emulate.c 87 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232
  1. /******************************************************************************
  2. * emulate.c
  3. *
  4. * Generic x86 (32-bit and 64-bit) instruction decoder and emulator.
  5. *
  6. * Copyright (c) 2005 Keir Fraser
  7. *
  8. * Linux coding style, mod r/m decoder, segment base fixes, real-mode
  9. * privileged instructions:
  10. *
  11. * Copyright (C) 2006 Qumranet
  12. *
  13. * Avi Kivity <avi@qumranet.com>
  14. * Yaniv Kamay <yaniv@qumranet.com>
  15. *
  16. * This work is licensed under the terms of the GNU GPL, version 2. See
  17. * the COPYING file in the top-level directory.
  18. *
  19. * From: xen-unstable 10676:af9809f51f81a3c43f276f00c81a52ef558afda4
  20. */
  21. #ifndef __KERNEL__
  22. #include <stdio.h>
  23. #include <stdint.h>
  24. #include <public/xen.h>
  25. #define DPRINTF(_f, _a ...) printf(_f , ## _a)
  26. #else
  27. #include <linux/kvm_host.h>
  28. #include "kvm_cache_regs.h"
  29. #define DPRINTF(x...) do {} while (0)
  30. #endif
  31. #include <linux/module.h>
  32. #include <asm/kvm_emulate.h>
  33. #include "x86.h"
  34. #include "tss.h"
  35. /*
  36. * Opcode effective-address decode tables.
  37. * Note that we only emulate instructions that have at least one memory
  38. * operand (excluding implicit stack references). We assume that stack
  39. * references and instruction fetches will never occur in special memory
  40. * areas that require emulation. So, for example, 'mov <imm>,<reg>' need
  41. * not be handled.
  42. */
  43. /* Operand sizes: 8-bit operands or specified/overridden size. */
  44. #define ByteOp (1<<0) /* 8-bit operands. */
  45. /* Destination operand type. */
  46. #define ImplicitOps (1<<1) /* Implicit in opcode. No generic decode. */
  47. #define DstReg (2<<1) /* Register operand. */
  48. #define DstMem (3<<1) /* Memory operand. */
  49. #define DstAcc (4<<1) /* Destination Accumulator */
  50. #define DstDI (5<<1) /* Destination is in ES:(E)DI */
  51. #define DstMask (7<<1)
  52. /* Source operand type. */
  53. #define SrcNone (0<<4) /* No source operand. */
  54. #define SrcImplicit (0<<4) /* Source operand is implicit in the opcode. */
  55. #define SrcReg (1<<4) /* Register operand. */
  56. #define SrcMem (2<<4) /* Memory operand. */
  57. #define SrcMem16 (3<<4) /* Memory operand (16-bit). */
  58. #define SrcMem32 (4<<4) /* Memory operand (32-bit). */
  59. #define SrcImm (5<<4) /* Immediate operand. */
  60. #define SrcImmByte (6<<4) /* 8-bit sign-extended immediate operand. */
  61. #define SrcOne (7<<4) /* Implied '1' */
  62. #define SrcImmUByte (8<<4) /* 8-bit unsigned immediate operand. */
  63. #define SrcImmU (9<<4) /* Immediate operand, unsigned */
  64. #define SrcSI (0xa<<4) /* Source is in the DS:RSI */
  65. #define SrcMask (0xf<<4)
  66. /* Generic ModRM decode. */
  67. #define ModRM (1<<8)
  68. /* Destination is only written; never read. */
  69. #define Mov (1<<9)
  70. #define BitOp (1<<10)
  71. #define MemAbs (1<<11) /* Memory operand is absolute displacement */
  72. #define String (1<<12) /* String instruction (rep capable) */
  73. #define Stack (1<<13) /* Stack instruction (push/pop) */
  74. #define Group (1<<14) /* Bits 3:5 of modrm byte extend opcode */
  75. #define GroupDual (1<<15) /* Alternate decoding of mod == 3 */
  76. #define GroupMask 0xff /* Group number stored in bits 0:7 */
  77. /* Misc flags */
  78. #define Lock (1<<26) /* lock prefix is allowed for the instruction */
  79. #define Priv (1<<27) /* instruction generates #GP if current CPL != 0 */
  80. #define No64 (1<<28)
  81. /* Source 2 operand type */
  82. #define Src2None (0<<29)
  83. #define Src2CL (1<<29)
  84. #define Src2ImmByte (2<<29)
  85. #define Src2One (3<<29)
  86. #define Src2Imm16 (4<<29)
  87. #define Src2Mem16 (5<<29) /* Used for Ep encoding. First argument has to be
  88. in memory and second argument is located
  89. immediately after the first one in memory. */
  90. #define Src2Mask (7<<29)
  91. enum {
  92. Group1_80, Group1_81, Group1_82, Group1_83,
  93. Group1A, Group3_Byte, Group3, Group4, Group5, Group7,
  94. Group8, Group9,
  95. };
  96. static u32 opcode_table[256] = {
  97. /* 0x00 - 0x07 */
  98. ByteOp | DstMem | SrcReg | ModRM | Lock, DstMem | SrcReg | ModRM | Lock,
  99. ByteOp | DstReg | SrcMem | ModRM, DstReg | SrcMem | ModRM,
  100. ByteOp | DstAcc | SrcImm, DstAcc | SrcImm,
  101. ImplicitOps | Stack | No64, ImplicitOps | Stack | No64,
  102. /* 0x08 - 0x0F */
  103. ByteOp | DstMem | SrcReg | ModRM | Lock, DstMem | SrcReg | ModRM | Lock,
  104. ByteOp | DstReg | SrcMem | ModRM, DstReg | SrcMem | ModRM,
  105. ByteOp | DstAcc | SrcImm, DstAcc | SrcImm,
  106. ImplicitOps | Stack | No64, 0,
  107. /* 0x10 - 0x17 */
  108. ByteOp | DstMem | SrcReg | ModRM | Lock, DstMem | SrcReg | ModRM | Lock,
  109. ByteOp | DstReg | SrcMem | ModRM, DstReg | SrcMem | ModRM,
  110. ByteOp | DstAcc | SrcImm, DstAcc | SrcImm,
  111. ImplicitOps | Stack | No64, ImplicitOps | Stack | No64,
  112. /* 0x18 - 0x1F */
  113. ByteOp | DstMem | SrcReg | ModRM | Lock, DstMem | SrcReg | ModRM | Lock,
  114. ByteOp | DstReg | SrcMem | ModRM, DstReg | SrcMem | ModRM,
  115. ByteOp | DstAcc | SrcImm, DstAcc | SrcImm,
  116. ImplicitOps | Stack | No64, ImplicitOps | Stack | No64,
  117. /* 0x20 - 0x27 */
  118. ByteOp | DstMem | SrcReg | ModRM | Lock, DstMem | SrcReg | ModRM | Lock,
  119. ByteOp | DstReg | SrcMem | ModRM, DstReg | SrcMem | ModRM,
  120. DstAcc | SrcImmByte, DstAcc | SrcImm, 0, 0,
  121. /* 0x28 - 0x2F */
  122. ByteOp | DstMem | SrcReg | ModRM | Lock, DstMem | SrcReg | ModRM | Lock,
  123. ByteOp | DstReg | SrcMem | ModRM, DstReg | SrcMem | ModRM,
  124. 0, 0, 0, 0,
  125. /* 0x30 - 0x37 */
  126. ByteOp | DstMem | SrcReg | ModRM | Lock, DstMem | SrcReg | ModRM | Lock,
  127. ByteOp | DstReg | SrcMem | ModRM, DstReg | SrcMem | ModRM,
  128. 0, 0, 0, 0,
  129. /* 0x38 - 0x3F */
  130. ByteOp | DstMem | SrcReg | ModRM, DstMem | SrcReg | ModRM,
  131. ByteOp | DstReg | SrcMem | ModRM, DstReg | SrcMem | ModRM,
  132. ByteOp | DstAcc | SrcImm, DstAcc | SrcImm,
  133. 0, 0,
  134. /* 0x40 - 0x47 */
  135. DstReg, DstReg, DstReg, DstReg, DstReg, DstReg, DstReg, DstReg,
  136. /* 0x48 - 0x4F */
  137. DstReg, DstReg, DstReg, DstReg, DstReg, DstReg, DstReg, DstReg,
  138. /* 0x50 - 0x57 */
  139. SrcReg | Stack, SrcReg | Stack, SrcReg | Stack, SrcReg | Stack,
  140. SrcReg | Stack, SrcReg | Stack, SrcReg | Stack, SrcReg | Stack,
  141. /* 0x58 - 0x5F */
  142. DstReg | Stack, DstReg | Stack, DstReg | Stack, DstReg | Stack,
  143. DstReg | Stack, DstReg | Stack, DstReg | Stack, DstReg | Stack,
  144. /* 0x60 - 0x67 */
  145. ImplicitOps | Stack | No64, ImplicitOps | Stack | No64,
  146. 0, DstReg | SrcMem32 | ModRM | Mov /* movsxd (x86/64) */ ,
  147. 0, 0, 0, 0,
  148. /* 0x68 - 0x6F */
  149. SrcImm | Mov | Stack, 0, SrcImmByte | Mov | Stack, 0,
  150. SrcNone | ByteOp | ImplicitOps, SrcNone | ImplicitOps, /* insb, insw/insd */
  151. SrcNone | ByteOp | ImplicitOps, SrcNone | ImplicitOps, /* outsb, outsw/outsd */
  152. /* 0x70 - 0x77 */
  153. SrcImmByte, SrcImmByte, SrcImmByte, SrcImmByte,
  154. SrcImmByte, SrcImmByte, SrcImmByte, SrcImmByte,
  155. /* 0x78 - 0x7F */
  156. SrcImmByte, SrcImmByte, SrcImmByte, SrcImmByte,
  157. SrcImmByte, SrcImmByte, SrcImmByte, SrcImmByte,
  158. /* 0x80 - 0x87 */
  159. Group | Group1_80, Group | Group1_81,
  160. Group | Group1_82, Group | Group1_83,
  161. ByteOp | DstMem | SrcReg | ModRM, DstMem | SrcReg | ModRM,
  162. ByteOp | DstMem | SrcReg | ModRM | Lock, DstMem | SrcReg | ModRM | Lock,
  163. /* 0x88 - 0x8F */
  164. ByteOp | DstMem | SrcReg | ModRM | Mov, DstMem | SrcReg | ModRM | Mov,
  165. ByteOp | DstReg | SrcMem | ModRM | Mov, DstReg | SrcMem | ModRM | Mov,
  166. DstMem | SrcReg | ModRM | Mov, ModRM | DstReg,
  167. DstReg | SrcMem | ModRM | Mov, Group | Group1A,
  168. /* 0x90 - 0x97 */
  169. DstReg, DstReg, DstReg, DstReg, DstReg, DstReg, DstReg, DstReg,
  170. /* 0x98 - 0x9F */
  171. 0, 0, SrcImm | Src2Imm16 | No64, 0,
  172. ImplicitOps | Stack, ImplicitOps | Stack, 0, 0,
  173. /* 0xA0 - 0xA7 */
  174. ByteOp | DstReg | SrcMem | Mov | MemAbs, DstReg | SrcMem | Mov | MemAbs,
  175. ByteOp | DstMem | SrcReg | Mov | MemAbs, DstMem | SrcReg | Mov | MemAbs,
  176. ByteOp | SrcSI | DstDI | Mov | String, SrcSI | DstDI | Mov | String,
  177. ByteOp | SrcSI | DstDI | String, SrcSI | DstDI | String,
  178. /* 0xA8 - 0xAF */
  179. 0, 0, ByteOp | DstDI | Mov | String, DstDI | Mov | String,
  180. ByteOp | SrcSI | DstAcc | Mov | String, SrcSI | DstAcc | Mov | String,
  181. ByteOp | DstDI | String, DstDI | String,
  182. /* 0xB0 - 0xB7 */
  183. ByteOp | DstReg | SrcImm | Mov, ByteOp | DstReg | SrcImm | Mov,
  184. ByteOp | DstReg | SrcImm | Mov, ByteOp | DstReg | SrcImm | Mov,
  185. ByteOp | DstReg | SrcImm | Mov, ByteOp | DstReg | SrcImm | Mov,
  186. ByteOp | DstReg | SrcImm | Mov, ByteOp | DstReg | SrcImm | Mov,
  187. /* 0xB8 - 0xBF */
  188. DstReg | SrcImm | Mov, DstReg | SrcImm | Mov,
  189. DstReg | SrcImm | Mov, DstReg | SrcImm | Mov,
  190. DstReg | SrcImm | Mov, DstReg | SrcImm | Mov,
  191. DstReg | SrcImm | Mov, DstReg | SrcImm | Mov,
  192. /* 0xC0 - 0xC7 */
  193. ByteOp | DstMem | SrcImm | ModRM, DstMem | SrcImmByte | ModRM,
  194. 0, ImplicitOps | Stack, 0, 0,
  195. ByteOp | DstMem | SrcImm | ModRM | Mov, DstMem | SrcImm | ModRM | Mov,
  196. /* 0xC8 - 0xCF */
  197. 0, 0, 0, ImplicitOps | Stack,
  198. ImplicitOps, SrcImmByte, ImplicitOps | No64, ImplicitOps,
  199. /* 0xD0 - 0xD7 */
  200. ByteOp | DstMem | SrcImplicit | ModRM, DstMem | SrcImplicit | ModRM,
  201. ByteOp | DstMem | SrcImplicit | ModRM, DstMem | SrcImplicit | ModRM,
  202. 0, 0, 0, 0,
  203. /* 0xD8 - 0xDF */
  204. 0, 0, 0, 0, 0, 0, 0, 0,
  205. /* 0xE0 - 0xE7 */
  206. 0, 0, 0, 0,
  207. ByteOp | SrcImmUByte | DstAcc, SrcImmUByte | DstAcc,
  208. ByteOp | SrcImmUByte | DstAcc, SrcImmUByte | DstAcc,
  209. /* 0xE8 - 0xEF */
  210. SrcImm | Stack, SrcImm | ImplicitOps,
  211. SrcImmU | Src2Imm16 | No64, SrcImmByte | ImplicitOps,
  212. SrcNone | ByteOp | DstAcc, SrcNone | DstAcc,
  213. SrcNone | ByteOp | DstAcc, SrcNone | DstAcc,
  214. /* 0xF0 - 0xF7 */
  215. 0, 0, 0, 0,
  216. ImplicitOps | Priv, ImplicitOps, Group | Group3_Byte, Group | Group3,
  217. /* 0xF8 - 0xFF */
  218. ImplicitOps, 0, ImplicitOps, ImplicitOps,
  219. ImplicitOps, ImplicitOps, Group | Group4, Group | Group5,
  220. };
  221. static u32 twobyte_table[256] = {
  222. /* 0x00 - 0x0F */
  223. 0, Group | GroupDual | Group7, 0, 0,
  224. 0, ImplicitOps, ImplicitOps | Priv, 0,
  225. ImplicitOps | Priv, ImplicitOps | Priv, 0, 0,
  226. 0, ImplicitOps | ModRM, 0, 0,
  227. /* 0x10 - 0x1F */
  228. 0, 0, 0, 0, 0, 0, 0, 0, ImplicitOps | ModRM, 0, 0, 0, 0, 0, 0, 0,
  229. /* 0x20 - 0x2F */
  230. ModRM | ImplicitOps | Priv, ModRM | Priv,
  231. ModRM | ImplicitOps | Priv, ModRM | Priv,
  232. 0, 0, 0, 0,
  233. 0, 0, 0, 0, 0, 0, 0, 0,
  234. /* 0x30 - 0x3F */
  235. ImplicitOps | Priv, 0, ImplicitOps | Priv, 0,
  236. ImplicitOps, ImplicitOps | Priv, 0, 0,
  237. 0, 0, 0, 0, 0, 0, 0, 0,
  238. /* 0x40 - 0x47 */
  239. DstReg | SrcMem | ModRM | Mov, DstReg | SrcMem | ModRM | Mov,
  240. DstReg | SrcMem | ModRM | Mov, DstReg | SrcMem | ModRM | Mov,
  241. DstReg | SrcMem | ModRM | Mov, DstReg | SrcMem | ModRM | Mov,
  242. DstReg | SrcMem | ModRM | Mov, DstReg | SrcMem | ModRM | Mov,
  243. /* 0x48 - 0x4F */
  244. DstReg | SrcMem | ModRM | Mov, DstReg | SrcMem | ModRM | Mov,
  245. DstReg | SrcMem | ModRM | Mov, DstReg | SrcMem | ModRM | Mov,
  246. DstReg | SrcMem | ModRM | Mov, DstReg | SrcMem | ModRM | Mov,
  247. DstReg | SrcMem | ModRM | Mov, DstReg | SrcMem | ModRM | Mov,
  248. /* 0x50 - 0x5F */
  249. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  250. /* 0x60 - 0x6F */
  251. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  252. /* 0x70 - 0x7F */
  253. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  254. /* 0x80 - 0x8F */
  255. SrcImm, SrcImm, SrcImm, SrcImm, SrcImm, SrcImm, SrcImm, SrcImm,
  256. SrcImm, SrcImm, SrcImm, SrcImm, SrcImm, SrcImm, SrcImm, SrcImm,
  257. /* 0x90 - 0x9F */
  258. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  259. /* 0xA0 - 0xA7 */
  260. ImplicitOps | Stack, ImplicitOps | Stack,
  261. 0, DstMem | SrcReg | ModRM | BitOp,
  262. DstMem | SrcReg | Src2ImmByte | ModRM,
  263. DstMem | SrcReg | Src2CL | ModRM, 0, 0,
  264. /* 0xA8 - 0xAF */
  265. ImplicitOps | Stack, ImplicitOps | Stack,
  266. 0, DstMem | SrcReg | ModRM | BitOp | Lock,
  267. DstMem | SrcReg | Src2ImmByte | ModRM,
  268. DstMem | SrcReg | Src2CL | ModRM,
  269. ModRM, 0,
  270. /* 0xB0 - 0xB7 */
  271. ByteOp | DstMem | SrcReg | ModRM | Lock, DstMem | SrcReg | ModRM | Lock,
  272. 0, DstMem | SrcReg | ModRM | BitOp | Lock,
  273. 0, 0, ByteOp | DstReg | SrcMem | ModRM | Mov,
  274. DstReg | SrcMem16 | ModRM | Mov,
  275. /* 0xB8 - 0xBF */
  276. 0, 0,
  277. Group | Group8, DstMem | SrcReg | ModRM | BitOp | Lock,
  278. 0, 0, ByteOp | DstReg | SrcMem | ModRM | Mov,
  279. DstReg | SrcMem16 | ModRM | Mov,
  280. /* 0xC0 - 0xCF */
  281. 0, 0, 0, DstMem | SrcReg | ModRM | Mov,
  282. 0, 0, 0, Group | GroupDual | Group9,
  283. 0, 0, 0, 0, 0, 0, 0, 0,
