sched.c 265 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466104671046810469104701047110472104731047410475104761047710478104791048010481104821048310484104851048610487104881048910490104911049210493104941049510496104971049810499105001050110502105031050410505105061050710508105091051010511105121051310514105151051610517105181051910520105211052210523105241052510526105271052810529105301053110532105331053410535105361053710538105391054010541105421054310544105451054610547105481054910550105511055210553105541055510556105571055810559105601056110562105631056410565105661056710568105691057010571105721057310574105751057610577105781057910580105811058210583105841058510586105871058810589105901059110592105931059410595105961059710598105991060010601106021060310604106051060610607106081060910610106111061210613106141061510616106171061810619106201062110622106231062410625106261062710628106291063010631106321063310634106351063610637106381063910640106411064210643106441064510646106471064810649106501065110652106531065410655106561065710658106591066010661106621066310664106651066610667106681066910670106711067210673106741067510676106771067810679106801068110682106831068410685106861068710688106891069010691106921069310694106951069610697106981069910700107011070210703107041070510706107071070810709107101071110712107131071410715107161071710718107191072010721107221072310724107251072610727107281072910730107311073210733107341073510736107371073810739107401074110742107431074410745107461074710748107491075010751107521075310754107551075610757107581075910760107611076210763107641076510766107671076810769107701077110772107731077410775107761077710778107791078010781107821078310784107851078610787107881078910790107911079210793107941079510796107971079810799108001080110802108031080410805108061080710808108091081010811108121081310814108151081610817108181081910820108211082210823108241082510826108271082810829108301083110832
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <linux/smp_lock.h>
  35. #include <asm/mmu_context.h>
  36. #include <linux/interrupt.h>
  37. #include <linux/capability.h>
  38. #include <linux/completion.h>
  39. #include <linux/kernel_stat.h>
  40. #include <linux/debug_locks.h>
  41. #include <linux/perf_counter.h>
  42. #include <linux/security.h>
  43. #include <linux/notifier.h>
  44. #include <linux/profile.h>
  45. #include <linux/freezer.h>
  46. #include <linux/vmalloc.h>
  47. #include <linux/blkdev.h>
  48. #include <linux/delay.h>
  49. #include <linux/pid_namespace.h>
  50. #include <linux/smp.h>
  51. #include <linux/threads.h>
  52. #include <linux/timer.h>
  53. #include <linux/rcupdate.h>
  54. #include <linux/cpu.h>
  55. #include <linux/cpuset.h>
  56. #include <linux/percpu.h>
  57. #include <linux/kthread.h>
  58. #include <linux/proc_fs.h>
  59. #include <linux/seq_file.h>
  60. #include <linux/sysctl.h>
  61. #include <linux/syscalls.h>
  62. #include <linux/times.h>
  63. #include <linux/tsacct_kern.h>
  64. #include <linux/kprobes.h>
  65. #include <linux/delayacct.h>
  66. #include <linux/unistd.h>
  67. #include <linux/pagemap.h>
  68. #include <linux/hrtimer.h>
  69. #include <linux/tick.h>
  70. #include <linux/debugfs.h>
  71. #include <linux/ctype.h>
  72. #include <linux/ftrace.h>
  73. #include <asm/tlb.h>
  74. #include <asm/irq_regs.h>
  75. #include "sched_cpupri.h"
  76. #define CREATE_TRACE_POINTS
  77. #include <trace/events/sched.h>
  78. /*
  79. * Convert user-nice values [ -20 ... 0 ... 19 ]
  80. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  81. * and back.
  82. */
  83. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  84. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  85. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  86. /*
  87. * 'User priority' is the nice value converted to something we
  88. * can work with better when scaling various scheduler parameters,
  89. * it's a [ 0 ... 39 ] range.
  90. */
  91. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  92. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  93. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  94. /*
  95. * Helpers for converting nanosecond timing to jiffy resolution
  96. */
  97. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  98. #define NICE_0_LOAD SCHED_LOAD_SCALE
  99. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  100. /*
  101. * These are the 'tuning knobs' of the scheduler:
  102. *
  103. * default timeslice is 100 msecs (used only for SCHED_RR tasks).
  104. * Timeslices get refilled after they expire.
  105. */
  106. #define DEF_TIMESLICE (100 * HZ / 1000)
  107. /*
  108. * single value that denotes runtime == period, ie unlimited time.
  109. */
  110. #define RUNTIME_INF ((u64)~0ULL)
  111. static inline int rt_policy(int policy)
  112. {
  113. if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
  114. return 1;
  115. return 0;
  116. }
  117. static inline int task_has_rt_policy(struct task_struct *p)
  118. {
  119. return rt_policy(p->policy);
  120. }
  121. /*
  122. * This is the priority-queue data structure of the RT scheduling class:
  123. */
  124. struct rt_prio_array {
  125. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  126. struct list_head queue[MAX_RT_PRIO];
  127. };
  128. struct rt_bandwidth {
  129. /* nests inside the rq lock: */
  130. spinlock_t rt_runtime_lock;
  131. ktime_t rt_period;
  132. u64 rt_runtime;
  133. struct hrtimer rt_period_timer;
  134. };
  135. static struct rt_bandwidth def_rt_bandwidth;
  136. static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
  137. static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
  138. {
  139. struct rt_bandwidth *rt_b =
  140. container_of(timer, struct rt_bandwidth, rt_period_timer);
  141. ktime_t now;
  142. int overrun;
  143. int idle = 0;
  144. for (;;) {
  145. now = hrtimer_cb_get_time(timer);
  146. overrun = hrtimer_forward(timer, now, rt_b->rt_period);
  147. if (!overrun)
  148. break;
  149. idle = do_sched_rt_period_timer(rt_b, overrun);
  150. }
  151. return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  152. }
  153. static
  154. void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
  155. {
  156. rt_b->rt_period = ns_to_ktime(period);
  157. rt_b->rt_runtime = runtime;
  158. spin_lock_init(&rt_b->rt_runtime_lock);
  159. hrtimer_init(&rt_b->rt_period_timer,
  160. CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  161. rt_b->rt_period_timer.function = sched_rt_period_timer;
  162. }
  163. static inline int rt_bandwidth_enabled(void)
  164. {
  165. return sysctl_sched_rt_runtime >= 0;
  166. }
  167. static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
  168. {
  169. ktime_t now;
  170. if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
  171. return;
  172. if (hrtimer_active(&rt_b->rt_period_timer))
  173. return;
  174. spin_lock(&rt_b->rt_runtime_lock);
  175. for (;;) {
  176. unsigned long delta;
  177. ktime_t soft, hard;
  178. if (hrtimer_active(&rt_b->rt_period_timer))
  179. break;
  180. now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
  181. hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
  182. soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
  183. hard = hrtimer_get_expires(&rt_b->rt_period_timer);
  184. delta = ktime_to_ns(ktime_sub(hard, soft));
  185. __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
  186. HRTIMER_MODE_ABS_PINNED, 0);
  187. }
  188. spin_unlock(&rt_b->rt_runtime_lock);
  189. }
  190. #ifdef CONFIG_RT_GROUP_SCHED
  191. static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
  192. {
  193. hrtimer_cancel(&rt_b->rt_period_timer);
  194. }
  195. #endif
  196. /*
  197. * sched_domains_mutex serializes calls to arch_init_sched_domains,
  198. * detach_destroy_domains and partition_sched_domains.
  199. */
  200. static DEFINE_MUTEX(sched_domains_mutex);
  201. #ifdef CONFIG_GROUP_SCHED
  202. #include <linux/cgroup.h>
  203. struct cfs_rq;
  204. static LIST_HEAD(task_groups);
  205. /* task group related information */
  206. struct task_group {
  207. #ifdef CONFIG_CGROUP_SCHED
  208. struct cgroup_subsys_state css;
  209. #endif
  210. #ifdef CONFIG_USER_SCHED
  211. uid_t uid;
  212. #endif
  213. #ifdef CONFIG_FAIR_GROUP_SCHED
  214. /* schedulable entities of this group on each cpu */
  215. struct sched_entity **se;
  216. /* runqueue "owned" by this group on each cpu */
  217. struct cfs_rq **cfs_rq;
  218. unsigned long shares;
  219. #endif
  220. #ifdef CONFIG_RT_GROUP_SCHED
  221. struct sched_rt_entity **rt_se;
  222. struct rt_rq **rt_rq;
  223. struct rt_bandwidth rt_bandwidth;
  224. #endif
  225. struct rcu_head rcu;
  226. struct list_head list;
  227. struct task_group *parent;
  228. struct list_head siblings;
  229. struct list_head children;
  230. };
  231. #ifdef CONFIG_USER_SCHED
  232. /* Helper function to pass uid information to create_sched_user() */
  233. void set_tg_uid(struct user_struct *user)
  234. {
  235. user->tg->uid = user->uid;
  236. }
  237. /*
  238. * Root task group.
  239. * Every UID task group (including init_task_group aka UID-0) will
  240. * be a child to this group.
  241. */
  242. struct task_group root_task_group;
  243. #ifdef CONFIG_FAIR_GROUP_SCHED
  244. /* Default task group's sched entity on each cpu */
  245. static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
  246. /* Default task group's cfs_rq on each cpu */
  247. static DEFINE_PER_CPU_SHARED_ALIGNED(struct cfs_rq, init_tg_cfs_rq);
  248. #endif /* CONFIG_FAIR_GROUP_SCHED */
  249. #ifdef CONFIG_RT_GROUP_SCHED
  250. static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
  251. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rt_rq, init_rt_rq);
  252. #endif /* CONFIG_RT_GROUP_SCHED */
  253. #else /* !CONFIG_USER_SCHED */
  254. #define root_task_group init_task_group
  255. #endif /* CONFIG_USER_SCHED */
  256. /* task_group_lock serializes add/remove of task groups and also changes to
  257. * a task group's cpu shares.
