svm.c 85 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * AMD SVM support
  5. *
  6. * Copyright (C) 2006 Qumranet, Inc.
  7. *
  8. * Authors:
  9. * Yaniv Kamay <yaniv@qumranet.com>
  10. * Avi Kivity <avi@qumranet.com>
  11. *
  12. * This work is licensed under the terms of the GNU GPL, version 2. See
  13. * the COPYING file in the top-level directory.
  14. *
  15. */
  16. #include <linux/kvm_host.h>
  17. #include "irq.h"
  18. #include "mmu.h"
  19. #include "kvm_cache_regs.h"
  20. #include "x86.h"
  21. #include <linux/module.h>
  22. #include <linux/kernel.h>
  23. #include <linux/vmalloc.h>
  24. #include <linux/highmem.h>
  25. #include <linux/sched.h>
  26. #include <linux/ftrace_event.h>
  27. #include <linux/slab.h>
  28. #include <asm/desc.h>
  29. #include <asm/virtext.h>
  30. #include "trace.h"
  31. #define __ex(x) __kvm_handle_fault_on_reboot(x)
  32. MODULE_AUTHOR("Qumranet");
  33. MODULE_LICENSE("GPL");
  34. #define IOPM_ALLOC_ORDER 2
  35. #define MSRPM_ALLOC_ORDER 1
  36. #define SEG_TYPE_LDT 2
  37. #define SEG_TYPE_BUSY_TSS16 3
  38. #define SVM_FEATURE_NPT (1 << 0)
  39. #define SVM_FEATURE_LBRV (1 << 1)
  40. #define SVM_FEATURE_SVML (1 << 2)
  41. #define SVM_FEATURE_NRIP (1 << 3)
  42. #define SVM_FEATURE_PAUSE_FILTER (1 << 10)
  43. #define NESTED_EXIT_HOST 0 /* Exit handled on host level */
  44. #define NESTED_EXIT_DONE 1 /* Exit caused nested vmexit */
  45. #define NESTED_EXIT_CONTINUE 2 /* Further checks needed */
  46. #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
  47. static const u32 host_save_user_msrs[] = {
  48. #ifdef CONFIG_X86_64
  49. MSR_STAR, MSR_LSTAR, MSR_CSTAR, MSR_SYSCALL_MASK, MSR_KERNEL_GS_BASE,
  50. MSR_FS_BASE,
  51. #endif
  52. MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
  53. };
  54. #define NR_HOST_SAVE_USER_MSRS ARRAY_SIZE(host_save_user_msrs)
  55. struct kvm_vcpu;
  56. struct nested_state {
  57. struct vmcb *hsave;
  58. u64 hsave_msr;
  59. u64 vm_cr_msr;
  60. u64 vmcb;
  61. /* These are the merged vectors */
  62. u32 *msrpm;
  63. /* gpa pointers to the real vectors */
  64. u64 vmcb_msrpm;
  65. u64 vmcb_iopm;
  66. /* A VMEXIT is required but not yet emulated */
  67. bool exit_required;
  68. /* cache for intercepts of the guest */
  69. u16 intercept_cr_read;
  70. u16 intercept_cr_write;
  71. u16 intercept_dr_read;
  72. u16 intercept_dr_write;
  73. u32 intercept_exceptions;
  74. u64 intercept;
  75. };
  76. #define MSRPM_OFFSETS 16
  77. static u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
  78. struct vcpu_svm {
  79. struct kvm_vcpu vcpu;
  80. struct vmcb *vmcb;
  81. unsigned long vmcb_pa;
  82. struct svm_cpu_data *svm_data;
  83. uint64_t asid_generation;
  84. uint64_t sysenter_esp;
  85. uint64_t sysenter_eip;
  86. u64 next_rip;
  87. u64 host_user_msrs[NR_HOST_SAVE_USER_MSRS];
  88. u64 host_gs_base;
  89. u32 *msrpm;
  90. struct nested_state nested;
  91. bool nmi_singlestep;
  92. unsigned int3_injected;
  93. unsigned long int3_rip;
  94. };
  95. #define MSR_INVALID 0xffffffffU
  96. static struct svm_direct_access_msrs {
  97. u32 index; /* Index of the MSR */
  98. bool always; /* True if intercept is always on */
  99. } direct_access_msrs[] = {
  100. { .index = MSR_K6_STAR, .always = true },
  101. { .index = MSR_IA32_SYSENTER_CS, .always = true },
  102. #ifdef CONFIG_X86_64
  103. { .index = MSR_GS_BASE, .always = true },
  104. { .index = MSR_FS_BASE, .always = true },
  105. { .index = MSR_KERNEL_GS_BASE, .always = true },
  106. { .index = MSR_LSTAR, .always = true },
  107. { .index = MSR_CSTAR, .always = true },
  108. { .index = MSR_SYSCALL_MASK, .always = true },
  109. #endif
  110. { .index = MSR_IA32_LASTBRANCHFROMIP, .always = false },
  111. { .index = MSR_IA32_LASTBRANCHTOIP, .always = false },
  112. { .index = MSR_IA32_LASTINTFROMIP, .always = false },
  113. { .index = MSR_IA32_LASTINTTOIP, .always = false },
  114. { .index = MSR_INVALID, .always = false },
  115. };
  116. /* enable NPT for AMD64 and X86 with PAE */
  117. #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
  118. static bool npt_enabled = true;
  119. #else
  120. static bool npt_enabled;
  121. #endif
  122. static int npt = 1;
  123. module_param(npt, int, S_IRUGO);
  124. static int nested = 1;
  125. module_param(nested, int, S_IRUGO);
  126. static void svm_flush_tlb(struct kvm_vcpu *vcpu);
  127. static void svm_complete_interrupts(struct vcpu_svm *svm);
  128. static int nested_svm_exit_handled(struct vcpu_svm *svm);
  129. static int nested_svm_intercept(struct vcpu_svm *svm);
  130. static int nested_svm_vmexit(struct vcpu_svm *svm);
  131. static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
  132. bool has_error_code, u32 error_code);
  133. static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
  134. {
  135. return container_of(vcpu, struct vcpu_svm, vcpu);
  136. }
  137. static inline bool is_nested(struct vcpu_svm *svm)
  138. {
  139. return svm->nested.vmcb;
  140. }
  141. static inline void enable_gif(struct vcpu_svm *svm)
  142. {
  143. svm->vcpu.arch.hflags |= HF_GIF_MASK;
  144. }
  145. static inline void disable_gif(struct vcpu_svm *svm)
  146. {
  147. svm->vcpu.arch.hflags &= ~HF_GIF_MASK;
  148. }
  149. static inline bool gif_set(struct vcpu_svm *svm)
  150. {
  151. return !!(svm->vcpu.arch.hflags & HF_GIF_MASK);
  152. }
  153. static unsigned long iopm_base;
  154. struct kvm_ldttss_desc {
  155. u16 limit0;
  156. u16 base0;
  157. unsigned base1:8, type:5, dpl:2, p:1;
  158. unsigned limit1:4, zero0:3, g:1, base2:8;
  159. u32 base3;
  160. u32 zero1;
  161. } __attribute__((packed));
  162. struct svm_cpu_data {
  163. int cpu;
  164. u64 asid_generation;
  165. u32 max_asid;
  166. u32 next_asid;
  167. struct kvm_ldttss_desc *tss_desc;
  168. struct page *save_area;
  169. };
  170. static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
  171. static uint32_t svm_features;
  172. struct svm_init_data {
  173. int cpu;
  174. int r;
  175. };
  176. static u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
  177. #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
  178. #define MSRS_RANGE_SIZE 2048
  179. #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
  180. static u32 svm_msrpm_offset(u32 msr)
  181. {
  182. u32 offset;
  183. int i;
  184. for (i = 0; i < NUM_MSR_MAPS; i++) {
  185. if (msr < msrpm_ranges[i] ||
  186. msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
  187. continue;
  188. offset = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
  189. offset += (i * MSRS_RANGE_SIZE); /* add range offset */
  190. /* Now we have the u8 offset - but need the u32 offset */
  191. return offset / 4;
  192. }
  193. /* MSR not in any range */
  194. return MSR_INVALID;
  195. }
  196. #define MAX_INST_SIZE 15
  197. static inline u32 svm_has(u32 feat)
  198. {
  199. return svm_features & feat;
  200. }
  201. static inline void clgi(void)
  202. {
  203. asm volatile (__ex(SVM_CLGI));
  204. }
  205. static inline void stgi(void)
  206. {
  207. asm volatile (__ex(SVM_STGI));
  208. }
  209. static inline void invlpga(unsigned long addr, u32 asid)
  210. {
  211. asm volatile (__ex(SVM_INVLPGA) : : "a"(addr), "c"(asid));
  212. }
  213. static inline void force_new_asid(struct kvm_vcpu *vcpu)
  214. {
  215. to_svm(vcpu)->asid_generation--;
  216. }
  217. static inline void flush_guest_tlb(struct kvm_vcpu *vcpu)
  218. {
  219. force_new_asid(vcpu);
  220. }
  221. static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
  222. {
  223. if (!npt_enabled && !(efer & EFER_LMA))
  224. efer &= ~EFER_LME;
  225. to_svm(vcpu)->vmcb->save.efer = efer | EFER_SVME;
  226. vcpu->arch.efer = efer;
  227. }
  228. static int is_external_interrupt(u32 info)
  229. {
  230. info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
  231. return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
  232. }
  233. static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
  234. {
  235. struct vcpu_svm *svm = to_svm(vcpu);
  236. u32 ret = 0;
  237. if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
  238. ret |= KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
  239. return ret & mask;
  240. }
  241. static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
  242. {
  243. struct vcpu_svm *svm = to_svm(vcpu);
  244. if (mask == 0)
  245. svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
  246. else
  247. svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
  248. }
  249. static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
  250. {
  251. struct vcpu_svm *svm = to_svm(vcpu);
  252. if (!svm->next_rip) {
  253. if (emulate_instruction(vcpu, 0, 0, EMULTYPE_SKIP) !=
  254. EMULATE_DONE)
  255. printk(KERN_DEBUG "%s: NOP\n", __func__);
  256. return;
  257. }
  258. if (svm->next_rip - kvm_rip_read(vcpu) > MAX_INST_SIZE)
  259. printk(KERN_ERR "%s: ip 0x%lx next 0x%llx\n",
  260. __func__, kvm_rip_read(vcpu), svm->next_rip);
  261. kvm_rip_write(vcpu, svm->next_rip);
  262. svm_set_interrupt_shadow(vcpu, 0);
  263. }
  264. static void svm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
  265. bool has_error_code, u32 error_code)
  266. {
  267. struct vcpu_svm *svm = to_svm(vcpu);
  268. /*
  269. * If we are within a nested VM we'd better #VMEXIT and let the guest
  270. * handle the exception
  271. */
  272. if (nested_svm_check_exception(svm, nr, has_error_code, error_code))
  273. return;
  274. if (nr == BP_VECTOR && !svm_has(SVM_FEATURE_NRIP)) {
  275. unsigned long rip, old_rip = kvm_rip_read(&svm->vcpu);
  276. /*
  277. * For guest debugging where we have to reinject #BP if some
  278. * INT3 is guest-owned:
  279. * Emulate nRIP by moving RIP forward. Will fail if injection
  280. * raises a fault that is not intercepted. Still better than
  281. * failing in all cases.
  282. */
  283. skip_emulated_instruction(&svm->vcpu);
  284. rip = kvm_rip_read(&svm->vcpu);
  285. svm->int3_rip = rip + svm->vmcb->save.cs.base;
  286. svm->int3_injected = rip - old_rip;
  287. }
  288. svm->vmcb->control.event_inj = nr
  289. | SVM_EVTINJ_VALID
  290. | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
  291. | SVM_EVTINJ_TYPE_EXEPT;
  292. svm->vmcb->control.event_inj_err = error_code;
  293. }
  294. static int has_svm(void)
  295. {
  296. const char *msg;
  297. if (!cpu_has_svm(&msg)) {
  298. printk(KERN_INFO "has_svm: %s\n", msg);
  299. return 0;
  300. }
  301. return 1;
  302. }
  303. static void svm_hardware_disable(void *garbage)
  304. {
  305. cpu_svm_disable();
  306. }
  307. static int svm_hardware_enable(void *garbage)
  308. {
  309. struct svm_cpu_data *sd;
  310. uint64_t efer;
  311. struct desc_ptr gdt_descr;
  312. struct desc_struct *gdt;
  313. int me = raw_smp_processor_id();
  314. rdmsrl(MSR_EFER, efer);
  315. if (efer & EFER_SVME)
  316. return -EBUSY;
  317. if (!has_svm()) {
  318. printk(KERN_ERR "svm_hardware_enable: err EOPNOTSUPP on %d\n",
  319. me);
  320. return -EINVAL;
  321. }
  322. sd = per_cpu(svm_data, me);
  323. if (!sd) {
  324. printk(KERN_ERR "svm_hardware_enable: svm_data is NULL on %d\n",
  325. me);
  326. return -EINVAL;
  327. }
  328. sd->asid_generation = 1;
  329. sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
  330. sd->next_asid = sd->max_asid + 1;
  331. native_store_gdt(&gdt_descr);
  332. gdt = (struct desc_struct *)gdt_descr.address;
  333. sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
  334. wrmsrl(MSR_EFER, efer | EFER_SVME);
  335. wrmsrl(MSR_VM_HSAVE_PA, page_to_pfn(sd->save_area) << PAGE_SHIFT);
  336. return 0;
  337. }
  338. static void svm_cpu_uninit(int cpu)
  339. {
  340. struct svm_cpu_data *sd = per_cpu(svm_data, raw_smp_processor_id());
  341. if (!sd)
  342. return;
  343. per_cpu(svm_data, raw_smp_processor_id()) = NULL;
  344. __free_page(sd->save_area);
  345. kfree(sd);
  346. }
  347. static int svm_cpu_init(int cpu)
  348. {
  349. struct svm_cpu_data *sd;
  350. int r;
  351. sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
  352. if (!sd)
  353. return -ENOMEM;
  354. sd->cpu = cpu;
  355. sd->save_area = alloc_page(GFP_KERNEL);
  356. r = -ENOMEM;
  357. if (!sd->save_area)
  358. goto err_1;
  359. per_cpu(svm_data, cpu) = sd;
  360. return 0;
  361. err_1:
  362. kfree(sd);
  363. return r;
  364. }
  365. static bool valid_msr_intercept(u32 index)
  366. {
  367. int i;
  368. for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
  369. if (direct_access_msrs[i].index == index)
  370. return true;
  371. return false;
  372. }
  373. static void set_msr_interception(u32 *msrpm, unsigned msr,
  374. int read, int write)
  375. {
  376. u8 bit_read, bit_write;
  377. unsigned long tmp;
  378. u32 offset;
  379. /*
  380. * If this warning triggers extend the direct_access_msrs list at the
  381. * beginning of the file
  382. */
  383. WARN_ON(!valid_msr_intercept(msr));
  384. offset = svm_msrpm_offset(msr);
  385. bit_read = 2 * (msr & 0x0f);
  386. bit_write = 2 * (msr & 0x0f) + 1;
  387. tmp = msrpm[offset];
  388. BUG_ON(offset == MSR_INVALID);
  389. read ? clear_bit(bit_read, &tmp) : set_bit(bit_read, &tmp);
  390. write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
  391. msrpm[offset] = tmp;
  392. }
  393. static void svm_vcpu_init_msrpm(u32 *msrpm)
  394. {
  395. int i;
  396. memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
  397. for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
  398. if (!direct_access_msrs[i].always)
  399. continue;
  400. set_msr_interception(msrpm, direct_access_msrs[i].index, 1, 1);
  401. }
  402. }
  403. static void add_msr_offset(u32 offset)
  404. {
  405. int i;
  406. for (i = 0; i < MSRPM_OFFSETS; ++i) {
  407. /* Offset already in list? */
  408. if (msrpm_offsets[i] == offset)
  409. return;
  410. /* Slot used by another offset? */
  411. if (msrpm_offsets[i] != MSR_INVALID)
  412. continue;
  413. /* Add offset to list */
  414. msrpm_offsets[i] = offset;
  415. return;
  416. }
  417. /*
  418. * If this BUG triggers the msrpm_offsets table has an overflow. Just
  419. * increase MSRPM_OFFSETS in this case.
