particular means that if r3 >= \
  397. * 2^36-1, then r3+1 has the 2^36 bit set. So, if r3+1 has \
  398. * the bit clear, r3 already has the answer we want, if it \
  399. * doesn't, the answer is the low 36 bits of r3+1. So in all \
  400. * cases the answer is the low 36 bits of (r3 + ((r3+1) >> 36))*/\
  401. addi rx,rt,1; \
  402. srdi rx,rx,VSID_BITS_##size; /* extract 2^VSID_BITS bit */ \
  403. add rt,rt,rx
  404. /* 4 bits per slice and we have one slice per 1TB */
  405. #define SLICE_ARRAY_SIZE (PGTABLE_RANGE >> 41)
  406. #ifndef __ASSEMBLY__
  407. #ifdef CONFIG_PPC_SUBPAGE_PROT
  408. /*
  409. * For the sub-page protection option, we extend the PGD with one of
  410. * these. Basically we have a 3-level tree, with the top level being
  411. * the protptrs array. To optimize speed and memory consumption when
  412. * only addresses < 4GB are being protected, pointers to the first
  413. * four pages of sub-page protection words are stored in the low_prot
  414. * array.
  415. * Each page of sub-page protection words protects 1GB (4 bytes
  416. * protects 64k). For the 3-level tree, each page of pointers then
  417. * protects 8TB.
  418. */
  419. struct subpage_prot_table {
  420. unsigned long maxaddr; /* only addresses < this are protected */
  421. unsigned int **protptrs[2];
  422. unsigned int *low_prot[4];
  423. };
  424. #define SBP_L1_BITS (PAGE_SHIFT - 2)
  425. #define SBP_L2_BITS (PAGE_SHIFT - 3)
  426. #define SBP_L1_COUNT (1 << SBP_L1_BITS)
  427. #define SBP_L2_COUNT (1 << SBP_L2_BITS)
  428. #define SBP_L2_SHIFT (PAGE_SHIFT + SBP_L1_BITS)
  429. #define SBP_L3_SHIFT (SBP_L2_SHIFT + SBP_L2_BITS)
  430. extern void subpage_prot_free(struct mm_struct *mm);
  431. extern void subpage_prot_init_new_context(struct mm_struct *mm);
  432. #else
  433. static inline void subpage_prot_free(struct mm_struct *mm) {}
  434. static inline void subpage_prot_init_new_context(struct mm_struct *mm) { }
  435. #endif /* CONFIG_PPC_SUBPAGE_PROT */
  436. typedef unsigned long mm_context_id_t;
  437. struct spinlock;
  438. typedef struct {
  439. mm_context_id_t id;
  440. u16 user_psize; /* page size index */
  441. #ifdef CONFIG_PPC_MM_SLICES
  442. u64 low_slices_psize; /* SLB page size encodings */
  443. unsigned char high_slices_psize[SLICE_ARRAY_SIZE];
  444. #else
  445. u16 sllp; /* SLB page size encoding */
  446. #endif
  447. unsigned long vdso_base;
  448. #ifdef CONFIG_PPC_SUBPAGE_PROT
  449. struct subpage_prot_table spt;
  450. #endif /* CONFIG_PPC_SUBPAGE_PROT */
  451. #ifdef CONFIG_PPC_ICSWX
  452. struct spinlock *cop_lockp; /* guard acop and cop_pid */
  453. unsigned long acop; /* mask of enabled coprocessor types */
  454. unsigned int cop_pid; /* pid value used with coprocessors */
  455. #endif /* CONFIG_PPC_ICSWX */
  456. } mm_context_t;
  457. #if 0
  458. /*
  459. * The code below is equivalent to this function for arguments
  460. * < 2^VSID_BITS, which is all this should ever be called
  461. * with. However gcc is not clever enough to compute the
  462. * modulus (2^n-1) without a second multiply.
  463. */
  464. #define vsid_scramble(protovsid, size) \
  465. ((((protovsid) * VSID_MULTIPLIER_##size) % VSID_MODULUS_##size))
  466. #else /* 1 */
  467. #define vsid_scramble(protovsid, size) \
  468. ({ \
  469. unsigned long x; \
  470. x = (protovsid) * VSID_MULTIPLIER_##size; \
  471. x = (x >> VSID_BITS_##size) + (x & VSID_MODULUS_##size); \
  472. (x + ((x+1) >> VSID_BITS_##size)) & VSID_MODULUS_##size; \
  473. })
  474. #endif /* 1 */
  475. /* Returns the segment size indicator for a user address */
  476. static inline int user_segment_size(unsigned long addr)
  477. {
  478. /* Use 1T segments if possible for addresses >= 1T */
  479. if (addr >= (1UL << SID_SHIFT_1T))
  480. return mmu_highuser_ssize;
  481. return MMU_SEGSIZE_256M;
  482. }
  483. static inline unsigned long get_vsid(unsigned long context, unsigned long ea,
  484. int ssize)
  485. {
  486. /*
  487. * Bad address. We return VSID 0 for that
  488. */
  489. if ((ea & ~REGION_MASK) >= PGTABLE_RANGE)
  490. return 0;
  491. if (ssize == MMU_SEGSIZE_256M)
  492. return vsid_scramble((context << ESID_BITS)
  493. | (ea >> SID_SHIFT), 256M);
  494. return vsid_scramble((context << ESID_BITS_1T)
  495. | (ea >> SID_SHIFT_1T), 1T);
  496. }
  497. /*
  498. * This is only valid for addresses >= PAGE_OFFSET
  499. *
  500. * For kernel space, we use the top 4 context ids to map address as below
  501. * 0x7fffc - [ 0xc000000000000000 - 0xc0003fffffffffff ]
  502. * 0x7fffd - [ 0xd000000000000000 - 0xd0003fffffffffff ]
  503. * 0x7fffe - [ 0xe000000000000000 - 0xe0003fffffffffff ]
  504. * 0x7ffff - [ 0xf000000000000000 - 0xf0003fffffffffff ]
  505. */
  506. static inline unsigned long get_kernel_vsid(unsigned long ea, int ssize)
  507. {
  508. unsigned long context;
  509. /*
  510. * kernel take the top 4 context from the available range
  511. */
  512. context = (MAX_USER_CONTEXT) + ((ea >> 60) - 0xc) + 1;
  513. return get_vsid(context, ea, ssize);
  514. }
  515. #endif /* __ASSEMBLY__ */
  516. #endif /* _ASM_POWERPC_MMU_HASH64_H_ */