  284. /* 0xD0 - 0xDF */
  285. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  286. /* 0xE0 - 0xEF */
  287. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  288. /* 0xF0 - 0xFF */
  289. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
  290. };
  291. static u32 group_table[] = {
  292. [Group1_80*8] =
  293. ByteOp | DstMem | SrcImm | ModRM | Lock,
  294. ByteOp | DstMem | SrcImm | ModRM | Lock,
  295. ByteOp | DstMem | SrcImm | ModRM | Lock,
  296. ByteOp | DstMem | SrcImm | ModRM | Lock,
  297. ByteOp | DstMem | SrcImm | ModRM | Lock,
  298. ByteOp | DstMem | SrcImm | ModRM | Lock,
  299. ByteOp | DstMem | SrcImm | ModRM | Lock,
  300. ByteOp | DstMem | SrcImm | ModRM,
  301. [Group1_81*8] =
  302. DstMem | SrcImm | ModRM | Lock,
  303. DstMem | SrcImm | ModRM | Lock,
  304. DstMem | SrcImm | ModRM | Lock,
  305. DstMem | SrcImm | ModRM | Lock,
  306. DstMem | SrcImm | ModRM | Lock,
  307. DstMem | SrcImm | ModRM | Lock,
  308. DstMem | SrcImm | ModRM | Lock,
  309. DstMem | SrcImm | ModRM,
  310. [Group1_82*8] =
  311. ByteOp | DstMem | SrcImm | ModRM | No64 | Lock,
  312. ByteOp | DstMem | SrcImm | ModRM | No64 | Lock,
  313. ByteOp | DstMem | SrcImm | ModRM | No64 | Lock,
  314. ByteOp | DstMem | SrcImm | ModRM | No64 | Lock,
  315. ByteOp | DstMem | SrcImm | ModRM | No64 | Lock,
  316. ByteOp | DstMem | SrcImm | ModRM | No64 | Lock,
  317. ByteOp | DstMem | SrcImm | ModRM | No64 | Lock,
  318. ByteOp | DstMem | SrcImm | ModRM | No64,
  319. [Group1_83*8] =
  320. DstMem | SrcImmByte | ModRM | Lock,
  321. DstMem | SrcImmByte | ModRM | Lock,
  322. DstMem | SrcImmByte | ModRM | Lock,
  323. DstMem | SrcImmByte | ModRM | Lock,
  324. DstMem | SrcImmByte | ModRM | Lock,
  325. DstMem | SrcImmByte | ModRM | Lock,
  326. DstMem | SrcImmByte | ModRM | Lock,
  327. DstMem | SrcImmByte | ModRM,
  328. [Group1A*8] =
  329. DstMem | SrcNone | ModRM | Mov | Stack, 0, 0, 0, 0, 0, 0, 0,
  330. [Group3_Byte*8] =
  331. ByteOp | SrcImm | DstMem | ModRM, 0,
  332. ByteOp | DstMem | SrcNone | ModRM, ByteOp | DstMem | SrcNone | ModRM,
  333. 0, 0, 0, 0,
  334. [Group3*8] =
  335. DstMem | SrcImm | ModRM, 0,
  336. DstMem | SrcNone | ModRM, DstMem | SrcNone | ModRM,
  337. 0, 0, 0, 0,
  338. [Group4*8] =
  339. ByteOp | DstMem | SrcNone | ModRM, ByteOp | DstMem | SrcNone | ModRM,
  340. 0, 0, 0, 0, 0, 0,
  341. [Group5*8] =
  342. DstMem | SrcNone | ModRM, DstMem | SrcNone | ModRM,
  343. SrcMem | ModRM | Stack, 0,
  344. SrcMem | ModRM | Stack, SrcMem | ModRM | Src2Mem16 | ImplicitOps,
  345. SrcMem | ModRM | Stack, 0,
  346. [Group7*8] =
  347. 0, 0, ModRM | SrcMem | Priv, ModRM | SrcMem | Priv,
  348. SrcNone | ModRM | DstMem | Mov, 0,
  349. SrcMem16 | ModRM | Mov | Priv, SrcMem | ModRM | ByteOp | Priv,
  350. [Group8*8] =
  351. 0, 0, 0, 0,
  352. DstMem | SrcImmByte | ModRM, DstMem | SrcImmByte | ModRM | Lock,
  353. DstMem | SrcImmByte | ModRM | Lock, DstMem | SrcImmByte | ModRM | Lock,
  354. [Group9*8] =
  355. 0, ImplicitOps | ModRM | Lock, 0, 0, 0, 0, 0, 0,
  356. };
  357. static u32 group2_table[] = {
  358. [Group7*8] =
  359. SrcNone | ModRM | Priv, 0, 0, SrcNone | ModRM | Priv,
  360. SrcNone | ModRM | DstMem | Mov, 0,
  361. SrcMem16 | ModRM | Mov | Priv, 0,
  362. [Group9*8] =
  363. 0, 0, 0, 0, 0, 0, 0, 0,
  364. };
  365. /* EFLAGS bit definitions. */
  366. #define EFLG_ID (1<<21)
  367. #define EFLG_VIP (1<<20)
  368. #define EFLG_VIF (1<<19)
  369. #define EFLG_AC (1<<18)
  370. #define EFLG_VM (1<<17)
  371. #define EFLG_RF (1<<16)
  372. #define EFLG_IOPL (3<<12)
  373. #define EFLG_NT (1<<14)
  374. #define EFLG_OF (1<<11)
  375. #define EFLG_DF (1<<10)
  376. #define EFLG_IF (1<<9)
  377. #define EFLG_TF (1<<8)
  378. #define EFLG_SF (1<<7)
  379. #define EFLG_ZF (1<<6)
  380. #define EFLG_AF (1<<4)
  381. #define EFLG_PF (1<<2)
  382. #define EFLG_CF (1<<0)
  383. /*
  384. * Instruction emulation:
  385. * Most instructions are emulated directly via a fragment of inline assembly
  386. * code. This allows us to save/restore EFLAGS and thus very easily pick up
  387. * any modified flags.
  388. */
  389. #if defined(CONFIG_X86_64)
  390. #define _LO32 "k" /* force 32-bit operand */
  391. #define _STK "%%rsp" /* stack pointer */
  392. #elif defined(__i386__)
  393. #define _LO32 "" /* force 32-bit operand */
  394. #define _STK "%%esp" /* stack pointer */
  395. #endif
  396. /*
  397. * These EFLAGS bits are restored from saved value during emulation, and
  398. * any changes are written back to the saved value after emulation.
  399. */
  400. #define EFLAGS_MASK (EFLG_OF|EFLG_SF|EFLG_ZF|EFLG_AF|EFLG_PF|EFLG_CF)
  401. /* Before executing instruction: restore necessary bits in EFLAGS. */
  402. #define _PRE_EFLAGS(_sav, _msk, _tmp) \
  403. /* EFLAGS = (_sav & _msk) | (EFLAGS & ~_msk); _sav &= ~_msk; */ \
  404. "movl %"_sav",%"_LO32 _tmp"; " \
  405. "push %"_tmp"; " \
  406. "push %"_tmp"; " \
  407. "movl %"_msk",%"_LO32 _tmp"; " \
  408. "andl %"_LO32 _tmp",("_STK"); " \
  409. "pushf; " \
  410. "notl %"_LO32 _tmp"; " \
  411. "andl %"_LO32 _tmp",("_STK"); " \
  412. "andl %"_LO32 _tmp","__stringify(BITS_PER_LONG/4)"("_STK"); " \
  413. "pop %"_tmp"; " \
  414. "orl %"_LO32 _tmp",("_STK"); " \
  415. "popf; " \
  416. "pop %"_sav"; "
  417. /* After executing instruction: write-back necessary bits in EFLAGS. */
  418. #define _POST_EFLAGS(_sav, _msk, _tmp) \
  419. /* _sav |= EFLAGS & _msk; */ \
  420. "pushf; " \
  421. "pop %"_tmp"; " \
  422. "andl %"_msk",%"_LO32 _tmp"; " \
  423. "orl %"_LO32 _tmp",%"_sav"; "
  424. #ifdef CONFIG_X86_64
  425. #define ON64(x) x
  426. #else
  427. #define ON64(x)
  428. #endif
  429. #define ____emulate_2op(_op, _src, _dst, _eflags, _x, _y, _suffix) \
  430. do { \
  431. __asm__ __volatile__ ( \
  432. _PRE_EFLAGS("0", "4", "2") \
  433. _op _suffix " %"_x"3,%1; " \
  434. _POST_EFLAGS("0", "4", "2") \
  435. : "=m" (_eflags), "=m" ((_dst).val), \
  436. "=&r" (_tmp) \
  437. : _y ((_src).val), "i" (EFLAGS_MASK)); \
  438. } while (0)
  439. /* Raw emulation: instruction has two explicit operands. */
  440. #define __emulate_2op_nobyte(_op,_src,_dst,_eflags,_wx,_wy,_lx,_ly,_qx,_qy) \
  441. do { \
  442. unsigned long _tmp; \
  443. \
  444. switch ((_dst).bytes) { \
  445. case 2: \
  446. ____emulate_2op(_op,_src,_dst,_eflags,_wx,_wy,"w"); \
  447. break; \
  448. case 4: \
  449. ____emulate_2op(_op,_src,_dst,_eflags,_lx,_ly,"l"); \
  450. break; \
  451. case 8: \
  452. ON64(____emulate_2op(_op,_src,_dst,_eflags,_qx,_qy,"q")); \
  453. break; \
  454. } \
  455. } while (0)
  456. #define __emulate_2op(_op,_src,_dst,_eflags,_bx,_by,_wx,_wy,_lx,_ly,_qx,_qy) \
  457. do { \
  458. unsigned long _tmp; \
  459. switch ((_dst).bytes) { \
  460. case 1: \
  461. ____emulate_2op(_op,_src,_dst,_eflags,_bx,_by,"b"); \
  462. break; \
  463. default: \
  464. __emulate_2op_nobyte(_op, _src, _dst, _eflags, \
  465. _wx, _wy, _lx, _ly, _qx, _qy); \
  466. break; \
  467. } \
  468. } while (0)
  469. /* Source operand is byte-sized and may be restricted to just %cl. */
  470. #define emulate_2op_SrcB(_op, _src, _dst, _eflags) \
  471. __emulate_2op(_op, _src, _dst, _eflags, \
  472. "b", "c", "b", "c", "b", "c", "b", "c")
  473. /* Source operand is byte, word, long or quad sized. */
  474. #define emulate_2op_SrcV(_op, _src, _dst, _eflags) \
  475. __emulate_2op(_op, _src, _dst, _eflags, \
  476. "b", "q", "w", "r", _LO32, "r", "", "r")
  477. /* Source operand is word, long or quad sized. */
  478. #define emulate_2op_SrcV_nobyte(_op, _src, _dst, _eflags) \
  479. __emulate_2op_nobyte(_op, _src, _dst, _eflags, \
  480. "w", "r", _LO32, "r", "", "r")
  481. /* Instruction has three operands and one operand is stored in ECX register */
  482. #define __emulate_2op_cl(_op, _cl, _src, _dst, _eflags, _suffix, _type) \
  483. do { \
  484. unsigned long _tmp; \
  485. _type _clv = (_cl).val; \
  486. _type _srcv = (_src).val; \
  487. _type _dstv = (_dst).val; \
  488. \
  489. __asm__ __volatile__ ( \
  490. _PRE_EFLAGS("0", "5", "2") \
  491. _op _suffix " %4,%1 \n" \
  492. _POST_EFLAGS("0", "5", "2") \
  493. : "=m" (_eflags), "+r" (_dstv), "=&r" (_tmp) \
  494. : "c" (_clv) , "r" (_srcv), "i" (EFLAGS_MASK) \
  495. ); \
  496. \
  497. (_cl).val = (unsigned long) _clv; \
  498. (_src).val = (unsigned long) _srcv; \
  499. (_dst).val = (unsigned long) _dstv; \
  500. } while (0)
  501. #define emulate_2op_cl(_op, _cl, _src, _dst, _eflags) \
  502. do { \
  503. switch ((_dst).bytes) { \
  504. case 2: \
  505. __emulate_2op_cl(_op, _cl, _src, _dst, _eflags, \
  506. "w", unsigned short); \
  507. break; \
  508. case 4: \
  509. __emulate_2op_cl(_op, _cl, _src, _dst, _eflags, \
  510. "l", unsigned int); \
  511. break; \
  512. case 8: \
  513. ON64(__emulate_2op_cl(_op, _cl, _src, _dst, _eflags, \
  514. "q", unsigned long)); \
  515. break; \
  516. } \
  517. } while (0)
  518. #define __emulate_1op(_op, _dst, _eflags, _suffix) \
  519. do { \
  520. unsigned long _tmp; \
  521. \
  522. __asm__ __volatile__ ( \
  523. _PRE_EFLAGS("0", "3", "2") \
  524. _op _suffix " %1; " \
  525. _POST_EFLAGS("0", "3", "2") \
  526. : "=m" (_eflags), "+m" ((_dst).val), \
  527. "=&r" (_tmp) \
  528. : "i" (EFLAGS_MASK)); \
  529. } while (0)
  530. /* Instruction has only one explicit operand (no source operand). */
  531. #define emulate_1op(_op, _dst, _eflags) \
  532. do { \
  533. switch ((_dst).bytes) { \
  534. case 1: __emulate_1op(_op, _dst, _eflags, "b"); break; \
  535. case 2: __emulate_1op(_op, _dst, _eflags, "w"); break; \
  536. case 4: __emulate_1op(_op, _dst, _eflags, "l"); break; \
  537. case 8: ON64(__emulate_1op(_op, _dst, _eflags, "q")); break; \
  538. } \
  539. } while (0)
  540. /* Fetch next part of the instruction being emulated. */
  541. #define insn_fetch(_type, _size, _eip) \
  542. ({ unsigned long _x; \
  543. rc = do_insn_fetch(ctxt, ops, (_eip), &_x, (_size)); \
  544. if (rc != X86EMUL_CONTINUE) \
  545. goto done; \
  546. (_eip) += (_size); \
  547. (_type)_x; \
  548. })
  549. static inline unsigned long ad_mask(struct decode_cache *c)
  550. {
  551. return (1UL << (c->ad_bytes << 3)) - 1;
  552. }
  553. /* Access/update address held in a register, based on addressing mode. */
  554. static inline unsigned long
  555. address_mask(struct decode_cache *c, unsigned long reg)
  556. {
  557. if (c->ad_bytes == sizeof(unsigned long))
  558. return reg;
  559. else
  560. return reg & ad_mask(c);
  561. }
  562. static inline unsigned long
  563. register_address(struct decode_cache *c, unsigned long base, unsigned long reg)
  564. {
  565. return base + address_mask(c, reg);
  566. }
  567. static inline void
  568. register_address_increment(struct decode_cache *c, unsigned long *reg, int inc)
  569. {
  570. if (c->ad_bytes == sizeof(unsigned long))
  571. *reg += inc;
  572. else
  573. *reg = (*reg & ~ad_mask(c)) | ((*reg + inc) & ad_mask(c));
  574. }
  575. static inline void jmp_rel(struct decode_cache *c, int rel)
  576. {
  577. register_address_increment(c, &c->eip, rel);
  578. }
  579. static void set_seg_override(struct decode_cache *c, int seg)
  580. {
  581. c->has_seg_override = true;
  582. c->seg_override = seg;
  583. }
  584. static unsigned long seg_base(struct x86_emulate_ctxt *ctxt, int seg)
  585. {
  586. if (ctxt->mode == X86EMUL_MODE_PROT64 && seg < VCPU_SREG_FS)
  587. return 0;
  588. return kvm_x86_ops->get_segment_base(ctxt->vcpu, seg);
  589. }
  590. static unsigned long seg_override_base(struct x86_emulate_ctxt *ctxt,
  591. struct decode_cache *c)
  592. {
  593. if (!c->has_seg_override)
  594. return 0;
  595. return seg_base(ctxt, c->seg_override);
  596. }
  597. static unsigned long es_base(struct x86_emulate_ctxt *ctxt)
  598. {
  599. return seg_base(ctxt, VCPU_SREG_ES);
  600. }
  601. static unsigned long ss_base(struct x86_emulate_ctxt *ctxt)
  602. {
  603. return seg_base(ctxt, VCPU_SREG_SS);
  604. }
  605. static int do_fetch_insn_byte(struct x86_emulate_ctxt *ctxt,
  606. struct x86_emulate_ops *ops,
  607. unsigned long linear, u8 *dest)
  608. {
  609. struct fetch_cache *fc = &ctxt->decode.fetch;
  610. int rc;
  611. int size;
  612. if (linear < fc->start || linear >= fc->end) {
  613. size = min(15UL, PAGE_SIZE - offset_in_page(linear));
  614. rc = ops->fetch(linear, fc->data, size, ctxt->vcpu, NULL);
  615. if (rc != X86EMUL_CONTINUE)
  616. return rc;
  617. fc->start = linear;
  618. fc->end = linear + size;
  619. }
  620. *dest = fc->data[linear - fc->start];
  621. return X86EMUL_CONTINUE;
  622. }
  623. static int do_insn_fetch(struct x86_emulate_ctxt *ctxt,
  624. struct x86_emulate_ops *ops,
  625. unsigned long eip, void *dest, unsigned size)
  626. {
  627. int rc;
  628. /* x86 instructions are limited to 15 bytes. */
  629. if (eip + size - ctxt->eip > 15)
  630. return X86EMUL_UNHANDLEABLE;
  631. eip += ctxt->cs_base;
  632. while (size--) {
  633. rc = do_fetch_insn_byte(ctxt, ops, eip++, dest++);
  634. if (rc != X86EMUL_CONTINUE)
  635. return rc;
  636. }
  637. return X86EMUL_CONTINUE;
  638. }
  639. /*
  640. * Given the 'reg' portion of a ModRM byte, and a register block, return a
  641. * pointer into the block that addresses the relevant register.