  420. */
  421. BUG();
  422. }
  423. static void init_msrpm_offsets(void)
  424. {
  425. int i;
  426. memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
  427. for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
  428. u32 offset;
  429. offset = svm_msrpm_offset(direct_access_msrs[i].index);
  430. BUG_ON(offset == MSR_INVALID);
  431. add_msr_offset(offset);
  432. }
  433. }
  434. static void svm_enable_lbrv(struct vcpu_svm *svm)
  435. {
  436. u32 *msrpm = svm->msrpm;
  437. svm->vmcb->control.lbr_ctl = 1;
  438. set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
  439. set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
  440. set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
  441. set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
  442. }
  443. static void svm_disable_lbrv(struct vcpu_svm *svm)
  444. {
  445. u32 *msrpm = svm->msrpm;
  446. svm->vmcb->control.lbr_ctl = 0;
  447. set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
  448. set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
  449. set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
  450. set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
  451. }
  452. static __init int svm_hardware_setup(void)
  453. {
  454. int cpu;
  455. struct page *iopm_pages;
  456. void *iopm_va;
  457. int r;
  458. iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
  459. if (!iopm_pages)
  460. return -ENOMEM;
  461. iopm_va = page_address(iopm_pages);
  462. memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
  463. iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
  464. init_msrpm_offsets();
  465. if (boot_cpu_has(X86_FEATURE_NX))
  466. kvm_enable_efer_bits(EFER_NX);
  467. if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
  468. kvm_enable_efer_bits(EFER_FFXSR);
  469. if (nested) {
  470. printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
  471. kvm_enable_efer_bits(EFER_SVME);
  472. }
  473. for_each_possible_cpu(cpu) {
  474. r = svm_cpu_init(cpu);
  475. if (r)
  476. goto err;
  477. }
  478. svm_features = cpuid_edx(SVM_CPUID_FUNC);
  479. if (!svm_has(SVM_FEATURE_NPT))
  480. npt_enabled = false;
  481. if (npt_enabled && !npt) {
  482. printk(KERN_INFO "kvm: Nested Paging disabled\n");
  483. npt_enabled = false;
  484. }
  485. if (npt_enabled) {
  486. printk(KERN_INFO "kvm: Nested Paging enabled\n");
  487. kvm_enable_tdp();
  488. } else
  489. kvm_disable_tdp();
  490. return 0;
  491. err:
  492. __free_pages(iopm_pages, IOPM_ALLOC_ORDER);
  493. iopm_base = 0;
  494. return r;
  495. }
  496. static __exit void svm_hardware_unsetup(void)
  497. {
  498. int cpu;
  499. for_each_possible_cpu(cpu)
  500. svm_cpu_uninit(cpu);
  501. __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
  502. iopm_base = 0;
  503. }
  504. static void init_seg(struct vmcb_seg *seg)
  505. {
  506. seg->selector = 0;
  507. seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
  508. SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
  509. seg->limit = 0xffff;
  510. seg->base = 0;
  511. }
  512. static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
  513. {
  514. seg->selector = 0;
  515. seg->attrib = SVM_SELECTOR_P_MASK | type;
  516. seg->limit = 0xffff;
  517. seg->base = 0;
  518. }
  519. static void init_vmcb(struct vcpu_svm *svm)
  520. {
  521. struct vmcb_control_area *control = &svm->vmcb->control;
  522. struct vmcb_save_area *save = &svm->vmcb->save;
  523. svm->vcpu.fpu_active = 1;
  524. control->intercept_cr_read = INTERCEPT_CR0_MASK |
  525. INTERCEPT_CR3_MASK |
  526. INTERCEPT_CR4_MASK;
  527. control->intercept_cr_write = INTERCEPT_CR0_MASK |
  528. INTERCEPT_CR3_MASK |
  529. INTERCEPT_CR4_MASK |
  530. INTERCEPT_CR8_MASK;
  531. control->intercept_dr_read = INTERCEPT_DR0_MASK |
  532. INTERCEPT_DR1_MASK |
  533. INTERCEPT_DR2_MASK |
  534. INTERCEPT_DR3_MASK |
  535. INTERCEPT_DR4_MASK |
  536. INTERCEPT_DR5_MASK |
  537. INTERCEPT_DR6_MASK |
  538. INTERCEPT_DR7_MASK;
  539. control->intercept_dr_write = INTERCEPT_DR0_MASK |
  540. INTERCEPT_DR1_MASK |
  541. INTERCEPT_DR2_MASK |
  542. INTERCEPT_DR3_MASK |
  543. INTERCEPT_DR4_MASK |
  544. INTERCEPT_DR5_MASK |
  545. INTERCEPT_DR6_MASK |
  546. INTERCEPT_DR7_MASK;
  547. control->intercept_exceptions = (1 << PF_VECTOR) |
  548. (1 << UD_VECTOR) |
  549. (1 << MC_VECTOR);
  550. control->intercept = (1ULL << INTERCEPT_INTR) |
  551. (1ULL << INTERCEPT_NMI) |
  552. (1ULL << INTERCEPT_SMI) |
  553. (1ULL << INTERCEPT_SELECTIVE_CR0) |
  554. (1ULL << INTERCEPT_CPUID) |
  555. (1ULL << INTERCEPT_INVD) |
  556. (1ULL << INTERCEPT_HLT) |
  557. (1ULL << INTERCEPT_INVLPG) |
  558. (1ULL << INTERCEPT_INVLPGA) |
  559. (1ULL << INTERCEPT_IOIO_PROT) |
  560. (1ULL << INTERCEPT_MSR_PROT) |
  561. (1ULL << INTERCEPT_TASK_SWITCH) |
  562. (1ULL << INTERCEPT_SHUTDOWN) |
  563. (1ULL << INTERCEPT_VMRUN) |
  564. (1ULL << INTERCEPT_VMMCALL) |
  565. (1ULL << INTERCEPT_VMLOAD) |
  566. (1ULL << INTERCEPT_VMSAVE) |
  567. (1ULL << INTERCEPT_STGI) |
  568. (1ULL << INTERCEPT_CLGI) |
  569. (1ULL << INTERCEPT_SKINIT) |
  570. (1ULL << INTERCEPT_WBINVD) |
  571. (1ULL << INTERCEPT_MONITOR) |
  572. (1ULL << INTERCEPT_MWAIT);
  573. control->iopm_base_pa = iopm_base;
  574. control->msrpm_base_pa = __pa(svm->msrpm);
  575. control->tsc_offset = 0;
  576. control->int_ctl = V_INTR_MASKING_MASK;
  577. init_seg(&save->es);
  578. init_seg(&save->ss);
  579. init_seg(&save->ds);
  580. init_seg(&save->fs);
  581. init_seg(&save->gs);
  582. save->cs.selector = 0xf000;
  583. /* Executable/Readable Code Segment */
  584. save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
  585. SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
  586. save->cs.limit = 0xffff;
  587. /*
  588. * cs.base should really be 0xffff0000, but vmx can't handle that, so
  589. * be consistent with it.
  590. *
  591. * Replace when we have real mode working for vmx.
  592. */
  593. save->cs.base = 0xf0000;
  594. save->gdtr.limit = 0xffff;
  595. save->idtr.limit = 0xffff;
  596. init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
  597. init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
  598. save->efer = EFER_SVME;
  599. save->dr6 = 0xffff0ff0;
  600. save->dr7 = 0x400;
  601. save->rflags = 2;
  602. save->rip = 0x0000fff0;
  603. svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
  604. /*
  605. * This is the guest-visible cr0 value.
  606. * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0.
  607. */
  608. svm->vcpu.arch.cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
  609. kvm_set_cr0(&svm->vcpu, svm->vcpu.arch.cr0);
  610. save->cr4 = X86_CR4_PAE;
  611. /* rdx = ?? */
  612. if (npt_enabled) {
  613. /* Setup VMCB for Nested Paging */
  614. control->nested_ctl = 1;
  615. control->intercept &= ~((1ULL << INTERCEPT_TASK_SWITCH) |
  616. (1ULL << INTERCEPT_INVLPG));
  617. control->intercept_exceptions &= ~(1 << PF_VECTOR);
  618. control->intercept_cr_read &= ~INTERCEPT_CR3_MASK;
  619. control->intercept_cr_write &= ~INTERCEPT_CR3_MASK;
  620. save->g_pat = 0x0007040600070406ULL;
  621. save->cr3 = 0;
  622. save->cr4 = 0;
  623. }
  624. force_new_asid(&svm->vcpu);
  625. svm->nested.vmcb = 0;
  626. svm->vcpu.arch.hflags = 0;
  627. if (svm_has(SVM_FEATURE_PAUSE_FILTER)) {
  628. control->pause_filter_count = 3000;
  629. control->intercept |= (1ULL << INTERCEPT_PAUSE);
  630. }
  631. enable_gif(svm);
  632. }
  633. static int svm_vcpu_reset(struct kvm_vcpu *vcpu)
  634. {
  635. struct vcpu_svm *svm = to_svm(vcpu);
  636. init_vmcb(svm);
  637. if (!kvm_vcpu_is_bsp(vcpu)) {
  638. kvm_rip_write(vcpu, 0);
  639. svm->vmcb->save.cs.base = svm->vcpu.arch.sipi_vector << 12;
  640. svm->vmcb->save.cs.selector = svm->vcpu.arch.sipi_vector << 8;
  641. }
  642. vcpu->arch.regs_avail = ~0;
  643. vcpu->arch.regs_dirty = ~0;
  644. return 0;
  645. }
  646. static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id)
  647. {
  648. struct vcpu_svm *svm;
  649. struct page *page;
  650. struct page *msrpm_pages;
  651. struct page *hsave_page;
  652. struct page *nested_msrpm_pages;
  653. int err;
  654. svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
  655. if (!svm) {
  656. err = -ENOMEM;
  657. goto out;
  658. }
  659. err = kvm_vcpu_init(&svm->vcpu, kvm, id);
  660. if (err)
  661. goto free_svm;
  662. err = -ENOMEM;
  663. page = alloc_page(GFP_KERNEL);
  664. if (!page)
  665. goto uninit;
  666. msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
  667. if (!msrpm_pages)
  668. goto free_page1;
  669. nested_msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
  670. if (!nested_msrpm_pages)
  671. goto free_page2;
  672. hsave_page = alloc_page(GFP_KERNEL);
  673. if (!hsave_page)
  674. goto free_page3;
  675. svm->nested.hsave = page_address(hsave_page);
  676. svm->msrpm = page_address(msrpm_pages);
  677. svm_vcpu_init_msrpm(svm->msrpm);
  678. svm->nested.msrpm = page_address(nested_msrpm_pages);
  679. svm_vcpu_init_msrpm(svm->nested.msrpm);
  680. svm->vmcb = page_address(page);
  681. clear_page(svm->vmcb);
  682. svm->vmcb_pa = page_to_pfn(page) << PAGE_SHIFT;
  683. svm->asid_generation = 0;
  684. init_vmcb(svm);
  685. fx_init(&svm->vcpu);
  686. svm->vcpu.arch.apic_base = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
  687. if (kvm_vcpu_is_bsp(&svm->vcpu))
  688. svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
  689. return &svm->vcpu;
  690. free_page3:
  691. __free_pages(nested_msrpm_pages, MSRPM_ALLOC_ORDER);
  692. free_page2:
  693. __free_pages(msrpm_pages, MSRPM_ALLOC_ORDER);
  694. free_page1:
  695. __free_page(page);
  696. uninit:
  697. kvm_vcpu_uninit(&svm->vcpu);
  698. free_svm:
  699. kmem_cache_free(kvm_vcpu_cache, svm);
  700. out:
  701. return ERR_PTR(err);
  702. }
  703. static void svm_free_vcpu(struct kvm_vcpu *vcpu)
  704. {
  705. struct vcpu_svm *svm = to_svm(vcpu);
  706. __free_page(pfn_to_page(svm->vmcb_pa >> PAGE_SHIFT));
  707. __free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
  708. __free_page(virt_to_page(svm->nested.hsave));
  709. __free_pages(virt_to_page(svm->nested.msrpm), MSRPM_ALLOC_ORDER);
  710. kvm_vcpu_uninit(vcpu);
  711. kmem_cache_free(kvm_vcpu_cache, svm);
  712. }
  713. static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  714. {
  715. struct vcpu_svm *svm = to_svm(vcpu);
  716. int i;
  717. if (unlikely(cpu != vcpu->cpu)) {
  718. u64 delta;
  719. if (check_tsc_unstable()) {
  720. /*
  721. * Make sure that the guest sees a monotonically
  722. * increasing TSC.
  723. */
  724. delta = vcpu->arch.host_tsc - native_read_tsc();
  725. svm->vmcb->control.tsc_offset += delta;
  726. if (is_nested(svm))
  727. svm->nested.hsave->control.tsc_offset += delta;
  728. }
  729. vcpu->cpu = cpu;
  730. kvm_migrate_timers(vcpu);
  731. svm->asid_generation = 0;
  732. }
  733. for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
  734. rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
  735. }
  736. static void svm_vcpu_put(struct kvm_vcpu *vcpu)
  737. {
  738. struct vcpu_svm *svm = to_svm(vcpu);
  739. int i;
  740. ++vcpu->stat.host_state_reload;
  741. for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
  742. wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
  743. vcpu->arch.host_tsc = native_read_tsc();
  744. }
  745. static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
  746. {
  747. return to_svm(vcpu)->vmcb->save.rflags;
  748. }
  749. static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  750. {
  751. to_svm(vcpu)->vmcb->save.rflags = rflags;
  752. }
  753. static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
  754. {
  755. switch (reg) {
  756. case VCPU_EXREG_PDPTR:
  757. BUG_ON(!npt_enabled);
  758. load_pdptrs(vcpu, vcpu->arch.cr3);
  759. break;
  760. default:
  761. BUG();
  762. }
  763. }
  764. static void svm_set_vintr(struct vcpu_svm *svm)
  765. {
  766. svm->vmcb->control.intercept |= 1ULL << INTERCEPT_VINTR;
  767. }
  768. static void svm_clear_vintr(struct vcpu_svm *svm)
  769. {
  770. svm->vmcb->control.intercept &= ~(1ULL << INTERCEPT_VINTR);
  771. }
  772. static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
  773. {
  774. struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
  775. switch (seg) {
  776. case VCPU_SREG_CS: return &save->cs;
  777. case VCPU_SREG_DS: return &save->ds;
  778. case VCPU_SREG_ES: return &save->es;
  779. case VCPU_SREG_FS: return &save->fs;
  780. case VCPU_SREG_GS: return &save->gs;
  781. case VCPU_SREG_SS: return &save->ss;
  782. case VCPU_SREG_TR: return &save->tr;
  783. case VCPU_SREG_LDTR: return &save->ldtr;
  784. }
  785. BUG();
  786. return NULL;
  787. }
  788. static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
  789. {
  790. struct vmcb_seg *s = svm_seg(vcpu, seg);
  791. return s->base;
  792. }
  793. static void svm_get_segment(struct kvm_vcpu *vcpu,
  794. struct kvm_segment *var, int seg)
  795. {
  796. struct vmcb_seg *s = svm_seg(vcpu, seg);
  797. var->base = s->base;
  798. var->limit = s->limit;
  799. var->selector = s->selector;
  800. var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
  801. var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
  802. var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
  803. var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
  804. var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
  805. var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
  806. var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
  807. var->g = (s->attrib >> SVM_SELECTOR_G_SHIFT) & 1;
  808. /*
  809. * AMD's VMCB does not have an explicit unusable field, so emulate it
  810. * for cross vendor migration purposes by "not present"
  811. */
  812. var->unusable = !var->present || (var->type == 0);
  813. switch (seg) {
  814. case VCPU_SREG_CS:
  815. /*
  816. * SVM always stores 0 for the 'G' bit in the CS selector in
  817. * the VMCB on a VMEXIT. This hurts cross-vendor migration:
  818. * Intel's VMENTRY has a check on the 'G' bit.