  258. */
  259. static DEFINE_SPINLOCK(task_group_lock);
  260. #ifdef CONFIG_SMP
  261. static int root_task_group_empty(void)
  262. {
  263. return list_empty(&root_task_group.children);
  264. }
  265. #endif
  266. #ifdef CONFIG_FAIR_GROUP_SCHED
  267. #ifdef CONFIG_USER_SCHED
  268. # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
  269. #else /* !CONFIG_USER_SCHED */
  270. # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
  271. #endif /* CONFIG_USER_SCHED */
  272. /*
  273. * A weight of 0 or 1 can cause arithmetics problems.
  274. * A weight of a cfs_rq is the sum of weights of which entities
  275. * are queued on this cfs_rq, so a weight of a entity should not be
  276. * too large, so as the shares value of a task group.
  277. * (The default weight is 1024 - so there's no practical
  278. * limitation from this.)
  279. */
  280. #define MIN_SHARES 2
  281. #define MAX_SHARES (1UL << 18)
  282. static int init_task_group_load = INIT_TASK_GROUP_LOAD;
  283. #endif
  284. /* Default task group.
  285. * Every task in system belong to this group at bootup.
  286. */
  287. struct task_group init_task_group;
  288. /* return group to which a task belongs */
  289. static inline struct task_group *task_group(struct task_struct *p)
  290. {
  291. struct task_group *tg;
  292. #ifdef CONFIG_USER_SCHED
  293. rcu_read_lock();
  294. tg = __task_cred(p)->user->tg;
  295. rcu_read_unlock();
  296. #elif defined(CONFIG_CGROUP_SCHED)
  297. tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
  298. struct task_group, css);
  299. #else
  300. tg = &init_task_group;
  301. #endif
  302. return tg;
  303. }
  304. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  305. static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
  306. {
  307. #ifdef CONFIG_FAIR_GROUP_SCHED
  308. p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
  309. p->se.parent = task_group(p)->se[cpu];
  310. #endif
  311. #ifdef CONFIG_RT_GROUP_SCHED
  312. p->rt.rt_rq = task_group(p)->rt_rq[cpu];
  313. p->rt.parent = task_group(p)->rt_se[cpu];
  314. #endif
  315. }
  316. #else
  317. static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
  318. static inline struct task_group *task_group(struct task_struct *p)
  319. {
  320. return NULL;
  321. }
  322. #endif /* CONFIG_GROUP_SCHED */
  323. /* CFS-related fields in a runqueue */
  324. struct cfs_rq {
  325. struct load_weight load;
  326. unsigned long nr_running;
  327. u64 exec_clock;
  328. u64 min_vruntime;
  329. struct rb_root tasks_timeline;
  330. struct rb_node *rb_leftmost;
  331. struct list_head tasks;
  332. struct list_head *balance_iterator;
  333. /*
  334. * 'curr' points to currently running entity on this cfs_rq.
  335. * It is set to NULL otherwise (i.e when none are currently running).
  336. */
  337. struct sched_entity *curr, *next, *last;
  338. unsigned int nr_spread_over;
  339. #ifdef CONFIG_FAIR_GROUP_SCHED
  340. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  341. /*
  342. * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  343. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  344. * (like users, containers etc.)
  345. *
  346. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  347. * list is used during load balance.
  348. */
  349. struct list_head leaf_cfs_rq_list;
  350. struct task_group *tg; /* group that "owns" this runqueue */
  351. #ifdef CONFIG_SMP
  352. /*
  353. * the part of load.weight contributed by tasks
  354. */
  355. unsigned long task_weight;
  356. /*
  357. * h_load = weight * f(tg)
  358. *
  359. * Where f(tg) is the recursive weight fraction assigned to
  360. * this group.
  361. */
  362. unsigned long h_load;
  363. /*
  364. * this cpu's part of tg->shares
  365. */
  366. unsigned long shares;
  367. /*
  368. * load.weight at the time we set shares
  369. */
  370. unsigned long rq_weight;
  371. #endif
  372. #endif
  373. };
  374. /* Real-Time classes' related field in a runqueue: */
  375. struct rt_rq {
  376. struct rt_prio_array active;
  377. unsigned long rt_nr_running;
  378. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  379. struct {
  380. int curr; /* highest queued rt task prio */
  381. #ifdef CONFIG_SMP
  382. int next; /* next highest */
  383. #endif
  384. } highest_prio;
  385. #endif
  386. #ifdef CONFIG_SMP
  387. unsigned long rt_nr_migratory;
  388. unsigned long rt_nr_total;
  389. int overloaded;
  390. struct plist_head pushable_tasks;
  391. #endif
  392. int rt_throttled;
  393. u64 rt_time;
  394. u64 rt_runtime;
  395. /* Nests inside the rq lock: */
  396. spinlock_t rt_runtime_lock;
  397. #ifdef CONFIG_RT_GROUP_SCHED
  398. unsigned long rt_nr_boosted;
  399. struct rq *rq;
  400. struct list_head leaf_rt_rq_list;
  401. struct task_group *tg;
  402. struct sched_rt_entity *rt_se;
  403. #endif
  404. };
  405. #ifdef CONFIG_SMP
  406. /*
  407. * We add the notion of a root-domain which will be used to define per-domain
  408. * variables. Each exclusive cpuset essentially defines an island domain by
  409. * fully partitioning the member cpus from any other cpuset. Whenever a new
  410. * exclusive cpuset is created, we also create and attach a new root-domain
  411. * object.
  412. *
  413. */
  414. struct root_domain {
  415. atomic_t refcount;
  416. cpumask_var_t span;
  417. cpumask_var_t online;
  418. /*
  419. * The "RT overload" flag: it gets set if a CPU has more than
  420. * one runnable RT task.
  421. */
  422. cpumask_var_t rto_mask;
  423. atomic_t rto_count;
  424. #ifdef CONFIG_SMP
  425. struct cpupri cpupri;
  426. #endif
  427. };
  428. /*
  429. * By default the system creates a single root-domain with all cpus as
  430. * members (mimicking the global state we have today).
  431. */
  432. static struct root_domain def_root_domain;
  433. #endif
  434. /*
  435. * This is the main, per-CPU runqueue data structure.
  436. *
  437. * Locking rule: those places that want to lock multiple runqueues
  438. * (such as the load balancing or the thread migration code), lock
  439. * acquire operations must be ordered by ascending &runqueue.
  440. */
  441. struct rq {
  442. /* runqueue lock: */
  443. spinlock_t lock;
  444. /*
  445. * nr_running and cpu_load should be in the same cacheline because
  446. * remote CPUs use both these fields when doing load calculation.
  447. */
  448. unsigned long nr_running;
  449. #define CPU_LOAD_IDX_MAX 5
  450. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  451. #ifdef CONFIG_NO_HZ
  452. unsigned long last_tick_seen;
  453. unsigned char in_nohz_recently;
  454. #endif
  455. /* capture load from *all* tasks on this cpu: */
  456. struct load_weight load;
  457. unsigned long nr_load_updates;
  458. u64 nr_switches;
  459. u64 nr_migrations_in;
  460. struct cfs_rq cfs;
  461. struct rt_rq rt;
  462. #ifdef CONFIG_FAIR_GROUP_SCHED
  463. /* list of leaf cfs_rq on this cpu: */
  464. struct list_head leaf_cfs_rq_list;
  465. #endif
  466. #ifdef CONFIG_RT_GROUP_SCHED
  467. struct list_head leaf_rt_rq_list;
  468. #endif
  469. /*
  470. * This is part of a global counter where only the total sum
  471. * over all CPUs matters. A task can increase this counter on
  472. * one CPU and if it got migrated afterwards it may decrease
  473. * it on another CPU. Always updated under the runqueue lock:
  474. */
  475. unsigned long nr_uninterruptible;
  476. struct task_struct *curr, *idle;
  477. unsigned long next_balance;
  478. struct mm_struct *prev_mm;
  479. u64 clock;
  480. atomic_t nr_iowait;
  481. #ifdef CONFIG_SMP
  482. struct root_domain *rd;
  483. struct sched_domain *sd;
  484. unsigned char idle_at_tick;
  485. /* For active balancing */
  486. int post_schedule;
  487. int active_balance;
  488. int push_cpu;
  489. /* cpu of this runqueue: */
  490. int cpu;
  491. int online;
  492. unsigned long avg_load_per_task;
  493. struct task_struct *migration_thread;
  494. struct list_head migration_queue;
  495. u64 rt_avg;
  496. u64 age_stamp;
  497. #endif
  498. /* calc_load related fields */
  499. unsigned long calc_load_update;
  500. long calc_load_active;
  501. #ifdef CONFIG_SCHED_HRTICK
  502. #ifdef CONFIG_SMP
  503. int hrtick_csd_pending;
  504. struct call_single_data hrtick_csd;
  505. #endif
  506. struct hrtimer hrtick_timer;
  507. #endif
  508. #ifdef CONFIG_SCHEDSTATS
  509. /* latency stats */
  510. struct sched_info rq_sched_info;
  511. unsigned long long rq_cpu_time;
  512. /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
  513. /* sys_sched_yield() stats */
  514. unsigned int yld_count;
  515. /* schedule() stats */
  516. unsigned int sched_switch;
  517. unsigned int sched_count;
  518. unsigned int sched_goidle;
  519. /* try_to_wake_up() stats */
  520. unsigned int ttwu_count;
  521. unsigned int ttwu_local;
  522. /* BKL stats */
  523. unsigned int bkl_count;
  524. #endif
  525. };
  526. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  527. static inline
  528. void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
  529. {
  530. rq->curr->sched_class->check_preempt_curr(rq, p, flags);
  531. }
  532. static inline int cpu_of(struct rq *rq)
  533. {
  534. #ifdef CONFIG_SMP
  535. return rq->cpu;
  536. #else
  537. return 0;
  538. #endif
  539. }
  540. /*
  541. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  542. * See detach_destroy_domains: synchronize_sched for details.