  642. * @highbyte_regs specifies whether to decode AH,CH,DH,BH.
  643. */
  644. static void *decode_register(u8 modrm_reg, unsigned long *regs,
  645. int highbyte_regs)
  646. {
  647. void *p;
  648. p = &regs[modrm_reg];
  649. if (highbyte_regs && modrm_reg >= 4 && modrm_reg < 8)
  650. p = (unsigned char *)&regs[modrm_reg & 3] + 1;
  651. return p;
  652. }
  653. static int read_descriptor(struct x86_emulate_ctxt *ctxt,
  654. struct x86_emulate_ops *ops,
  655. void *ptr,
  656. u16 *size, unsigned long *address, int op_bytes)
  657. {
  658. int rc;
  659. if (op_bytes == 2)
  660. op_bytes = 3;
  661. *address = 0;
  662. rc = ops->read_std((unsigned long)ptr, (unsigned long *)size, 2,
  663. ctxt->vcpu, NULL);
  664. if (rc != X86EMUL_CONTINUE)
  665. return rc;
  666. rc = ops->read_std((unsigned long)ptr + 2, address, op_bytes,
  667. ctxt->vcpu, NULL);
  668. return rc;
  669. }
  670. static int test_cc(unsigned int condition, unsigned int flags)
  671. {
  672. int rc = 0;
  673. switch ((condition & 15) >> 1) {
  674. case 0: /* o */
  675. rc |= (flags & EFLG_OF);
  676. break;
  677. case 1: /* b/c/nae */
  678. rc |= (flags & EFLG_CF);
  679. break;
  680. case 2: /* z/e */
  681. rc |= (flags & EFLG_ZF);
  682. break;
  683. case 3: /* be/na */
  684. rc |= (flags & (EFLG_CF|EFLG_ZF));
  685. break;
  686. case 4: /* s */
  687. rc |= (flags & EFLG_SF);
  688. break;
  689. case 5: /* p/pe */
  690. rc |= (flags & EFLG_PF);
  691. break;
  692. case 7: /* le/ng */
  693. rc |= (flags & EFLG_ZF);
  694. /* fall through */
  695. case 6: /* l/nge */
  696. rc |= (!(flags & EFLG_SF) != !(flags & EFLG_OF));
  697. break;
  698. }
  699. /* Odd condition identifiers (lsb == 1) have inverted sense. */
  700. return (!!rc ^ (condition & 1));
  701. }
  702. static void decode_register_operand(struct operand *op,
  703. struct decode_cache *c,
  704. int inhibit_bytereg)
  705. {
  706. unsigned reg = c->modrm_reg;
  707. int highbyte_regs = c->rex_prefix == 0;
  708. if (!(c->d & ModRM))
  709. reg = (c->b & 7) | ((c->rex_prefix & 1) << 3);
  710. op->type = OP_REG;
  711. if ((c->d & ByteOp) && !inhibit_bytereg) {
  712. op->ptr = decode_register(reg, c->regs, highbyte_regs);
  713. op->val = *(u8 *)op->ptr;
  714. op->bytes = 1;
  715. } else {
  716. op->ptr = decode_register(reg, c->regs, 0);
  717. op->bytes = c->op_bytes;
  718. switch (op->bytes) {
  719. case 2:
  720. op->val = *(u16 *)op->ptr;
  721. break;
  722. case 4:
  723. op->val = *(u32 *)op->ptr;
  724. break;
  725. case 8:
  726. op->val = *(u64 *) op->ptr;
  727. break;
  728. }
  729. }
  730. op->orig_val = op->val;
  731. }
  732. static int decode_modrm(struct x86_emulate_ctxt *ctxt,
  733. struct x86_emulate_ops *ops)
  734. {
  735. struct decode_cache *c = &ctxt->decode;
  736. u8 sib;
  737. int index_reg = 0, base_reg = 0, scale;
  738. int rc = X86EMUL_CONTINUE;
  739. if (c->rex_prefix) {
  740. c->modrm_reg = (c->rex_prefix & 4) << 1; /* REX.R */
  741. index_reg = (c->rex_prefix & 2) << 2; /* REX.X */
  742. c->modrm_rm = base_reg = (c->rex_prefix & 1) << 3; /* REG.B */
  743. }
  744. c->modrm = insn_fetch(u8, 1, c->eip);
  745. c->modrm_mod |= (c->modrm & 0xc0) >> 6;
  746. c->modrm_reg |= (c->modrm & 0x38) >> 3;
  747. c->modrm_rm |= (c->modrm & 0x07);
  748. c->modrm_ea = 0;
  749. c->use_modrm_ea = 1;
  750. if (c->modrm_mod == 3) {
  751. c->modrm_ptr = decode_register(c->modrm_rm,
  752. c->regs, c->d & ByteOp);
  753. c->modrm_val = *(unsigned long *)c->modrm_ptr;
  754. return rc;
  755. }
  756. if (c->ad_bytes == 2) {
  757. unsigned bx = c->regs[VCPU_REGS_RBX];
  758. unsigned bp = c->regs[VCPU_REGS_RBP];
  759. unsigned si = c->regs[VCPU_REGS_RSI];
  760. unsigned di = c->regs[VCPU_REGS_RDI];
  761. /* 16-bit ModR/M decode. */
  762. switch (c->modrm_mod) {
  763. case 0:
  764. if (c->modrm_rm == 6)
  765. c->modrm_ea += insn_fetch(u16, 2, c->eip);
  766. break;
  767. case 1:
  768. c->modrm_ea += insn_fetch(s8, 1, c->eip);
  769. break;
  770. case 2:
  771. c->modrm_ea += insn_fetch(u16, 2, c->eip);
  772. break;
  773. }
  774. switch (c->modrm_rm) {
  775. case 0:
  776. c->modrm_ea += bx + si;
  777. break;
  778. case 1:
  779. c->modrm_ea += bx + di;
  780. break;
  781. case 2:
  782. c->modrm_ea += bp + si;
  783. break;
  784. case 3:
  785. c->modrm_ea += bp + di;
  786. break;
  787. case 4:
  788. c->modrm_ea += si;
  789. break;
  790. case 5:
  791. c->modrm_ea += di;
  792. break;
  793. case 6:
  794. if (c->modrm_mod != 0)
  795. c->modrm_ea += bp;
  796. break;
  797. case 7:
  798. c->modrm_ea += bx;
  799. break;
  800. }
  801. if (c->modrm_rm == 2 || c->modrm_rm == 3 ||
  802. (c->modrm_rm == 6 && c->modrm_mod != 0))
  803. if (!c->has_seg_override)
  804. set_seg_override(c, VCPU_SREG_SS);
  805. c->modrm_ea = (u16)c->modrm_ea;
  806. } else {
  807. /* 32/64-bit ModR/M decode. */
  808. if ((c->modrm_rm & 7) == 4) {
  809. sib = insn_fetch(u8, 1, c->eip);
  810. index_reg |= (sib >> 3) & 7;
  811. base_reg |= sib & 7;
  812. scale = sib >> 6;
  813. if ((base_reg & 7) == 5 && c->modrm_mod == 0)
  814. c->modrm_ea += insn_fetch(s32, 4, c->eip);
  815. else
  816. c->modrm_ea += c->regs[base_reg];
  817. if (index_reg != 4)
  818. c->modrm_ea += c->regs[index_reg] << scale;
  819. } else if ((c->modrm_rm & 7) == 5 && c->modrm_mod == 0) {
  820. if (ctxt->mode == X86EMUL_MODE_PROT64)
  821. c->rip_relative = 1;
  822. } else
  823. c->modrm_ea += c->regs[c->modrm_rm];
  824. switch (c->modrm_mod) {
  825. case 0:
  826. if (c->modrm_rm == 5)
  827. c->modrm_ea += insn_fetch(s32, 4, c->eip);
  828. break;
  829. case 1:
  830. c->modrm_ea += insn_fetch(s8, 1, c->eip);
  831. break;
  832. case 2:
  833. c->modrm_ea += insn_fetch(s32, 4, c->eip);
  834. break;
  835. }
  836. }
  837. done:
  838. return rc;
  839. }
  840. static int decode_abs(struct x86_emulate_ctxt *ctxt,
  841. struct x86_emulate_ops *ops)
  842. {
  843. struct decode_cache *c = &ctxt->decode;
  844. int rc = X86EMUL_CONTINUE;
  845. switch (c->ad_bytes) {
  846. case 2:
  847. c->modrm_ea = insn_fetch(u16, 2, c->eip);
  848. break;
  849. case 4:
  850. c->modrm_ea = insn_fetch(u32, 4, c->eip);
  851. break;
  852. case 8:
  853. c->modrm_ea = insn_fetch(u64, 8, c->eip);
  854. break;
  855. }
  856. done:
  857. return rc;
  858. }
  859. int
  860. x86_decode_insn(struct x86_emulate_ctxt *ctxt, struct x86_emulate_ops *ops)
  861. {
  862. struct decode_cache *c = &ctxt->decode;
  863. int rc = X86EMUL_CONTINUE;
  864. int mode = ctxt->mode;
  865. int def_op_bytes, def_ad_bytes, group;
  866. /* Shadow copy of register state. Committed on successful emulation. */
  867. memset(c, 0, sizeof(struct decode_cache));
  868. c->eip = ctxt->eip;
  869. ctxt->cs_base = seg_base(ctxt, VCPU_SREG_CS);
  870. memcpy(c->regs, ctxt->vcpu->arch.regs, sizeof c->regs);
  871. switch (mode) {
  872. case X86EMUL_MODE_REAL:
  873. case X86EMUL_MODE_VM86:
  874. case X86EMUL_MODE_PROT16:
  875. def_op_bytes = def_ad_bytes = 2;
  876. break;
  877. case X86EMUL_MODE_PROT32:
  878. def_op_bytes = def_ad_bytes = 4;
  879. break;
  880. #ifdef CONFIG_X86_64
  881. case X86EMUL_MODE_PROT64:
  882. def_op_bytes = 4;
  883. def_ad_bytes = 8;
  884. break;
  885. #endif
  886. default:
  887. return -1;
  888. }
  889. c->op_bytes = def_op_bytes;
  890. c->ad_bytes = def_ad_bytes;
  891. /* Legacy prefixes. */
  892. for (;;) {
  893. switch (c->b = insn_fetch(u8, 1, c->eip)) {
  894. case 0x66: /* operand-size override */
  895. /* switch between 2/4 bytes */
  896. c->op_bytes = def_op_bytes ^ 6;
  897. break;
  898. case 0x67: /* address-size override */
  899. if (mode == X86EMUL_MODE_PROT64)
  900. /* switch between 4/8 bytes */
  901. c->ad_bytes = def_ad_bytes ^ 12;
  902. else
  903. /* switch between 2/4 bytes */
  904. c->ad_bytes = def_ad_bytes ^ 6;
  905. break;
  906. case 0x26: /* ES override */
  907. case 0x2e: /* CS override */
  908. case 0x36: /* SS override */
  909. case 0x3e: /* DS override */
  910. set_seg_override(c, (c->b >> 3) & 3);
  911. break;
  912. case 0x64: /* FS override */
  913. case 0x65: /* GS override */
  914. set_seg_override(c, c->b & 7);
  915. break;
  916. case 0x40 ... 0x4f: /* REX */
  917. if (mode != X86EMUL_MODE_PROT64)
  918. goto done_prefixes;
  919. c->rex_prefix = c->b;
  920. continue;
  921. case 0xf0: /* LOCK */
  922. c->lock_prefix = 1;
  923. break;
  924. case 0xf2: /* REPNE/REPNZ */
  925. c->rep_prefix = REPNE_PREFIX;
  926. break;
  927. case 0xf3: /* REP/REPE/REPZ */
  928. c->rep_prefix = REPE_PREFIX;
  929. break;
  930. default:
  931. goto done_prefixes;
  932. }
  933. /* Any legacy prefix after a REX prefix nullifies its effect. */
  934. c->rex_prefix = 0;
  935. }
  936. done_prefixes:
  937. /* REX prefix. */
  938. if (c->rex_prefix)
  939. if (c->rex_prefix & 8)
  940. c->op_bytes = 8; /* REX.W */
  941. /* Opcode byte(s). */
  942. c->d = opcode_table[c->b];
  943. if (c->d == 0) {
  944. /* Two-byte opcode? */
  945. if (c->b == 0x0f) {
  946. c->twobyte = 1;
  947. c->b = insn_fetch(u8, 1, c->eip);
  948. c->d = twobyte_table[c->b];
  949. }
  950. }
  951. if (c->d & Group) {
  952. group = c->d & GroupMask;
  953. c->modrm = insn_fetch(u8, 1, c->eip);
  954. --c->eip;
  955. group = (group << 3) + ((c->modrm >> 3) & 7);
  956. if ((c->d & GroupDual) && (c->modrm >> 6) == 3)
  957. c->d = group2_table[group];
  958. else
  959. c->d = group_table[group];
  960. }
  961. /* Unrecognised? */
  962. if (c->d == 0) {
  963. DPRINTF("Cannot emulate %02x\n", c->b);
  964. return -1;
  965. }
  966. if (mode == X86EMUL_MODE_PROT64 && (c->d & Stack))
  967. c->op_bytes = 8;
  968. /* ModRM and SIB bytes. */
  969. if (c->d & ModRM)
  970. rc = decode_modrm(ctxt, ops);
  971. else if (c->d & MemAbs)
  972. rc = decode_abs(ctxt, ops);
  973. if (rc != X86EMUL_CONTINUE)
  974. goto done;
  975. if (!c->has_seg_override)
  976. set_seg_override(c, VCPU_SREG_DS);
  977. if (!(!c->twobyte && c->b == 0x8d))
  978. c->modrm_ea += seg_override_base(ctxt, c);
  979. if (c->ad_bytes != 8)
  980. c->modrm_ea = (u32)c->modrm_ea;
  981. if (c->rip_relative)
  982. c->modrm_ea += c->eip;
  983. /*
  984. * Decode and fetch the source operand: register, memory
  985. * or immediate.
  986. */
  987. switch (c->d & SrcMask) {
  988. case SrcNone:
  989. break;
  990. case SrcReg:
  991. decode_register_operand(&c->src, c, 0);
  992. break;
  993. case SrcMem16:
  994. c->src.bytes = 2;
  995. goto srcmem_common;
  996. case SrcMem32:
  997. c->src.bytes = 4;
  998. goto srcmem_common;
  999. case SrcMem:
  1000. c->src.bytes = (c->d & ByteOp) ? 1 :
  1001. c->op_bytes;
  1002. /* Don't fetch the address for invlpg: it could be unmapped. */
  1003. if (c->twobyte && c->b == 0x01 && c->modrm_reg == 7)
  1004. break;
  1005. srcmem_common:
  1006. /*
  1007. * For instructions with a ModR/M byte, switch to register
  1008. * access if Mod = 3.
  1009. */
  1010. if ((c->d & ModRM) && c->modrm_mod == 3) {
  1011. c->src.type = OP_REG;
  1012. c->src.val = c->modrm_val;
  1013. c->src.ptr = c->modrm_ptr;
  1014. break;
  1015. }
  1016. c->src.type = OP_MEM;
  1017. c->src.ptr = (unsigned long *)c->modrm_ea;
  1018. c->src.val = 0;
  1019. break;
  1020. case SrcImm:
  1021. case SrcImmU:
  1022. c->src.type = OP_IMM;
  1023. c->src.ptr = (unsigned long *)c->eip;
  1024. c->src.bytes = (c->d & ByteOp) ? 1 : c->op_bytes;
  1025. if (c->src.bytes == 8)
  1026. c->src.bytes = 4;
  1027. /* NB. Immediates are sign-extended as necessary. */
  1028. switch (c->src.bytes) {
  1029. case 1:
  1030. c->src.val = insn_fetch(s8, 1, c->eip);
  1031. break;
  1032. case 2:
  1033. c->src.val = insn_fetch(s16, 2, c->eip);
  1034. break;
  1035. case 4:
  1036. c->src.val = insn_fetch(s32, 4, c->eip);
  1037. break;
  1038. }
  1039. if ((c->d & SrcMask) == SrcImmU) {
  1040. switch (c->src.bytes) {
  1041. case 1:
  1042. c->src.val &= 0xff;
  1043. break;
  1044. case 2:
  1045. c->src.val &= 0xffff;
  1046. break;
  1047. case 4:
  1048. c->src.val &= 0xffffffff;
  1049. break;
  1050. }
  1051. }
  1052. break;
  1053. case SrcImmByte:
  1054. case SrcImmUByte:
  1055. c->src.type = OP_IMM;
  1056. c->src.ptr = (unsigned long *)c->eip;
  1057. c->src.bytes = 1;
  1058. if ((c->d & SrcMask) == SrcImmByte)
  1059. c->src.val = insn_fetch(s8, 1, c->eip);
  1060. else
  1061. c->src.val = insn_fetch(u8, 1, c->eip);
  1062. break;
  1063. case SrcOne:
  1064. c->src.bytes = 1;
  1065. c->src.val = 1;
  1066. break;
  1067. case SrcSI:
  1068. c->src.type = OP_MEM;
  1069. c->src.bytes = (c->d & ByteOp) ? 1 : c->op_bytes;
  1070. c->src.ptr = (unsigned long *)
  1071. register_address(c, seg_override_base(ctxt, c),
  1072. c->regs[VCPU_REGS_RSI]);
  1073. c->src.val = 0;
  1074. break;
  1075. }
  1076. /*
  1077. * Decode and fetch the second source operand: register, memory
  1078. * or immediate.