  819. */
  820. var->g = s->limit > 0xfffff;
  821. break;
  822. case VCPU_SREG_TR:
  823. /*
  824. * Work around a bug where the busy flag in the tr selector
  825. * isn't exposed
  826. */
  827. var->type |= 0x2;
  828. break;
  829. case VCPU_SREG_DS:
  830. case VCPU_SREG_ES:
  831. case VCPU_SREG_FS:
  832. case VCPU_SREG_GS:
  833. /*
  834. * The accessed bit must always be set in the segment
  835. * descriptor cache, although it can be cleared in the
  836. * descriptor, the cached bit always remains at 1. Since
  837. * Intel has a check on this, set it here to support
  838. * cross-vendor migration.
  839. */
  840. if (!var->unusable)
  841. var->type |= 0x1;
  842. break;
  843. case VCPU_SREG_SS:
  844. /*
  845. * On AMD CPUs sometimes the DB bit in the segment
  846. * descriptor is left as 1, although the whole segment has
  847. * been made unusable. Clear it here to pass an Intel VMX
  848. * entry check when cross vendor migrating.
  849. */
  850. if (var->unusable)
  851. var->db = 0;
  852. break;
  853. }
  854. }
  855. static int svm_get_cpl(struct kvm_vcpu *vcpu)
  856. {
  857. struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
  858. return save->cpl;
  859. }
  860. static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
  861. {
  862. struct vcpu_svm *svm = to_svm(vcpu);
  863. dt->size = svm->vmcb->save.idtr.limit;
  864. dt->address = svm->vmcb->save.idtr.base;
  865. }
  866. static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
  867. {
  868. struct vcpu_svm *svm = to_svm(vcpu);
  869. svm->vmcb->save.idtr.limit = dt->size;
  870. svm->vmcb->save.idtr.base = dt->address ;
  871. }
  872. static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
  873. {
  874. struct vcpu_svm *svm = to_svm(vcpu);
  875. dt->size = svm->vmcb->save.gdtr.limit;
  876. dt->address = svm->vmcb->save.gdtr.base;
  877. }
  878. static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
  879. {
  880. struct vcpu_svm *svm = to_svm(vcpu);
  881. svm->vmcb->save.gdtr.limit = dt->size;
  882. svm->vmcb->save.gdtr.base = dt->address ;
  883. }
  884. static void svm_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
  885. {
  886. }
  887. static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
  888. {
  889. }
  890. static void update_cr0_intercept(struct vcpu_svm *svm)
  891. {
  892. struct vmcb *vmcb = svm->vmcb;
  893. ulong gcr0 = svm->vcpu.arch.cr0;
  894. u64 *hcr0 = &svm->vmcb->save.cr0;
  895. if (!svm->vcpu.fpu_active)
  896. *hcr0 |= SVM_CR0_SELECTIVE_MASK;
  897. else
  898. *hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK)
  899. | (gcr0 & SVM_CR0_SELECTIVE_MASK);
  900. if (gcr0 == *hcr0 && svm->vcpu.fpu_active) {
  901. vmcb->control.intercept_cr_read &= ~INTERCEPT_CR0_MASK;
  902. vmcb->control.intercept_cr_write &= ~INTERCEPT_CR0_MASK;
  903. if (is_nested(svm)) {
  904. struct vmcb *hsave = svm->nested.hsave;
  905. hsave->control.intercept_cr_read &= ~INTERCEPT_CR0_MASK;
  906. hsave->control.intercept_cr_write &= ~INTERCEPT_CR0_MASK;
  907. vmcb->control.intercept_cr_read |= svm->nested.intercept_cr_read;
  908. vmcb->control.intercept_cr_write |= svm->nested.intercept_cr_write;
  909. }
  910. } else {
  911. svm->vmcb->control.intercept_cr_read |= INTERCEPT_CR0_MASK;
  912. svm->vmcb->control.intercept_cr_write |= INTERCEPT_CR0_MASK;
  913. if (is_nested(svm)) {
  914. struct vmcb *hsave = svm->nested.hsave;
  915. hsave->control.intercept_cr_read |= INTERCEPT_CR0_MASK;
  916. hsave->control.intercept_cr_write |= INTERCEPT_CR0_MASK;
  917. }
  918. }
  919. }
  920. static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  921. {
  922. struct vcpu_svm *svm = to_svm(vcpu);
  923. if (is_nested(svm)) {
  924. /*
  925. * We are here because we run in nested mode, the host kvm
  926. * intercepts cr0 writes but the l1 hypervisor does not.
  927. * But the L1 hypervisor may intercept selective cr0 writes.
  928. * This needs to be checked here.
  929. */
  930. unsigned long old, new;
  931. /* Remove bits that would trigger a real cr0 write intercept */
  932. old = vcpu->arch.cr0 & SVM_CR0_SELECTIVE_MASK;
  933. new = cr0 & SVM_CR0_SELECTIVE_MASK;
  934. if (old == new) {
  935. /* cr0 write with ts and mp unchanged */
  936. svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
  937. if (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE)
  938. return;
  939. }
  940. }
  941. #ifdef CONFIG_X86_64
  942. if (vcpu->arch.efer & EFER_LME) {
  943. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
  944. vcpu->arch.efer |= EFER_LMA;
  945. svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
  946. }
  947. if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
  948. vcpu->arch.efer &= ~EFER_LMA;
  949. svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
  950. }
  951. }
  952. #endif
  953. vcpu->arch.cr0 = cr0;
  954. if (!npt_enabled)
  955. cr0 |= X86_CR0_PG | X86_CR0_WP;
  956. if (!vcpu->fpu_active)
  957. cr0 |= X86_CR0_TS;
  958. /*
  959. * re-enable caching here because the QEMU bios
  960. * does not do it - this results in some delay at
  961. * reboot
  962. */
  963. cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
  964. svm->vmcb->save.cr0 = cr0;
  965. update_cr0_intercept(svm);
  966. }
  967. static void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  968. {
  969. unsigned long host_cr4_mce = read_cr4() & X86_CR4_MCE;
  970. unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4;
  971. if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
  972. force_new_asid(vcpu);
  973. vcpu->arch.cr4 = cr4;
  974. if (!npt_enabled)
  975. cr4 |= X86_CR4_PAE;
  976. cr4 |= host_cr4_mce;
  977. to_svm(vcpu)->vmcb->save.cr4 = cr4;
  978. }
  979. static void svm_set_segment(struct kvm_vcpu *vcpu,
  980. struct kvm_segment *var, int seg)
  981. {
  982. struct vcpu_svm *svm = to_svm(vcpu);
  983. struct vmcb_seg *s = svm_seg(vcpu, seg);
  984. s->base = var->base;
  985. s->limit = var->limit;
  986. s->selector = var->selector;
  987. if (var->unusable)
  988. s->attrib = 0;
  989. else {
  990. s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
  991. s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
  992. s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
  993. s->attrib |= (var->present & 1) << SVM_SELECTOR_P_SHIFT;
  994. s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
  995. s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
  996. s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
  997. s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
  998. }
  999. if (seg == VCPU_SREG_CS)
  1000. svm->vmcb->save.cpl
  1001. = (svm->vmcb->save.cs.attrib
  1002. >> SVM_SELECTOR_DPL_SHIFT) & 3;
  1003. }
  1004. static void update_db_intercept(struct kvm_vcpu *vcpu)
  1005. {
  1006. struct vcpu_svm *svm = to_svm(vcpu);
  1007. svm->vmcb->control.intercept_exceptions &=
  1008. ~((1 << DB_VECTOR) | (1 << BP_VECTOR));
  1009. if (svm->nmi_singlestep)
  1010. svm->vmcb->control.intercept_exceptions |= (1 << DB_VECTOR);
  1011. if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
  1012. if (vcpu->guest_debug &
  1013. (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
  1014. svm->vmcb->control.intercept_exceptions |=
  1015. 1 << DB_VECTOR;
  1016. if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
  1017. svm->vmcb->control.intercept_exceptions |=
  1018. 1 << BP_VECTOR;
  1019. } else
  1020. vcpu->guest_debug = 0;
  1021. }
  1022. static void svm_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
  1023. {
  1024. struct vcpu_svm *svm = to_svm(vcpu);
  1025. if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
  1026. svm->vmcb->save.dr7 = dbg->arch.debugreg[7];
  1027. else
  1028. svm->vmcb->save.dr7 = vcpu->arch.dr7;
  1029. update_db_intercept(vcpu);
  1030. }
  1031. static void load_host_msrs(struct kvm_vcpu *vcpu)
  1032. {
  1033. #ifdef CONFIG_X86_64
  1034. wrmsrl(MSR_GS_BASE, to_svm(vcpu)->host_gs_base);
  1035. #endif
  1036. }
  1037. static void save_host_msrs(struct kvm_vcpu *vcpu)
  1038. {
  1039. #ifdef CONFIG_X86_64
  1040. rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host_gs_base);
  1041. #endif
  1042. }
  1043. static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
  1044. {
  1045. if (sd->next_asid > sd->max_asid) {
  1046. ++sd->asid_generation;
  1047. sd->next_asid = 1;
  1048. svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
  1049. }
  1050. svm->asid_generation = sd->asid_generation;
  1051. svm->vmcb->control.asid = sd->next_asid++;
  1052. }
  1053. static int svm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *dest)
  1054. {
  1055. struct vcpu_svm *svm = to_svm(vcpu);
  1056. switch (dr) {
  1057. case 0 ... 3:
  1058. *dest = vcpu->arch.db[dr];
  1059. break;
  1060. case 4:
  1061. if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
  1062. return EMULATE_FAIL; /* will re-inject UD */
  1063. /* fall through */
  1064. case 6:
  1065. if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
  1066. *dest = vcpu->arch.dr6;
  1067. else
  1068. *dest = svm->vmcb->save.dr6;
  1069. break;
  1070. case 5:
  1071. if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
  1072. return EMULATE_FAIL; /* will re-inject UD */
  1073. /* fall through */
  1074. case 7:
  1075. if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
  1076. *dest = vcpu->arch.dr7;
  1077. else
  1078. *dest = svm->vmcb->save.dr7;
  1079. break;
  1080. }
  1081. return EMULATE_DONE;
  1082. }
  1083. static int svm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long value)
  1084. {
  1085. struct vcpu_svm *svm = to_svm(vcpu);
  1086. switch (dr) {
  1087. case 0 ... 3:
  1088. vcpu->arch.db[dr] = value;
  1089. if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
  1090. vcpu->arch.eff_db[dr] = value;
  1091. break;
  1092. case 4:
  1093. if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
  1094. return EMULATE_FAIL; /* will re-inject UD */
  1095. /* fall through */
  1096. case 6:
  1097. vcpu->arch.dr6 = (value & DR6_VOLATILE) | DR6_FIXED_1;
  1098. break;
  1099. case 5:
  1100. if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
  1101. return EMULATE_FAIL; /* will re-inject UD */
  1102. /* fall through */
  1103. case 7:
  1104. vcpu->arch.dr7 = (value & DR7_VOLATILE) | DR7_FIXED_1;
  1105. if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
  1106. svm->vmcb->save.dr7 = vcpu->arch.dr7;
  1107. vcpu->arch.switch_db_regs = (value & DR7_BP_EN_MASK);
  1108. }
  1109. break;
  1110. }
  1111. return EMULATE_DONE;
  1112. }
  1113. static int pf_interception(struct vcpu_svm *svm)
  1114. {
  1115. u64 fault_address;
  1116. u32 error_code;
  1117. fault_address = svm->vmcb->control.exit_info_2;
  1118. error_code = svm->vmcb->control.exit_info_1;
  1119. trace_kvm_page_fault(fault_address, error_code);
  1120. if (!npt_enabled && kvm_event_needs_reinjection(&svm->vcpu))
  1121. kvm_mmu_unprotect_page_virt(&svm->vcpu, fault_address);
  1122. return kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code);
  1123. }
  1124. static int db_interception(struct vcpu_svm *svm)
  1125. {
  1126. struct kvm_run *kvm_run = svm->vcpu.run;
  1127. if (!(svm->vcpu.guest_debug &
  1128. (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
  1129. !svm->nmi_singlestep) {
  1130. kvm_queue_exception(&svm->vcpu, DB_VECTOR);
  1131. return 1;
  1132. }
  1133. if (svm->nmi_singlestep) {
  1134. svm->nmi_singlestep = false;
  1135. if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP))
  1136. svm->vmcb->save.rflags &=
  1137. ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
  1138. update_db_intercept(&svm->vcpu);
  1139. }
  1140. if (svm->vcpu.guest_debug &
  1141. (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
  1142. kvm_run->exit_reason = KVM_EXIT_DEBUG;
  1143. kvm_run->debug.arch.pc =
  1144. svm->vmcb->save.cs.base + svm->vmcb->save.rip;
  1145. kvm_run->debug.arch.exception = DB_VECTOR;
  1146. return 0;
  1147. }
  1148. return 1;
  1149. }
  1150. static int bp_interception(struct vcpu_svm *svm)
  1151. {
  1152. struct kvm_run *kvm_run = svm->vcpu.run;
  1153. kvm_run->exit_reason = KVM_EXIT_DEBUG;
  1154. kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
  1155. kvm_run->debug.arch.exception = BP_VECTOR;
  1156. return 0;
  1157. }
  1158. static int ud_interception(struct vcpu_svm *svm)
  1159. {
  1160. int er;
  1161. er = emulate_instruction(&svm->vcpu, 0, 0, EMULTYPE_TRAP_UD);
  1162. if (er != EMULATE_DONE)
  1163. kvm_queue_exception(&svm->vcpu, UD_VECTOR);
  1164. return 1;
  1165. }
  1166. static void svm_fpu_activate(struct kvm_vcpu *vcpu)
  1167. {
  1168. struct vcpu_svm *svm = to_svm(vcpu);
  1169. u32 excp;
  1170. if (is_nested(svm)) {
  1171. u32 h_excp, n_excp;
  1172. h_excp = svm->nested.hsave->control.intercept_exceptions;
  1173. n_excp = svm->nested.intercept_exceptions;
  1174. h_excp &= ~(1 << NM_VECTOR);
  1175. excp = h_excp | n_excp;
  1176. } else {
  1177. excp = svm->vmcb->control.intercept_exceptions;
  1178. excp &= ~(1 << NM_VECTOR);
  1179. }
  1180. svm->vmcb->control.intercept_exceptions = excp;
  1181. svm->vcpu.fpu_active = 1;
  1182. update_cr0_intercept(svm);
  1183. }
  1184. static int nm_interception(struct vcpu_svm *svm)
  1185. {
  1186. svm_fpu_activate(&svm->vcpu);
  1187. return 1;
  1188. }
  1189. static int mc_interception(struct vcpu_svm *svm)
  1190. {
  1191. /*
  1192. * On an #MC intercept the MCE handler is not called automatically in
  1193. * the host. So do it by hand here.
