irq.c 9.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363
  1. /*
  2. * Common interrupt code for 32 and 64 bit
  3. */
  4. #include <linux/cpu.h>
  5. #include <linux/interrupt.h>
  6. #include <linux/kernel_stat.h>
  7. #include <linux/of.h>
  8. #include <linux/seq_file.h>
  9. #include <linux/smp.h>
  10. #include <linux/ftrace.h>
  11. #include <linux/delay.h>
  12. #include <linux/export.h>
  13. #include <asm/apic.h>
  14. #include <asm/io_apic.h>
  15. #include <asm/irq.h>
  16. #include <asm/idle.h>
  17. #include <asm/mce.h>
  18. #include <asm/hw_irq.h>
  19. #include <asm/trace/irq_vectors.h>
  20. atomic_t irq_err_count;
  21. /* Function pointer for generic interrupt vector handling */
  22. void (*x86_platform_ipi_callback)(void) = NULL;
  23. /*
  24. * 'what should we do if we get a hw irq event on an illegal vector'.
  25. * each architecture has to answer this themselves.
  26. */
  27. void ack_bad_irq(unsigned int irq)
  28. {
  29. if (printk_ratelimit())
  30. pr_err("unexpected IRQ trap at vector %02x\n", irq);
  31. /*
  32. * Currently unexpected vectors happen only on SMP and APIC.
  33. * We _must_ ack these because every local APIC has only N
  34. * irq slots per priority level, and a 'hanging, unacked' IRQ
  35. * holds up an irq slot - in excessive cases (when multiple
  36. * unexpected vectors occur) that might lock up the APIC
  37. * completely.
  38. * But only ack when the APIC is enabled -AK
  39. */
  40. ack_APIC_irq();
  41. }
  42. #define irq_stats(x) (&per_cpu(irq_stat, x))
  43. /*
  44. * /proc/interrupts printing for arch specific interrupts
  45. */
  46. int arch_show_interrupts(struct seq_file *p, int prec)
  47. {
  48. int j;
  49. seq_printf(p, "%*s: ", prec, "NMI");
  50. for_each_online_cpu(j)
  51. seq_printf(p, "%10u ", irq_stats(j)->__nmi_count);
  52. seq_printf(p, " Non-maskable interrupts\n");
  53. #ifdef CONFIG_X86_LOCAL_APIC
  54. seq_printf(p, "%*s: ", prec, "LOC");
  55. for_each_online_cpu(j)
  56. seq_printf(p, "%10u ", irq_stats(j)->apic_timer_irqs);
  57. seq_printf(p, " Local timer interrupts\n");
  58. seq_printf(p, "%*s: ", prec, "SPU");
  59. for_each_online_cpu(j)
  60. seq_printf(p, "%10u ", irq_stats(j)->irq_spurious_count);
  61. seq_printf(p, " Spurious interrupts\n");
  62. seq_printf(p, "%*s: ", prec, "PMI");
  63. for_each_online_cpu(j)
  64. seq_printf(p, "%10u ", irq_stats(j)->apic_perf_irqs);
  65. seq_printf(p, " Performance monitoring interrupts\n");
  66. seq_printf(p, "%*s: ", prec, "IWI");
  67. for_each_online_cpu(j)
  68. seq_printf(p, "%10u ", irq_stats(j)->apic_irq_work_irqs);
  69. seq_printf(p, " IRQ work interrupts\n");
  70. seq_printf(p, "%*s: ", prec, "RTR");
  71. for_each_online_cpu(j)
  72. seq_printf(p, "%10u ", irq_stats(j)->icr_read_retry_count);
  73. seq_printf(p, " APIC ICR read retries\n");
  74. #endif
  75. if (x86_platform_ipi_callback) {
  76. seq_printf(p, "%*s: ", prec, "PLT");
  77. for_each_online_cpu(j)
  78. seq_printf(p, "%10u ", irq_stats(j)->x86_platform_ipis);
  79. seq_printf(p, " Platform interrupts\n");
  80. }
  81. #ifdef CONFIG_SMP
  82. seq_printf(p, "%*s: ", prec, "RES");
  83. for_each_online_cpu(j)
  84. seq_printf(p, "%10u ", irq_stats(j)->irq_resched_count);
  85. seq_printf(p, " Rescheduling interrupts\n");
  86. seq_printf(p, "%*s: ", prec, "CAL");
  87. for_each_online_cpu(j)
  88. seq_printf(p, "%10u ", irq_stats(j)->irq_call_count -
  89. irq_stats(j)->irq_tlb_count);
  90. seq_printf(p, " Function call interrupts\n");
  91. seq_printf(p, "%*s: ", prec, "TLB");
  92. for_each_online_cpu(j)
  93. seq_printf(p, "%10u ", irq_stats(j)->irq_tlb_count);