  1079. */
  1080. switch (c->d & Src2Mask) {
  1081. case Src2None:
  1082. break;
  1083. case Src2CL:
  1084. c->src2.bytes = 1;
  1085. c->src2.val = c->regs[VCPU_REGS_RCX] & 0x8;
  1086. break;
  1087. case Src2ImmByte:
  1088. c->src2.type = OP_IMM;
  1089. c->src2.ptr = (unsigned long *)c->eip;
  1090. c->src2.bytes = 1;
  1091. c->src2.val = insn_fetch(u8, 1, c->eip);
  1092. break;
  1093. case Src2Imm16:
  1094. c->src2.type = OP_IMM;
  1095. c->src2.ptr = (unsigned long *)c->eip;
  1096. c->src2.bytes = 2;
  1097. c->src2.val = insn_fetch(u16, 2, c->eip);
  1098. break;
  1099. case Src2One:
  1100. c->src2.bytes = 1;
  1101. c->src2.val = 1;
  1102. break;
  1103. case Src2Mem16:
  1104. c->src2.type = OP_MEM;
  1105. c->src2.bytes = 2;
  1106. c->src2.ptr = (unsigned long *)(c->modrm_ea + c->src.bytes);
  1107. c->src2.val = 0;
  1108. break;
  1109. }
  1110. /* Decode and fetch the destination operand: register or memory. */
  1111. switch (c->d & DstMask) {
  1112. case ImplicitOps:
  1113. /* Special instructions do their own operand decoding. */
  1114. return 0;
  1115. case DstReg:
  1116. decode_register_operand(&c->dst, c,
  1117. c->twobyte && (c->b == 0xb6 || c->b == 0xb7));
  1118. break;
  1119. case DstMem:
  1120. if ((c->d & ModRM) && c->modrm_mod == 3) {
  1121. c->dst.bytes = (c->d & ByteOp) ? 1 : c->op_bytes;
  1122. c->dst.type = OP_REG;
  1123. c->dst.val = c->dst.orig_val = c->modrm_val;
  1124. c->dst.ptr = c->modrm_ptr;
  1125. break;
  1126. }
  1127. c->dst.type = OP_MEM;
  1128. c->dst.ptr = (unsigned long *)c->modrm_ea;
  1129. c->dst.bytes = (c->d & ByteOp) ? 1 : c->op_bytes;
  1130. c->dst.val = 0;
  1131. if (c->d & BitOp) {
  1132. unsigned long mask = ~(c->dst.bytes * 8 - 1);
  1133. c->dst.ptr = (void *)c->dst.ptr +
  1134. (c->src.val & mask) / 8;
  1135. }
  1136. break;
  1137. case DstAcc:
  1138. c->dst.type = OP_REG;
  1139. c->dst.bytes = (c->d & ByteOp) ? 1 : c->op_bytes;
  1140. c->dst.ptr = &c->regs[VCPU_REGS_RAX];
  1141. switch (c->dst.bytes) {
  1142. case 1:
  1143. c->dst.val = *(u8 *)c->dst.ptr;
  1144. break;
  1145. case 2:
  1146. c->dst.val = *(u16 *)c->dst.ptr;
  1147. break;
  1148. case 4:
  1149. c->dst.val = *(u32 *)c->dst.ptr;
  1150. break;
  1151. case 8:
  1152. c->dst.val = *(u64 *)c->dst.ptr;
  1153. break;
  1154. }
  1155. c->dst.orig_val = c->dst.val;
  1156. break;
  1157. case DstDI:
  1158. c->dst.type = OP_MEM;
  1159. c->dst.bytes = (c->d & ByteOp) ? 1 : c->op_bytes;
  1160. c->dst.ptr = (unsigned long *)
  1161. register_address(c, es_base(ctxt),
  1162. c->regs[VCPU_REGS_RDI]);
  1163. c->dst.val = 0;
  1164. break;
  1165. }
  1166. done:
  1167. return (rc == X86EMUL_UNHANDLEABLE) ? -1 : 0;
  1168. }
  1169. static u32 desc_limit_scaled(struct desc_struct *desc)
  1170. {
  1171. u32 limit = get_desc_limit(desc);
  1172. return desc->g ? (limit << 12) | 0xfff : limit;
  1173. }
  1174. static void get_descriptor_table_ptr(struct x86_emulate_ctxt *ctxt,
  1175. struct x86_emulate_ops *ops,
  1176. u16 selector, struct desc_ptr *dt)
  1177. {
  1178. if (selector & 1 << 2) {
  1179. struct desc_struct desc;
  1180. memset (dt, 0, sizeof *dt);
  1181. if (!ops->get_cached_descriptor(&desc, VCPU_SREG_LDTR, ctxt->vcpu))
  1182. return;
  1183. dt->size = desc_limit_scaled(&desc); /* what if limit > 65535? */
  1184. dt->address = get_desc_base(&desc);
  1185. } else
  1186. ops->get_gdt(dt, ctxt->vcpu);
  1187. }
  1188. /* allowed just for 8 bytes segments */
  1189. static int read_segment_descriptor(struct x86_emulate_ctxt *ctxt,
  1190. struct x86_emulate_ops *ops,
  1191. u16 selector, struct desc_struct *desc)
  1192. {
  1193. struct desc_ptr dt;
  1194. u16 index = selector >> 3;
  1195. int ret;
  1196. u32 err;
  1197. ulong addr;
  1198. get_descriptor_table_ptr(ctxt, ops, selector, &dt);
  1199. if (dt.size < index * 8 + 7) {
  1200. kvm_inject_gp(ctxt->vcpu, selector & 0xfffc);
  1201. return X86EMUL_PROPAGATE_FAULT;
  1202. }
  1203. addr = dt.address + index * 8;
  1204. ret = ops->read_std(addr, desc, sizeof *desc, ctxt->vcpu, &err);
  1205. if (ret == X86EMUL_PROPAGATE_FAULT)
  1206. kvm_inject_page_fault(ctxt->vcpu, addr, err);
  1207. return ret;
  1208. }
  1209. /* allowed just for 8 bytes segments */
  1210. static int write_segment_descriptor(struct x86_emulate_ctxt *ctxt,
  1211. struct x86_emulate_ops *ops,
  1212. u16 selector, struct desc_struct *desc)
  1213. {
  1214. struct desc_ptr dt;
  1215. u16 index = selector >> 3;
  1216. u32 err;
  1217. ulong addr;
  1218. int ret;
  1219. get_descriptor_table_ptr(ctxt, ops, selector, &dt);
  1220. if (dt.size < index * 8 + 7) {
  1221. kvm_inject_gp(ctxt->vcpu, selector & 0xfffc);
  1222. return X86EMUL_PROPAGATE_FAULT;
  1223. }
  1224. addr = dt.address + index * 8;
  1225. ret = ops->write_std(addr, desc, sizeof *desc, ctxt->vcpu, &err);
  1226. if (ret == X86EMUL_PROPAGATE_FAULT)
  1227. kvm_inject_page_fault(ctxt->vcpu, addr, err);
  1228. return ret;
  1229. }
  1230. static int load_segment_descriptor(struct x86_emulate_ctxt *ctxt,
  1231. struct x86_emulate_ops *ops,
  1232. u16 selector, int seg)
  1233. {
  1234. struct desc_struct seg_desc;
  1235. u8 dpl, rpl, cpl;
  1236. unsigned err_vec = GP_VECTOR;
  1237. u32 err_code = 0;
  1238. bool null_selector = !(selector & ~0x3); /* 0000-0003 are null */
  1239. int ret;
  1240. memset(&seg_desc, 0, sizeof seg_desc);
  1241. if ((seg <= VCPU_SREG_GS && ctxt->mode == X86EMUL_MODE_VM86)
  1242. || ctxt->mode == X86EMUL_MODE_REAL) {
  1243. /* set real mode segment descriptor */
  1244. set_desc_base(&seg_desc, selector << 4);
  1245. set_desc_limit(&seg_desc, 0xffff);
  1246. seg_desc.type = 3;
  1247. seg_desc.p = 1;
  1248. seg_desc.s = 1;
  1249. goto load;
  1250. }
  1251. /* NULL selector is not valid for TR, CS and SS */
  1252. if ((seg == VCPU_SREG_CS || seg == VCPU_SREG_SS || seg == VCPU_SREG_TR)
  1253. && null_selector)
  1254. goto exception;
  1255. /* TR should be in GDT only */
  1256. if (seg == VCPU_SREG_TR && (selector & (1 << 2)))
  1257. goto exception;
  1258. if (null_selector) /* for NULL selector skip all following checks */
  1259. goto load;
  1260. ret = read_segment_descriptor(ctxt, ops, selector, &seg_desc);
  1261. if (ret != X86EMUL_CONTINUE)
  1262. return ret;
  1263. err_code = selector & 0xfffc;
  1264. err_vec = GP_VECTOR;
  1265. /* can't load system descriptor into segment selecor */
  1266. if (seg <= VCPU_SREG_GS && !seg_desc.s)
  1267. goto exception;
  1268. if (!seg_desc.p) {
  1269. err_vec = (seg == VCPU_SREG_SS) ? SS_VECTOR : NP_VECTOR;
  1270. goto exception;
  1271. }
  1272. rpl = selector & 3;
  1273. dpl = seg_desc.dpl;
  1274. cpl = ops->cpl(ctxt->vcpu);
  1275. switch (seg) {
  1276. case VCPU_SREG_SS:
  1277. /*
  1278. * segment is not a writable data segment or segment
  1279. * selector's RPL != CPL or segment selector's RPL != CPL
  1280. */
  1281. if (rpl != cpl || (seg_desc.type & 0xa) != 0x2 || dpl != cpl)
  1282. goto exception;
  1283. break;
  1284. case VCPU_SREG_CS:
  1285. if (!(seg_desc.type & 8))
  1286. goto exception;
  1287. if (seg_desc.type & 4) {
  1288. /* conforming */
  1289. if (dpl > cpl)
  1290. goto exception;
  1291. } else {
  1292. /* nonconforming */
  1293. if (rpl > cpl || dpl != cpl)
  1294. goto exception;
  1295. }
  1296. /* CS(RPL) <- CPL */
  1297. selector = (selector & 0xfffc) | cpl;
  1298. break;
  1299. case VCPU_SREG_TR:
  1300. if (seg_desc.s || (seg_desc.type != 1 && seg_desc.type != 9))
  1301. goto exception;
  1302. break;
  1303. case VCPU_SREG_LDTR:
  1304. if (seg_desc.s || seg_desc.type != 2)
  1305. goto exception;
  1306. break;
  1307. default: /* DS, ES, FS, or GS */
  1308. /*
  1309. * segment is not a data or readable code segment or
  1310. * ((segment is a data or nonconforming code segment)
  1311. * and (both RPL and CPL > DPL))
  1312. */
  1313. if ((seg_desc.type & 0xa) == 0x8 ||
  1314. (((seg_desc.type & 0xc) != 0xc) &&
  1315. (rpl > dpl && cpl > dpl)))
  1316. goto exception;
  1317. break;
  1318. }
  1319. if (seg_desc.s) {
  1320. /* mark segment as accessed */
  1321. seg_desc.type |= 1;
  1322. ret = write_segment_descriptor(ctxt, ops, selector, &seg_desc);
  1323. if (ret != X86EMUL_CONTINUE)
  1324. return ret;
  1325. }
  1326. load:
  1327. ops->set_segment_selector(selector, seg, ctxt->vcpu);
  1328. ops->set_cached_descriptor(&seg_desc, seg, ctxt->vcpu);
  1329. return X86EMUL_CONTINUE;
  1330. exception:
  1331. kvm_queue_exception_e(ctxt->vcpu, err_vec, err_code);
  1332. return X86EMUL_PROPAGATE_FAULT;
  1333. }
  1334. static inline void emulate_push(struct x86_emulate_ctxt *ctxt)
  1335. {
  1336. struct decode_cache *c = &ctxt->decode;
  1337. c->dst.type = OP_MEM;
  1338. c->dst.bytes = c->op_bytes;
  1339. c->dst.val = c->src.val;
  1340. register_address_increment(c, &c->regs[VCPU_REGS_RSP], -c->op_bytes);
  1341. c->dst.ptr = (void *) register_address(c, ss_base(ctxt),
  1342. c->regs[VCPU_REGS_RSP]);
  1343. }
  1344. static int emulate_pop(struct x86_emulate_ctxt *ctxt,
  1345. struct x86_emulate_ops *ops,
  1346. void *dest, int len)
  1347. {
  1348. struct decode_cache *c = &ctxt->decode;
  1349. int rc;
  1350. rc = ops->read_emulated(register_address(c, ss_base(ctxt),
  1351. c->regs[VCPU_REGS_RSP]),
  1352. dest, len, ctxt->vcpu);
  1353. if (rc != X86EMUL_CONTINUE)
  1354. return rc;
  1355. register_address_increment(c, &c->regs[VCPU_REGS_RSP], len);
  1356. return rc;
  1357. }
  1358. static int emulate_popf(struct x86_emulate_ctxt *ctxt,
  1359. struct x86_emulate_ops *ops,
  1360. void *dest, int len)
  1361. {
  1362. int rc;
  1363. unsigned long val, change_mask;
  1364. int iopl = (ctxt->eflags & X86_EFLAGS_IOPL) >> IOPL_SHIFT;
  1365. int cpl = ops->cpl(ctxt->vcpu);
  1366. rc = emulate_pop(ctxt, ops, &val, len);
  1367. if (rc != X86EMUL_CONTINUE)
  1368. return rc;
  1369. change_mask = EFLG_CF | EFLG_PF | EFLG_AF | EFLG_ZF | EFLG_SF | EFLG_OF
  1370. | EFLG_TF | EFLG_DF | EFLG_NT | EFLG_RF | EFLG_AC | EFLG_ID;
  1371. switch(ctxt->mode) {
  1372. case X86EMUL_MODE_PROT64:
  1373. case X86EMUL_MODE_PROT32:
  1374. case X86EMUL_MODE_PROT16:
  1375. if (cpl == 0)
  1376. change_mask |= EFLG_IOPL;
  1377. if (cpl <= iopl)
  1378. change_mask |= EFLG_IF;
  1379. break;
  1380. case X86EMUL_MODE_VM86:
  1381. if (iopl < 3) {
  1382. kvm_inject_gp(ctxt->vcpu, 0);
  1383. return X86EMUL_PROPAGATE_FAULT;
  1384. }
  1385. change_mask |= EFLG_IF;
  1386. break;
  1387. default: /* real mode */
  1388. change_mask |= (EFLG_IOPL | EFLG_IF);
  1389. break;
  1390. }
  1391. *(unsigned long *)dest =
  1392. (ctxt->eflags & ~change_mask) | (val & change_mask);
  1393. return rc;
  1394. }
  1395. static void emulate_push_sreg(struct x86_emulate_ctxt *ctxt, int seg)
  1396. {
  1397. struct decode_cache *c = &ctxt->decode;
  1398. struct kvm_segment segment;
  1399. kvm_x86_ops->get_segment(ctxt->vcpu, &segment, seg);
  1400. c->src.val = segment.selector;
  1401. emulate_push(ctxt);
  1402. }
  1403. static int emulate_pop_sreg(struct x86_emulate_ctxt *ctxt,
  1404. struct x86_emulate_ops *ops, int seg)
  1405. {
  1406. struct decode_cache *c = &ctxt->decode;
  1407. unsigned long selector;
  1408. int rc;
  1409. rc = emulate_pop(ctxt, ops, &selector, c->op_bytes);
  1410. if (rc != X86EMUL_CONTINUE)
  1411. return rc;
  1412. rc = load_segment_descriptor(ctxt, ops, (u16)selector, seg);
  1413. return rc;
  1414. }
  1415. static void emulate_pusha(struct x86_emulate_ctxt *ctxt)
  1416. {
  1417. struct decode_cache *c = &ctxt->decode;
  1418. unsigned long old_esp = c->regs[VCPU_REGS_RSP];
  1419. int reg = VCPU_REGS_RAX;
  1420. while (reg <= VCPU_REGS_RDI) {
  1421. (reg == VCPU_REGS_RSP) ?