  543. *
  544. * The domain tree of any CPU may only be accessed from within
  545. * preempt-disabled sections.
  546. */
  547. #define for_each_domain(cpu, __sd) \
  548. for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  549. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  550. #define this_rq() (&__get_cpu_var(runqueues))
  551. #define task_rq(p) cpu_rq(task_cpu(p))
  552. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  553. #define raw_rq() (&__raw_get_cpu_var(runqueues))
  554. inline void update_rq_clock(struct rq *rq)
  555. {
  556. rq->clock = sched_clock_cpu(cpu_of(rq));
  557. }
  558. /*
  559. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  560. */
  561. #ifdef CONFIG_SCHED_DEBUG
  562. # define const_debug __read_mostly
  563. #else
  564. # define const_debug static const
  565. #endif
  566. /**
  567. * runqueue_is_locked
  568. *
  569. * Returns true if the current cpu runqueue is locked.
  570. * This interface allows printk to be called with the runqueue lock
  571. * held and know whether or not it is OK to wake up the klogd.
  572. */
  573. int runqueue_is_locked(int cpu)
  574. {
  575. return spin_is_locked(&cpu_rq(cpu)->lock);
  576. }
  577. /*
  578. * Debugging: various feature bits
  579. */
  580. #define SCHED_FEAT(name, enabled) \
  581. __SCHED_FEAT_##name ,
  582. enum {
  583. #include "sched_features.h"
  584. };
  585. #undef SCHED_FEAT
  586. #define SCHED_FEAT(name, enabled) \
  587. (1UL << __SCHED_FEAT_##name) * enabled |
  588. const_debug unsigned int sysctl_sched_features =
  589. #include "sched_features.h"
  590. 0;
  591. #undef SCHED_FEAT
  592. #ifdef CONFIG_SCHED_DEBUG
  593. #define SCHED_FEAT(name, enabled) \
  594. #name ,
  595. static __read_mostly char *sched_feat_names[] = {
  596. #include "sched_features.h"
  597. NULL
  598. };
  599. #undef SCHED_FEAT
  600. static int sched_feat_show(struct seq_file *m, void *v)
  601. {
  602. int i;
  603. for (i = 0; sched_feat_names[i]; i++) {
  604. if (!(sysctl_sched_features & (1UL << i)))
  605. seq_puts(m, "NO_");
  606. seq_printf(m, "%s ", sched_feat_names[i]);
  607. }
  608. seq_puts(m, "\n");
  609. return 0;
  610. }
  611. static ssize_t
  612. sched_feat_write(struct file *filp, const char __user *ubuf,
  613. size_t cnt, loff_t *ppos)
  614. {
  615. char buf[64];
  616. char *cmp = buf;
  617. int neg = 0;
  618. int i;
  619. if (cnt > 63)
  620. cnt = 63;
  621. if (copy_from_user(&buf, ubuf, cnt))
  622. return -EFAULT;
  623. buf[cnt] = 0;
  624. if (strncmp(buf, "NO_", 3) == 0) {
  625. neg = 1;
  626. cmp += 3;
  627. }
  628. for (i = 0; sched_feat_names[i]; i++) {
  629. int len = strlen(sched_feat_names[i]);
  630. if (strncmp(cmp, sched_feat_names[i], len) == 0) {
  631. if (neg)
  632. sysctl_sched_features &= ~(1UL << i);
  633. else
  634. sysctl_sched_features |= (1UL << i);
  635. break;
  636. }
  637. }
  638. if (!sched_feat_names[i])
  639. return -EINVAL;
  640. filp->f_pos += cnt;
  641. return cnt;
  642. }
  643. static int sched_feat_open(struct inode *inode, struct file *filp)
  644. {
  645. return single_open(filp, sched_feat_show, NULL);
  646. }
  647. static struct file_operations sched_feat_fops = {
  648. .open = sched_feat_open,
  649. .write = sched_feat_write,
  650. .read = seq_read,
  651. .llseek = seq_lseek,
  652. .release = single_release,
  653. };
  654. static __init int sched_init_debug(void)
  655. {
  656. debugfs_create_file("sched_features", 0644, NULL, NULL,
  657. &sched_feat_fops);
  658. return 0;
  659. }
  660. late_initcall(sched_init_debug);
  661. #endif
  662. #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
  663. /*
  664. * Number of tasks to iterate in a single balance run.
  665. * Limited because this is done with IRQs disabled.
  666. */
  667. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  668. /*
  669. * ratelimit for updating the group shares.
  670. * default: 0.25ms
  671. */
  672. unsigned int sysctl_sched_shares_ratelimit = 250000;
  673. /*
  674. * Inject some fuzzyness into changing the per-cpu group shares
  675. * this avoids remote rq-locks at the expense of fairness.
  676. * default: 4
  677. */
  678. unsigned int sysctl_sched_shares_thresh = 4;
  679. /*
  680. * period over which we average the RT time consumption, measured
  681. * in ms.
  682. *
  683. * default: 1s
  684. */
  685. const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
  686. /*
  687. * period over which we measure -rt task cpu usage in us.
  688. * default: 1s
  689. */
  690. unsigned int sysctl_sched_rt_period = 1000000;
  691. static __read_mostly int scheduler_running;
  692. /*
  693. * part of the period that we allow rt tasks to run in us.
  694. * default: 0.95s
  695. */
  696. int sysctl_sched_rt_runtime = 950000;
  697. static inline u64 global_rt_period(void)
  698. {
  699. return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
  700. }
  701. static inline u64 global_rt_runtime(void)
  702. {
  703. if (sysctl_sched_rt_runtime < 0)
  704. return RUNTIME_INF;
  705. return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
  706. }
  707. #ifndef prepare_arch_switch
  708. # define prepare_arch_switch(next) do { } while (0)
  709. #endif
  710. #ifndef finish_arch_switch
  711. # define finish_arch_switch(prev) do { } while (0)
  712. #endif
  713. static inline int task_current(struct rq *rq, struct task_struct *p)
  714. {
  715. return rq->curr == p;
  716. }
  717. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  718. static inline int task_running(struct rq *rq, struct task_struct *p)
  719. {
  720. return task_current(rq, p);
  721. }
  722. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  723. {
  724. }
  725. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  726. {
  727. #ifdef CONFIG_DEBUG_SPINLOCK
  728. /* this is a valid case when another task releases the spinlock */
  729. rq->lock.owner = current;
  730. #endif
  731. /*
  732. * If we are tracking spinlock dependencies then we have to
  733. * fix up the runqueue lock - which gets 'carried over' from
  734. * prev into current:
  735. */
  736. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  737. spin_unlock_irq(&rq->lock);
  738. }
  739. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  740. static inline int task_running(struct rq *rq, struct task_struct *p)
  741. {
  742. #ifdef CONFIG_SMP
  743. return p->oncpu;
  744. #else
  745. return task_current(rq, p);
  746. #endif
  747. }
  748. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  749. {
  750. #ifdef CONFIG_SMP
  751. /*
  752. * We can optimise this out completely for !SMP, because the
  753. * SMP rebalancing from interrupt is the only thing that cares
  754. * here.
  755. */
  756. next->oncpu = 1;
  757. #endif
  758. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  759. spin_unlock_irq(&rq->lock);
  760. #else
  761. spin_unlock(&rq->lock);
  762. #endif
  763. }
  764. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  765. {
  766. #ifdef CONFIG_SMP
  767. /*
  768. * After ->oncpu is cleared, the task can be moved to a different CPU.
  769. * We must ensure this doesn't happen until the switch is completely
  770. * finished.
  771. */
  772. smp_wmb();
  773. prev->oncpu = 0;
  774. #endif
  775. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  776. local_irq_enable();
  777. #endif
  778. }
  779. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  780. /*
  781. * __task_rq_lock - lock the runqueue a given task resides on.
  782. * Must be called interrupts disabled.
  783. */
  784. static inline struct rq *__task_rq_lock(struct task_struct *p)
  785. __acquires(rq->lock)
  786. {
  787. for (;;) {
  788. struct rq *rq = task_rq(p);
  789. spin_lock(&rq->lock);
  790. if (likely(rq == task_rq(p)))
  791. return rq;
  792. spin_unlock(&rq->lock);
  793. }
  794. }
  795. /*
  796. * task_rq_lock - lock the runqueue a given task resides on and disable
  797. * interrupts. Note the ordering: we can safely lookup the task_rq without
  798. * explicitly disabling preemption.
  799. */
  800. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  801. __acquires(rq->lock)
  802. {
  803. struct rq *rq;
  804. for (;;) {
  805. local_irq_save(*flags);
  806. rq = task_rq(p);
  807. spin_lock(&rq->lock);
  808. if (likely(rq == task_rq(p)))
  809. return rq;
  810. spin_unlock_irqrestore(&rq->lock, *flags);
  811. }
  812. }
  813. void task_rq_unlock_wait(struct task_struct *p)
  814. {
  815. struct rq *rq = task_rq(p);
  816. smp_mb(); /* spin-unlock-wait is not a full memory barrier */
  817. spin_unlock_wait(&rq->lock);
  818. }
  819. static void __task_rq_unlock(struct rq *rq)
  820. __releases(rq->lock)
  821. {
  822. spin_unlock(&rq->lock);
  823. }
  824. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  825. __releases(rq->lock)
  826. {
  827. spin_unlock_irqrestore(&rq->lock, *flags);
  828. }
  829. /*
  830. * this_rq_lock - lock this runqueue and disable interrupts.