  94. seq_printf(p, " TLB shootdowns\n");
  95. #endif
  96. #ifdef CONFIG_X86_THERMAL_VECTOR
  97. seq_printf(p, "%*s: ", prec, "TRM");
  98. for_each_online_cpu(j)
  99. seq_printf(p, "%10u ", irq_stats(j)->irq_thermal_count);
  100. seq_printf(p, " Thermal event interrupts\n");
  101. #endif
  102. #ifdef CONFIG_X86_MCE_THRESHOLD
  103. seq_printf(p, "%*s: ", prec, "THR");
  104. for_each_online_cpu(j)
  105. seq_printf(p, "%10u ", irq_stats(j)->irq_threshold_count);
  106. seq_printf(p, " Threshold APIC interrupts\n");
  107. #endif
  108. #ifdef CONFIG_X86_MCE
  109. seq_printf(p, "%*s: ", prec, "MCE");
  110. for_each_online_cpu(j)
  111. seq_printf(p, "%10u ", per_cpu(mce_exception_count, j));
  112. seq_printf(p, " Machine check exceptions\n");
  113. seq_printf(p, "%*s: ", prec, "MCP");
  114. for_each_online_cpu(j)
  115. seq_printf(p, "%10u ", per_cpu(mce_poll_count, j));
  116. seq_printf(p, " Machine check polls\n");
  117. #endif
  118. seq_printf(p, "%*s: %10u\n", prec, "ERR", atomic_read(&irq_err_count));
  119. #if defined(CONFIG_X86_IO_APIC)
  120. seq_printf(p, "%*s: %10u\n", prec, "MIS", atomic_read(&irq_mis_count));
  121. #endif
  122. return 0;
  123. }
  124. /*
  125. * /proc/stat helpers
  126. */
  127. u64 arch_irq_stat_cpu(unsigned int cpu)
  128. {
  129. u64 sum = irq_stats(cpu)->__nmi_count;
  130. #ifdef CONFIG_X86_LOCAL_APIC
  131. sum += irq_stats(cpu)->apic_timer_irqs;
  132. sum += irq_stats(cpu)->irq_spurious_count;
  133. sum += irq_stats(cpu)->apic_perf_irqs;
  134. sum += irq_stats(cpu)->apic_irq_work_irqs;
  135. sum += irq_stats(cpu)->icr_read_retry_count;
  136. #endif
  137. if (x86_platform_ipi_callback)
  138. sum += irq_stats(cpu)->x86_platform_ipis;
  139. #ifdef CONFIG_SMP
  140. sum += irq_stats(cpu)->irq_resched_count;
  141. sum += irq_stats(cpu)->irq_call_count;
  142. #endif
  143. #ifdef CONFIG_X86_THERMAL_VECTOR
  144. sum += irq_stats(cpu)->irq_thermal_count;
  145. #endif
  146. #ifdef CONFIG_X86_MCE_THRESHOLD
  147. sum += irq_stats(cpu)->irq_threshold_count;
  148. #endif
  149. #ifdef CONFIG_X86_MCE
  150. sum += per_cpu(mce_exception_count, cpu);
  151. sum += per_cpu(mce_poll_count, cpu);
  152. #endif
  153. return sum;
  154. }
  155. u64 arch_irq_stat(void)
  156. {
  157. u64 sum = atomic_read(&irq_err_count);
  158. return sum;
  159. }
  160. /*
  161. * do_IRQ handles all normal device IRQ's (the special
  162. * SMP cross-CPU interrupts have their own specific
  163. * handlers).
  164. */
  165. unsigned int __irq_entry do_IRQ(struct pt_regs *regs)
  166. {
  167. struct pt_regs *old_regs = set_irq_regs(regs);
  168. /* high bit used in ret_from_ code */
  169. unsigned vector = ~regs->orig_ax;
  170. unsigned irq;
  171. irq_enter();
  172. exit_idle();
  173. irq = __this_cpu_read(vector_irq[vector]);
  174. if (!handle_irq(irq, regs)) {
  175. ack_APIC_irq();
  176. if (printk_ratelimit())
  177. pr_emerg("%s: %d.%d No irq handler for vector (irq %d)\n",
  178. __func__, smp_processor_id(), vector, irq);
  179. }
  180. irq_exit();
  181. set_irq_regs(old_regs);
  182. return 1;
  183. }
  184. /*
  185. * Handler for X86_PLATFORM_IPI_VECTOR.
  186. */
  187. void __smp_x86_platform_ipi(void)
  188. {
  189. inc_irq_stat(x86_platform_ipis);
  190. if (x86_platform_ipi_callback)
  191. x86_platform_ipi_callback();
  192. }
  193. void smp_x86_platform_ipi(struct pt_regs *regs)
  194. {
  195. struct pt_regs *old_regs = set_irq_regs(regs);
  196. entering_ack_irq();
  197. __smp_x86_platform_ipi();
  198. exiting_irq();
  199. set_irq_regs(old_regs);
  200. }
  201. #ifdef CONFIG_HAVE_KVM
  202. /*
  203. * Handler for POSTED_INTERRUPT_VECTOR.