  1194. */
  1195. asm volatile (
  1196. "int $0x12\n");
  1197. /* not sure if we ever come back to this point */
  1198. return 1;
  1199. }
  1200. static int shutdown_interception(struct vcpu_svm *svm)
  1201. {
  1202. struct kvm_run *kvm_run = svm->vcpu.run;
  1203. /*
  1204. * VMCB is undefined after a SHUTDOWN intercept
  1205. * so reinitialize it.
  1206. */
  1207. clear_page(svm->vmcb);
  1208. init_vmcb(svm);
  1209. kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
  1210. return 0;
  1211. }
  1212. static int io_interception(struct vcpu_svm *svm)
  1213. {
  1214. struct kvm_vcpu *vcpu = &svm->vcpu;
  1215. u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
  1216. int size, in, string;
  1217. unsigned port;
  1218. ++svm->vcpu.stat.io_exits;
  1219. string = (io_info & SVM_IOIO_STR_MASK) != 0;
  1220. in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
  1221. if (string || in)
  1222. return !(emulate_instruction(vcpu, 0, 0, 0) == EMULATE_DO_MMIO);
  1223. port = io_info >> 16;
  1224. size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
  1225. svm->next_rip = svm->vmcb->control.exit_info_2;
  1226. skip_emulated_instruction(&svm->vcpu);
  1227. return kvm_fast_pio_out(vcpu, size, port);
  1228. }
  1229. static int nmi_interception(struct vcpu_svm *svm)
  1230. {
  1231. return 1;
  1232. }
  1233. static int intr_interception(struct vcpu_svm *svm)
  1234. {
  1235. ++svm->vcpu.stat.irq_exits;
  1236. return 1;
  1237. }
  1238. static int nop_on_interception(struct vcpu_svm *svm)
  1239. {
  1240. return 1;
  1241. }
  1242. static int halt_interception(struct vcpu_svm *svm)
  1243. {
  1244. svm->next_rip = kvm_rip_read(&svm->vcpu) + 1;
  1245. skip_emulated_instruction(&svm->vcpu);
  1246. return kvm_emulate_halt(&svm->vcpu);
  1247. }
  1248. static int vmmcall_interception(struct vcpu_svm *svm)
  1249. {
  1250. svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
  1251. skip_emulated_instruction(&svm->vcpu);
  1252. kvm_emulate_hypercall(&svm->vcpu);
  1253. return 1;
  1254. }
  1255. static int nested_svm_check_permissions(struct vcpu_svm *svm)
  1256. {
  1257. if (!(svm->vcpu.arch.efer & EFER_SVME)
  1258. || !is_paging(&svm->vcpu)) {
  1259. kvm_queue_exception(&svm->vcpu, UD_VECTOR);
  1260. return 1;
  1261. }
  1262. if (svm->vmcb->save.cpl) {
  1263. kvm_inject_gp(&svm->vcpu, 0);
  1264. return 1;
  1265. }
  1266. return 0;
  1267. }
  1268. static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
  1269. bool has_error_code, u32 error_code)
  1270. {
  1271. int vmexit;
  1272. if (!is_nested(svm))
  1273. return 0;
  1274. svm->vmcb->control.exit_code = SVM_EXIT_EXCP_BASE + nr;
  1275. svm->vmcb->control.exit_code_hi = 0;
  1276. svm->vmcb->control.exit_info_1 = error_code;
  1277. svm->vmcb->control.exit_info_2 = svm->vcpu.arch.cr2;
  1278. vmexit = nested_svm_intercept(svm);
  1279. if (vmexit == NESTED_EXIT_DONE)
  1280. svm->nested.exit_required = true;
  1281. return vmexit;
  1282. }
  1283. /* This function returns true if it is save to enable the irq window */
  1284. static inline bool nested_svm_intr(struct vcpu_svm *svm)
  1285. {
  1286. if (!is_nested(svm))
  1287. return true;
  1288. if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
  1289. return true;
  1290. if (!(svm->vcpu.arch.hflags & HF_HIF_MASK))
  1291. return false;
  1292. svm->vmcb->control.exit_code = SVM_EXIT_INTR;
  1293. svm->vmcb->control.exit_info_1 = 0;
  1294. svm->vmcb->control.exit_info_2 = 0;
  1295. if (svm->nested.intercept & 1ULL) {
  1296. /*
  1297. * The #vmexit can't be emulated here directly because this
  1298. * code path runs with irqs and preemtion disabled. A
  1299. * #vmexit emulation might sleep. Only signal request for
  1300. * the #vmexit here.
  1301. */
  1302. svm->nested.exit_required = true;
  1303. trace_kvm_nested_intr_vmexit(svm->vmcb->save.rip);
  1304. return false;
  1305. }
  1306. return true;
  1307. }
  1308. /* This function returns true if it is save to enable the nmi window */
  1309. static inline bool nested_svm_nmi(struct vcpu_svm *svm)
  1310. {
  1311. if (!is_nested(svm))
  1312. return true;
  1313. if (!(svm->nested.intercept & (1ULL << INTERCEPT_NMI)))
  1314. return true;
  1315. svm->vmcb->control.exit_code = SVM_EXIT_NMI;
  1316. svm->nested.exit_required = true;
  1317. return false;
  1318. }
  1319. static void *nested_svm_map(struct vcpu_svm *svm, u64 gpa, struct page **_page)
  1320. {
  1321. struct page *page;
  1322. might_sleep();
  1323. page = gfn_to_page(svm->vcpu.kvm, gpa >> PAGE_SHIFT);
  1324. if (is_error_page(page))
  1325. goto error;
  1326. *_page = page;
  1327. return kmap(page);
  1328. error:
  1329. kvm_release_page_clean(page);
  1330. kvm_inject_gp(&svm->vcpu, 0);
  1331. return NULL;
  1332. }
  1333. static void nested_svm_unmap(struct page *page)
  1334. {
  1335. kunmap(page);
  1336. kvm_release_page_dirty(page);
  1337. }
  1338. static int nested_svm_intercept_ioio(struct vcpu_svm *svm)
  1339. {
  1340. unsigned port;
  1341. u8 val, bit;
  1342. u64 gpa;
  1343. if (!(svm->nested.intercept & (1ULL << INTERCEPT_IOIO_PROT)))
  1344. return NESTED_EXIT_HOST;
  1345. port = svm->vmcb->control.exit_info_1 >> 16;
  1346. gpa = svm->nested.vmcb_iopm + (port / 8);
  1347. bit = port % 8;
  1348. val = 0;
  1349. if (kvm_read_guest(svm->vcpu.kvm, gpa, &val, 1))
  1350. val &= (1 << bit);
  1351. return val ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
  1352. }
  1353. static int nested_svm_exit_handled_msr(struct vcpu_svm *svm)
  1354. {
  1355. u32 offset, msr, value;
  1356. int write, mask;
  1357. if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
  1358. return NESTED_EXIT_HOST;
  1359. msr = svm->vcpu.arch.regs[VCPU_REGS_RCX];
  1360. offset = svm_msrpm_offset(msr);
  1361. write = svm->vmcb->control.exit_info_1 & 1;
  1362. mask = 1 << ((2 * (msr & 0xf)) + write);
  1363. if (offset == MSR_INVALID)
  1364. return NESTED_EXIT_DONE;
  1365. /* Offset is in 32 bit units but need in 8 bit units */
  1366. offset *= 4;
  1367. if (kvm_read_guest(svm->vcpu.kvm, svm->nested.vmcb_msrpm + offset, &value, 4))
  1368. return NESTED_EXIT_DONE;
  1369. return (value & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
  1370. }
  1371. static int nested_svm_exit_special(struct vcpu_svm *svm)
  1372. {
  1373. u32 exit_code = svm->vmcb->control.exit_code;
  1374. switch (exit_code) {
  1375. case SVM_EXIT_INTR:
  1376. case SVM_EXIT_NMI:
  1377. return NESTED_EXIT_HOST;
  1378. case SVM_EXIT_NPF:
  1379. /* For now we are always handling NPFs when using them */
  1380. if (npt_enabled)
  1381. return NESTED_EXIT_HOST;
  1382. break;
  1383. case SVM_EXIT_EXCP_BASE + PF_VECTOR:
  1384. /* When we're shadowing, trap PFs */
  1385. if (!npt_enabled)
  1386. return NESTED_EXIT_HOST;
  1387. break;
  1388. case SVM_EXIT_EXCP_BASE + NM_VECTOR:
  1389. nm_interception(svm);
  1390. break;
  1391. default:
  1392. break;
  1393. }
  1394. return NESTED_EXIT_CONTINUE;
  1395. }
  1396. /*
  1397. * If this function returns true, this #vmexit was already handled
  1398. */
  1399. static int nested_svm_intercept(struct vcpu_svm *svm)
  1400. {
  1401. u32 exit_code = svm->vmcb->control.exit_code;
  1402. int vmexit = NESTED_EXIT_HOST;
  1403. switch (exit_code) {
  1404. case SVM_EXIT_MSR:
  1405. vmexit = nested_svm_exit_handled_msr(svm);
  1406. break;
  1407. case SVM_EXIT_IOIO:
  1408. vmexit = nested_svm_intercept_ioio(svm);
  1409. break;
  1410. case SVM_EXIT_READ_CR0 ... SVM_EXIT_READ_CR8: {
  1411. u32 cr_bits = 1 << (exit_code - SVM_EXIT_READ_CR0);
  1412. if (svm->nested.intercept_cr_read & cr_bits)
  1413. vmexit = NESTED_EXIT_DONE;
  1414. break;
  1415. }
  1416. case SVM_EXIT_WRITE_CR0 ... SVM_EXIT_WRITE_CR8: {
  1417. u32 cr_bits = 1 << (exit_code - SVM_EXIT_WRITE_CR0);
  1418. if (svm->nested.intercept_cr_write & cr_bits)
  1419. vmexit = NESTED_EXIT_DONE;
  1420. break;
  1421. }
  1422. case SVM_EXIT_READ_DR0 ... SVM_EXIT_READ_DR7: {
  1423. u32 dr_bits = 1 << (exit_code - SVM_EXIT_READ_DR0);
  1424. if (svm->nested.intercept_dr_read & dr_bits)
  1425. vmexit = NESTED_EXIT_DONE;
  1426. break;
  1427. }
  1428. case SVM_EXIT_WRITE_DR0 ... SVM_EXIT_WRITE_DR7: {
  1429. u32 dr_bits = 1 << (exit_code - SVM_EXIT_WRITE_DR0);
  1430. if (svm->nested.intercept_dr_write & dr_bits)
  1431. vmexit = NESTED_EXIT_DONE;
  1432. break;
  1433. }
  1434. case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: {
  1435. u32 excp_bits = 1 << (exit_code - SVM_EXIT_EXCP_BASE);
  1436. if (svm->nested.intercept_exceptions & excp_bits)
  1437. vmexit = NESTED_EXIT_DONE;
  1438. break;
  1439. }
  1440. default: {
  1441. u64 exit_bits = 1ULL << (exit_code - SVM_EXIT_INTR);
  1442. if (svm->nested.intercept & exit_bits)
  1443. vmexit = NESTED_EXIT_DONE;
  1444. }
  1445. }
  1446. return vmexit;
  1447. }
  1448. static int nested_svm_exit_handled(struct vcpu_svm *svm)
  1449. {
  1450. int vmexit;
  1451. vmexit = nested_svm_intercept(svm);
  1452. if (vmexit == NESTED_EXIT_DONE)
  1453. nested_svm_vmexit(svm);
  1454. return vmexit;
  1455. }
  1456. static inline void copy_vmcb_control_area(struct vmcb *dst_vmcb, struct vmcb *from_vmcb)
  1457. {
  1458. struct vmcb_control_area *dst = &dst_vmcb->control;
  1459. struct vmcb_control_area *from = &from_vmcb->control;
  1460. dst->intercept_cr_read = from->intercept_cr_read;
  1461. dst->intercept_cr_write = from->intercept_cr_write;
  1462. dst->intercept_dr_read = from->intercept_dr_read;
  1463. dst->intercept_dr_write = from->intercept_dr_write;
  1464. dst->intercept_exceptions = from->intercept_exceptions;
  1465. dst->intercept = from->intercept;
  1466. dst->iopm_base_pa = from->iopm_base_pa;
  1467. dst->msrpm_base_pa = from->msrpm_base_pa;
  1468. dst->tsc_offset = from->tsc_offset;
  1469. dst->asid = from->asid;
  1470. dst->tlb_ctl = from->tlb_ctl;
  1471. dst->int_ctl = from->int_ctl;
  1472. dst->int_vector = from->int_vector;
  1473. dst->int_state = from->int_state;
  1474. dst->exit_code = from->exit_code;
  1475. dst->exit_code_hi = from->exit_code_hi;
  1476. dst->exit_info_1 = from->exit_info_1;
  1477. dst->exit_info_2 = from->exit_info_2;
  1478. dst->exit_int_info = from->exit_int_info;
  1479. dst->exit_int_info_err = from->exit_int_info_err;
  1480. dst->nested_ctl = from->nested_ctl;
  1481. dst->event_inj = from->event_inj;
  1482. dst->event_inj_err = from->event_inj_err;
  1483. dst->nested_cr3 = from->nested_cr3;
  1484. dst->lbr_ctl = from->lbr_ctl;
  1485. }
  1486. static int nested_svm_vmexit(struct vcpu_svm *svm)
  1487. {
  1488. struct vmcb *nested_vmcb;
  1489. struct vmcb *hsave = svm->nested.hsave;
  1490. struct vmcb *vmcb = svm->vmcb;
  1491. struct page *page;
  1492. trace_kvm_nested_vmexit_inject(vmcb->control.exit_code,
  1493. vmcb->control.exit_info_1,
  1494. vmcb->control.exit_info_2,
  1495. vmcb->control.exit_int_info,
  1496. vmcb->control.exit_int_info_err);
  1497. nested_vmcb = nested_svm_map(svm, svm->nested.vmcb, &page);
  1498. if (!nested_vmcb)
  1499. return 1;
  1500. /* Exit nested SVM mode */
  1501. svm->nested.vmcb = 0;
  1502. /* Give the current vmcb to the guest */
  1503. disable_gif(svm);
  1504. nested_vmcb->save.es = vmcb->save.es;
  1505. nested_vmcb->save.cs = vmcb->save.cs;
  1506. nested_vmcb->save.ss = vmcb->save.ss;
  1507. nested_vmcb->save.ds = vmcb->save.ds;
  1508. nested_vmcb->save.gdtr = vmcb->save.gdtr;
  1509. nested_vmcb->save.idtr = vmcb->save.idtr;
  1510. nested_vmcb->save.cr0 = kvm_read_cr0(&svm->vcpu);
  1511. if (npt_enabled)
  1512. nested_vmcb->save.cr3 = vmcb->save.cr3;
  1513. else
  1514. nested_vmcb->save.cr3 = svm->vcpu.arch.cr3;
  1515. nested_vmcb->save.cr2 = vmcb->save.cr2;
  1516. nested_vmcb->save.cr4 = svm->vcpu.arch.cr4;
  1517. nested_vmcb->save.rflags = vmcb->save.rflags;
  1518. nested_vmcb->save.rip = vmcb->save.rip;
  1519. nested_vmcb->save.rsp = vmcb->save.rsp;
  1520. nested_vmcb->save.rax = vmcb->save.rax;
  1521. nested_vmcb->save.dr7 = vmcb->save.dr7;
  1522. nested_vmcb->save.dr6 = vmcb->save.dr6;
  1523. nested_vmcb->save.cpl = vmcb->save.cpl;
  1524. nested_vmcb->control.int_ctl = vmcb->control.int_ctl;
  1525. nested_vmcb->control.int_vector = vmcb->control.int_vector;
  1526. nested_vmcb->control.int_state = vmcb->control.int_state;
  1527. nested_vmcb->control.exit_code = vmcb->control.exit_code;
  1528. nested_vmcb->control.exit_code_hi = vmcb->control.exit_code_hi;
  1529. nested_vmcb->control.exit_info_1 = vmcb->control.exit_info_1;
  1530. nested_vmcb->control.exit_info_2 = vmcb->control.exit_info_2;
  1531. nested_vmcb->control.exit_int_info = vmcb->control.exit_int_info;
  1532. nested_vmcb->control.exit_int_info_err = vmcb->control.exit_int_info_err;
  1533. /*
  1534. * If we emulate a VMRUN/#VMEXIT in the same host #vmexit cycle we have
  1535. * to make sure that we do not lose injected events. So check event_inj
  1536. * here and copy it to exit_int_info if it is valid.