  831. */
  832. static struct rq *this_rq_lock(void)
  833. __acquires(rq->lock)
  834. {
  835. struct rq *rq;
  836. local_irq_disable();
  837. rq = this_rq();
  838. spin_lock(&rq->lock);
  839. return rq;
  840. }
  841. #ifdef CONFIG_SCHED_HRTICK
  842. /*
  843. * Use HR-timers to deliver accurate preemption points.
  844. *
  845. * Its all a bit involved since we cannot program an hrt while holding the
  846. * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
  847. * reschedule event.
  848. *
  849. * When we get rescheduled we reprogram the hrtick_timer outside of the
  850. * rq->lock.
  851. */
  852. /*
  853. * Use hrtick when:
  854. * - enabled by features
  855. * - hrtimer is actually high res
  856. */
  857. static inline int hrtick_enabled(struct rq *rq)
  858. {
  859. if (!sched_feat(HRTICK))
  860. return 0;
  861. if (!cpu_active(cpu_of(rq)))
  862. return 0;
  863. return hrtimer_is_hres_active(&rq->hrtick_timer);
  864. }
  865. static void hrtick_clear(struct rq *rq)
  866. {
  867. if (hrtimer_active(&rq->hrtick_timer))
  868. hrtimer_cancel(&rq->hrtick_timer);
  869. }
  870. /*
  871. * High-resolution timer tick.
  872. * Runs from hardirq context with interrupts disabled.
  873. */
  874. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  875. {
  876. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  877. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  878. spin_lock(&rq->lock);
  879. update_rq_clock(rq);
  880. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  881. spin_unlock(&rq->lock);
  882. return HRTIMER_NORESTART;
  883. }
  884. #ifdef CONFIG_SMP
  885. /*
  886. * called from hardirq (IPI) context
  887. */
  888. static void __hrtick_start(void *arg)
  889. {
  890. struct rq *rq = arg;
  891. spin_lock(&rq->lock);
  892. hrtimer_restart(&rq->hrtick_timer);
  893. rq->hrtick_csd_pending = 0;
  894. spin_unlock(&rq->lock);
  895. }
  896. /*
  897. * Called to set the hrtick timer state.
  898. *
  899. * called with rq->lock held and irqs disabled
  900. */
  901. static void hrtick_start(struct rq *rq, u64 delay)
  902. {
  903. struct hrtimer *timer = &rq->hrtick_timer;
  904. ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
  905. hrtimer_set_expires(timer, time);
  906. if (rq == this_rq()) {
  907. hrtimer_restart(timer);
  908. } else if (!rq->hrtick_csd_pending) {
  909. __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
  910. rq->hrtick_csd_pending = 1;
  911. }
  912. }
  913. static int
  914. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  915. {
  916. int cpu = (int)(long)hcpu;
  917. switch (action) {
  918. case CPU_UP_CANCELED:
  919. case CPU_UP_CANCELED_FROZEN:
  920. case CPU_DOWN_PREPARE:
  921. case CPU_DOWN_PREPARE_FROZEN:
  922. case CPU_DEAD:
  923. case CPU_DEAD_FROZEN:
  924. hrtick_clear(cpu_rq(cpu));
  925. return NOTIFY_OK;
  926. }
  927. return NOTIFY_DONE;
  928. }
  929. static __init void init_hrtick(void)
  930. {
  931. hotcpu_notifier(hotplug_hrtick, 0);
  932. }
  933. #else
  934. /*
  935. * Called to set the hrtick timer state.
  936. *
  937. * called with rq->lock held and irqs disabled
  938. */
  939. static void hrtick_start(struct rq *rq, u64 delay)
  940. {
  941. __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
  942. HRTIMER_MODE_REL_PINNED, 0);
  943. }
  944. static inline void init_hrtick(void)
  945. {
  946. }
  947. #endif /* CONFIG_SMP */
  948. static void init_rq_hrtick(struct rq *rq)
  949. {
  950. #ifdef CONFIG_SMP
  951. rq->hrtick_csd_pending = 0;
  952. rq->hrtick_csd.flags = 0;
  953. rq->hrtick_csd.func = __hrtick_start;
  954. rq->hrtick_csd.info = rq;
  955. #endif
  956. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  957. rq->hrtick_timer.function = hrtick;
  958. }
  959. #else /* CONFIG_SCHED_HRTICK */
  960. static inline void hrtick_clear(struct rq *rq)
  961. {
  962. }
  963. static inline void init_rq_hrtick(struct rq *rq)
  964. {
  965. }
  966. static inline void init_hrtick(void)
  967. {
  968. }
  969. #endif /* CONFIG_SCHED_HRTICK */
  970. /*
  971. * resched_task - mark a task 'to be rescheduled now'.
  972. *
  973. * On UP this means the setting of the need_resched flag, on SMP it
  974. * might also involve a cross-CPU call to trigger the scheduler on
  975. * the target CPU.
  976. */
  977. #ifdef CONFIG_SMP
  978. #ifndef tsk_is_polling
  979. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  980. #endif
  981. static void resched_task(struct task_struct *p)
  982. {
  983. int cpu;
  984. assert_spin_locked(&task_rq(p)->lock);
  985. if (test_tsk_need_resched(p))
  986. return;
  987. set_tsk_need_resched(p);
  988. cpu = task_cpu(p);
  989. if (cpu == smp_processor_id())
  990. return;
  991. /* NEED_RESCHED must be visible before we test polling */
  992. smp_mb();
  993. if (!tsk_is_polling(p))
  994. smp_send_reschedule(cpu);
  995. }
  996. static void resched_cpu(int cpu)
  997. {
  998. struct rq *rq = cpu_rq(cpu);
  999. unsigned long flags;
  1000. if (!spin_trylock_irqsave(&rq->lock, flags))
  1001. return;
  1002. resched_task(cpu_curr(cpu));
  1003. spin_unlock_irqrestore(&rq->lock, flags);
  1004. }
  1005. #ifdef CONFIG_NO_HZ
  1006. /*
  1007. * When add_timer_on() enqueues a timer into the timer wheel of an
  1008. * idle CPU then this timer might expire before the next timer event
  1009. * which is scheduled to wake up that CPU. In case of a completely
  1010. * idle system the next event might even be infinite time into the
  1011. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  1012. * leaves the inner idle loop so the newly added timer is taken into
  1013. * account when the CPU goes back to idle and evaluates the timer
  1014. * wheel for the next timer event.
  1015. */
  1016. void wake_up_idle_cpu(int cpu)
  1017. {
  1018. struct rq *rq = cpu_rq(cpu);
  1019. if (cpu == smp_processor_id())
  1020. return;
  1021. /*
  1022. * This is safe, as this function is called with the timer
  1023. * wheel base lock of (cpu) held. When the CPU is on the way
  1024. * to idle and has not yet set rq->curr to idle then it will
  1025. * be serialized on the timer wheel base lock and take the new
  1026. * timer into account automatically.
  1027. */
  1028. if (rq->curr != rq->idle)
  1029. return;
  1030. /*
  1031. * We can set TIF_RESCHED on the idle task of the other CPU
  1032. * lockless. The worst case is that the other CPU runs the
  1033. * idle task through an additional NOOP schedule()
  1034. */
  1035. set_tsk_need_resched(rq->idle);
  1036. /* NEED_RESCHED must be visible before we test polling */
  1037. smp_mb();
  1038. if (!tsk_is_polling(rq->idle))
  1039. smp_send_reschedule(cpu);
  1040. }
  1041. #endif /* CONFIG_NO_HZ */
  1042. static u64 sched_avg_period(void)
  1043. {
  1044. return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
  1045. }
  1046. static void sched_avg_update(struct rq *rq)
  1047. {
  1048. s64 period = sched_avg_period();
  1049. while ((s64)(rq->clock - rq->age_stamp) > period) {
  1050. rq->age_stamp += period;
  1051. rq->rt_avg /= 2;
  1052. }
  1053. }
  1054. static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
  1055. {
  1056. rq->rt_avg += rt_delta;
  1057. sched_avg_update(rq);
  1058. }
  1059. #else /* !CONFIG_SMP */
  1060. static void resched_task(struct task_struct *p)
  1061. {
  1062. assert_spin_locked(&task_rq(p)->lock);
  1063. set_tsk_need_resched(p);
  1064. }
  1065. static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
  1066. {
  1067. }
  1068. #endif /* CONFIG_SMP */
  1069. #if BITS_PER_LONG == 32
  1070. # define WMULT_CONST (~0UL)
  1071. #else
  1072. # define WMULT_CONST (1UL << 32)
  1073. #endif
  1074. #define WMULT_SHIFT 32
  1075. /*
  1076. * Shift right and round:
  1077. */
  1078. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  1079. /*
  1080. * delta *= weight / lw
  1081. */
  1082. static unsigned long
  1083. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  1084. struct load_weight *lw)
  1085. {
  1086. u64 tmp;
  1087. if (!lw->inv_weight) {
  1088. if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
  1089. lw->inv_weight = 1;
  1090. else
  1091. lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
  1092. / (lw->weight+1);
  1093. }
  1094. tmp = (u64)delta_exec * weight;
  1095. /*
  1096. * Check whether we'd overflow the 64-bit multiplication:
  1097. */
  1098. if (unlikely(tmp > WMULT_CONST))
  1099. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  1100. WMULT_SHIFT/2);
  1101. else
  1102. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  1103. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  1104. }
  1105. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  1106. {
  1107. lw->weight += inc;
  1108. lw->inv_weight = 0;
  1109. }
  1110. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  1111. {
  1112. lw->weight -= dec;
  1113. lw->inv_weight = 0;
  1114. }
  1115. /*
  1116. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  1117. * of tasks with abnormal "nice" values across CPUs the contribution that
  1118. * each task makes to its run queue's load is weighted according to its
  1119. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  1120. * scaled version of the new time slice allocation that they receive on time
  1121. * slice expiry etc.