  1422. (c->src.val = old_esp) : (c->src.val = c->regs[reg]);
  1423. emulate_push(ctxt);
  1424. ++reg;
  1425. }
  1426. }
  1427. static int emulate_popa(struct x86_emulate_ctxt *ctxt,
  1428. struct x86_emulate_ops *ops)
  1429. {
  1430. struct decode_cache *c = &ctxt->decode;
  1431. int rc = X86EMUL_CONTINUE;
  1432. int reg = VCPU_REGS_RDI;
  1433. while (reg >= VCPU_REGS_RAX) {
  1434. if (reg == VCPU_REGS_RSP) {
  1435. register_address_increment(c, &c->regs[VCPU_REGS_RSP],
  1436. c->op_bytes);
  1437. --reg;
  1438. }
  1439. rc = emulate_pop(ctxt, ops, &c->regs[reg], c->op_bytes);
  1440. if (rc != X86EMUL_CONTINUE)
  1441. break;
  1442. --reg;
  1443. }
  1444. return rc;
  1445. }
  1446. static inline int emulate_grp1a(struct x86_emulate_ctxt *ctxt,
  1447. struct x86_emulate_ops *ops)
  1448. {
  1449. struct decode_cache *c = &ctxt->decode;
  1450. return emulate_pop(ctxt, ops, &c->dst.val, c->dst.bytes);
  1451. }
  1452. static inline void emulate_grp2(struct x86_emulate_ctxt *ctxt)
  1453. {
  1454. struct decode_cache *c = &ctxt->decode;
  1455. switch (c->modrm_reg) {
  1456. case 0: /* rol */
  1457. emulate_2op_SrcB("rol", c->src, c->dst, ctxt->eflags);
  1458. break;
  1459. case 1: /* ror */
  1460. emulate_2op_SrcB("ror", c->src, c->dst, ctxt->eflags);
  1461. break;
  1462. case 2: /* rcl */
  1463. emulate_2op_SrcB("rcl", c->src, c->dst, ctxt->eflags);
  1464. break;
  1465. case 3: /* rcr */
  1466. emulate_2op_SrcB("rcr", c->src, c->dst, ctxt->eflags);
  1467. break;
  1468. case 4: /* sal/shl */
  1469. case 6: /* sal/shl */
  1470. emulate_2op_SrcB("sal", c->src, c->dst, ctxt->eflags);
  1471. break;
  1472. case 5: /* shr */
  1473. emulate_2op_SrcB("shr", c->src, c->dst, ctxt->eflags);
  1474. break;
  1475. case 7: /* sar */
  1476. emulate_2op_SrcB("sar", c->src, c->dst, ctxt->eflags);
  1477. break;
  1478. }
  1479. }
  1480. static inline int emulate_grp3(struct x86_emulate_ctxt *ctxt,
  1481. struct x86_emulate_ops *ops)
  1482. {
  1483. struct decode_cache *c = &ctxt->decode;
  1484. switch (c->modrm_reg) {
  1485. case 0 ... 1: /* test */
  1486. emulate_2op_SrcV("test", c->src, c->dst, ctxt->eflags);
  1487. break;
  1488. case 2: /* not */
  1489. c->dst.val = ~c->dst.val;
  1490. break;
  1491. case 3: /* neg */
  1492. emulate_1op("neg", c->dst, ctxt->eflags);
  1493. break;
  1494. default:
  1495. return 0;
  1496. }
  1497. return 1;
  1498. }
  1499. static inline int emulate_grp45(struct x86_emulate_ctxt *ctxt,
  1500. struct x86_emulate_ops *ops)
  1501. {
  1502. struct decode_cache *c = &ctxt->decode;
  1503. switch (c->modrm_reg) {
  1504. case 0: /* inc */
  1505. emulate_1op("inc", c->dst, ctxt->eflags);
  1506. break;
  1507. case 1: /* dec */
  1508. emulate_1op("dec", c->dst, ctxt->eflags);
  1509. break;
  1510. case 2: /* call near abs */ {
  1511. long int old_eip;
  1512. old_eip = c->eip;
  1513. c->eip = c->src.val;
  1514. c->src.val = old_eip;
  1515. emulate_push(ctxt);
  1516. break;
  1517. }
  1518. case 4: /* jmp abs */
  1519. c->eip = c->src.val;
  1520. break;
  1521. case 6: /* push */
  1522. emulate_push(ctxt);
  1523. break;
  1524. }
  1525. return X86EMUL_CONTINUE;
  1526. }
  1527. static inline int emulate_grp9(struct x86_emulate_ctxt *ctxt,
  1528. struct x86_emulate_ops *ops)
  1529. {
  1530. struct decode_cache *c = &ctxt->decode;
  1531. u64 old, new;
  1532. int rc;
  1533. rc = ops->read_emulated(c->modrm_ea, &old, 8, ctxt->vcpu);
  1534. if (rc != X86EMUL_CONTINUE)
  1535. return rc;
  1536. if (((u32) (old >> 0) != (u32) c->regs[VCPU_REGS_RAX]) ||
  1537. ((u32) (old >> 32) != (u32) c->regs[VCPU_REGS_RDX])) {
  1538. c->regs[VCPU_REGS_RAX] = (u32) (old >> 0);
  1539. c->regs[VCPU_REGS_RDX] = (u32) (old >> 32);
  1540. ctxt->eflags &= ~EFLG_ZF;
  1541. } else {
  1542. new = ((u64)c->regs[VCPU_REGS_RCX] << 32) |
  1543. (u32) c->regs[VCPU_REGS_RBX];
  1544. rc = ops->cmpxchg_emulated(c->modrm_ea, &old, &new, 8, ctxt->vcpu);
  1545. if (rc != X86EMUL_CONTINUE)
  1546. return rc;
  1547. ctxt->eflags |= EFLG_ZF;
  1548. }
  1549. return X86EMUL_CONTINUE;
  1550. }
  1551. static int emulate_ret_far(struct x86_emulate_ctxt *ctxt,
  1552. struct x86_emulate_ops *ops)
  1553. {
  1554. struct decode_cache *c = &ctxt->decode;
  1555. int rc;
  1556. unsigned long cs;
  1557. rc = emulate_pop(ctxt, ops, &c->eip, c->op_bytes);
  1558. if (rc != X86EMUL_CONTINUE)
  1559. return rc;
  1560. if (c->op_bytes == 4)
  1561. c->eip = (u32)c->eip;
  1562. rc = emulate_pop(ctxt, ops, &cs, c->op_bytes);
  1563. if (rc != X86EMUL_CONTINUE)
  1564. return rc;
  1565. rc = load_segment_descriptor(ctxt, ops, (u16)cs, VCPU_SREG_CS);
  1566. return rc;
  1567. }
  1568. static inline int writeback(struct x86_emulate_ctxt *ctxt,
  1569. struct x86_emulate_ops *ops)
  1570. {
  1571. int rc;
  1572. struct decode_cache *c = &ctxt->decode;
  1573. switch (c->dst.type) {
  1574. case OP_REG:
  1575. /* The 4-byte case *is* correct:
  1576. * in 64-bit mode we zero-extend.
  1577. */
  1578. switch (c->dst.bytes) {
  1579. case 1:
  1580. *(u8 *)c->dst.ptr = (u8)c->dst.val;
  1581. break;
  1582. case 2:
  1583. *(u16 *)c->dst.ptr = (u16)c->dst.val;
  1584. break;
  1585. case 4:
  1586. *c->dst.ptr = (u32)c->dst.val;
  1587. break; /* 64b: zero-ext */
  1588. case 8:
  1589. *c->dst.ptr = c->dst.val;
  1590. break;
  1591. }
  1592. break;
  1593. case OP_MEM:
  1594. if (c->lock_prefix)
  1595. rc = ops->cmpxchg_emulated(
  1596. (unsigned long)c->dst.ptr,
  1597. &c->dst.orig_val,
  1598. &c->dst.val,
  1599. c->dst.bytes,
  1600. ctxt->vcpu);
  1601. else
  1602. rc = ops->write_emulated(
  1603. (unsigned long)c->dst.ptr,
  1604. &c->dst.val,
  1605. c->dst.bytes,
  1606. ctxt->vcpu);
  1607. if (rc != X86EMUL_CONTINUE)
  1608. return rc;
  1609. break;
  1610. case OP_NONE:
  1611. /* no writeback */
  1612. break;
  1613. default:
  1614. break;
  1615. }
  1616. return X86EMUL_CONTINUE;
  1617. }
  1618. static void toggle_interruptibility(struct x86_emulate_ctxt *ctxt, u32 mask)
  1619. {
  1620. u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(ctxt->vcpu, mask);
  1621. /*
  1622. * an sti; sti; sequence only disable interrupts for the first
  1623. * instruction. So, if the last instruction, be it emulated or
  1624. * not, left the system with the INT_STI flag enabled, it
  1625. * means that the last instruction is an sti. We should not
  1626. * leave the flag on in this case. The same goes for mov ss
  1627. */
  1628. if (!(int_shadow & mask))
  1629. ctxt->interruptibility = mask;
  1630. }
  1631. static inline void
  1632. setup_syscalls_segments(struct x86_emulate_ctxt *ctxt,
  1633. struct kvm_segment *cs, struct kvm_segment *ss)
  1634. {
  1635. memset(cs, 0, sizeof(struct kvm_segment));
  1636. kvm_x86_ops->get_segment(ctxt->vcpu, cs, VCPU_SREG_CS);
  1637. memset(ss, 0, sizeof(struct kvm_segment));
  1638. cs->l = 0; /* will be adjusted later */
  1639. cs->base = 0; /* flat segment */
  1640. cs->g = 1; /* 4kb granularity */
  1641. cs->limit = 0xffffffff; /* 4GB limit */
  1642. cs->type = 0x0b; /* Read, Execute, Accessed */
  1643. cs->s = 1;
  1644. cs->dpl = 0; /* will be adjusted later */
  1645. cs->present = 1;
  1646. cs->db = 1;
  1647. ss->unusable = 0;
  1648. ss->base = 0; /* flat segment */
  1649. ss->limit = 0xffffffff; /* 4GB limit */
  1650. ss->g = 1; /* 4kb granularity */
  1651. ss->s = 1;
  1652. ss->type = 0x03; /* Read/Write, Accessed */
  1653. ss->db = 1; /* 32bit stack segment */
  1654. ss->dpl = 0;
  1655. ss->present = 1;
  1656. }
  1657. static int
  1658. emulate_syscall(struct x86_emulate_ctxt *ctxt)
  1659. {
  1660. struct decode_cache *c = &ctxt->decode;
  1661. struct kvm_segment cs, ss;
  1662. u64 msr_data;
  1663. /* syscall is not available in real mode */
  1664. if (ctxt->mode == X86EMUL_MODE_REAL ||
  1665. ctxt->mode == X86EMUL_MODE_VM86) {
  1666. kvm_queue_exception(ctxt->vcpu, UD_VECTOR);
  1667. return X86EMUL_PROPAGATE_FAULT;
  1668. }
  1669. setup_syscalls_segments(ctxt, &cs, &ss);
  1670. kvm_x86_ops->get_msr(ctxt->vcpu, MSR_STAR, &msr_data);
  1671. msr_data >>= 32;
  1672. cs.selector = (u16)(msr_data & 0xfffc);
  1673. ss.selector = (u16)(msr_data + 8);
  1674. if (is_long_mode(ctxt->vcpu)) {
  1675. cs.db = 0;
  1676. cs.l = 1;
  1677. }
  1678. kvm_x86_ops->set_segment(ctxt->vcpu, &cs, VCPU_SREG_CS);
  1679. kvm_x86_ops->set_segment(ctxt->vcpu, &ss, VCPU_SREG_SS);
  1680. c->regs[VCPU_REGS_RCX] = c->eip;
  1681. if (is_long_mode(ctxt->vcpu)) {
  1682. #ifdef CONFIG_X86_64
  1683. c->regs[VCPU_REGS_R11] = ctxt->eflags & ~EFLG_RF;
  1684. kvm_x86_ops->get_msr(ctxt->vcpu,
  1685. ctxt->mode == X86EMUL_MODE_PROT64 ?
  1686. MSR_LSTAR : MSR_CSTAR, &msr_data);
  1687. c->eip = msr_data;
  1688. kvm_x86_ops->get_msr(ctxt->vcpu, MSR_SYSCALL_MASK, &msr_data);
  1689. ctxt->eflags &= ~(msr_data | EFLG_RF);
  1690. #endif
  1691. } else {
  1692. /* legacy mode */
  1693. kvm_x86_ops->get_msr(ctxt->vcpu, MSR_STAR, &msr_data);
  1694. c->eip = (u32)msr_data;
  1695. ctxt->eflags &= ~(EFLG_VM | EFLG_IF | EFLG_RF);
  1696. }
  1697. return X86EMUL_CONTINUE;
  1698. }
  1699. static int
  1700. emulate_sysenter(struct x86_emulate_ctxt *ctxt)
  1701. {
  1702. struct decode_cache *c = &ctxt->decode;
  1703. struct kvm_segment cs, ss;
  1704. u64 msr_data;
  1705. /* inject #GP if in real mode */
  1706. if (ctxt->mode == X86EMUL_MODE_REAL) {
  1707. kvm_inject_gp(ctxt->vcpu, 0);
  1708. return X86EMUL_PROPAGATE_FAULT;
  1709. }
  1710. /* XXX sysenter/sysexit have not been tested in 64bit mode.
  1711. * Therefore, we inject an #UD.
  1712. */
  1713. if (ctxt->mode == X86EMUL_MODE_PROT64) {
  1714. kvm_queue_exception(ctxt->vcpu, UD_VECTOR);
  1715. return X86EMUL_PROPAGATE_FAULT;
  1716. }
  1717. setup_syscalls_segments(ctxt, &cs, &ss);
  1718. kvm_x86_ops->get_msr(ctxt->vcpu, MSR_IA32_SYSENTER_CS, &msr_data);
  1719. switch (ctxt->mode) {
  1720. case X86EMUL_MODE_PROT32:
  1721. if ((msr_data & 0xfffc) == 0x0) {
  1722. kvm_inject_gp(ctxt->vcpu, 0);
  1723. return X86EMUL_PROPAGATE_FAULT;
  1724. }
  1725. break;
  1726. case X86EMUL_MODE_PROT64:
  1727. if (msr_data == 0x0) {
  1728. kvm_inject_gp(ctxt->vcpu, 0);
  1729. return X86EMUL_PROPAGATE_FAULT;
  1730. }
  1731. break;
  1732. }
  1733. ctxt->eflags &= ~(EFLG_VM | EFLG_IF | EFLG_RF);
  1734. cs.selector = (u16)msr_data;
  1735. cs.selector &= ~SELECTOR_RPL_MASK;
  1736. ss.selector = cs.selector + 8;
  1737. ss.selector &= ~SELECTOR_RPL_MASK;
  1738. if (ctxt->mode == X86EMUL_MODE_PROT64
  1739. || is_long_mode(ctxt->vcpu)) {
  1740. cs.db = 0;
  1741. cs.l = 1;
  1742. }
  1743. kvm_x86_ops->set_segment(ctxt->vcpu, &cs, VCPU_SREG_CS);
  1744. kvm_x86_ops->set_segment(ctxt->vcpu, &ss, VCPU_SREG_SS);
  1745. kvm_x86_ops->get_msr(ctxt->vcpu, MSR_IA32_SYSENTER_EIP, &msr_data);
  1746. c->eip = msr_data;
  1747. kvm_x86_ops->get_msr(ctxt->vcpu, MSR_IA32_SYSENTER_ESP, &msr_data);
  1748. c->regs[VCPU_REGS_RSP] = msr_data;
  1749. return X86EMUL_CONTINUE;
  1750. }
  1751. static int
  1752. emulate_sysexit(struct x86_emulate_ctxt *ctxt)
  1753. {
  1754. struct decode_cache *c = &ctxt->decode;
  1755. struct kvm_segment cs, ss;
  1756. u64 msr_data;
  1757. int usermode;
  1758. /* inject #GP if in real mode or Virtual 8086 mode */
  1759. if (ctxt->mode == X86EMUL_MODE_REAL ||
  1760. ctxt->mode == X86EMUL_MODE_VM86) {
  1761. kvm_inject_gp(ctxt->vcpu, 0);
  1762. return X86EMUL_PROPAGATE_FAULT;
  1763. }
  1764. setup_syscalls_segments(ctxt, &cs, &ss);
  1765. if ((c->rex_prefix & 0x8) != 0x0)
  1766. usermode = X86EMUL_MODE_PROT64;
  1767. else
  1768. usermode = X86EMUL_MODE_PROT32;
  1769. cs.dpl = 3;
  1770. ss.dpl = 3;
  1771. kvm_x86_ops->get_msr(ctxt->vcpu, MSR_IA32_SYSENTER_CS, &msr_data);
  1772. switch (usermode) {
  1773. case X86EMUL_MODE_PROT32:
  1774. cs.selector = (u16)(msr_data + 16);
  1775. if ((msr_data & 0xfffc) == 0x0) {
  1776. kvm_inject_gp(ctxt->vcpu, 0);
  1777. return X86EMUL_PROPAGATE_FAULT;
  1778. }
  1779. ss.selector = (u16)(msr_data + 24);
  1780. break;
  1781. case X86EMUL_MODE_PROT64:
  1782. cs.selector = (u16)(msr_data + 32);
  1783. if (msr_data == 0x0) {
  1784. kvm_inject_gp(ctxt->vcpu, 0);
  1785. return X86EMUL_PROPAGATE_FAULT;
  1786. }
  1787. ss.selector = cs.selector + 8;
  1788. cs.db = 0;
  1789. cs.l = 1;
  1790. break;
  1791. }
  1792. cs.selector |= SELECTOR_RPL_MASK;
  1793. ss.selector |= SELECTOR_RPL_MASK;
  1794. kvm_x86_ops->set_segment(ctxt->vcpu, &cs, VCPU_SREG_CS);
  1795. kvm_x86_ops->set_segment(ctxt->vcpu, &ss, VCPU_SREG_SS);
  1796. c->eip = ctxt->vcpu->arch.regs[VCPU_REGS_RDX];
  1797. c->regs[VCPU_REGS_RSP] = ctxt->vcpu->arch.regs[VCPU_REGS_RCX];
  1798. return X86EMUL_CONTINUE;
  1799. }
  1800. static bool emulator_bad_iopl(struct x86_emulate_ctxt *ctxt,
  1801. struct x86_emulate_ops *ops)
  1802. {
  1803. int iopl;
  1804. if (ctxt->mode == X86EMUL_MODE_REAL)
  1805. return false;
  1806. if (ctxt->mode == X86EMUL_MODE_VM86)
  1807. return true;
  1808. iopl = (ctxt->eflags & X86_EFLAGS_IOPL) >> IOPL_SHIFT;
  1809. return ops->cpl(ctxt->vcpu) > iopl;
  1810. }
  1811. static bool emulator_io_port_access_allowed(struct x86_emulate_ctxt *ctxt,
  1812. struct x86_emulate_ops *ops,
  1813. u16 port, u16 len)
  1814. {
  1815. struct kvm_segment tr_seg;
  1816. int r;
  1817. u16 io_bitmap_ptr;
  1818. u8 perm, bit_idx = port & 0x7;
  1819. unsigned mask = (1 << len) - 1;
  1820. kvm_get_segment(ctxt->vcpu, &tr_seg, VCPU_SREG_TR);
  1821. if (tr_seg.unusable)
  1822. return false;
  1823. if (tr_seg.limit < 103)
  1824. return false;
  1825. r = ops->read_std(tr_seg.base + 102, &io_bitmap_ptr, 2, ctxt->vcpu,
  1826. NULL);
  1827. if (r != X86EMUL_CONTINUE)
  1828. return false;
  1829. if (io_bitmap_ptr + port/8 > tr_seg.limit)
  1830. return false;
  1831. r = ops->read_std(tr_seg.base + io_bitmap_ptr + port/8, &perm, 1,
  1832. ctxt->vcpu, NULL);
  1833. if (r != X86EMUL_CONTINUE)
  1834. return false;
  1835. if ((perm >> bit_idx) & mask)
  1836. return false;
  1837. return true;
  1838. }
  1839. static bool emulator_io_permited(struct x86_emulate_ctxt *ctxt,
  1840. struct x86_emulate_ops *ops,
  1841. u16 port, u16 len)
  1842. {
  1843. if (emulator_bad_iopl(ctxt, ops))
  1844. if (!emulator_io_port_access_allowed(ctxt, ops, port, len))
  1845. return false;