  1537. * Exit_int_info and event_inj can't be both valid because the case
  1538. * below only happens on a VMRUN instruction intercept which has
  1539. * no valid exit_int_info set.
  1540. */
  1541. if (vmcb->control.event_inj & SVM_EVTINJ_VALID) {
  1542. struct vmcb_control_area *nc = &nested_vmcb->control;
  1543. nc->exit_int_info = vmcb->control.event_inj;
  1544. nc->exit_int_info_err = vmcb->control.event_inj_err;
  1545. }
  1546. nested_vmcb->control.tlb_ctl = 0;
  1547. nested_vmcb->control.event_inj = 0;
  1548. nested_vmcb->control.event_inj_err = 0;
  1549. /* We always set V_INTR_MASKING and remember the old value in hflags */
  1550. if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
  1551. nested_vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK;
  1552. /* Restore the original control entries */
  1553. copy_vmcb_control_area(vmcb, hsave);
  1554. kvm_clear_exception_queue(&svm->vcpu);
  1555. kvm_clear_interrupt_queue(&svm->vcpu);
  1556. /* Restore selected save entries */
  1557. svm->vmcb->save.es = hsave->save.es;
  1558. svm->vmcb->save.cs = hsave->save.cs;
  1559. svm->vmcb->save.ss = hsave->save.ss;
  1560. svm->vmcb->save.ds = hsave->save.ds;
  1561. svm->vmcb->save.gdtr = hsave->save.gdtr;
  1562. svm->vmcb->save.idtr = hsave->save.idtr;
  1563. svm->vmcb->save.rflags = hsave->save.rflags;
  1564. svm_set_efer(&svm->vcpu, hsave->save.efer);
  1565. svm_set_cr0(&svm->vcpu, hsave->save.cr0 | X86_CR0_PE);
  1566. svm_set_cr4(&svm->vcpu, hsave->save.cr4);
  1567. if (npt_enabled) {
  1568. svm->vmcb->save.cr3 = hsave->save.cr3;
  1569. svm->vcpu.arch.cr3 = hsave->save.cr3;
  1570. } else {
  1571. kvm_set_cr3(&svm->vcpu, hsave->save.cr3);
  1572. }
  1573. kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, hsave->save.rax);
  1574. kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, hsave->save.rsp);
  1575. kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, hsave->save.rip);
  1576. svm->vmcb->save.dr7 = 0;
  1577. svm->vmcb->save.cpl = 0;
  1578. svm->vmcb->control.exit_int_info = 0;
  1579. nested_svm_unmap(page);
  1580. kvm_mmu_reset_context(&svm->vcpu);
  1581. kvm_mmu_load(&svm->vcpu);
  1582. return 0;
  1583. }
  1584. static bool nested_svm_vmrun_msrpm(struct vcpu_svm *svm)
  1585. {
  1586. /*
  1587. * This function merges the msr permission bitmaps of kvm and the
  1588. * nested vmcb. It is omptimized in that it only merges the parts where
  1589. * the kvm msr permission bitmap may contain zero bits
  1590. */
  1591. int i;
  1592. if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
  1593. return true;
  1594. for (i = 0; i < MSRPM_OFFSETS; i++) {
  1595. u32 value, p;
  1596. u64 offset;
  1597. if (msrpm_offsets[i] == 0xffffffff)
  1598. break;
  1599. p = msrpm_offsets[i];
  1600. offset = svm->nested.vmcb_msrpm + (p * 4);
  1601. if (kvm_read_guest(svm->vcpu.kvm, offset, &value, 4))
  1602. return false;
  1603. svm->nested.msrpm[p] = svm->msrpm[p] | value;
  1604. }
  1605. svm->vmcb->control.msrpm_base_pa = __pa(svm->nested.msrpm);
  1606. return true;
  1607. }
  1608. static bool nested_svm_vmrun(struct vcpu_svm *svm)
  1609. {
  1610. struct vmcb *nested_vmcb;
  1611. struct vmcb *hsave = svm->nested.hsave;
  1612. struct vmcb *vmcb = svm->vmcb;
  1613. struct page *page;
  1614. u64 vmcb_gpa;
  1615. vmcb_gpa = svm->vmcb->save.rax;
  1616. nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
  1617. if (!nested_vmcb)
  1618. return false;
  1619. trace_kvm_nested_vmrun(svm->vmcb->save.rip - 3, vmcb_gpa,
  1620. nested_vmcb->save.rip,
  1621. nested_vmcb->control.int_ctl,
  1622. nested_vmcb->control.event_inj,
  1623. nested_vmcb->control.nested_ctl);
  1624. trace_kvm_nested_intercepts(nested_vmcb->control.intercept_cr_read,
  1625. nested_vmcb->control.intercept_cr_write,
  1626. nested_vmcb->control.intercept_exceptions,
  1627. nested_vmcb->control.intercept);
  1628. /* Clear internal status */
  1629. kvm_clear_exception_queue(&svm->vcpu);
  1630. kvm_clear_interrupt_queue(&svm->vcpu);
  1631. /*
  1632. * Save the old vmcb, so we don't need to pick what we save, but can
  1633. * restore everything when a VMEXIT occurs
  1634. */
  1635. hsave->save.es = vmcb->save.es;
  1636. hsave->save.cs = vmcb->save.cs;
  1637. hsave->save.ss = vmcb->save.ss;
  1638. hsave->save.ds = vmcb->save.ds;
  1639. hsave->save.gdtr = vmcb->save.gdtr;
  1640. hsave->save.idtr = vmcb->save.idtr;
  1641. hsave->save.efer = svm->vcpu.arch.efer;
  1642. hsave->save.cr0 = kvm_read_cr0(&svm->vcpu);
  1643. hsave->save.cr4 = svm->vcpu.arch.cr4;
  1644. hsave->save.rflags = vmcb->save.rflags;
  1645. hsave->save.rip = svm->next_rip;
  1646. hsave->save.rsp = vmcb->save.rsp;
  1647. hsave->save.rax = vmcb->save.rax;
  1648. if (npt_enabled)
  1649. hsave->save.cr3 = vmcb->save.cr3;
  1650. else
  1651. hsave->save.cr3 = svm->vcpu.arch.cr3;
  1652. copy_vmcb_control_area(hsave, vmcb);
  1653. if (svm->vmcb->save.rflags & X86_EFLAGS_IF)
  1654. svm->vcpu.arch.hflags |= HF_HIF_MASK;
  1655. else
  1656. svm->vcpu.arch.hflags &= ~HF_HIF_MASK;
  1657. /* Load the nested guest state */
  1658. svm->vmcb->save.es = nested_vmcb->save.es;
  1659. svm->vmcb->save.cs = nested_vmcb->save.cs;
  1660. svm->vmcb->save.ss = nested_vmcb->save.ss;
  1661. svm->vmcb->save.ds = nested_vmcb->save.ds;
  1662. svm->vmcb->save.gdtr = nested_vmcb->save.gdtr;
  1663. svm->vmcb->save.idtr = nested_vmcb->save.idtr;
  1664. svm->vmcb->save.rflags = nested_vmcb->save.rflags;
  1665. svm_set_efer(&svm->vcpu, nested_vmcb->save.efer);
  1666. svm_set_cr0(&svm->vcpu, nested_vmcb->save.cr0);
  1667. svm_set_cr4(&svm->vcpu, nested_vmcb->save.cr4);
  1668. if (npt_enabled) {
  1669. svm->vmcb->save.cr3 = nested_vmcb->save.cr3;
  1670. svm->vcpu.arch.cr3 = nested_vmcb->save.cr3;
  1671. } else
  1672. kvm_set_cr3(&svm->vcpu, nested_vmcb->save.cr3);
  1673. /* Guest paging mode is active - reset mmu */
  1674. kvm_mmu_reset_context(&svm->vcpu);
  1675. svm->vmcb->save.cr2 = svm->vcpu.arch.cr2 = nested_vmcb->save.cr2;
  1676. kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, nested_vmcb->save.rax);
  1677. kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, nested_vmcb->save.rsp);
  1678. kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, nested_vmcb->save.rip);
  1679. /* In case we don't even reach vcpu_run, the fields are not updated */
  1680. svm->vmcb->save.rax = nested_vmcb->save.rax;
  1681. svm->vmcb->save.rsp = nested_vmcb->save.rsp;
  1682. svm->vmcb->save.rip = nested_vmcb->save.rip;
  1683. svm->vmcb->save.dr7 = nested_vmcb->save.dr7;
  1684. svm->vmcb->save.dr6 = nested_vmcb->save.dr6;
  1685. svm->vmcb->save.cpl = nested_vmcb->save.cpl;
  1686. svm->nested.vmcb_msrpm = nested_vmcb->control.msrpm_base_pa & ~0x0fffULL;
  1687. svm->nested.vmcb_iopm = nested_vmcb->control.iopm_base_pa & ~0x0fffULL;
  1688. /* cache intercepts */
  1689. svm->nested.intercept_cr_read = nested_vmcb->control.intercept_cr_read;
  1690. svm->nested.intercept_cr_write = nested_vmcb->control.intercept_cr_write;
  1691. svm->nested.intercept_dr_read = nested_vmcb->control.intercept_dr_read;
  1692. svm->nested.intercept_dr_write = nested_vmcb->control.intercept_dr_write;
  1693. svm->nested.intercept_exceptions = nested_vmcb->control.intercept_exceptions;
  1694. svm->nested.intercept = nested_vmcb->control.intercept;
  1695. force_new_asid(&svm->vcpu);
  1696. svm->vmcb->control.int_ctl = nested_vmcb->control.int_ctl | V_INTR_MASKING_MASK;
  1697. if (nested_vmcb->control.int_ctl & V_INTR_MASKING_MASK)
  1698. svm->vcpu.arch.hflags |= HF_VINTR_MASK;
  1699. else
  1700. svm->vcpu.arch.hflags &= ~HF_VINTR_MASK;
  1701. if (svm->vcpu.arch.hflags & HF_VINTR_MASK) {
  1702. /* We only want the cr8 intercept bits of the guest */
  1703. svm->vmcb->control.intercept_cr_read &= ~INTERCEPT_CR8_MASK;
  1704. svm->vmcb->control.intercept_cr_write &= ~INTERCEPT_CR8_MASK;
  1705. }
  1706. /*
  1707. * We don't want a nested guest to be more powerful than the guest, so
  1708. * all intercepts are ORed
  1709. */
  1710. svm->vmcb->control.intercept_cr_read |=
  1711. nested_vmcb->control.intercept_cr_read;
  1712. svm->vmcb->control.intercept_cr_write |=
  1713. nested_vmcb->control.intercept_cr_write;
  1714. svm->vmcb->control.intercept_dr_read |=
  1715. nested_vmcb->control.intercept_dr_read;
  1716. svm->vmcb->control.intercept_dr_write |=
  1717. nested_vmcb->control.intercept_dr_write;
  1718. svm->vmcb->control.intercept_exceptions |=
  1719. nested_vmcb->control.intercept_exceptions;
  1720. svm->vmcb->control.intercept |= nested_vmcb->control.intercept;
  1721. svm->vmcb->control.lbr_ctl = nested_vmcb->control.lbr_ctl;
  1722. svm->vmcb->control.int_vector = nested_vmcb->control.int_vector;
  1723. svm->vmcb->control.int_state = nested_vmcb->control.int_state;
  1724. svm->vmcb->control.tsc_offset += nested_vmcb->control.tsc_offset;
  1725. svm->vmcb->control.event_inj = nested_vmcb->control.event_inj;
  1726. svm->vmcb->control.event_inj_err = nested_vmcb->control.event_inj_err;
  1727. nested_svm_unmap(page);
  1728. /* nested_vmcb is our indicator if nested SVM is activated */
  1729. svm->nested.vmcb = vmcb_gpa;
  1730. enable_gif(svm);
  1731. return true;
  1732. }
  1733. static void nested_svm_vmloadsave(struct vmcb *from_vmcb, struct vmcb *to_vmcb)
  1734. {
  1735. to_vmcb->save.fs = from_vmcb->save.fs;
  1736. to_vmcb->save.gs = from_vmcb->save.gs;
  1737. to_vmcb->save.tr = from_vmcb->save.tr;
  1738. to_vmcb->save.ldtr = from_vmcb->save.ldtr;
  1739. to_vmcb->save.kernel_gs_base = from_vmcb->save.kernel_gs_base;
  1740. to_vmcb->save.star = from_vmcb->save.star;
  1741. to_vmcb->save.lstar = from_vmcb->save.lstar;
  1742. to_vmcb->save.cstar = from_vmcb->save.cstar;
  1743. to_vmcb->save.sfmask = from_vmcb->save.sfmask;
  1744. to_vmcb->save.sysenter_cs = from_vmcb->save.sysenter_cs;
  1745. to_vmcb->save.sysenter_esp = from_vmcb->save.sysenter_esp;
  1746. to_vmcb->save.sysenter_eip = from_vmcb->save.sysenter_eip;
  1747. }
  1748. static int vmload_interception(struct vcpu_svm *svm)
  1749. {
  1750. struct vmcb *nested_vmcb;
  1751. struct page *page;
  1752. if (nested_svm_check_permissions(svm))
  1753. return 1;
  1754. svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
  1755. skip_emulated_instruction(&svm->vcpu);
  1756. nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
  1757. if (!nested_vmcb)
  1758. return 1;
  1759. nested_svm_vmloadsave(nested_vmcb, svm->vmcb);
  1760. nested_svm_unmap(page);
  1761. return 1;
  1762. }
  1763. static int vmsave_interception(struct vcpu_svm *svm)
  1764. {
  1765. struct vmcb *nested_vmcb;
  1766. struct page *page;
  1767. if (nested_svm_check_permissions(svm))
  1768. return 1;
  1769. svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
  1770. skip_emulated_instruction(&svm->vcpu);
  1771. nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
  1772. if (!nested_vmcb)
  1773. return 1;
  1774. nested_svm_vmloadsave(svm->vmcb, nested_vmcb);
  1775. nested_svm_unmap(page);
  1776. return 1;
  1777. }
  1778. static int vmrun_interception(struct vcpu_svm *svm)
  1779. {
  1780. if (nested_svm_check_permissions(svm))
  1781. return 1;
  1782. svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
  1783. skip_emulated_instruction(&svm->vcpu);
  1784. if (!nested_svm_vmrun(svm))
  1785. return 1;
  1786. if (!nested_svm_vmrun_msrpm(svm))
  1787. goto failed;
  1788. return 1;
  1789. failed:
  1790. svm->vmcb->control.exit_code = SVM_EXIT_ERR;
  1791. svm->vmcb->control.exit_code_hi = 0;
  1792. svm->vmcb->control.exit_info_1 = 0;
  1793. svm->vmcb->control.exit_info_2 = 0;
  1794. nested_svm_vmexit(svm);
  1795. return 1;
  1796. }
  1797. static int stgi_interception(struct vcpu_svm *svm)
  1798. {
  1799. if (nested_svm_check_permissions(svm))
  1800. return 1;
  1801. svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
  1802. skip_emulated_instruction(&svm->vcpu);
  1803. enable_gif(svm);
  1804. return 1;
  1805. }
  1806. static int clgi_interception(struct vcpu_svm *svm)
  1807. {
  1808. if (nested_svm_check_permissions(svm))
  1809. return 1;
  1810. svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