  1122. */
  1123. #define WEIGHT_IDLEPRIO 3
  1124. #define WMULT_IDLEPRIO 1431655765
  1125. /*
  1126. * Nice levels are multiplicative, with a gentle 10% change for every
  1127. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  1128. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  1129. * that remained on nice 0.
  1130. *
  1131. * The "10% effect" is relative and cumulative: from _any_ nice level,
  1132. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  1133. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  1134. * If a task goes up by ~10% and another task goes down by ~10% then
  1135. * the relative distance between them is ~25%.)
  1136. */
  1137. static const int prio_to_weight[40] = {
  1138. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  1139. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  1140. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  1141. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  1142. /* 0 */ 1024, 820, 655, 526, 423,
  1143. /* 5 */ 335, 272, 215, 172, 137,
  1144. /* 10 */ 110, 87, 70, 56, 45,
  1145. /* 15 */ 36, 29, 23, 18, 15,
  1146. };
  1147. /*
  1148. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  1149. *
  1150. * In cases where the weight does not change often, we can use the
  1151. * precalculated inverse to speed up arithmetics by turning divisions
  1152. * into multiplications:
  1153. */
  1154. static const u32 prio_to_wmult[40] = {
  1155. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  1156. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  1157. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  1158. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  1159. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  1160. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  1161. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  1162. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  1163. };
  1164. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
  1165. /*
  1166. * runqueue iterator, to support SMP load-balancing between different
  1167. * scheduling classes, without having to expose their internal data
  1168. * structures to the load-balancing proper:
  1169. */
  1170. struct rq_iterator {
  1171. void *arg;
  1172. struct task_struct *(*start)(void *);
  1173. struct task_struct *(*next)(void *);
  1174. };
  1175. #ifdef CONFIG_SMP
  1176. static unsigned long
  1177. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1178. unsigned long max_load_move, struct sched_domain *sd,
  1179. enum cpu_idle_type idle, int *all_pinned,
  1180. int *this_best_prio, struct rq_iterator *iterator);
  1181. static int
  1182. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1183. struct sched_domain *sd, enum cpu_idle_type idle,
  1184. struct rq_iterator *iterator);
  1185. #endif
  1186. /* Time spent by the tasks of the cpu accounting group executing in ... */
  1187. enum cpuacct_stat_index {
  1188. CPUACCT_STAT_USER, /* ... user mode */
  1189. CPUACCT_STAT_SYSTEM, /* ... kernel mode */
  1190. CPUACCT_STAT_NSTATS,
  1191. };
  1192. #ifdef CONFIG_CGROUP_CPUACCT
  1193. static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
  1194. static void cpuacct_update_stats(struct task_struct *tsk,
  1195. enum cpuacct_stat_index idx, cputime_t val);
  1196. #else
  1197. static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
  1198. static inline void cpuacct_update_stats(struct task_struct *tsk,
  1199. enum cpuacct_stat_index idx, cputime_t val) {}
  1200. #endif
  1201. static inline void inc_cpu_load(struct rq *rq, unsigned long load)
  1202. {
  1203. update_load_add(&rq->load, load);
  1204. }
  1205. static inline void dec_cpu_load(struct rq *rq, unsigned long load)
  1206. {
  1207. update_load_sub(&rq->load, load);
  1208. }
  1209. #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
  1210. typedef int (*tg_visitor)(struct task_group *, void *);
  1211. /*
  1212. * Iterate the full tree, calling @down when first entering a node and @up when
  1213. * leaving it for the final time.
  1214. */
  1215. static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
  1216. {
  1217. struct task_group *parent, *child;
  1218. int ret;
  1219. rcu_read_lock();
  1220. parent = &root_task_group;
  1221. down:
  1222. ret = (*down)(parent, data);
  1223. if (ret)
  1224. goto out_unlock;
  1225. list_for_each_entry_rcu(child, &parent->children, siblings) {
  1226. parent = child;
  1227. goto down;
  1228. up:
  1229. continue;
  1230. }
  1231. ret = (*up)(parent, data);
  1232. if (ret)
  1233. goto out_unlock;
  1234. child = parent;
  1235. parent = parent->parent;
  1236. if (parent)
  1237. goto up;
  1238. out_unlock:
  1239. rcu_read_unlock();
  1240. return ret;
  1241. }
  1242. static int tg_nop(struct task_group *tg, void *data)
  1243. {
  1244. return 0;
  1245. }
  1246. #endif
  1247. #ifdef CONFIG_SMP
  1248. /* Used instead of source_load when we know the type == 0 */
  1249. static unsigned long weighted_cpuload(const int cpu)
  1250. {
  1251. return cpu_rq(cpu)->load.weight;
  1252. }
  1253. /*
  1254. * Return a low guess at the load of a migration-source cpu weighted
  1255. * according to the scheduling class and "nice" value.
  1256. *
  1257. * We want to under-estimate the load of migration sources, to
  1258. * balance conservatively.
  1259. */
  1260. static unsigned long source_load(int cpu, int type)
  1261. {
  1262. struct rq *rq = cpu_rq(cpu);
  1263. unsigned long total = weighted_cpuload(cpu);
  1264. if (type == 0 || !sched_feat(LB_BIAS))
  1265. return total;
  1266. return min(rq->cpu_load[type-1], total);
  1267. }
  1268. /*
  1269. * Return a high guess at the load of a migration-target cpu weighted
  1270. * according to the scheduling class and "nice" value.
  1271. */
  1272. static unsigned long target_load(int cpu, int type)
  1273. {
  1274. struct rq *rq = cpu_rq(cpu);
  1275. unsigned long total = weighted_cpuload(cpu);
  1276. if (type == 0 || !sched_feat(LB_BIAS))
  1277. return total;
  1278. return max(rq->cpu_load[type-1], total);
  1279. }
  1280. static struct sched_group *group_of(int cpu)
  1281. {
  1282. struct sched_domain *sd = rcu_dereference(cpu_rq(cpu)->sd);
  1283. if (!sd)
  1284. return NULL;
  1285. return sd->groups;
  1286. }
  1287. static unsigned long power_of(int cpu)
  1288. {
  1289. struct sched_group *group = group_of(cpu);
  1290. if (!group)
  1291. return SCHED_LOAD_SCALE;
  1292. return group->cpu_power;
  1293. }
  1294. static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
  1295. static unsigned long cpu_avg_load_per_task(int cpu)
  1296. {
  1297. struct rq *rq = cpu_rq(cpu);
  1298. unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
  1299. if (nr_running)
  1300. rq->avg_load_per_task = rq->load.weight / nr_running;
  1301. else
  1302. rq->avg_load_per_task = 0;
  1303. return rq->avg_load_per_task;
  1304. }
  1305. #ifdef CONFIG_FAIR_GROUP_SCHED
  1306. struct update_shares_data {
  1307. unsigned long rq_weight[NR_CPUS];
  1308. };
  1309. static DEFINE_PER_CPU(struct update_shares_data, update_shares_data);
  1310. static void __set_se_shares(struct sched_entity *se, unsigned long shares);
  1311. /*
  1312. * Calculate and set the cpu's group shares.
  1313. */
  1314. static void update_group_shares_cpu(struct task_group *tg, int cpu,
  1315. unsigned long sd_shares,
  1316. unsigned long sd_rq_weight,
  1317. struct update_shares_data *usd)
  1318. {
  1319. unsigned long shares, rq_weight;
  1320. int boost = 0;
  1321. rq_weight = usd->rq_weight[cpu];
  1322. if (!rq_weight) {
  1323. boost = 1;
  1324. rq_weight = NICE_0_LOAD;
  1325. }
  1326. /*
  1327. * \Sum_j shares_j * rq_weight_i
  1328. * shares_i = -----------------------------
  1329. * \Sum_j rq_weight_j
  1330. */
  1331. shares = (sd_shares * rq_weight) / sd_rq_weight;
  1332. shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
  1333. if (abs(shares - tg->se[cpu]->load.weight) >
  1334. sysctl_sched_shares_thresh) {
  1335. struct rq *rq = cpu_rq(cpu);
  1336. unsigned long flags;
  1337. spin_lock_irqsave(&rq->lock, flags);
  1338. tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
  1339. tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
  1340. __set_se_shares(tg->se[cpu], shares);
  1341. spin_unlock_irqrestore(&rq->lock, flags);
  1342. }
  1343. }
  1344. /*
  1345. * Re-compute the task group their per cpu shares over the given domain.
  1346. * This needs to be done in a bottom-up fashion because the rq weight of a
  1347. * parent group depends on the shares of its child groups.
  1348. */
  1349. static int tg_shares_up(struct task_group *tg, void *data)
  1350. {
  1351. unsigned long weight, rq_weight = 0, shares = 0;
  1352. struct update_shares_data *usd;
  1353. struct sched_domain *sd = data;
  1354. unsigned long flags;
  1355. int i;
  1356. if (!tg->se[0])
  1357. return 0;
  1358. local_irq_save(flags);
  1359. usd = &__get_cpu_var(update_shares_data);
  1360. for_each_cpu(i, sched_domain_span(sd)) {
  1361. weight = tg->cfs_rq[i]->load.weight;
  1362. usd->rq_weight[i] = weight;
  1363. /*
  1364. * If there are currently no tasks on the cpu pretend there
  1365. * is one of average load so that when a new task gets to
  1366. * run here it will not get delayed by group starvation.