  1846. return true;
  1847. }
  1848. static u32 get_cached_descriptor_base(struct x86_emulate_ctxt *ctxt,
  1849. struct x86_emulate_ops *ops,
  1850. int seg)
  1851. {
  1852. struct desc_struct desc;
  1853. if (ops->get_cached_descriptor(&desc, seg, ctxt->vcpu))
  1854. return get_desc_base(&desc);
  1855. else
  1856. return ~0;
  1857. }
  1858. static void save_state_to_tss16(struct x86_emulate_ctxt *ctxt,
  1859. struct x86_emulate_ops *ops,
  1860. struct tss_segment_16 *tss)
  1861. {
  1862. struct decode_cache *c = &ctxt->decode;
  1863. tss->ip = c->eip;
  1864. tss->flag = ctxt->eflags;
  1865. tss->ax = c->regs[VCPU_REGS_RAX];
  1866. tss->cx = c->regs[VCPU_REGS_RCX];
  1867. tss->dx = c->regs[VCPU_REGS_RDX];
  1868. tss->bx = c->regs[VCPU_REGS_RBX];
  1869. tss->sp = c->regs[VCPU_REGS_RSP];
  1870. tss->bp = c->regs[VCPU_REGS_RBP];
  1871. tss->si = c->regs[VCPU_REGS_RSI];
  1872. tss->di = c->regs[VCPU_REGS_RDI];
  1873. tss->es = ops->get_segment_selector(VCPU_SREG_ES, ctxt->vcpu);
  1874. tss->cs = ops->get_segment_selector(VCPU_SREG_CS, ctxt->vcpu);
  1875. tss->ss = ops->get_segment_selector(VCPU_SREG_SS, ctxt->vcpu);
  1876. tss->ds = ops->get_segment_selector(VCPU_SREG_DS, ctxt->vcpu);
  1877. tss->ldt = ops->get_segment_selector(VCPU_SREG_LDTR, ctxt->vcpu);
  1878. }
  1879. static int load_state_from_tss16(struct x86_emulate_ctxt *ctxt,
  1880. struct x86_emulate_ops *ops,
  1881. struct tss_segment_16 *tss)
  1882. {
  1883. struct decode_cache *c = &ctxt->decode;
  1884. int ret;
  1885. c->eip = tss->ip;
  1886. ctxt->eflags = tss->flag | 2;
  1887. c->regs[VCPU_REGS_RAX] = tss->ax;
  1888. c->regs[VCPU_REGS_RCX] = tss->cx;
  1889. c->regs[VCPU_REGS_RDX] = tss->dx;
  1890. c->regs[VCPU_REGS_RBX] = tss->bx;
  1891. c->regs[VCPU_REGS_RSP] = tss->sp;
  1892. c->regs[VCPU_REGS_RBP] = tss->bp;
  1893. c->regs[VCPU_REGS_RSI] = tss->si;
  1894. c->regs[VCPU_REGS_RDI] = tss->di;
  1895. /*
  1896. * SDM says that segment selectors are loaded before segment
  1897. * descriptors
  1898. */
  1899. ops->set_segment_selector(tss->ldt, VCPU_SREG_LDTR, ctxt->vcpu);
  1900. ops->set_segment_selector(tss->es, VCPU_SREG_ES, ctxt->vcpu);
  1901. ops->set_segment_selector(tss->cs, VCPU_SREG_CS, ctxt->vcpu);
  1902. ops->set_segment_selector(tss->ss, VCPU_SREG_SS, ctxt->vcpu);
  1903. ops->set_segment_selector(tss->ds, VCPU_SREG_DS, ctxt->vcpu);
  1904. /*
  1905. * Now load segment descriptors. If fault happenes at this stage
  1906. * it is handled in a context of new task
  1907. */
  1908. ret = load_segment_descriptor(ctxt, ops, tss->ldt, VCPU_SREG_LDTR);
  1909. if (ret != X86EMUL_CONTINUE)
  1910. return ret;
  1911. ret = load_segment_descriptor(ctxt, ops, tss->es, VCPU_SREG_ES);
  1912. if (ret != X86EMUL_CONTINUE)
  1913. return ret;
  1914. ret = load_segment_descriptor(ctxt, ops, tss->cs, VCPU_SREG_CS);
  1915. if (ret != X86EMUL_CONTINUE)
  1916. return ret;
  1917. ret = load_segment_descriptor(ctxt, ops, tss->ss, VCPU_SREG_SS);
  1918. if (ret != X86EMUL_CONTINUE)
  1919. return ret;
  1920. ret = load_segment_descriptor(ctxt, ops, tss->ds, VCPU_SREG_DS);
  1921. if (ret != X86EMUL_CONTINUE)
  1922. return ret;
  1923. return X86EMUL_CONTINUE;
  1924. }
  1925. static int task_switch_16(struct x86_emulate_ctxt *ctxt,
  1926. struct x86_emulate_ops *ops,
  1927. u16 tss_selector, u16 old_tss_sel,
  1928. ulong old_tss_base, struct desc_struct *new_desc)
  1929. {
  1930. struct tss_segment_16 tss_seg;
  1931. int ret;
  1932. u32 err, new_tss_base = get_desc_base(new_desc);
  1933. ret = ops->read_std(old_tss_base, &tss_seg, sizeof tss_seg, ctxt->vcpu,
  1934. &err);
  1935. if (ret == X86EMUL_PROPAGATE_FAULT) {
  1936. /* FIXME: need to provide precise fault address */
  1937. kvm_inject_page_fault(ctxt->vcpu, old_tss_base, err);
  1938. return ret;
  1939. }
  1940. save_state_to_tss16(ctxt, ops, &tss_seg);
  1941. ret = ops->write_std(old_tss_base, &tss_seg, sizeof tss_seg, ctxt->vcpu,
  1942. &err);
  1943. if (ret == X86EMUL_PROPAGATE_FAULT) {
  1944. /* FIXME: need to provide precise fault address */
  1945. kvm_inject_page_fault(ctxt->vcpu, old_tss_base, err);
  1946. return ret;
  1947. }
  1948. ret = ops->read_std(new_tss_base, &tss_seg, sizeof tss_seg, ctxt->vcpu,
  1949. &err);
  1950. if (ret == X86EMUL_PROPAGATE_FAULT) {
  1951. /* FIXME: need to provide precise fault address */
  1952. kvm_inject_page_fault(ctxt->vcpu, new_tss_base, err);
  1953. return ret;
  1954. }
  1955. if (old_tss_sel != 0xffff) {
  1956. tss_seg.prev_task_link = old_tss_sel;
  1957. ret = ops->write_std(new_tss_base,
  1958. &tss_seg.prev_task_link,
  1959. sizeof tss_seg.prev_task_link,
  1960. ctxt->vcpu, &err);
  1961. if (ret == X86EMUL_PROPAGATE_FAULT) {
  1962. /* FIXME: need to provide precise fault address */
  1963. kvm_inject_page_fault(ctxt->vcpu, new_tss_base, err);
  1964. return ret;
  1965. }
  1966. }
  1967. return load_state_from_tss16(ctxt, ops, &tss_seg);
  1968. }
  1969. static void save_state_to_tss32(struct x86_emulate_ctxt *ctxt,
  1970. struct x86_emulate_ops *ops,
  1971. struct tss_segment_32 *tss)
  1972. {
  1973. struct decode_cache *c = &ctxt->decode;
  1974. tss->cr3 = ops->get_cr(3, ctxt->vcpu);
  1975. tss->eip = c->eip;
  1976. tss->eflags = ctxt->eflags;
  1977. tss->eax = c->regs[VCPU_REGS_RAX];
  1978. tss->ecx = c->regs[VCPU_REGS_RCX];
  1979. tss->edx = c->regs[VCPU_REGS_RDX];
  1980. tss->ebx = c->regs[VCPU_REGS_RBX];
  1981. tss->esp = c->regs[VCPU_REGS_RSP];
  1982. tss->ebp = c->regs[VCPU_REGS_RBP];
  1983. tss->esi = c->regs[VCPU_REGS_RSI];
  1984. tss->edi = c->regs[VCPU_REGS_RDI];
  1985. tss->es = ops->get_segment_selector(VCPU_SREG_ES, ctxt->vcpu);
  1986. tss->cs = ops->get_segment_selector(VCPU_SREG_CS, ctxt->vcpu);
  1987. tss->ss = ops->get_segment_selector(VCPU_SREG_SS, ctxt->vcpu);
  1988. tss->ds = ops->get_segment_selector(VCPU_SREG_DS, ctxt->vcpu);
  1989. tss->fs = ops->get_segment_selector(VCPU_SREG_FS, ctxt->vcpu);
  1990. tss->gs = ops->get_segment_selector(VCPU_SREG_GS, ctxt->vcpu);
  1991. tss->ldt_selector = ops->get_segment_selector(VCPU_SREG_LDTR, ctxt->vcpu);
  1992. }
  1993. static int load_state_from_tss32(struct x86_emulate_ctxt *ctxt,
  1994. struct x86_emulate_ops *ops,
  1995. struct tss_segment_32 *tss)
  1996. {
  1997. struct decode_cache *c = &ctxt->decode;
  1998. int ret;
  1999. ops->set_cr(3, tss->cr3, ctxt->vcpu);
  2000. c->eip = tss->eip;
  2001. ctxt->eflags = tss->eflags | 2;
  2002. c->regs[VCPU_REGS_RAX] = tss->eax;
  2003. c->regs[VCPU_REGS_RCX] = tss->ecx;
  2004. c->regs[VCPU_REGS_RDX] = tss->edx;
  2005. c->regs[VCPU_REGS_RBX] = tss->ebx;
  2006. c->regs[VCPU_REGS_RSP] = tss->esp;
  2007. c->regs[VCPU_REGS_RBP] = tss->ebp;
  2008. c->regs[VCPU_REGS_RSI] = tss->esi;
  2009. c->regs[VCPU_REGS_RDI] = tss->edi;
  2010. /*
  2011. * SDM says that segment selectors are loaded before segment
  2012. * descriptors
  2013. */
  2014. ops->set_segment_selector(tss->ldt_selector, VCPU_SREG_LDTR, ctxt->vcpu);
  2015. ops->set_segment_selector(tss->es, VCPU_SREG_ES, ctxt->vcpu);
  2016. ops->set_segment_selector(tss->cs, VCPU_SREG_CS, ctxt->vcpu);
  2017. ops->set_segment_selector(tss->ss, VCPU_SREG_SS, ctxt->vcpu);
  2018. ops->set_segment_selector(tss->ds, VCPU_SREG_DS, ctxt->vcpu);
  2019. ops->set_segment_selector(tss->fs, VCPU_SREG_FS, ctxt->vcpu);
  2020. ops->set_segment_selector(tss->gs, VCPU_SREG_GS, ctxt->vcpu);
  2021. /*
  2022. * Now load segment descriptors. If fault happenes at this stage
  2023. * it is handled in a context of new task
  2024. */
  2025. ret = load_segment_descriptor(ctxt, ops, tss->ldt_selector, VCPU_SREG_LDTR);
  2026. if (ret != X86EMUL_CONTINUE)
  2027. return ret;
  2028. ret = load_segment_descriptor(ctxt, ops, tss->es, VCPU_SREG_ES);
  2029. if (ret != X86EMUL_CONTINUE)
  2030. return ret;
  2031. ret = load_segment_descriptor(ctxt, ops, tss->cs, VCPU_SREG_CS);
  2032. if (ret != X86EMUL_CONTINUE)
  2033. return ret;
  2034. ret = load_segment_descriptor(ctxt, ops, tss->ss, VCPU_SREG_SS);
  2035. if (ret != X86EMUL_CONTINUE)
  2036. return ret;
  2037. ret = load_segment_descriptor(ctxt, ops, tss->ds, VCPU_SREG_DS);
  2038. if (ret != X86EMUL_CONTINUE)
  2039. return ret;
  2040. ret = load_segment_descriptor(ctxt, ops, tss->fs, VCPU_SREG_FS);
  2041. if (ret != X86EMUL_CONTINUE)
  2042. return ret;
  2043. ret = load_segment_descriptor(ctxt, ops, tss->gs, VCPU_SREG_GS);
  2044. if (ret != X86EMUL_CONTINUE)
  2045. return ret;
  2046. return X86EMUL_CONTINUE;
  2047. }
  2048. static int task_switch_32(struct x86_emulate_ctxt *ctxt,
  2049. struct x86_emulate_ops *ops,
  2050. u16 tss_selector, u16 old_tss_sel,
  2051. ulong old_tss_base, struct desc_struct *new_desc)
  2052. {
  2053. struct tss_segment_32 tss_seg;
  2054. int ret;
  2055. u32 err, new_tss_base = get_desc_base(new_desc);
  2056. ret = ops->read_std(old_tss_base, &tss_seg, sizeof tss_seg, ctxt->vcpu,
  2057. &err);
  2058. if (ret == X86EMUL_PROPAGATE_FAULT) {
  2059. /* FIXME: need to provide precise fault address */
  2060. kvm_inject_page_fault(ctxt->vcpu, old_tss_base, err);
  2061. return ret;
  2062. }
  2063. save_state_to_tss32(ctxt, ops, &tss_seg);
  2064. ret = ops->write_std(old_tss_base, &tss_seg, sizeof tss_seg, ctxt->vcpu,
  2065. &err);
  2066. if (ret == X86EMUL_PROPAGATE_FAULT) {
  2067. /* FIXME: need to provide precise fault address */
  2068. kvm_inject_page_fault(ctxt->vcpu, old_tss_base, err);
  2069. return ret;
  2070. }
  2071. ret = ops->read_std(new_tss_base, &tss_seg, sizeof tss_seg, ctxt->vcpu,
  2072. &err);
  2073. if (ret == X86EMUL_PROPAGATE_FAULT) {
  2074. /* FIXME: need to provide precise fault address */
  2075. kvm_inject_page_fault(ctxt->vcpu, new_tss_base, err);
  2076. return ret;
  2077. }
  2078. if (old_tss_sel != 0xffff) {
  2079. tss_seg.prev_task_link = old_tss_sel;
  2080. ret = ops->write_std(new_tss_base,
  2081. &tss_seg.prev_task_link,
  2082. sizeof tss_seg.prev_task_link,
  2083. ctxt->vcpu, &err);
  2084. if (ret == X86EMUL_PROPAGATE_FAULT) {
  2085. /* FIXME: need to provide precise fault address */
  2086. kvm_inject_page_fault(ctxt->vcpu, new_tss_base, err);
  2087. return ret;
  2088. }
  2089. }
  2090. return load_state_from_tss32(ctxt, ops, &tss_seg);
  2091. }
  2092. static int emulator_do_task_switch(struct x86_emulate_ctxt *ctxt,
  2093. struct x86_emulate_ops *ops,
  2094. u16 tss_selector, int reason)
  2095. {
  2096. struct desc_struct curr_tss_desc, next_tss_desc;
  2097. int ret;
  2098. u16 old_tss_sel = ops->get_segment_selector(VCPU_SREG_TR, ctxt->vcpu);
  2099. ulong old_tss_base =
  2100. get_cached_descriptor_base(ctxt, ops, VCPU_SREG_TR);
  2101. u32 desc_limit;
  2102. /* FIXME: old_tss_base == ~0 ? */
  2103. ret = read_segment_descriptor(ctxt, ops, tss_selector, &next_tss_desc);
  2104. if (ret != X86EMUL_CONTINUE)
  2105. return ret;
  2106. ret = read_segment_descriptor(ctxt, ops, old_tss_sel, &curr_tss_desc);
  2107. if (ret != X86EMUL_CONTINUE)
  2108. return ret;
  2109. /* FIXME: check that next_tss_desc is tss */
  2110. if (reason != TASK_SWITCH_IRET) {
  2111. if ((tss_selector & 3) > next_tss_desc.dpl ||
  2112. ops->cpl(ctxt->vcpu) > next_tss_desc.dpl) {
  2113. kvm_inject_gp(ctxt->vcpu, 0);
  2114. return X86EMUL_PROPAGATE_FAULT;
  2115. }
  2116. }
  2117. desc_limit = desc_limit_scaled(&next_tss_desc);
  2118. if (!next_tss_desc.p ||
  2119. ((desc_limit < 0x67 && (next_tss_desc.type & 8)) ||
  2120. desc_limit < 0x2b)) {
  2121. kvm_queue_exception_e(ctxt->vcpu, TS_VECTOR,
  2122. tss_selector & 0xfffc);
  2123. return X86EMUL_PROPAGATE_FAULT;
  2124. }
  2125. if (reason == TASK_SWITCH_IRET || reason == TASK_SWITCH_JMP) {
  2126. curr_tss_desc.type &= ~(1 << 1); /* clear busy flag */
  2127. write_segment_descriptor(ctxt, ops, old_tss_sel,
  2128. &curr_tss_desc);
  2129. }
  2130. if (reason == TASK_SWITCH_IRET)
  2131. ctxt->eflags = ctxt->eflags & ~X86_EFLAGS_NT;
  2132. /* set back link to prev task only if NT bit is set in eflags
  2133. note that old_tss_sel is not used afetr this point */
  2134. if (reason != TASK_SWITCH_CALL && reason != TASK_SWITCH_GATE)
  2135. old_tss_sel = 0xffff;
  2136. if (next_tss_desc.type & 8)
  2137. ret = task_switch_32(ctxt, ops, tss_selector, old_tss_sel,
  2138. old_tss_base, &next_tss_desc);
  2139. else
  2140. ret = task_switch_16(ctxt, ops, tss_selector, old_tss_sel,
  2141. old_tss_base, &next_tss_desc);
  2142. if (reason == TASK_SWITCH_CALL || reason == TASK_SWITCH_GATE)
  2143. ctxt->eflags = ctxt->eflags | X86_EFLAGS_NT;
  2144. if (reason != TASK_SWITCH_IRET) {
  2145. next_tss_desc.type |= (1 << 1); /* set busy flag */
  2146. write_segment_descriptor(ctxt, ops, tss_selector,
  2147. &next_tss_desc);
  2148. }
  2149. ops->set_cr(0, ops->get_cr(0, ctxt->vcpu) | X86_CR0_TS, ctxt->vcpu);
  2150. ops->set_cached_descriptor(&next_tss_desc, VCPU_SREG_TR, ctxt->vcpu);
  2151. ops->set_segment_selector(tss_selector, VCPU_SREG_TR, ctxt->vcpu);
  2152. return ret;
  2153. }
  2154. int emulator_task_switch(struct x86_emulate_ctxt *ctxt,
  2155. struct x86_emulate_ops *ops,
  2156. u16 tss_selector, int reason)
  2157. {
  2158. struct decode_cache *c = &ctxt->decode;
  2159. int rc;
  2160. memset(c, 0, sizeof(struct decode_cache));
  2161. c->eip = ctxt->eip;
  2162. memcpy(c->regs, ctxt->vcpu->arch.regs, sizeof c->regs);
  2163. rc = emulator_do_task_switch(ctxt, ops, tss_selector, reason);
  2164. if (rc == X86EMUL_CONTINUE) {
  2165. memcpy(ctxt->vcpu->arch.regs, c->regs, sizeof c->regs);
  2166. kvm_rip_write(ctxt->vcpu, c->eip);
  2167. }
  2168. return rc;
  2169. }
  2170. static void string_addr_inc(struct x86_emulate_ctxt *ctxt, unsigned long base,
  2171. int reg, struct operand *op)
  2172. {
  2173. struct decode_cache *c = &ctxt->decode;
  2174. int df = (ctxt->eflags & EFLG_DF) ? -1 : 1;
  2175. register_address_increment(c, &c->regs[reg], df * op->bytes);
  2176. op->ptr = (unsigned long *)register_address(c, base, c->regs[reg]);
  2177. }
  2178. int
  2179. x86_emulate_insn(struct x86_emulate_ctxt *ctxt, struct x86_emulate_ops *ops)
  2180. {
  2181. u64 msr_data;
  2182. unsigned long saved_eip = 0;
  2183. struct decode_cache *c = &ctxt->decode;
  2184. int rc = X86EMUL_CONTINUE;
  2185. ctxt->interruptibility = 0;
  2186. /* Shadow copy of register state. Committed on successful emulation.