  204. */
  205. void smp_kvm_posted_intr_ipi(struct pt_regs *regs)
  206. {
  207. struct pt_regs *old_regs = set_irq_regs(regs);
  208. ack_APIC_irq();
  209. irq_enter();
  210. exit_idle();
  211. inc_irq_stat(kvm_posted_intr_ipis);
  212. irq_exit();
  213. set_irq_regs(old_regs);
  214. }
  215. #endif
  216. void smp_trace_x86_platform_ipi(struct pt_regs *regs)
  217. {
  218. struct pt_regs *old_regs = set_irq_regs(regs);
  219. entering_ack_irq();
  220. trace_x86_platform_ipi_entry(X86_PLATFORM_IPI_VECTOR);
  221. __smp_x86_platform_ipi();
  222. trace_x86_platform_ipi_exit(X86_PLATFORM_IPI_VECTOR);
  223. exiting_irq();
  224. set_irq_regs(old_regs);
  225. }
  226. EXPORT_SYMBOL_GPL(vector_used_by_percpu_irq);
  227. #ifdef CONFIG_HOTPLUG_CPU
  228. /* A cpu has been removed from cpu_online_mask. Reset irq affinities. */
  229. void fixup_irqs(void)
  230. {
  231. unsigned int irq, vector;
  232. static int warned;
  233. struct irq_desc *desc;
  234. struct irq_data *data;
  235. struct irq_chip *chip;
  236. for_each_irq_desc(irq, desc) {
  237. int break_affinity = 0;
  238. int set_affinity = 1;
  239. const struct cpumask *affinity;
  240. if (!desc)
  241. continue;
  242. if (irq == 2)
  243. continue;
  244. /* interrupt's are disabled at this point */
  245. raw_spin_lock(&desc->lock);
  246. data = irq_desc_get_irq_data(desc);
  247. affinity = data->affinity;
  248. if (!irq_has_action(irq) || irqd_is_per_cpu(data) ||
  249. cpumask_subset(affinity, cpu_online_mask)) {
  250. raw_spin_unlock(&desc->lock);
  251. continue;
  252. }
  253. /*
  254. * Complete the irq move. This cpu is going down and for
  255. * non intr-remapping case, we can't wait till this interrupt
  256. * arrives at this cpu before completing the irq move.
  257. */
  258. irq_force_complete_move(irq);
  259. if (cpumask_any_and(affinity, cpu_online_mask) >= nr_cpu_ids) {
  260. break_affinity = 1;
  261. affinity = cpu_online_mask;
  262. }
  263. chip = irq_data_get_irq_chip(data);
  264. if (!irqd_can_move_in_process_context(data) && chip->irq_mask)
  265. chip->irq_mask(data);
  266. if (chip->irq_set_affinity)
  267. chip->irq_set_affinity(data, affinity, true);
  268. else if (!(warned++))
  269. set_affinity = 0;
  270. /*
  271. * We unmask if the irq was not marked masked by the
  272. * core code. That respects the lazy irq disable
  273. * behaviour.
  274. */
  275. if (!irqd_can_move_in_process_context(data) &&
  276. !irqd_irq_masked(data) && chip->irq_unmask)
  277. chip->irq_unmask(data);
  278. raw_spin_unlock(&desc->lock);
  279. if (break_affinity && set_affinity)
  280. pr_notice("Broke affinity for irq %i\n", irq);
  281. else if (!set_affinity)
  282. pr_notice("Cannot set affinity for irq %i\n", irq);
  283. }
  284. /*
  285. * We can remove mdelay() and then send spuriuous interrupts to
  286. * new cpu targets for all the irqs that were handled previously by
  287. * this cpu. While it works, I have seen spurious interrupt messages
  288. * (nothing wrong but still...).
  289. *
  290. * So for now, retain mdelay(1) and check the IRR and then send those
  291. * interrupts to new targets as this cpu is already offlined...
  292. */
  293. mdelay(1);
  294. for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS; vector++) {
  295. unsigned int irr;
  296. if (__this_cpu_read(vector_irq[vector]) < 0)
  297. continue;
  298. irr = apic_read(APIC_IRR + (vector / 32 * 0x10));
  299. if (irr & (1 << (vector % 32))) {
  300. irq = __this_cpu_read(vector_irq[vector]);
  301. desc = irq_to_desc(irq);
  302. data = irq_desc_get_irq_data(desc);
  303. chip = irq_data_get_irq_chip(data);
  304. raw_spin_lock(&desc->lock);
  305. if (chip->irq_retrigger)
  306. chip->irq_retrigger(data);
  307. raw_spin_unlock(&desc->lock);
  308. }
  309. __this_cpu_write(vector_irq[vector], -1);
  310. }
  311. }
  312. #endif