  1367. */
  1368. if (!weight)
  1369. weight = NICE_0_LOAD;
  1370. rq_weight += weight;
  1371. shares += tg->cfs_rq[i]->shares;
  1372. }
  1373. if ((!shares && rq_weight) || shares > tg->shares)
  1374. shares = tg->shares;
  1375. if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
  1376. shares = tg->shares;
  1377. for_each_cpu(i, sched_domain_span(sd))
  1378. update_group_shares_cpu(tg, i, shares, rq_weight, usd);
  1379. local_irq_restore(flags);
  1380. return 0;
  1381. }
  1382. /*
  1383. * Compute the cpu's hierarchical load factor for each task group.
  1384. * This needs to be done in a top-down fashion because the load of a child
  1385. * group is a fraction of its parents load.
  1386. */
  1387. static int tg_load_down(struct task_group *tg, void *data)
  1388. {
  1389. unsigned long load;
  1390. long cpu = (long)data;
  1391. if (!tg->parent) {
  1392. load = cpu_rq(cpu)->load.weight;
  1393. } else {
  1394. load = tg->parent->cfs_rq[cpu]->h_load;
  1395. load *= tg->cfs_rq[cpu]->shares;
  1396. load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
  1397. }
  1398. tg->cfs_rq[cpu]->h_load = load;
  1399. return 0;
  1400. }
  1401. static void update_shares(struct sched_domain *sd)
  1402. {
  1403. s64 elapsed;
  1404. u64 now;
  1405. if (root_task_group_empty())
  1406. return;
  1407. now = cpu_clock(raw_smp_processor_id());
  1408. elapsed = now - sd->last_update;
  1409. if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
  1410. sd->last_update = now;
  1411. walk_tg_tree(tg_nop, tg_shares_up, sd);
  1412. }
  1413. }
  1414. static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
  1415. {
  1416. if (root_task_group_empty())
  1417. return;
  1418. spin_unlock(&rq->lock);
  1419. update_shares(sd);
  1420. spin_lock(&rq->lock);
  1421. }
  1422. static void update_h_load(long cpu)
  1423. {
  1424. if (root_task_group_empty())
  1425. return;
  1426. walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
  1427. }
  1428. #else
  1429. static inline void update_shares(struct sched_domain *sd)
  1430. {
  1431. }
  1432. static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
  1433. {
  1434. }
  1435. #endif
  1436. #ifdef CONFIG_PREEMPT
  1437. static void double_rq_lock(struct rq *rq1, struct rq *rq2);
  1438. /*
  1439. * fair double_lock_balance: Safely acquires both rq->locks in a fair
  1440. * way at the expense of forcing extra atomic operations in all
  1441. * invocations. This assures that the double_lock is acquired using the
  1442. * same underlying policy as the spinlock_t on this architecture, which
  1443. * reduces latency compared to the unfair variant below. However, it
  1444. * also adds more overhead and therefore may reduce throughput.
  1445. */
  1446. static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1447. __releases(this_rq->lock)
  1448. __acquires(busiest->lock)
  1449. __acquires(this_rq->lock)
  1450. {
  1451. spin_unlock(&this_rq->lock);
  1452. double_rq_lock(this_rq, busiest);
  1453. return 1;
  1454. }
  1455. #else
  1456. /*
  1457. * Unfair double_lock_balance: Optimizes throughput at the expense of
  1458. * latency by eliminating extra atomic operations when the locks are
  1459. * already in proper order on entry. This favors lower cpu-ids and will
  1460. * grant the double lock to lower cpus over higher ids under contention,
  1461. * regardless of entry order into the function.
  1462. */
  1463. static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1464. __releases(this_rq->lock)
  1465. __acquires(busiest->lock)
  1466. __acquires(this_rq->lock)
  1467. {
  1468. int ret = 0;
  1469. if (unlikely(!spin_trylock(&busiest->lock))) {
  1470. if (busiest < this_rq) {
  1471. spin_unlock(&this_rq->lock);
  1472. spin_lock(&busiest->lock);
  1473. spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
  1474. ret = 1;
  1475. } else
  1476. spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
  1477. }
  1478. return ret;
  1479. }
  1480. #endif /* CONFIG_PREEMPT */
  1481. /*
  1482. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  1483. */
  1484. static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1485. {
  1486. if (unlikely(!irqs_disabled())) {
  1487. /* printk() doesn't work good under rq->lock */
  1488. spin_unlock(&this_rq->lock);
  1489. BUG_ON(1);
  1490. }
  1491. return _double_lock_balance(this_rq, busiest);
  1492. }
  1493. static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
  1494. __releases(busiest->lock)
  1495. {
  1496. spin_unlock(&busiest->lock);
  1497. lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
  1498. }
  1499. #endif
  1500. #ifdef CONFIG_FAIR_GROUP_SCHED
  1501. static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
  1502. {
  1503. #ifdef CONFIG_SMP
  1504. cfs_rq->shares = shares;
  1505. #endif
  1506. }
  1507. #endif
  1508. static void calc_load_account_active(struct rq *this_rq);
  1509. #include "sched_stats.h"
  1510. #include "sched_idletask.c"
  1511. #include "sched_fair.c"
  1512. #include "sched_rt.c"
  1513. #ifdef CONFIG_SCHED_DEBUG
  1514. # include "sched_debug.c"
  1515. #endif
  1516. #define sched_class_highest (&rt_sched_class)
  1517. #define for_each_class(class) \
  1518. for (class = sched_class_highest; class; class = class->next)
  1519. static void inc_nr_running(struct rq *rq)
  1520. {
  1521. rq->nr_running++;
  1522. }
  1523. static void dec_nr_running(struct rq *rq)
  1524. {
  1525. rq->nr_running--;
  1526. }
  1527. static void set_load_weight(struct task_struct *p)
  1528. {
  1529. if (task_has_rt_policy(p)) {
  1530. p->se.load.weight = prio_to_weight[0] * 2;
  1531. p->se.load.inv_weight = prio_to_wmult[0] >> 1;
  1532. return;
  1533. }
  1534. /*
  1535. * SCHED_IDLE tasks get minimal weight:
  1536. */
  1537. if (p->policy == SCHED_IDLE) {
  1538. p->se.load.weight = WEIGHT_IDLEPRIO;
  1539. p->se.load.inv_weight = WMULT_IDLEPRIO;
  1540. return;
  1541. }
  1542. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  1543. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  1544. }
  1545. static void update_avg(u64 *avg, u64 sample)
  1546. {
  1547. s64 diff = sample - *avg;
  1548. *avg += diff >> 3;
  1549. }
  1550. static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
  1551. {
  1552. if (wakeup)
  1553. p->se.start_runtime = p->se.sum_exec_runtime;
  1554. sched_info_queued(p);
  1555. p->sched_class->enqueue_task(rq, p, wakeup);
  1556. p->se.on_rq = 1;
  1557. }
  1558. static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
  1559. {
  1560. if (sleep) {
  1561. if (p->se.last_wakeup) {
  1562. update_avg(&p->se.avg_overlap,
  1563. p->se.sum_exec_runtime - p->se.last_wakeup);
  1564. p->se.last_wakeup = 0;
  1565. } else {
  1566. update_avg(&p->se.avg_wakeup,
  1567. sysctl_sched_wakeup_granularity);
  1568. }
  1569. }
  1570. sched_info_dequeued(p);
  1571. p->sched_class->dequeue_task(rq, p, sleep);
  1572. p->se.on_rq = 0;
  1573. }
  1574. /*
  1575. * __normal_prio - return the priority that is based on the static prio
  1576. */
  1577. static inline int __normal_prio(struct task_struct *p)
  1578. {
  1579. return p->static_prio;
  1580. }
  1581. /*
  1582. * Calculate the expected normal priority: i.e. priority
  1583. * without taking RT-inheritance into account. Might be
  1584. * boosted by interactivity modifiers. Changes upon fork,
  1585. * setprio syscalls, and whenever the interactivity
  1586. * estimator recalculates.
  1587. */
  1588. static inline int normal_prio(struct task_struct *p)
  1589. {
  1590. int prio;
  1591. if (task_has_rt_policy(p))
  1592. prio = MAX_RT_PRIO-1 - p->rt_priority;
  1593. else
  1594. prio = __normal_prio(p);
  1595. return prio;
  1596. }
  1597. /*
  1598. * Calculate the current priority, i.e. the priority
  1599. * taken into account by the scheduler. This value might
  1600. * be boosted by RT tasks, or might be boosted by
  1601. * interactivity modifiers. Will be RT if the task got
  1602. * RT-boosted. If not then it returns p->normal_prio.
  1603. */
  1604. static int effective_prio(struct task_struct *p)
  1605. {
  1606. p->normal_prio = normal_prio(p);
  1607. /*
  1608. * If we are RT tasks or we were boosted to RT priority,
  1609. * keep the priority unchanged. Otherwise, update priority
  1610. * to the normal priority:
  1611. */
  1612. if (!rt_prio(p->prio))
  1613. return p->normal_prio;
  1614. return p->prio;
  1615. }
  1616. /*
  1617. * activate_task - move a task to the runqueue.
  1618. */
  1619. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
  1620. {
  1621. if (task_contributes_to_load(p))
  1622. rq->nr_uninterruptible--;
  1623. enqueue_task(rq, p, wakeup);
  1624. inc_nr_running(rq);
  1625. }
  1626. /*
  1627. * deactivate_task - remove a task from the runqueue.
  1628. */
  1629. static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
  1630. {
  1631. if (task_contributes_to_load(p))
  1632. rq->nr_uninterruptible++;
  1633. dequeue_task(rq, p, sleep);
  1634. dec_nr_running(rq);
  1635. }
  1636. /**
  1637. * task_curr - is this task currently executing on a CPU?
  1638. * @p: the task in question.
  1639. */
  1640. inline int task_curr(const struct task_struct *p)
  1641. {
  1642. return cpu_curr(task_cpu(p)) == p;
  1643. }
  1644. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  1645. {
  1646. set_task_rq(p, cpu);
  1647. #ifdef CONFIG_SMP
  1648. /*
  1649. * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
  1650. * successfuly executed on another CPU. We must ensure that updates of
  1651. * per-task data have been completed by this moment.