  2187. * NOTE: we can copy them from vcpu as x86_decode_insn() doesn't
  2188. * modify them.
  2189. */
  2190. memcpy(c->regs, ctxt->vcpu->arch.regs, sizeof c->regs);
  2191. saved_eip = c->eip;
  2192. if (ctxt->mode == X86EMUL_MODE_PROT64 && (c->d & No64)) {
  2193. kvm_queue_exception(ctxt->vcpu, UD_VECTOR);
  2194. goto done;
  2195. }
  2196. /* LOCK prefix is allowed only with some instructions */
  2197. if (c->lock_prefix && (!(c->d & Lock) || c->dst.type != OP_MEM)) {
  2198. kvm_queue_exception(ctxt->vcpu, UD_VECTOR);
  2199. goto done;
  2200. }
  2201. /* Privileged instruction can be executed only in CPL=0 */
  2202. if ((c->d & Priv) && ops->cpl(ctxt->vcpu)) {
  2203. kvm_inject_gp(ctxt->vcpu, 0);
  2204. goto done;
  2205. }
  2206. if (c->rep_prefix && (c->d & String)) {
  2207. /* All REP prefixes have the same first termination condition */
  2208. if (address_mask(c, c->regs[VCPU_REGS_RCX]) == 0) {
  2209. kvm_rip_write(ctxt->vcpu, c->eip);
  2210. goto done;
  2211. }
  2212. /* The second termination condition only applies for REPE
  2213. * and REPNE. Test if the repeat string operation prefix is
  2214. * REPE/REPZ or REPNE/REPNZ and if it's the case it tests the
  2215. * corresponding termination condition according to:
  2216. * - if REPE/REPZ and ZF = 0 then done
  2217. * - if REPNE/REPNZ and ZF = 1 then done
  2218. */
  2219. if ((c->b == 0xa6) || (c->b == 0xa7) ||
  2220. (c->b == 0xae) || (c->b == 0xaf)) {
  2221. if ((c->rep_prefix == REPE_PREFIX) &&
  2222. ((ctxt->eflags & EFLG_ZF) == 0)) {
  2223. kvm_rip_write(ctxt->vcpu, c->eip);
  2224. goto done;
  2225. }
  2226. if ((c->rep_prefix == REPNE_PREFIX) &&
  2227. ((ctxt->eflags & EFLG_ZF) == EFLG_ZF)) {
  2228. kvm_rip_write(ctxt->vcpu, c->eip);
  2229. goto done;
  2230. }
  2231. }
  2232. c->eip = ctxt->eip;
  2233. }
  2234. if (c->src.type == OP_MEM) {
  2235. rc = ops->read_emulated((unsigned long)c->src.ptr,
  2236. &c->src.val,
  2237. c->src.bytes,
  2238. ctxt->vcpu);
  2239. if (rc != X86EMUL_CONTINUE)
  2240. goto done;
  2241. c->src.orig_val = c->src.val;
  2242. }
  2243. if (c->src2.type == OP_MEM) {
  2244. rc = ops->read_emulated((unsigned long)c->src2.ptr,
  2245. &c->src2.val,
  2246. c->src2.bytes,
  2247. ctxt->vcpu);
  2248. if (rc != X86EMUL_CONTINUE)
  2249. goto done;
  2250. }
  2251. if ((c->d & DstMask) == ImplicitOps)
  2252. goto special_insn;
  2253. if ((c->dst.type == OP_MEM) && !(c->d & Mov)) {
  2254. /* optimisation - avoid slow emulated read if Mov */
  2255. rc = ops->read_emulated((unsigned long)c->dst.ptr, &c->dst.val,
  2256. c->dst.bytes, ctxt->vcpu);
  2257. if (rc != X86EMUL_CONTINUE)
  2258. goto done;
  2259. }
  2260. c->dst.orig_val = c->dst.val;
  2261. special_insn:
  2262. if (c->twobyte)
  2263. goto twobyte_insn;
  2264. switch (c->b) {
  2265. case 0x00 ... 0x05:
  2266. add: /* add */
  2267. emulate_2op_SrcV("add", c->src, c->dst, ctxt->eflags);
  2268. break;
  2269. case 0x06: /* push es */
  2270. emulate_push_sreg(ctxt, VCPU_SREG_ES);
  2271. break;
  2272. case 0x07: /* pop es */
  2273. rc = emulate_pop_sreg(ctxt, ops, VCPU_SREG_ES);
  2274. if (rc != X86EMUL_CONTINUE)
  2275. goto done;
  2276. break;
  2277. case 0x08 ... 0x0d:
  2278. or: /* or */
  2279. emulate_2op_SrcV("or", c->src, c->dst, ctxt->eflags);
  2280. break;
  2281. case 0x0e: /* push cs */
  2282. emulate_push_sreg(ctxt, VCPU_SREG_CS);
  2283. break;
  2284. case 0x10 ... 0x15:
  2285. adc: /* adc */
  2286. emulate_2op_SrcV("adc", c->src, c->dst, ctxt->eflags);
  2287. break;
  2288. case 0x16: /* push ss */
  2289. emulate_push_sreg(ctxt, VCPU_SREG_SS);
  2290. break;
  2291. case 0x17: /* pop ss */
  2292. rc = emulate_pop_sreg(ctxt, ops, VCPU_SREG_SS);
  2293. if (rc != X86EMUL_CONTINUE)
  2294. goto done;
  2295. break;
  2296. case 0x18 ... 0x1d:
  2297. sbb: /* sbb */
  2298. emulate_2op_SrcV("sbb", c->src, c->dst, ctxt->eflags);
  2299. break;
  2300. case 0x1e: /* push ds */
  2301. emulate_push_sreg(ctxt, VCPU_SREG_DS);
  2302. break;
  2303. case 0x1f: /* pop ds */
  2304. rc = emulate_pop_sreg(ctxt, ops, VCPU_SREG_DS);
  2305. if (rc != X86EMUL_CONTINUE)
  2306. goto done;
  2307. break;
  2308. case 0x20 ... 0x25:
  2309. and: /* and */
  2310. emulate_2op_SrcV("and", c->src, c->dst, ctxt->eflags);
  2311. break;
  2312. case 0x28 ... 0x2d:
  2313. sub: /* sub */
  2314. emulate_2op_SrcV("sub", c->src, c->dst, ctxt->eflags);
  2315. break;
  2316. case 0x30 ... 0x35:
  2317. xor: /* xor */
  2318. emulate_2op_SrcV("xor", c->src, c->dst, ctxt->eflags);
  2319. break;
  2320. case 0x38 ... 0x3d:
  2321. cmp: /* cmp */
  2322. emulate_2op_SrcV("cmp", c->src, c->dst, ctxt->eflags);
  2323. break;
  2324. case 0x40 ... 0x47: /* inc r16/r32 */
  2325. emulate_1op("inc", c->dst, ctxt->eflags);
  2326. break;
  2327. case 0x48 ... 0x4f: /* dec r16/r32 */
  2328. emulate_1op("dec", c->dst, ctxt->eflags);
  2329. break;
  2330. case 0x50 ... 0x57: /* push reg */
  2331. emulate_push(ctxt);
  2332. break;
  2333. case 0x58 ... 0x5f: /* pop reg */
  2334. pop_instruction:
  2335. rc = emulate_pop(ctxt, ops, &c->dst.val, c->op_bytes);
  2336. if (rc != X86EMUL_CONTINUE)
  2337. goto done;
  2338. break;
  2339. case 0x60: /* pusha */
  2340. emulate_pusha(ctxt);
  2341. break;
  2342. case 0x61: /* popa */
  2343. rc = emulate_popa(ctxt, ops);
  2344. if (rc != X86EMUL_CONTINUE)
  2345. goto done;
  2346. break;
  2347. case 0x63: /* movsxd */
  2348. if (ctxt->mode != X86EMUL_MODE_PROT64)
  2349. goto cannot_emulate;
  2350. c->dst.val = (s32) c->src.val;
  2351. break;
  2352. case 0x68: /* push imm */
  2353. case 0x6a: /* push imm8 */
  2354. emulate_push(ctxt);
  2355. break;
  2356. case 0x6c: /* insb */
  2357. case 0x6d: /* insw/insd */
  2358. if (!emulator_io_permited(ctxt, ops, c->regs[VCPU_REGS_RDX],
  2359. (c->d & ByteOp) ? 1 : c->op_bytes)) {
  2360. kvm_inject_gp(ctxt->vcpu, 0);
  2361. goto done;
  2362. }
  2363. if (kvm_emulate_pio_string(ctxt->vcpu,
  2364. 1,
  2365. (c->d & ByteOp) ? 1 : c->op_bytes,
  2366. c->rep_prefix ?
  2367. address_mask(c, c->regs[VCPU_REGS_RCX]) : 1,
  2368. (ctxt->eflags & EFLG_DF),
  2369. register_address(c, es_base(ctxt),
  2370. c->regs[VCPU_REGS_RDI]),
  2371. c->rep_prefix,
  2372. c->regs[VCPU_REGS_RDX]) == 0) {
  2373. c->eip = saved_eip;
  2374. return -1;
  2375. }
  2376. return 0;
  2377. case 0x6e: /* outsb */
  2378. case 0x6f: /* outsw/outsd */
  2379. if (!emulator_io_permited(ctxt, ops, c->regs[VCPU_REGS_RDX],
  2380. (c->d & ByteOp) ? 1 : c->op_bytes)) {
  2381. kvm_inject_gp(ctxt->vcpu, 0);
  2382. goto done;
  2383. }
  2384. if (kvm_emulate_pio_string(ctxt->vcpu,
  2385. 0,
  2386. (c->d & ByteOp) ? 1 : c->op_bytes,
  2387. c->rep_prefix ?
  2388. address_mask(c, c->regs[VCPU_REGS_RCX]) : 1,
  2389. (ctxt->eflags & EFLG_DF),
  2390. register_address(c,
  2391. seg_override_base(ctxt, c),
  2392. c->regs[VCPU_REGS_RSI]),
  2393. c->rep_prefix,
  2394. c->regs[VCPU_REGS_RDX]) == 0) {
  2395. c->eip = saved_eip;
  2396. return -1;
  2397. }
  2398. return 0;
  2399. case 0x70 ... 0x7f: /* jcc (short) */
  2400. if (test_cc(c->b, ctxt->eflags))
  2401. jmp_rel(c, c->src.val);
  2402. break;
  2403. case 0x80 ... 0x83: /* Grp1 */
  2404. switch (c->modrm_reg) {
  2405. case 0:
  2406. goto add;
  2407. case 1:
  2408. goto or;
  2409. case 2:
  2410. goto adc;
  2411. case 3:
  2412. goto sbb;
  2413. case 4:
  2414. goto and;
  2415. case 5:
  2416. goto sub;
  2417. case 6:
  2418. goto xor;
  2419. case 7:
  2420. goto cmp;
  2421. }
  2422. break;
  2423. case 0x84 ... 0x85:
  2424. emulate_2op_SrcV("test", c->src, c->dst, ctxt->eflags);
  2425. break;
  2426. case 0x86 ... 0x87: /* xchg */
  2427. xchg:
  2428. /* Write back the register source. */
  2429. switch (c->dst.bytes) {
  2430. case 1:
  2431. *(u8 *) c->src.ptr = (u8) c->dst.val;
  2432. break;
  2433. case 2:
  2434. *(u16 *) c->src.ptr = (u16) c->dst.val;
  2435. break;
  2436. case 4:
  2437. *c->src.ptr = (u32) c->dst.val;
  2438. break; /* 64b reg: zero-extend */
  2439. case 8:
  2440. *c->src.ptr = c->dst.val;
  2441. break;
  2442. }
  2443. /*
  2444. * Write back the memory destination with implicit LOCK
  2445. * prefix.