  1811. skip_emulated_instruction(&svm->vcpu);
  1812. disable_gif(svm);
  1813. /* After a CLGI no interrupts should come */
  1814. svm_clear_vintr(svm);
  1815. svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
  1816. return 1;
  1817. }
  1818. static int invlpga_interception(struct vcpu_svm *svm)
  1819. {
  1820. struct kvm_vcpu *vcpu = &svm->vcpu;
  1821. trace_kvm_invlpga(svm->vmcb->save.rip, vcpu->arch.regs[VCPU_REGS_RCX],
  1822. vcpu->arch.regs[VCPU_REGS_RAX]);
  1823. /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
  1824. kvm_mmu_invlpg(vcpu, vcpu->arch.regs[VCPU_REGS_RAX]);
  1825. svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
  1826. skip_emulated_instruction(&svm->vcpu);
  1827. return 1;
  1828. }
  1829. static int skinit_interception(struct vcpu_svm *svm)
  1830. {
  1831. trace_kvm_skinit(svm->vmcb->save.rip, svm->vcpu.arch.regs[VCPU_REGS_RAX]);
  1832. kvm_queue_exception(&svm->vcpu, UD_VECTOR);
  1833. return 1;
  1834. }
  1835. static int invalid_op_interception(struct vcpu_svm *svm)
  1836. {
  1837. kvm_queue_exception(&svm->vcpu, UD_VECTOR);
  1838. return 1;
  1839. }
  1840. static int task_switch_interception(struct vcpu_svm *svm)
  1841. {
  1842. u16 tss_selector;
  1843. int reason;
  1844. int int_type = svm->vmcb->control.exit_int_info &
  1845. SVM_EXITINTINFO_TYPE_MASK;
  1846. int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
  1847. uint32_t type =
  1848. svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
  1849. uint32_t idt_v =
  1850. svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
  1851. tss_selector = (u16)svm->vmcb->control.exit_info_1;
  1852. if (svm->vmcb->control.exit_info_2 &
  1853. (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
  1854. reason = TASK_SWITCH_IRET;
  1855. else if (svm->vmcb->control.exit_info_2 &
  1856. (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
  1857. reason = TASK_SWITCH_JMP;
  1858. else if (idt_v)
  1859. reason = TASK_SWITCH_GATE;
  1860. else
  1861. reason = TASK_SWITCH_CALL;
  1862. if (reason == TASK_SWITCH_GATE) {
  1863. switch (type) {
  1864. case SVM_EXITINTINFO_TYPE_NMI:
  1865. svm->vcpu.arch.nmi_injected = false;
  1866. break;
  1867. case SVM_EXITINTINFO_TYPE_EXEPT:
  1868. kvm_clear_exception_queue(&svm->vcpu);
  1869. break;
  1870. case SVM_EXITINTINFO_TYPE_INTR:
  1871. kvm_clear_interrupt_queue(&svm->vcpu);
  1872. break;
  1873. default:
  1874. break;
  1875. }
  1876. }
  1877. if (reason != TASK_SWITCH_GATE ||
  1878. int_type == SVM_EXITINTINFO_TYPE_SOFT ||
  1879. (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
  1880. (int_vec == OF_VECTOR || int_vec == BP_VECTOR)))
  1881. skip_emulated_instruction(&svm->vcpu);
  1882. return kvm_task_switch(&svm->vcpu, tss_selector, reason);
  1883. }
  1884. static int cpuid_interception(struct vcpu_svm *svm)
  1885. {
  1886. svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
  1887. kvm_emulate_cpuid(&svm->vcpu);
  1888. return 1;
  1889. }
  1890. static int iret_interception(struct vcpu_svm *svm)
  1891. {
  1892. ++svm->vcpu.stat.nmi_window_exits;
  1893. svm->vmcb->control.intercept &= ~(1UL << INTERCEPT_IRET);
  1894. svm->vcpu.arch.hflags |= HF_IRET_MASK;
  1895. return 1;
  1896. }
  1897. static int invlpg_interception(struct vcpu_svm *svm)
  1898. {
  1899. if (emulate_instruction(&svm->vcpu, 0, 0, 0) != EMULATE_DONE)
  1900. pr_unimpl(&svm->vcpu, "%s: failed\n", __func__);
  1901. return 1;
  1902. }
  1903. static int emulate_on_interception(struct vcpu_svm *svm)
  1904. {
  1905. if (emulate_instruction(&svm->vcpu, 0, 0, 0) != EMULATE_DONE)
  1906. pr_unimpl(&svm->vcpu, "%s: failed\n", __func__);
  1907. return 1;
  1908. }
  1909. static int cr8_write_interception(struct vcpu_svm *svm)
  1910. {
  1911. struct kvm_run *kvm_run = svm->vcpu.run;
  1912. u8 cr8_prev = kvm_get_cr8(&svm->vcpu);
  1913. /* instruction emulation calls kvm_set_cr8() */
  1914. emulate_instruction(&svm->vcpu, 0, 0, 0);
  1915. if (irqchip_in_kernel(svm->vcpu.kvm)) {
  1916. svm->vmcb->control.intercept_cr_write &= ~INTERCEPT_CR8_MASK;
  1917. return 1;
  1918. }
  1919. if (cr8_prev <= kvm_get_cr8(&svm->vcpu))
  1920. return 1;
  1921. kvm_run->exit_reason = KVM_EXIT_SET_TPR;
  1922. return 0;
  1923. }
  1924. static int svm_get_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 *data)
  1925. {
  1926. struct vcpu_svm *svm = to_svm(vcpu);
  1927. switch (ecx) {
  1928. case MSR_IA32_TSC: {
  1929. u64 tsc_offset;
  1930. if (is_nested(svm))
  1931. tsc_offset = svm->nested.hsave->control.tsc_offset;
  1932. else
  1933. tsc_offset = svm->vmcb->control.tsc_offset;
  1934. *data = tsc_offset + native_read_tsc();
  1935. break;
  1936. }
  1937. case MSR_K6_STAR:
  1938. *data = svm->vmcb->save.star;
  1939. break;
  1940. #ifdef CONFIG_X86_64
  1941. case MSR_LSTAR:
  1942. *data = svm->vmcb->save.lstar;
  1943. break;
  1944. case MSR_CSTAR:
  1945. *data = svm->vmcb->save.cstar;
  1946. break;
  1947. case MSR_KERNEL_GS_BASE:
  1948. *data = svm->vmcb->save.kernel_gs_base;
  1949. break;
  1950. case MSR_SYSCALL_MASK:
  1951. *data = svm->vmcb->save.sfmask;
  1952. break;
  1953. #endif
  1954. case MSR_IA32_SYSENTER_CS:
  1955. *data = svm->vmcb->save.sysenter_cs;
  1956. break;
  1957. case MSR_IA32_SYSENTER_EIP:
  1958. *data = svm->sysenter_eip;
  1959. break;
  1960. case MSR_IA32_SYSENTER_ESP:
  1961. *data = svm->sysenter_esp;
  1962. break;
  1963. /*
  1964. * Nobody will change the following 5 values in the VMCB so we can
  1965. * safely return them on rdmsr. They will always be 0 until LBRV is
  1966. * implemented.
  1967. */
  1968. case MSR_IA32_DEBUGCTLMSR:
  1969. *data = svm->vmcb->save.dbgctl;
  1970. break;
  1971. case MSR_IA32_LASTBRANCHFROMIP:
  1972. *data = svm->vmcb->save.br_from;
  1973. break;
  1974. case MSR_IA32_LASTBRANCHTOIP:
  1975. *data = svm->vmcb->save.br_to;
  1976. break;
  1977. case MSR_IA32_LASTINTFROMIP:
  1978. *data = svm->vmcb->save.last_excp_from;
  1979. break;
  1980. case MSR_IA32_LASTINTTOIP:
  1981. *data = svm->vmcb->save.last_excp_to;
  1982. break;
  1983. case MSR_VM_HSAVE_PA:
  1984. *data = svm->nested.hsave_msr;
  1985. break;
  1986. case MSR_VM_CR:
  1987. *data = svm->nested.vm_cr_msr;
  1988. break;
  1989. case MSR_IA32_UCODE_REV:
  1990. *data = 0x01000065;
  1991. break;
  1992. default:
  1993. return kvm_get_msr_common(vcpu, ecx, data);
  1994. }
  1995. return 0;
  1996. }
  1997. static int rdmsr_interception(struct vcpu_svm *svm)
  1998. {
  1999. u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
  2000. u64 data;
  2001. if (svm_get_msr(&svm->vcpu, ecx, &data)) {
  2002. trace_kvm_msr_read_ex(ecx);
  2003. kvm_inject_gp(&svm->vcpu, 0);
  2004. } else {
  2005. trace_kvm_msr_read(ecx, data);
  2006. svm->vcpu.arch.regs[VCPU_REGS_RAX] = data & 0xffffffff;
  2007. svm->vcpu.arch.regs[VCPU_REGS_RDX] = data >> 32;
  2008. svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
  2009. skip_emulated_instruction(&svm->vcpu);
  2010. }
  2011. return 1;
  2012. }
  2013. static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
  2014. {
  2015. struct vcpu_svm *svm = to_svm(vcpu);
  2016. int svm_dis, chg_mask;
  2017. if (data & ~SVM_VM_CR_VALID_MASK)
  2018. return 1;
  2019. chg_mask = SVM_VM_CR_VALID_MASK;
  2020. if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
  2021. chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
  2022. svm->nested.vm_cr_msr &= ~chg_mask;
  2023. svm->nested.vm_cr_msr |= (data & chg_mask);
  2024. svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
  2025. /* check for svm_disable while efer.svme is set */
  2026. if (svm_dis && (vcpu->arch.efer & EFER_SVME))
  2027. return 1;
  2028. return 0;
  2029. }
  2030. static int svm_set_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 data)
  2031. {
  2032. struct vcpu_svm *svm = to_svm(vcpu);
  2033. switch (ecx) {
  2034. case MSR_IA32_TSC: {
  2035. u64 tsc_offset = data - native_read_tsc();
  2036. u64 g_tsc_offset = 0;
  2037. if (is_nested(svm)) {
  2038. g_tsc_offset = svm->vmcb->control.tsc_offset -
  2039. svm->nested.hsave->control.tsc_offset;
  2040. svm->nested.hsave->control.tsc_offset = tsc_offset;
  2041. }
  2042. svm->vmcb->control.tsc_offset = tsc_offset + g_tsc_offset;
  2043. break;
  2044. }
  2045. case MSR_K6_STAR:
  2046. svm->vmcb->save.star = data;
  2047. break;
  2048. #ifdef CONFIG_X86_64
  2049. case MSR_LSTAR:
  2050. svm->vmcb->save.lstar = data;
  2051. break;
  2052. case MSR_CSTAR:
  2053. svm->vmcb->save.cstar = data;
  2054. break;
  2055. case MSR_KERNEL_GS_BASE:
  2056. svm->vmcb->save.kernel_gs_base = data;
  2057. break;
  2058. case MSR_SYSCALL_MASK:
  2059. svm->vmcb->save.sfmask = data;
  2060. break;
  2061. #endif
  2062. case MSR_IA32_SYSENTER_CS:
  2063. svm->vmcb->save.sysenter_cs = data;
  2064. break;
  2065. case MSR_IA32_SYSENTER_EIP:
  2066. svm->sysenter_eip = data;
  2067. svm->vmcb->save.sysenter_eip = data;
  2068. break;
  2069. case MSR_IA32_SYSENTER_ESP:
  2070. svm->sysenter_esp = data;
  2071. svm->vmcb->save.sysenter_esp = data;
  2072. break;
  2073. case MSR_IA32_DEBUGCTLMSR:
  2074. if (!svm_has(SVM_FEATURE_LBRV)) {
  2075. pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
  2076. __func__, data);
  2077. break;
  2078. }
  2079. if (data & DEBUGCTL_RESERVED_BITS)
  2080. return 1;
  2081. svm->vmcb->save.dbgctl = data;
  2082. if (data & (1ULL<<0))
  2083. svm_enable_lbrv(svm);
  2084. else
  2085. svm_disable_lbrv(svm);
  2086. break;
  2087. case MSR_VM_HSAVE_PA:
  2088. svm->nested.hsave_msr = data;
  2089. break;
  2090. case MSR_VM_CR:
  2091. return svm_set_vm_cr(vcpu, data);
  2092. case MSR_VM_IGNNE:
  2093. pr_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
  2094. break;
  2095. default:
  2096. return kvm_set_msr_common(vcpu, ecx, data);
  2097. }
  2098. return 0;
  2099. }
  2100. static int wrmsr_interception(struct vcpu_svm *svm)
  2101. {
  2102. u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
  2103. u64 data = (svm->vcpu.arch.regs[VCPU_REGS_RAX] & -1u)
  2104. | ((u64)(svm->vcpu.arch.regs[VCPU_REGS_RDX] & -1u) << 32);
  2105. svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
  2106. if (svm_set_msr(&svm->vcpu, ecx, data)) {
  2107. trace_kvm_msr_write_ex(ecx, data);
  2108. kvm_inject_gp(&svm->vcpu, 0);
  2109. } else {
  2110. trace_kvm_msr_write(ecx, data);
  2111. skip_emulated_instruction(&svm->vcpu);
  2112. }
  2113. return 1;
  2114. }
  2115. static int msr_interception(struct vcpu_svm *svm)
  2116. {
  2117. if (svm->vmcb->control.exit_info_1)
  2118. return wrmsr_interception(svm);
  2119. else
  2120. return rdmsr_interception(svm);
  2121. }
  2122. static int interrupt_window_interception(struct vcpu_svm *svm)
  2123. {
  2124. struct kvm_run *kvm_run = svm->vcpu.run;
  2125. svm_clear_vintr(svm);
  2126. svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
  2127. /*
  2128. * If the user space waits to inject interrupts, exit as soon as
  2129. * possible
  2130. */
  2131. if (!irqchip_in_kernel(svm->vcpu.kvm) &&
  2132. kvm_run->request_interrupt_window &&
  2133. !kvm_cpu_has_interrupt(&svm->vcpu)) {
  2134. ++svm->vcpu.stat.irq_window_exits;
  2135. kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
  2136. return 0;
  2137. }
  2138. return 1;
  2139. }
  2140. static int pause_interception(struct vcpu_svm *svm)
  2141. {
  2142. kvm_vcpu_on_spin(&(svm->vcpu));
  2143. return 1;
  2144. }
  2145. static int (*svm_exit_handlers[])(struct vcpu_svm *svm) = {
  2146. [SVM_EXIT_READ_CR0] = emulate_on_interception,
  2147. [SVM_EXIT_READ_CR3] = emulate_on_interception,
  2148. [SVM_EXIT_READ_CR4] = emulate_on_interception,
  2149. [SVM_EXIT_READ_CR8] = emulate_on_interception,
  2150. [SVM_EXIT_CR0_SEL_WRITE] = emulate_on_interception,
  2151. [SVM_EXIT_WRITE_CR0] = emulate_on_interception,
  2152. [SVM_EXIT_WRITE_CR3] = emulate_on_interception,
  2153. [SVM_EXIT_WRITE_CR4] = emulate_on_interception,
  2154. [SVM_EXIT_WRITE_CR8] = cr8_write_interception,
  2155. [SVM_EXIT_READ_DR0] = emulate_on_interception,
  2156. [SVM_EXIT_READ_DR1] = emulate_on_interception,
  2157. [SVM_EXIT_READ_DR2] = emulate_on_interception,