  1652. */
  1653. smp_wmb();
  1654. task_thread_info(p)->cpu = cpu;
  1655. #endif
  1656. }
  1657. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  1658. const struct sched_class *prev_class,
  1659. int oldprio, int running)
  1660. {
  1661. if (prev_class != p->sched_class) {
  1662. if (prev_class->switched_from)
  1663. prev_class->switched_from(rq, p, running);
  1664. p->sched_class->switched_to(rq, p, running);
  1665. } else
  1666. p->sched_class->prio_changed(rq, p, oldprio, running);
  1667. }
  1668. #ifdef CONFIG_SMP
  1669. /*
  1670. * Is this task likely cache-hot:
  1671. */
  1672. static int
  1673. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  1674. {
  1675. s64 delta;
  1676. /*
  1677. * Buddy candidates are cache hot:
  1678. */
  1679. if (sched_feat(CACHE_HOT_BUDDY) &&
  1680. (&p->se == cfs_rq_of(&p->se)->next ||
  1681. &p->se == cfs_rq_of(&p->se)->last))
  1682. return 1;
  1683. if (p->sched_class != &fair_sched_class)
  1684. return 0;
  1685. if (sysctl_sched_migration_cost == -1)
  1686. return 1;
  1687. if (sysctl_sched_migration_cost == 0)
  1688. return 0;
  1689. delta = now - p->se.exec_start;
  1690. return delta < (s64)sysctl_sched_migration_cost;
  1691. }
  1692. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  1693. {
  1694. int old_cpu = task_cpu(p);
  1695. struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
  1696. struct cfs_rq *old_cfsrq = task_cfs_rq(p),
  1697. *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
  1698. u64 clock_offset;
  1699. clock_offset = old_rq->clock - new_rq->clock;
  1700. trace_sched_migrate_task(p, new_cpu);
  1701. #ifdef CONFIG_SCHEDSTATS
  1702. if (p->se.wait_start)
  1703. p->se.wait_start -= clock_offset;
  1704. if (p->se.sleep_start)
  1705. p->se.sleep_start -= clock_offset;
  1706. if (p->se.block_start)
  1707. p->se.block_start -= clock_offset;
  1708. #endif
  1709. if (old_cpu != new_cpu) {
  1710. p->se.nr_migrations++;
  1711. new_rq->nr_migrations_in++;
  1712. #ifdef CONFIG_SCHEDSTATS
  1713. if (task_hot(p, old_rq->clock, NULL))
  1714. schedstat_inc(p, se.nr_forced2_migrations);
  1715. #endif
  1716. perf_swcounter_event(PERF_COUNT_SW_CPU_MIGRATIONS,
  1717. 1, 1, NULL, 0);
  1718. }
  1719. p->se.vruntime -= old_cfsrq->min_vruntime -
  1720. new_cfsrq->min_vruntime;
  1721. __set_task_cpu(p, new_cpu);
  1722. }
  1723. struct migration_req {
  1724. struct list_head list;
  1725. struct task_struct *task;
  1726. int dest_cpu;
  1727. struct completion done;
  1728. };
  1729. /*
  1730. * The task's runqueue lock must be held.
  1731. * Returns true if you have to wait for migration thread.
  1732. */
  1733. static int
  1734. migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
  1735. {
  1736. struct rq *rq = task_rq(p);
  1737. /*
  1738. * If the task is not on a runqueue (and not running), then
  1739. * it is sufficient to simply update the task's cpu field.
  1740. */
  1741. if (!p->se.on_rq && !task_running(rq, p)) {
  1742. set_task_cpu(p, dest_cpu);
  1743. return 0;
  1744. }
  1745. init_completion(&req->done);
  1746. req->task = p;
  1747. req->dest_cpu = dest_cpu;
  1748. list_add(&req->list, &rq->migration_queue);
  1749. return 1;
  1750. }
  1751. /*
  1752. * wait_task_context_switch - wait for a thread to complete at least one
  1753. * context switch.
  1754. *
  1755. * @p must not be current.
  1756. */
  1757. void wait_task_context_switch(struct task_struct *p)
  1758. {
  1759. unsigned long nvcsw, nivcsw, flags;
  1760. int running;
  1761. struct rq *rq;
  1762. nvcsw = p->nvcsw;
  1763. nivcsw = p->nivcsw;
  1764. for (;;) {
  1765. /*
  1766. * The runqueue is assigned before the actual context
  1767. * switch. We need to take the runqueue lock.
  1768. *
  1769. * We could check initially without the lock but it is
  1770. * very likely that we need to take the lock in every
  1771. * iteration.
  1772. */
  1773. rq = task_rq_lock(p, &flags);
  1774. running = task_running(rq, p);
  1775. task_rq_unlock(rq, &flags);
  1776. if (likely(!running))
  1777. break;
  1778. /*
  1779. * The switch count is incremented before the actual
  1780. * context switch. We thus wait for two switches to be
  1781. * sure at least one completed.
  1782. */
  1783. if ((p->nvcsw - nvcsw) > 1)
  1784. break;
  1785. if ((p->nivcsw - nivcsw) > 1)
  1786. break;
  1787. cpu_relax();
  1788. }
  1789. }
  1790. /*
  1791. * wait_task_inactive - wait for a thread to unschedule.
  1792. *
  1793. * If @match_state is nonzero, it's the @p->state value just checked and
  1794. * not expected to change. If it changes, i.e. @p might have woken up,
  1795. * then return zero. When we succeed in waiting for @p to be off its CPU,
  1796. * we return a positive number (its total switch count). If a second call
  1797. * a short while later returns the same number, the caller can be sure that
  1798. * @p has remained unscheduled the whole time.
  1799. *
  1800. * The caller must ensure that the task *will* unschedule sometime soon,
  1801. * else this function might spin for a *long* time. This function can't
  1802. * be called with interrupts off, or it may introduce deadlock with
  1803. * smp_call_function() if an IPI is sent by the same process we are
  1804. * waiting to become inactive.
  1805. */
  1806. unsigned long wait_task_inactive(struct task_struct *p, long match_state)
  1807. {
  1808. unsigned long flags;
  1809. int running, on_rq;
  1810. unsigned long ncsw;
  1811. struct rq *rq;
  1812. for (;;) {
  1813. /*
  1814. * We do the initial early heuristics without holding
  1815. * any task-queue locks at all. We'll only try to get
  1816. * the runqueue lock when things look like they will
  1817. * work out!
  1818. */
  1819. rq = task_rq(p);
  1820. /*
  1821. * If the task is actively running on another CPU
  1822. * still, just relax and busy-wait without holding
  1823. * any locks.
  1824. *
  1825. * NOTE! Since we don't hold any locks, it's not
  1826. * even sure that "rq" stays as the right runqueue!
  1827. * But we don't care, since "task_running()" will
  1828. * return false if the runqueue has changed and p
  1829. * is actually now running somewhere else!
  1830. */
  1831. while (task_running(rq, p)) {
  1832. if (match_state && unlikely(p->state != match_state))
  1833. return 0;
  1834. cpu_relax();
  1835. }
  1836. /*
  1837. * Ok, time to look more closely! We need the rq
  1838. * lock now, to be *sure*. If we're wrong, we'll
  1839. * just go back and repeat.
  1840. */
  1841. rq = task_rq_lock(p, &flags);
  1842. trace_sched_wait_task(rq, p);
  1843. running = task_running(rq, p);
  1844. on_rq = p->se.on_rq;
  1845. ncsw = 0;
  1846. if (!match_state || p->state == match_state)
  1847. ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
  1848. task_rq_unlock(rq, &flags);
  1849. /*
  1850. * If it changed from the expected state, bail out now.
  1851. */
  1852. if (unlikely(!ncsw))
  1853. break;
  1854. /*
  1855. * Was it really running after all now that we
  1856. * checked with the proper locks actually held?
  1857. *
  1858. * Oops. Go back and try again..
  1859. */
  1860. if (unlikely(running)) {
  1861. cpu_relax();
  1862. continue;
  1863. }
  1864. /*
  1865. * It's not enough that it's not actively running,
  1866. * it must be off the runqueue _entirely_, and not
  1867. * preempted!
  1868. *
  1869. * So if it was still runnable (but just not actively
  1870. * running right now), it's preempted, and we should
  1871. * yield - it could be a while.
  1872. */
  1873. if (unlikely(on_rq)) {
  1874. schedule_timeout_uninterruptible(1);
  1875. continue;
  1876. }
  1877. /*
  1878. * Ahh, all good. It wasn't running, and it wasn't
  1879. * runnable, which means that it will never become
  1880. * running in the future either. We're all done!
  1881. */
  1882. break;
  1883. }
  1884. return ncsw;
  1885. }
  1886. /***
  1887. * kick_process - kick a running thread to enter/exit the kernel
  1888. * @p: the to-be-kicked thread
  1889. *
  1890. * Cause a process which is running on another CPU to enter
  1891. * kernel-mode, without any delay. (to get signals handled.)
  1892. *
  1893. * NOTE: this function doesnt have to take the runqueue lock,
  1894. * because all it wants to ensure is that the remote task enters
  1895. * the kernel. If the IPI races and the task has been migrated
  1896. * to another CPU then no harm is done and the purpose has been
  1897. * achieved as well.