  2446. */
  2447. c->dst.val = c->src.val;
  2448. c->lock_prefix = 1;
  2449. break;
  2450. case 0x88 ... 0x8b: /* mov */
  2451. goto mov;
  2452. case 0x8c: { /* mov r/m, sreg */
  2453. struct kvm_segment segreg;
  2454. if (c->modrm_reg <= VCPU_SREG_GS)
  2455. kvm_get_segment(ctxt->vcpu, &segreg, c->modrm_reg);
  2456. else {
  2457. kvm_queue_exception(ctxt->vcpu, UD_VECTOR);
  2458. goto done;
  2459. }
  2460. c->dst.val = segreg.selector;
  2461. break;
  2462. }
  2463. case 0x8d: /* lea r16/r32, m */
  2464. c->dst.val = c->modrm_ea;
  2465. break;
  2466. case 0x8e: { /* mov seg, r/m16 */
  2467. uint16_t sel;
  2468. sel = c->src.val;
  2469. if (c->modrm_reg == VCPU_SREG_CS ||
  2470. c->modrm_reg > VCPU_SREG_GS) {
  2471. kvm_queue_exception(ctxt->vcpu, UD_VECTOR);
  2472. goto done;
  2473. }
  2474. if (c->modrm_reg == VCPU_SREG_SS)
  2475. toggle_interruptibility(ctxt, KVM_X86_SHADOW_INT_MOV_SS);
  2476. rc = load_segment_descriptor(ctxt, ops, sel, c->modrm_reg);
  2477. c->dst.type = OP_NONE; /* Disable writeback. */
  2478. break;
  2479. }
  2480. case 0x8f: /* pop (sole member of Grp1a) */
  2481. rc = emulate_grp1a(ctxt, ops);
  2482. if (rc != X86EMUL_CONTINUE)
  2483. goto done;
  2484. break;
  2485. case 0x90: /* nop / xchg r8,rax */
  2486. if (!(c->rex_prefix & 1)) { /* nop */
  2487. c->dst.type = OP_NONE;
  2488. break;
  2489. }
  2490. case 0x91 ... 0x97: /* xchg reg,rax */
  2491. c->src.type = c->dst.type = OP_REG;
  2492. c->src.bytes = c->dst.bytes = c->op_bytes;
  2493. c->src.ptr = (unsigned long *) &c->regs[VCPU_REGS_RAX];
  2494. c->src.val = *(c->src.ptr);
  2495. goto xchg;
  2496. case 0x9c: /* pushf */
  2497. c->src.val = (unsigned long) ctxt->eflags;
  2498. emulate_push(ctxt);
  2499. break;
  2500. case 0x9d: /* popf */
  2501. c->dst.type = OP_REG;
  2502. c->dst.ptr = (unsigned long *) &ctxt->eflags;
  2503. c->dst.bytes = c->op_bytes;
  2504. rc = emulate_popf(ctxt, ops, &c->dst.val, c->op_bytes);
  2505. if (rc != X86EMUL_CONTINUE)
  2506. goto done;
  2507. break;
  2508. case 0xa0 ... 0xa1: /* mov */
  2509. c->dst.ptr = (unsigned long *)&c->regs[VCPU_REGS_RAX];
  2510. c->dst.val = c->src.val;
  2511. break;
  2512. case 0xa2 ... 0xa3: /* mov */
  2513. c->dst.val = (unsigned long)c->regs[VCPU_REGS_RAX];
  2514. break;
  2515. case 0xa4 ... 0xa5: /* movs */
  2516. goto mov;
  2517. case 0xa6 ... 0xa7: /* cmps */
  2518. c->dst.type = OP_NONE; /* Disable writeback. */
  2519. DPRINTF("cmps: mem1=0x%p mem2=0x%p\n", c->src.ptr, c->dst.ptr);
  2520. goto cmp;
  2521. case 0xaa ... 0xab: /* stos */
  2522. c->dst.val = c->regs[VCPU_REGS_RAX];
  2523. break;
  2524. case 0xac ... 0xad: /* lods */
  2525. goto mov;
  2526. case 0xae ... 0xaf: /* scas */
  2527. DPRINTF("Urk! I don't handle SCAS.\n");
  2528. goto cannot_emulate;
  2529. case 0xb0 ... 0xbf: /* mov r, imm */
  2530. goto mov;
  2531. case 0xc0 ... 0xc1:
  2532. emulate_grp2(ctxt);
  2533. break;
  2534. case 0xc3: /* ret */
  2535. c->dst.type = OP_REG;
  2536. c->dst.ptr = &c->eip;
  2537. c->dst.bytes = c->op_bytes;
  2538. goto pop_instruction;
  2539. case 0xc6 ... 0xc7: /* mov (sole member of Grp11) */
  2540. mov:
  2541. c->dst.val = c->src.val;
  2542. break;
  2543. case 0xcb: /* ret far */
  2544. rc = emulate_ret_far(ctxt, ops);
  2545. if (rc != X86EMUL_CONTINUE)
  2546. goto done;
  2547. break;
  2548. case 0xd0 ... 0xd1: /* Grp2 */
  2549. c->src.val = 1;
  2550. emulate_grp2(ctxt);
  2551. break;
  2552. case 0xd2 ... 0xd3: /* Grp2 */
  2553. c->src.val = c->regs[VCPU_REGS_RCX];
  2554. emulate_grp2(ctxt);
  2555. break;
  2556. case 0xe4: /* inb */
  2557. case 0xe5: /* in */
  2558. goto do_io_in;
  2559. case 0xe6: /* outb */
  2560. case 0xe7: /* out */
  2561. goto do_io_out;
  2562. case 0xe8: /* call (near) */ {
  2563. long int rel = c->src.val;
  2564. c->src.val = (unsigned long) c->eip;
  2565. jmp_rel(c, rel);
  2566. emulate_push(ctxt);
  2567. break;
  2568. }
  2569. case 0xe9: /* jmp rel */
  2570. goto jmp;
  2571. case 0xea: /* jmp far */
  2572. jump_far:
  2573. if (load_segment_descriptor(ctxt, ops, c->src2.val,
  2574. VCPU_SREG_CS))
  2575. goto done;
  2576. c->eip = c->src.val;
  2577. break;
  2578. case 0xeb:
  2579. jmp: /* jmp rel short */
  2580. jmp_rel(c, c->src.val);
  2581. c->dst.type = OP_NONE; /* Disable writeback. */
  2582. break;
  2583. case 0xec: /* in al,dx */
  2584. case 0xed: /* in (e/r)ax,dx */
  2585. c->src.val = c->regs[VCPU_REGS_RDX];
  2586. do_io_in:
  2587. c->dst.bytes = min(c->dst.bytes, 4u);
  2588. if (!emulator_io_permited(ctxt, ops, c->src.val, c->dst.bytes)) {
  2589. kvm_inject_gp(ctxt->vcpu, 0);
  2590. goto done;
  2591. }
  2592. if (!ops->pio_in_emulated(c->dst.bytes, c->src.val,
  2593. &c->dst.val, 1, ctxt->vcpu))
  2594. goto done; /* IO is needed */
  2595. break;
  2596. case 0xee: /* out al,dx */
  2597. case 0xef: /* out (e/r)ax,dx */
  2598. c->src.val = c->regs[VCPU_REGS_RDX];
  2599. do_io_out:
  2600. c->dst.bytes = min(c->dst.bytes, 4u);
  2601. if (!emulator_io_permited(ctxt, ops, c->src.val, c->dst.bytes)) {
  2602. kvm_inject_gp(ctxt->vcpu, 0);
  2603. goto done;
  2604. }
  2605. ops->pio_out_emulated(c->dst.bytes, c->src.val, &c->dst.val, 1,
  2606. ctxt->vcpu);
  2607. c->dst.type = OP_NONE; /* Disable writeback. */
  2608. break;
  2609. case 0xf4: /* hlt */
  2610. ctxt->vcpu->arch.halt_request = 1;
  2611. break;
  2612. case 0xf5: /* cmc */
  2613. /* complement carry flag from eflags reg */
  2614. ctxt->eflags ^= EFLG_CF;
  2615. c->dst.type = OP_NONE; /* Disable writeback. */
  2616. break;
  2617. case 0xf6 ... 0xf7: /* Grp3 */
  2618. if (!emulate_grp3(ctxt, ops))
  2619. goto cannot_emulate;
  2620. break;
  2621. case 0xf8: /* clc */
  2622. ctxt->eflags &= ~EFLG_CF;
  2623. c->dst.type = OP_NONE; /* Disable writeback. */
  2624. break;
  2625. case 0xfa: /* cli */
  2626. if (emulator_bad_iopl(ctxt, ops))
  2627. kvm_inject_gp(ctxt->vcpu, 0);
  2628. else {
  2629. ctxt->eflags &= ~X86_EFLAGS_IF;
  2630. c->dst.type = OP_NONE; /* Disable writeback. */
  2631. }
  2632. break;
  2633. case 0xfb: /* sti */
  2634. if (emulator_bad_iopl(ctxt, ops))
  2635. kvm_inject_gp(ctxt->vcpu, 0);
  2636. else {
  2637. toggle_interruptibility(ctxt, KVM_X86_SHADOW_INT_STI);
  2638. ctxt->eflags |= X86_EFLAGS_IF;
  2639. c->dst.type = OP_NONE; /* Disable writeback. */
  2640. }
  2641. break;
  2642. case 0xfc: /* cld */
  2643. ctxt->eflags &= ~EFLG_DF;
  2644. c->dst.type = OP_NONE; /* Disable writeback. */
  2645. break;
  2646. case 0xfd: /* std */
  2647. ctxt->eflags |= EFLG_DF;
  2648. c->dst.type = OP_NONE; /* Disable writeback. */
  2649. break;
  2650. case 0xfe: /* Grp4 */
  2651. grp45:
  2652. rc = emulate_grp45(ctxt, ops);
  2653. if (rc != X86EMUL_CONTINUE)
  2654. goto done;
  2655. break;
  2656. case 0xff: /* Grp5 */
  2657. if (c->modrm_reg == 5)
  2658. goto jump_far;
  2659. goto grp45;
  2660. }
  2661. writeback:
  2662. rc = writeback(ctxt, ops);
  2663. if (rc != X86EMUL_CONTINUE)
  2664. goto done;
  2665. if ((c->d & SrcMask) == SrcSI)
  2666. string_addr_inc(ctxt, seg_override_base(ctxt, c), VCPU_REGS_RSI,
  2667. &c->src);
  2668. if ((c->d & DstMask) == DstDI)
  2669. string_addr_inc(ctxt, es_base(ctxt), VCPU_REGS_RDI, &c->dst);
  2670. if (c->rep_prefix && (c->d & String))
  2671. register_address_increment(c, &c->regs[VCPU_REGS_RCX], -1);
  2672. /* Commit shadow register state. */
  2673. memcpy(ctxt->vcpu->arch.regs, c->regs, sizeof c->regs);
  2674. kvm_rip_write(ctxt->vcpu, c->eip);
  2675. done:
  2676. if (rc == X86EMUL_UNHANDLEABLE) {
  2677. c->eip = saved_eip;
  2678. return -1;
  2679. }
  2680. return 0;
  2681. twobyte_insn:
  2682. switch (c->b) {
  2683. case 0x01: /* lgdt, lidt, lmsw */
  2684. switch (c->modrm_reg) {
  2685. u16 size;
  2686. unsigned long address;
  2687. case 0: /* vmcall */
  2688. if (c->modrm_mod != 3 || c->modrm_rm != 1)
  2689. goto cannot_emulate;
  2690. rc = kvm_fix_hypercall(ctxt->vcpu);
  2691. if (rc != X86EMUL_CONTINUE)
  2692. goto done;
  2693. /* Let the processor re-execute the fixed hypercall */
  2694. c->eip = ctxt->eip;
  2695. /* Disable writeback. */
  2696. c->dst.type = OP_NONE;
  2697. break;
  2698. case 2: /* lgdt */
  2699. rc = read_descriptor(ctxt, ops, c->src.ptr,
  2700. &size, &address, c->op_bytes);
  2701. if (rc != X86EMUL_CONTINUE)
  2702. goto done;
  2703. realmode_lgdt(ctxt->vcpu, size, address);
  2704. /* Disable writeback. */
  2705. c->dst.type = OP_NONE;
  2706. break;
  2707. case 3: /* lidt/vmmcall */
  2708. if (c->modrm_mod == 3) {
  2709. switch (c->modrm_rm) {
  2710. case 1:
  2711. rc = kvm_fix_hypercall(ctxt->vcpu);
  2712. if (rc != X86EMUL_CONTINUE)
  2713. goto done;
  2714. break;
  2715. default:
  2716. goto cannot_emulate;
  2717. }
  2718. } else {
  2719. rc = read_descriptor(ctxt, ops, c->src.ptr,
  2720. &size, &address,
  2721. c->op_bytes);
  2722. if (rc != X86EMUL_CONTINUE)
  2723. goto done;
  2724. realmode_lidt(ctxt->vcpu, size, address);
  2725. }
  2726. /* Disable writeback. */
  2727. c->dst.type = OP_NONE;
  2728. break;
  2729. case 4: /* smsw */
  2730. c->dst.bytes = 2;
  2731. c->dst.val = ops->get_cr(0, ctxt->vcpu);
  2732. break;
  2733. case 6: /* lmsw */
  2734. ops->set_cr(0, (ops->get_cr(0, ctxt->vcpu) & ~0x0ful) |
  2735. (c->src.val & 0x0f), ctxt->vcpu);
  2736. c->dst.type = OP_NONE;
  2737. break;
  2738. case 5: /* not defined */
  2739. kvm_queue_exception(ctxt->vcpu, UD_VECTOR);
  2740. goto done;
  2741. case 7: /* invlpg*/
  2742. emulate_invlpg(ctxt->vcpu, c->modrm_ea);
  2743. /* Disable writeback. */
  2744. c->dst.type = OP_NONE;
  2745. break;
  2746. default:
  2747. goto cannot_emulate;
  2748. }
  2749. break;
  2750. case 0x05: /* syscall */
  2751. rc = emulate_syscall(ctxt);
  2752. if (rc != X86EMUL_CONTINUE)
  2753. goto done;
  2754. else
  2755. goto writeback;
  2756. break;
  2757. case 0x06:
  2758. emulate_clts(ctxt->vcpu);
  2759. c->dst.type = OP_NONE;
  2760. break;
  2761. case 0x08: /* invd */
  2762. case 0x09: /* wbinvd */
  2763. case 0x0d: /* GrpP (prefetch) */
  2764. case 0x18: /* Grp16 (prefetch/nop) */
  2765. c->dst.type = OP_NONE;
  2766. break;
  2767. case 0x20: /* mov cr, reg */
  2768. switch (c->modrm_reg) {
  2769. case 1:
  2770. case 5 ... 7:
  2771. case 9 ... 15:
  2772. kvm_queue_exception(ctxt->vcpu, UD_VECTOR);
  2773. goto done;
  2774. }
  2775. c->regs[c->modrm_rm] = ops->get_cr(c->modrm_reg, ctxt->vcpu);
  2776. c->dst.type = OP_NONE; /* no writeback */
  2777. break;
  2778. case 0x21: /* mov from dr to reg */
  2779. if ((ops->get_cr(4, ctxt->vcpu) & X86_CR4_DE) &&
  2780. (c->modrm_reg == 4 || c->modrm_reg == 5)) {
  2781. kvm_queue_exception(ctxt->vcpu, UD_VECTOR);
  2782. goto done;
  2783. }
  2784. emulator_get_dr(ctxt, c->modrm_reg, &c->regs[c->modrm_rm]);
  2785. c->dst.type = OP_NONE; /* no writeback */
  2786. break;
  2787. case 0x22: /* mov reg, cr */
  2788. ops->set_cr(c->modrm_reg, c->modrm_val, ctxt->vcpu);
  2789. c->dst.type = OP_NONE;
  2790. break;
  2791. case 0x23: /* mov from reg to dr */
  2792. if ((ops->get_cr(4, ctxt->vcpu) & X86_CR4_DE) &&
  2793. (c->modrm_reg == 4 || c->modrm_reg == 5)) {
  2794. kvm_queue_exception(ctxt->vcpu, UD_VECTOR);
  2795. goto done;
  2796. }
  2797. emulator_set_dr(ctxt, c->modrm_reg, c->regs[c->modrm_rm]);
  2798. c->dst.type = OP_NONE; /* no writeback */
  2799. break;
  2800. case 0x30:
  2801. /* wrmsr */
  2802. msr_data = (u32)c->regs[VCPU_REGS_RAX]
  2803. | ((u64)c->regs[VCPU_REGS_RDX] << 32);
  2804. if (kvm_set_msr(ctxt->vcpu, c->regs[VCPU_REGS_RCX], msr_data)) {
  2805. kvm_inject_gp(ctxt->vcpu, 0);
  2806. goto done;
  2807. }
  2808. rc = X86EMUL_CONTINUE;
  2809. c->dst.type = OP_NONE;
  2810. break;
  2811. case 0x32:
  2812. /* rdmsr */
  2813. if (kvm_get_msr(ctxt->vcpu, c->regs[VCPU_REGS_RCX], &msr_data)) {
  2814. kvm_inject_gp(ctxt->vcpu, 0);
  2815. goto done;
  2816. } else {
  2817. c->regs[VCPU_REGS_RAX] = (u32)msr_data;
  2818. c->regs[VCPU_REGS_RDX] = msr_data >> 32;
  2819. }
  2820. rc = X86EMUL_CONTINUE;
  2821. c->dst.type = OP_NONE;
  2822. break;
  2823. case 0x34: /* sysenter */
  2824. rc = emulate_sysenter(ctxt);
  2825. if (rc != X86EMUL_CONTINUE)
  2826. goto done;
  2827. else
  2828. goto writeback;
  2829. break;
  2830. case 0x35: /* sysexit */
  2831. rc = emulate_sysexit(ctxt);
  2832. if (rc != X86EMUL_CONTINUE)
  2833. goto done;
  2834. else
  2835. goto writeback;
  2836. break;
  2837. case 0x40 ... 0x4f: /* cmov */
  2838. c->dst.val = c->dst.orig_val = c->src.val;
  2839. if (!test_cc(c->b, ctxt->eflags))
  2840. c->dst.type = OP_NONE; /* no writeback */
  2841. break;
  2842. case 0x80 ... 0x8f: /* jnz rel, etc*/
  2843. if (test_cc(c->b, ctxt->eflags))
  2844. jmp_rel(c, c->src.val);
  2845. c->dst.type = OP_NONE;
  2846. break;
  2847. case 0xa0: /* push fs */
  2848. emulate_push_sreg(ctxt, VCPU_SREG_FS);
  2849. break;
  2850. case 0xa1: /* pop fs */
  2851. rc = emulate_pop_sreg(ctxt, ops, VCPU_SREG_FS);
  2852. if (rc != X86EMUL_CONTINUE)
  2853. goto done;
  2854. break;
  2855. case 0xa3:
  2856. bt: /* bt */
  2857. c->dst.type = OP_NONE;
  2858. /* only subword offset */
  2859. c->src.val &= (c->dst.bytes << 3) - 1;
  2860. emulate_2op_SrcV_nobyte("bt", c->src, c->dst, ctxt->eflags);
  2861. break;
  2862. case 0xa4: /* shld imm8, r, r/m */
  2863. case 0xa5: /* shld cl, r, r/m */
  2864. emulate_2op_cl("shld", c->src2, c->src, c->dst, ctxt->eflags);
  2865. break;
  2866. case 0xa8: /* push gs */
  2867. emulate_push_sreg(ctxt, VCPU_SREG_GS);
  2868. break;
  2869. case 0xa9: /* pop gs */
  2870. rc = emulate_pop_sreg(ctxt, ops, VCPU_SREG_GS);
  2871. if (rc != X86EMUL_CONTINUE)
  2872. goto done;
  2873. break;
  2874. case 0xab:
  2875. bts: /* bts */
  2876. /* only subword offset */
  2877. c->src.val &= (c->dst.bytes << 3) - 1;
  2878. emulate_2op_SrcV_nobyte("bts", c->src, c->dst, ctxt->eflags);
  2879. break;
  2880. case 0xac: /* shrd imm8, r, r/m */
  2881. case 0xad: /* shrd cl, r, r/m */
  2882. emulate_2op_cl("shrd", c->src2, c->src, c->dst, ctxt->eflags);
  2883. break;
  2884. case 0xae: /* clflush */
  2885. break;
  2886. case 0xb0 ... 0xb1: /* cmpxchg */
  2887. /*
  2888. * Save real source value, then compare EAX against
  2889. * destination.
  2890. */
  2891. c->src.orig_val = c->src.val;
  2892. c->src.val = c->regs[VCPU_REGS_RAX];
  2893. emulate_2op_SrcV("cmp", c->src, c->dst, ctxt->eflags);
  2894. if (ctxt->eflags & EFLG_ZF) {
  2895. /* Success: write back to memory. */
  2896. c->dst.val = c->src.orig_val;
  2897. } else {
  2898. /* Failure: write the value we saw to EAX. */
  2899. c->dst.type = OP_REG;
  2900. c->dst.ptr = (unsigned long *)&c->regs[VCPU_REGS_RAX];
  2901. }
  2902. break;
  2903. case 0xb3:
  2904. btr: /* btr */
  2905. /* only subword offset */
  2906. c->src.val &= (c->dst.bytes << 3) - 1;
  2907. emulate_2op_SrcV_nobyte("btr", c->src, c->dst, ctxt->eflags);
  2908. break;
  2909. case 0xb6 ... 0xb7: /* movzx */
  2910. c->dst.bytes = c->op_bytes;
  2911. c->dst.val = (c->d & ByteOp) ? (u8) c->src.val
  2912. : (u16) c->src.val;
  2913. break;
  2914. case 0xba: /* Grp8 */
  2915. switch (c->modrm_reg & 3) {
  2916. case 0:
  2917. goto bt;
  2918. case 1:
  2919. goto bts;
  2920. case 2:
  2921. goto btr;
  2922. case 3:
  2923. goto btc;
  2924. }
  2925. break;
  2926. case 0xbb:
  2927. btc: /* btc */
  2928. /* only subword offset */
  2929. c->src.val &= (c->dst.bytes << 3) - 1;
  2930. emulate_2op_SrcV_nobyte("btc", c->src, c->dst, ctxt->eflags);
  2931. break;
  2932. case 0xbe ... 0xbf: /* movsx */
  2933. c->dst.bytes = c->op_bytes;
  2934. c->dst.val = (c->d & ByteOp) ? (s8) c->src.val :
  2935. (s16) c->src.val;
  2936. break;
  2937. case 0xc3: /* movnti */
  2938. c->dst.bytes = c->op_bytes;
  2939. c->dst.val = (c->op_bytes == 4) ? (u32) c->src.val :
  2940. (u64) c->src.val;
  2941. break;
  2942. case 0xc7: /* Grp9 (cmpxchg8b) */
  2943. rc = emulate_grp9(ctxt, ops);
  2944. if (rc != X86EMUL_CONTINUE)
  2945. goto done;
  2946. c->dst.type = OP_NONE;
  2947. break;
  2948. }
  2949. goto writeback;
  2950. cannot_emulate:
  2951. DPRINTF("Cannot emulate %02x\n", c->b);
  2952. c->eip = saved_eip;
  2953. return -1;
  2954. }