  2158. [SVM_EXIT_READ_DR3] = emulate_on_interception,
  2159. [SVM_EXIT_READ_DR4] = emulate_on_interception,
  2160. [SVM_EXIT_READ_DR5] = emulate_on_interception,
  2161. [SVM_EXIT_READ_DR6] = emulate_on_interception,
  2162. [SVM_EXIT_READ_DR7] = emulate_on_interception,
  2163. [SVM_EXIT_WRITE_DR0] = emulate_on_interception,
  2164. [SVM_EXIT_WRITE_DR1] = emulate_on_interception,
  2165. [SVM_EXIT_WRITE_DR2] = emulate_on_interception,
  2166. [SVM_EXIT_WRITE_DR3] = emulate_on_interception,
  2167. [SVM_EXIT_WRITE_DR4] = emulate_on_interception,
  2168. [SVM_EXIT_WRITE_DR5] = emulate_on_interception,
  2169. [SVM_EXIT_WRITE_DR6] = emulate_on_interception,
  2170. [SVM_EXIT_WRITE_DR7] = emulate_on_interception,
  2171. [SVM_EXIT_EXCP_BASE + DB_VECTOR] = db_interception,
  2172. [SVM_EXIT_EXCP_BASE + BP_VECTOR] = bp_interception,
  2173. [SVM_EXIT_EXCP_BASE + UD_VECTOR] = ud_interception,
  2174. [SVM_EXIT_EXCP_BASE + PF_VECTOR] = pf_interception,
  2175. [SVM_EXIT_EXCP_BASE + NM_VECTOR] = nm_interception,
  2176. [SVM_EXIT_EXCP_BASE + MC_VECTOR] = mc_interception,
  2177. [SVM_EXIT_INTR] = intr_interception,
  2178. [SVM_EXIT_NMI] = nmi_interception,
  2179. [SVM_EXIT_SMI] = nop_on_interception,
  2180. [SVM_EXIT_INIT] = nop_on_interception,
  2181. [SVM_EXIT_VINTR] = interrupt_window_interception,
  2182. [SVM_EXIT_CPUID] = cpuid_interception,
  2183. [SVM_EXIT_IRET] = iret_interception,
  2184. [SVM_EXIT_INVD] = emulate_on_interception,
  2185. [SVM_EXIT_PAUSE] = pause_interception,
  2186. [SVM_EXIT_HLT] = halt_interception,
  2187. [SVM_EXIT_INVLPG] = invlpg_interception,
  2188. [SVM_EXIT_INVLPGA] = invlpga_interception,
  2189. [SVM_EXIT_IOIO] = io_interception,
  2190. [SVM_EXIT_MSR] = msr_interception,
  2191. [SVM_EXIT_TASK_SWITCH] = task_switch_interception,
  2192. [SVM_EXIT_SHUTDOWN] = shutdown_interception,
  2193. [SVM_EXIT_VMRUN] = vmrun_interception,
  2194. [SVM_EXIT_VMMCALL] = vmmcall_interception,
  2195. [SVM_EXIT_VMLOAD] = vmload_interception,
  2196. [SVM_EXIT_VMSAVE] = vmsave_interception,
  2197. [SVM_EXIT_STGI] = stgi_interception,
  2198. [SVM_EXIT_CLGI] = clgi_interception,
  2199. [SVM_EXIT_SKINIT] = skinit_interception,
  2200. [SVM_EXIT_WBINVD] = emulate_on_interception,
  2201. [SVM_EXIT_MONITOR] = invalid_op_interception,
  2202. [SVM_EXIT_MWAIT] = invalid_op_interception,
  2203. [SVM_EXIT_NPF] = pf_interception,
  2204. };
  2205. static int handle_exit(struct kvm_vcpu *vcpu)
  2206. {
  2207. struct vcpu_svm *svm = to_svm(vcpu);
  2208. struct kvm_run *kvm_run = vcpu->run;
  2209. u32 exit_code = svm->vmcb->control.exit_code;
  2210. trace_kvm_exit(exit_code, vcpu);
  2211. if (unlikely(svm->nested.exit_required)) {
  2212. nested_svm_vmexit(svm);
  2213. svm->nested.exit_required = false;
  2214. return 1;
  2215. }
  2216. if (is_nested(svm)) {
  2217. int vmexit;
  2218. trace_kvm_nested_vmexit(svm->vmcb->save.rip, exit_code,
  2219. svm->vmcb->control.exit_info_1,
  2220. svm->vmcb->control.exit_info_2,
  2221. svm->vmcb->control.exit_int_info,
  2222. svm->vmcb->control.exit_int_info_err);
  2223. vmexit = nested_svm_exit_special(svm);
  2224. if (vmexit == NESTED_EXIT_CONTINUE)
  2225. vmexit = nested_svm_exit_handled(svm);
  2226. if (vmexit == NESTED_EXIT_DONE)
  2227. return 1;
  2228. }
  2229. svm_complete_interrupts(svm);
  2230. if (!(svm->vmcb->control.intercept_cr_write & INTERCEPT_CR0_MASK))
  2231. vcpu->arch.cr0 = svm->vmcb->save.cr0;
  2232. if (npt_enabled)
  2233. vcpu->arch.cr3 = svm->vmcb->save.cr3;
  2234. if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
  2235. kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
  2236. kvm_run->fail_entry.hardware_entry_failure_reason
  2237. = svm->vmcb->control.exit_code;
  2238. return 0;
  2239. }
  2240. if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
  2241. exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
  2242. exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH)
  2243. printk(KERN_ERR "%s: unexpected exit_ini_info 0x%x "
  2244. "exit_code 0x%x\n",
  2245. __func__, svm->vmcb->control.exit_int_info,
  2246. exit_code);
  2247. if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
  2248. || !svm_exit_handlers[exit_code]) {
  2249. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  2250. kvm_run->hw.hardware_exit_reason = exit_code;
  2251. return 0;
  2252. }
  2253. return svm_exit_handlers[exit_code](svm);
  2254. }
  2255. static void reload_tss(struct kvm_vcpu *vcpu)
  2256. {
  2257. int cpu = raw_smp_processor_id();
  2258. struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
  2259. sd->tss_desc->type = 9; /* available 32/64-bit TSS */
  2260. load_TR_desc();
  2261. }
  2262. static void pre_svm_run(struct vcpu_svm *svm)
  2263. {
  2264. int cpu = raw_smp_processor_id();
  2265. struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
  2266. svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
  2267. /* FIXME: handle wraparound of asid_generation */
  2268. if (svm->asid_generation != sd->asid_generation)
  2269. new_asid(svm, sd);
  2270. }
  2271. static void svm_inject_nmi(struct kvm_vcpu *vcpu)
  2272. {
  2273. struct vcpu_svm *svm = to_svm(vcpu);
  2274. svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
  2275. vcpu->arch.hflags |= HF_NMI_MASK;
  2276. svm->vmcb->control.intercept |= (1UL << INTERCEPT_IRET);
  2277. ++vcpu->stat.nmi_injections;
  2278. }
  2279. static inline void svm_inject_irq(struct vcpu_svm *svm, int irq)
  2280. {
  2281. struct vmcb_control_area *control;
  2282. trace_kvm_inj_virq(irq);
  2283. ++svm->vcpu.stat.irq_injections;
  2284. control = &svm->vmcb->control;
  2285. control->int_vector = irq;
  2286. control->int_ctl &= ~V_INTR_PRIO_MASK;
  2287. control->int_ctl |= V_IRQ_MASK |
  2288. ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
  2289. }
  2290. static void svm_set_irq(struct kvm_vcpu *vcpu)
  2291. {
  2292. struct vcpu_svm *svm = to_svm(vcpu);
  2293. BUG_ON(!(gif_set(svm)));
  2294. svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
  2295. SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
  2296. }
  2297. static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
  2298. {
  2299. struct vcpu_svm *svm = to_svm(vcpu);
  2300. if (is_nested(svm) && (vcpu->arch.hflags & HF_VINTR_MASK))
  2301. return;
  2302. if (irr == -1)
  2303. return;
  2304. if (tpr >= irr)
  2305. svm->vmcb->control.intercept_cr_write |= INTERCEPT_CR8_MASK;
  2306. }
  2307. static int svm_nmi_allowed(struct kvm_vcpu *vcpu)
  2308. {
  2309. struct vcpu_svm *svm = to_svm(vcpu);
  2310. struct vmcb *vmcb = svm->vmcb;
  2311. return !(vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) &&
  2312. !(svm->vcpu.arch.hflags & HF_NMI_MASK);
  2313. }
  2314. static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
  2315. {
  2316. struct vcpu_svm *svm = to_svm(vcpu);
  2317. return !!(svm->vcpu.arch.hflags & HF_NMI_MASK);
  2318. }
  2319. static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
  2320. {
  2321. struct vcpu_svm *svm = to_svm(vcpu);
  2322. if (masked) {
  2323. svm->vcpu.arch.hflags |= HF_NMI_MASK;
  2324. svm->vmcb->control.intercept |= (1UL << INTERCEPT_IRET);
  2325. } else {
  2326. svm->vcpu.arch.hflags &= ~HF_NMI_MASK;
  2327. svm->vmcb->control.intercept &= ~(1UL << INTERCEPT_IRET);
  2328. }
  2329. }
  2330. static int svm_interrupt_allowed(struct kvm_vcpu *vcpu)
  2331. {
  2332. struct vcpu_svm *svm = to_svm(vcpu);
  2333. struct vmcb *vmcb = svm->vmcb;
  2334. int ret;
  2335. if (!gif_set(svm) ||
  2336. (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK))
  2337. return 0;
  2338. ret = !!(vmcb->save.rflags & X86_EFLAGS_IF);
  2339. if (is_nested(svm))
  2340. return ret && !(svm->vcpu.arch.hflags & HF_VINTR_MASK);
  2341. return ret;
  2342. }
  2343. static void enable_irq_window(struct kvm_vcpu *vcpu)
  2344. {
  2345. struct vcpu_svm *svm = to_svm(vcpu);
  2346. /*
  2347. * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
  2348. * 1, because that's a separate STGI/VMRUN intercept. The next time we
  2349. * get that intercept, this function will be called again though and
  2350. * we'll get the vintr intercept.
  2351. */
  2352. if (gif_set(svm) && nested_svm_intr(svm)) {
  2353. svm_set_vintr(svm);
  2354. svm_inject_irq(svm, 0x0);
  2355. }
  2356. }
  2357. static void enable_nmi_window(struct kvm_vcpu *vcpu)
  2358. {
  2359. struct vcpu_svm *svm = to_svm(vcpu);
  2360. if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK))
  2361. == HF_NMI_MASK)
  2362. return; /* IRET will cause a vm exit */
  2363. /*
  2364. * Something prevents NMI from been injected. Single step over possible
  2365. * problem (IRET or exception injection or interrupt shadow)
  2366. */
  2367. if (gif_set(svm) && nested_svm_nmi(svm)) {
  2368. svm->nmi_singlestep = true;
  2369. svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
  2370. update_db_intercept(vcpu);
  2371. }
  2372. }
  2373. static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
  2374. {
  2375. return 0;
  2376. }
  2377. static void svm_flush_tlb(struct kvm_vcpu *vcpu)
  2378. {
  2379. force_new_asid(vcpu);
  2380. }
  2381. static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
  2382. {
  2383. }
  2384. static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
  2385. {
  2386. struct vcpu_svm *svm = to_svm(vcpu);
  2387. if (is_nested(svm) && (vcpu->arch.hflags & HF_VINTR_MASK))
  2388. return;
  2389. if (!(svm->vmcb->control.intercept_cr_write & INTERCEPT_CR8_MASK)) {
  2390. int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
  2391. kvm_set_cr8(vcpu, cr8);
  2392. }
  2393. }
  2394. static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
  2395. {
  2396. struct vcpu_svm *svm = to_svm(vcpu);
  2397. u64 cr8;
  2398. if (is_nested(svm) && (vcpu->arch.hflags & HF_VINTR_MASK))
  2399. return;
  2400. cr8 = kvm_get_cr8(vcpu);
  2401. svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
  2402. svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
  2403. }
  2404. static void svm_complete_interrupts(struct vcpu_svm *svm)
  2405. {
  2406. u8 vector;
  2407. int type;
  2408. u32 exitintinfo = svm->vmcb->control.exit_int_info;
  2409. unsigned int3_injected = svm->int3_injected;
  2410. svm->int3_injected = 0;
  2411. if (svm->vcpu.arch.hflags & HF_IRET_MASK)
  2412. svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
  2413. svm->vcpu.arch.nmi_injected = false;
  2414. kvm_clear_exception_queue(&svm->vcpu);
  2415. kvm_clear_interrupt_queue(&svm->vcpu);
  2416. if (!(exitintinfo & SVM_EXITINTINFO_VALID))
  2417. return;
  2418. vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
  2419. type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
  2420. switch (type) {
  2421. case SVM_EXITINTINFO_TYPE_NMI:
  2422. svm->vcpu.arch.nmi_injected = true;
  2423. break;
  2424. case SVM_EXITINTINFO_TYPE_EXEPT:
  2425. if (is_nested(svm))
  2426. break;
  2427. /*
  2428. * In case of software exceptions, do not reinject the vector,
  2429. * but re-execute the instruction instead. Rewind RIP first
  2430. * if we emulated INT3 before.
  2431. */
  2432. if (kvm_exception_is_soft(vector)) {
  2433. if (vector == BP_VECTOR && int3_injected &&
  2434. kvm_is_linear_rip(&svm->vcpu, svm->int3_rip))
  2435. kvm_rip_write(&svm->vcpu,
  2436. kvm_rip_read(&svm->vcpu) -
  2437. int3_injected);
  2438. break;
  2439. }
  2440. if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
  2441. u32 err = svm->vmcb->control.exit_int_info_err;
  2442. kvm_queue_exception_e(&svm->vcpu, vector, err);
  2443. } else
  2444. kvm_queue_exception(&svm->vcpu, vector);
  2445. break;
  2446. case SVM_EXITINTINFO_TYPE_INTR:
  2447. kvm_queue_interrupt(&svm->vcpu, vector, false);
  2448. break;
  2449. default:
  2450. break;
  2451. }
  2452. }
  2453. #ifdef CONFIG_X86_64
  2454. #define R "r"
  2455. #else
  2456. #define R "e"
  2457. #endif
  2458. static void svm_vcpu_run(struct kvm_vcpu *vcpu)
  2459. {
  2460. struct vcpu_svm *svm = to_svm(vcpu);
  2461. u16 fs_selector;
  2462. u16 gs_selector;
  2463. u16 ldt_selector;
  2464. /*
  2465. * A vmexit emulation is required before the vcpu can be executed
  2466. * again.
  2467. */
  2468. if (unlikely(svm->nested.exit_required))
  2469. return;
  2470. svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
  2471. svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
  2472. svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
  2473. pre_svm_run(svm);
  2474. sync_lapic_to_cr8(vcpu);
  2475. save_host_msrs(vcpu);
  2476. fs_selector = kvm_read_fs();
  2477. gs_selector = kvm_read_gs();
  2478. ldt_selector = kvm_read_ldt();
  2479. svm->vmcb->save.cr2 = vcpu->arch.cr2;
  2480. /* required for live migration with NPT */
  2481. if (npt_enabled)
  2482. svm->vmcb->save.cr3 = vcpu->arch.cr3;
  2483. clgi();
  2484. local_irq_enable();
  2485. asm volatile (
  2486. "push %%"R"bp; \n\t"
  2487. "mov %c[rbx](%[svm]), %%"R"bx \n\t"
  2488. "mov %c[rcx](%[svm]), %%"R"cx \n\t"
  2489. "mov %c[rdx](%[svm]), %%"R"dx \n\t"
  2490. "mov %c[rsi](%[svm]), %%"R"si \n\t"
  2491. "mov %c[rdi](%[svm]), %%"R"di \n\t"
  2492. "mov %c[rbp](%[svm]), %%"R"bp \n\t"
  2493. #ifdef CONFIG_X86_64
  2494. "mov %c[r8](%[svm]), %%r8 \n\t"
  2495. "mov %c[r9](%[svm]), %%r9 \n\t"
  2496. "mov %c[r10](%[svm]), %%r10 \n\t"
  2497. "mov %c[r11](%[svm]), %%r11 \n\t"
  2498. "mov %c[r12](%[svm]), %%r12 \n\t"
  2499. "mov %c[r13](%[svm]), %%r13 \n\t"
  2500. "mov %c[r14](%[svm]), %%r14 \n\t"
  2501. "mov %c[r15](%[svm]), %%r15 \n\t"
  2502. #endif
  2503. /* Enter guest mode */
  2504. "push %%"R"ax \n\t"
  2505. "mov %c[vmcb](%[svm]), %%"R"ax \n\t"
  2506. __ex(SVM_VMLOAD) "\n\t"
  2507. __ex(SVM_VMRUN) "\n\t"
  2508. __ex(SVM_VMSAVE) "\n\t"
  2509. "pop %%"R"ax \n\t"
  2510. /* Save guest registers, load host registers */
  2511. "mov %%"R"bx, %c[rbx](%[svm]) \n\t"
  2512. "mov %%"R"cx, %c[rcx](%[svm]) \n\t"
  2513. "mov %%"R"dx, %c[rdx](%[svm]) \n\t"
  2514. "mov %%"R"si, %c[rsi](%[svm]) \n\t"
  2515. "mov %%"R"di, %c[rdi](%[svm]) \n\t"
  2516. "mov %%"R"bp, %c[rbp](%[svm]) \n\t"
  2517. #ifdef CONFIG_X86_64
  2518. "mov %%r8, %c[r8](%[svm]) \n\t"
  2519. "mov %%r9, %c[r9](%[svm]) \n\t"
  2520. "mov %%r10, %c[r10](%[svm]) \n\t"
  2521. "mov %%r11, %c[r11](%[svm]) \n\t"
  2522. "mov %%r12, %c[r12](%[svm]) \n\t"
  2523. "mov %%r13, %c[r13](%[svm]) \n\t"
  2524. "mov %%r14, %c[r14](%[svm]) \n\t"
  2525. "mov %%r15, %c[r15](%[svm]) \n\t"
  2526. #endif
  2527. "pop %%"R"bp"
  2528. :
  2529. : [svm]"a"(svm),
  2530. [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
  2531. [rbx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBX])),
  2532. [rcx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RCX])),
  2533. [rdx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDX])),
  2534. [rsi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RSI])),
  2535. [rdi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDI])),
  2536. [rbp]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBP]))
  2537. #ifdef CONFIG_X86_64
  2538. , [r8]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R8])),
  2539. [r9]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R9])),
  2540. [r10]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R10])),
  2541. [r11]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R11])),
  2542. [r12]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R12])),
  2543. [r13]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R13])),
  2544. [r14]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R14])),
  2545. [r15]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R15]))
  2546. #endif
  2547. : "cc", "memory"
  2548. , R"bx", R"cx", R"dx", R"si", R"di"
  2549. #ifdef CONFIG_X86_64
  2550. , "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
  2551. #endif
  2552. );
  2553. vcpu->arch.cr2 = svm->vmcb->save.cr2;
  2554. vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
  2555. vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
  2556. vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
  2557. kvm_load_fs(fs_selector);
  2558. kvm_load_gs(gs_selector);
  2559. kvm_load_ldt(ldt_selector);
  2560. load_host_msrs(vcpu);
  2561. reload_tss(vcpu);
  2562. local_irq_disable();
  2563. stgi();
  2564. sync_cr8_to_lapic(vcpu);
  2565. svm->next_rip = 0;
  2566. if (npt_enabled) {
  2567. vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR);
  2568. vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR);
  2569. }
  2570. }
  2571. #undef R
  2572. static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
  2573. {
  2574. struct vcpu_svm *svm = to_svm(vcpu);
  2575. if (npt_enabled) {
  2576. svm->vmcb->control.nested_cr3 = root;
  2577. force_new_asid(vcpu);
  2578. return;
  2579. }
  2580. svm->vmcb->save.cr3 = root;
  2581. force_new_asid(vcpu);
  2582. }
  2583. static int is_disabled(void)
  2584. {
  2585. u64 vm_cr;
  2586. rdmsrl(MSR_VM_CR, vm_cr);
  2587. if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
  2588. return 1;
  2589. return 0;
  2590. }
  2591. static void
  2592. svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
  2593. {
  2594. /*
  2595. * Patch in the VMMCALL instruction:
  2596. */
  2597. hypercall[0] = 0x0f;
  2598. hypercall[1] = 0x01;
  2599. hypercall[2] = 0xd9;
  2600. }
  2601. static void svm_check_processor_compat(void *rtn)
  2602. {
  2603. *(int *)rtn = 0;
  2604. }
  2605. static bool svm_cpu_has_accelerated_tpr(void)
  2606. {
  2607. return false;
  2608. }
  2609. static int get_npt_level(void)
  2610. {
  2611. #ifdef CONFIG_X86_64
  2612. return PT64_ROOT_LEVEL;
  2613. #else
  2614. return PT32E_ROOT_LEVEL;
  2615. #endif
  2616. }
  2617. static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
  2618. {
  2619. return 0;
  2620. }
  2621. static void svm_cpuid_update(struct kvm_vcpu *vcpu)
  2622. {
  2623. }
  2624. static const struct trace_print_flags svm_exit_reasons_str[] = {
  2625. { SVM_EXIT_READ_CR0, "read_cr0" },
  2626. { SVM_EXIT_READ_CR3, "read_cr3" },
  2627. { SVM_EXIT_READ_CR4, "read_cr4" },
  2628. { SVM_EXIT_READ_CR8, "read_cr8" },
  2629. { SVM_EXIT_WRITE_CR0, "write_cr0" },
  2630. { SVM_EXIT_WRITE_CR3, "write_cr3" },
  2631. { SVM_EXIT_WRITE_CR4, "write_cr4" },
  2632. { SVM_EXIT_WRITE_CR8, "write_cr8" },
  2633. { SVM_EXIT_READ_DR0, "read_dr0" },
  2634. { SVM_EXIT_READ_DR1, "read_dr1" },
  2635. { SVM_EXIT_READ_DR2, "read_dr2" },
  2636. { SVM_EXIT_READ_DR3, "read_dr3" },
  2637. { SVM_EXIT_WRITE_DR0, "write_dr0" },
  2638. { SVM_EXIT_WRITE_DR1, "write_dr1" },
  2639. { SVM_EXIT_WRITE_DR2, "write_dr2" },
  2640. { SVM_EXIT_WRITE_DR3, "write_dr3" },
  2641. { SVM_EXIT_WRITE_DR5, "write_dr5" },
  2642. { SVM_EXIT_WRITE_DR7, "write_dr7" },
  2643. { SVM_EXIT_EXCP_BASE + DB_VECTOR, "DB excp" },
  2644. { SVM_EXIT_EXCP_BASE + BP_VECTOR, "BP excp" },
  2645. { SVM_EXIT_EXCP_BASE + UD_VECTOR, "UD excp" },
  2646. { SVM_EXIT_EXCP_BASE + PF_VECTOR, "PF excp" },
  2647. { SVM_EXIT_EXCP_BASE + NM_VECTOR, "NM excp" },
  2648. { SVM_EXIT_EXCP_BASE + MC_VECTOR, "MC excp" },
  2649. { SVM_EXIT_INTR, "interrupt" },
  2650. { SVM_EXIT_NMI, "nmi" },
  2651. { SVM_EXIT_SMI, "smi" },
  2652. { SVM_EXIT_INIT, "init" },
  2653. { SVM_EXIT_VINTR, "vintr" },
  2654. { SVM_EXIT_CPUID, "cpuid" },
  2655. { SVM_EXIT_INVD, "invd" },
  2656. { SVM_EXIT_HLT, "hlt" },
  2657. { SVM_EXIT_INVLPG, "invlpg" },
  2658. { SVM_EXIT_INVLPGA, "invlpga" },
  2659. { SVM_EXIT_IOIO, "io" },
  2660. { SVM_EXIT_MSR, "msr" },
  2661. { SVM_EXIT_TASK_SWITCH, "task_switch" },
  2662. { SVM_EXIT_SHUTDOWN, "shutdown" },
  2663. { SVM_EXIT_VMRUN, "vmrun" },
  2664. { SVM_EXIT_VMMCALL, "hypercall" },
  2665. { SVM_EXIT_VMLOAD, "vmload" },
  2666. { SVM_EXIT_VMSAVE, "vmsave" },
  2667. { SVM_EXIT_STGI, "stgi" },
  2668. { SVM_EXIT_CLGI, "clgi" },
  2669. { SVM_EXIT_SKINIT, "skinit" },
  2670. { SVM_EXIT_WBINVD, "wbinvd" },
  2671. { SVM_EXIT_MONITOR, "monitor" },
  2672. { SVM_EXIT_MWAIT, "mwait" },
  2673. { SVM_EXIT_NPF, "npf" },
  2674. { -1, NULL }
  2675. };
  2676. static int svm_get_lpage_level(void)
  2677. {
  2678. return PT_PDPE_LEVEL;
  2679. }
  2680. static bool svm_rdtscp_supported(void)
  2681. {
  2682. return false;
  2683. }
  2684. static void svm_fpu_deactivate(struct kvm_vcpu *vcpu)
  2685. {
  2686. struct vcpu_svm *svm = to_svm(vcpu);
  2687. svm->vmcb->control.intercept_exceptions |= 1 << NM_VECTOR;
  2688. if (is_nested(svm))
  2689. svm->nested.hsave->control.intercept_exceptions |= 1 << NM_VECTOR;
  2690. update_cr0_intercept(svm);
  2691. }
  2692. static struct kvm_x86_ops svm_x86_ops = {
  2693. .cpu_has_kvm_support = has_svm,
  2694. .disabled_by_bios = is_disabled,
  2695. .hardware_setup = svm_hardware_setup,
  2696. .hardware_unsetup = svm_hardware_unsetup,
  2697. .check_processor_compatibility = svm_check_processor_compat,
  2698. .hardware_enable = svm_hardware_enable,
  2699. .hardware_disable = svm_hardware_disable,
  2700. .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
  2701. .vcpu_create = svm_create_vcpu,
  2702. .vcpu_free = svm_free_vcpu,
  2703. .vcpu_reset = svm_vcpu_reset,
  2704. .prepare_guest_switch = svm_prepare_guest_switch,
  2705. .vcpu_load = svm_vcpu_load,
  2706. .vcpu_put = svm_vcpu_put,
  2707. .set_guest_debug = svm_guest_debug,
  2708. .get_msr = svm_get_msr,
  2709. .set_msr = svm_set_msr,
  2710. .get_segment_base = svm_get_segment_base,
  2711. .get_segment = svm_get_segment,
  2712. .set_segment = svm_set_segment,
  2713. .get_cpl = svm_get_cpl,
  2714. .get_cs_db_l_bits = kvm_get_cs_db_l_bits,
  2715. .decache_cr0_guest_bits = svm_decache_cr0_guest_bits,
  2716. .decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
  2717. .set_cr0 = svm_set_cr0,
  2718. .set_cr3 = svm_set_cr3,
  2719. .set_cr4 = svm_set_cr4,
  2720. .set_efer = svm_set_efer,
  2721. .get_idt = svm_get_idt,
  2722. .set_idt = svm_set_idt,
  2723. .get_gdt = svm_get_gdt,
  2724. .set_gdt = svm_set_gdt,
  2725. .get_dr = svm_get_dr,
  2726. .set_dr = svm_set_dr,
  2727. .cache_reg = svm_cache_reg,
  2728. .get_rflags = svm_get_rflags,
  2729. .set_rflags = svm_set_rflags,
  2730. .fpu_activate = svm_fpu_activate,
  2731. .fpu_deactivate = svm_fpu_deactivate,
  2732. .tlb_flush = svm_flush_tlb,
  2733. .run = svm_vcpu_run,
  2734. .handle_exit = handle_exit,
  2735. .skip_emulated_instruction = skip_emulated_instruction,
  2736. .set_interrupt_shadow = svm_set_interrupt_shadow,
  2737. .get_interrupt_shadow = svm_get_interrupt_shadow,
  2738. .patch_hypercall = svm_patch_hypercall,
  2739. .set_irq = svm_set_irq,
  2740. .set_nmi = svm_inject_nmi,
  2741. .queue_exception = svm_queue_exception,
  2742. .interrupt_allowed = svm_interrupt_allowed,
  2743. .nmi_allowed = svm_nmi_allowed,
  2744. .get_nmi_mask = svm_get_nmi_mask,
  2745. .set_nmi_mask = svm_set_nmi_mask,
  2746. .enable_nmi_window = enable_nmi_window,
  2747. .enable_irq_window = enable_irq_window,
  2748. .update_cr8_intercept = update_cr8_intercept,
  2749. .set_tss_addr = svm_set_tss_addr,
  2750. .get_tdp_level = get_npt_level,
  2751. .get_mt_mask = svm_get_mt_mask,
  2752. .exit_reasons_str = svm_exit_reasons_str,
  2753. .get_lpage_level = svm_get_lpage_level,
  2754. .cpuid_update = svm_cpuid_update,
  2755. .rdtscp_supported = svm_rdtscp_supported,
  2756. };
  2757. static int __init svm_init(void)
  2758. {
  2759. return kvm_init(&svm_x86_ops, sizeof(struct vcpu_svm),
  2760. THIS_MODULE);
  2761. }
  2762. static void __exit svm_exit(void)
  2763. {
  2764. kvm_exit();
  2765. }
  2766. module_init(svm_init)
  2767. module_exit(svm_exit)