  1898. */
  1899. void kick_process(struct task_struct *p)
  1900. {
  1901. int cpu;
  1902. preempt_disable();
  1903. cpu = task_cpu(p);
  1904. if ((cpu != smp_processor_id()) && task_curr(p))
  1905. smp_send_reschedule(cpu);
  1906. preempt_enable();
  1907. }
  1908. EXPORT_SYMBOL_GPL(kick_process);
  1909. #endif /* CONFIG_SMP */
  1910. /**
  1911. * task_oncpu_function_call - call a function on the cpu on which a task runs
  1912. * @p: the task to evaluate
  1913. * @func: the function to be called
  1914. * @info: the function call argument
  1915. *
  1916. * Calls the function @func when the task is currently running. This might
  1917. * be on the current CPU, which just calls the function directly
  1918. */
  1919. void task_oncpu_function_call(struct task_struct *p,
  1920. void (*func) (void *info), void *info)
  1921. {
  1922. int cpu;
  1923. preempt_disable();
  1924. cpu = task_cpu(p);
  1925. if (task_curr(p))
  1926. smp_call_function_single(cpu, func, info, 1);
  1927. preempt_enable();
  1928. }
  1929. /***
  1930. * try_to_wake_up - wake up a thread
  1931. * @p: the to-be-woken-up thread
  1932. * @state: the mask of task states that can be woken
  1933. * @sync: do a synchronous wakeup?
  1934. *
  1935. * Put it on the run-queue if it's not already there. The "current"
  1936. * thread is always on the run-queue (except when the actual
  1937. * re-schedule is in progress), and as such you're allowed to do
  1938. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1939. * runnable without the overhead of this.
  1940. *
  1941. * returns failure only if the task is already active.
  1942. */
  1943. static int try_to_wake_up(struct task_struct *p, unsigned int state,
  1944. int wake_flags)
  1945. {
  1946. int cpu, orig_cpu, this_cpu, success = 0;
  1947. unsigned long flags;
  1948. struct rq *rq;
  1949. if (!sched_feat(SYNC_WAKEUPS))
  1950. wake_flags &= ~WF_SYNC;
  1951. this_cpu = get_cpu();
  1952. smp_wmb();
  1953. rq = task_rq_lock(p, &flags);
  1954. update_rq_clock(rq);
  1955. if (!(p->state & state))
  1956. goto out;
  1957. if (p->se.on_rq)
  1958. goto out_running;
  1959. cpu = task_cpu(p);
  1960. orig_cpu = cpu;
  1961. #ifdef CONFIG_SMP
  1962. if (unlikely(task_running(rq, p)))
  1963. goto out_activate;
  1964. /*
  1965. * In order to handle concurrent wakeups and release the rq->lock
  1966. * we put the task in TASK_WAKING state.
  1967. *
  1968. * First fix up the nr_uninterruptible count:
  1969. */
  1970. if (task_contributes_to_load(p))
  1971. rq->nr_uninterruptible--;
  1972. p->state = TASK_WAKING;
  1973. task_rq_unlock(rq, &flags);
  1974. cpu = p->sched_class->select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
  1975. if (cpu != orig_cpu)
  1976. set_task_cpu(p, cpu);
  1977. rq = task_rq_lock(p, &flags);
  1978. WARN_ON(p->state != TASK_WAKING);
  1979. cpu = task_cpu(p);
  1980. #ifdef CONFIG_SCHEDSTATS
  1981. schedstat_inc(rq, ttwu_count);
  1982. if (cpu == this_cpu)
  1983. schedstat_inc(rq, ttwu_local);
  1984. else {
  1985. struct sched_domain *sd;
  1986. for_each_domain(this_cpu, sd) {
  1987. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  1988. schedstat_inc(sd, ttwu_wake_remote);
  1989. break;
  1990. }
  1991. }
  1992. }
  1993. #endif /* CONFIG_SCHEDSTATS */
  1994. out_activate:
  1995. #endif /* CONFIG_SMP */
  1996. schedstat_inc(p, se.nr_wakeups);
  1997. if (wake_flags & WF_SYNC)
  1998. schedstat_inc(p, se.nr_wakeups_sync);
  1999. if (orig_cpu != cpu)
  2000. schedstat_inc(p, se.nr_wakeups_migrate);
  2001. if (cpu == this_cpu)
  2002. schedstat_inc(p, se.nr_wakeups_local);
  2003. else
  2004. schedstat_inc(p, se.nr_wakeups_remote);
  2005. activate_task(rq, p, 1);
  2006. success = 1;
  2007. /*
  2008. * Only attribute actual wakeups done by this task.
  2009. */
  2010. if (!in_interrupt()) {
  2011. struct sched_entity *se = &current->se;
  2012. u64 sample = se->sum_exec_runtime;
  2013. if (se->last_wakeup)
  2014. sample -= se->last_wakeup;
  2015. else
  2016. sample -= se->start_runtime;
  2017. update_avg(&se->avg_wakeup, sample);
  2018. se->last_wakeup = se->sum_exec_runtime;
  2019. }
  2020. out_running:
  2021. trace_sched_wakeup(rq, p, success);
  2022. check_preempt_curr(rq, p, wake_flags);
  2023. p->state = TASK_RUNNING;
  2024. #ifdef CONFIG_SMP
  2025. if (p->sched_class->task_wake_up)
  2026. p->sched_class->task_wake_up(rq, p);
  2027. #endif
  2028. out:
  2029. task_rq_unlock(rq, &flags);
  2030. put_cpu();
  2031. return success;
  2032. }
  2033. /**
  2034. * wake_up_process - Wake up a specific process
  2035. * @p: The process to be woken up.
  2036. *
  2037. * Attempt to wake up the nominated process and move it to the set of runnable
  2038. * processes. Returns 1 if the process was woken up, 0 if it was already
  2039. * running.
  2040. *
  2041. * It may be assumed that this function implies a write memory barrier before
  2042. * changing the task state if and only if any tasks are woken up.
  2043. */
  2044. int wake_up_process(struct task_struct *p)
  2045. {
  2046. return try_to_wake_up(p, TASK_ALL, 0);
  2047. }
  2048. EXPORT_SYMBOL(wake_up_process);
  2049. int wake_up_state(struct task_struct *p, unsigned int state)
  2050. {
  2051. return try_to_wake_up(p, state, 0);
  2052. }
  2053. /*
  2054. * Perform scheduler related setup for a newly forked process p.
  2055. * p is forked by current.
  2056. *
  2057. * __sched_fork() is basic setup used by init_idle() too:
  2058. */
  2059. static void __sched_fork(struct task_struct *p)
  2060. {
  2061. p->se.exec_start = 0;
  2062. p->se.sum_exec_runtime = 0;
  2063. p->se.prev_sum_exec_runtime = 0;
  2064. p->se.nr_migrations = 0;
  2065. p->se.last_wakeup = 0;
  2066. p->se.avg_overlap = 0;
  2067. p->se.start_runtime = 0;
  2068. p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
  2069. p->se.avg_running = 0;
  2070. #ifdef CONFIG_SCHEDSTATS
  2071. p->se.wait_start = 0;
  2072. p->se.wait_max = 0;
  2073. p->se.wait_count = 0;
  2074. p->se.wait_sum = 0;
  2075. p->se.sleep_start = 0;
  2076. p->se.sleep_max = 0;
  2077. p->se.sum_sleep_runtime = 0;
  2078. p->se.block_start = 0;
  2079. p->se.block_max = 0;
  2080. p->se.exec_max = 0;
  2081. p->se.slice_max = 0;
  2082. p->se.nr_migrations_cold = 0;
  2083. p->se.nr_failed_migrations_affine = 0;
  2084. p->se.nr_failed_migrations_running = 0;
  2085. p->se.nr_failed_migrations_hot = 0;
  2086. p->se.nr_forced_migrations = 0;
  2087. p->se.nr_forced2_migrations = 0;
  2088. p->se.nr_wakeups = 0;
  2089. p->se.nr_wakeups_sync = 0;
  2090. p->se.nr_wakeups_migrate = 0;
  2091. p->se.nr_wakeups_local = 0;
  2092. p->se.nr_wakeups_remote = 0;
  2093. p->se.nr_wakeups_affine = 0;
  2094. p->se.nr_wakeups_affine_attempts = 0;
  2095. p->se.nr_wakeups_passive = 0;
  2096. p->se.nr_wakeups_idle = 0;
  2097. #endif
  2098. INIT_LIST_HEAD(&p->rt.run_list);
  2099. p->se.on_rq = 0;
  2100. INIT_LIST_HEAD(&p->se.group_node);
  2101. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2102. INIT_HLIST_HEAD(&p->preempt_notifiers);
  2103. #endif
  2104. /*
  2105. * We mark the process as running here, but have not actually
  2106. * inserted it onto the runqueue yet. This guarantees that
  2107. * nobody will actually run it, and a signal or other external
  2108. * event cannot wake it up and insert it on the runqueue either.
  2109. */
  2110. p->state = TASK_RUNNING;
  2111. }
  2112. /*
  2113. * fork()/clone()-time setup:
  2114. */
  2115. void sched_fork(struct task_struct *p, int clone_flags)
  2116. {
  2117. int cpu = get_cpu();
  2118. __sched_fork(p);
  2119. /*
  2120. * Make sure we do not leak PI boosting priority to the child.
  2121. */
  2122. p->prio = current->normal_prio;
  2123. /*
  2124. * Revert to default priority/policy on fork if requested.
  2125. */
  2126. if (unlikely(p->sched_reset_on_fork)) {
  2127. if (p->policy == SCHED_FIFO || p->policy == SCHED_RR)
  2128. p->policy = SCHED_NORMAL;
  2129. if (p->normal_prio < DEFAULT_PRIO)
  2130. p->prio = DEFAULT_PRIO;
  2131. if (PRIO_TO_NICE(p->static_prio) < 0) {
  2132. p->static_prio = NICE_TO_PRIO(0);
  2133. set_load_weight(p);
  2134. }
  2135. /*
  2136. * We don't need the reset flag anymore after the fork. It has
  2137. * fulfilled its duty:
  2138. */
  2139. p->sched_reset_on_fork = 0;
  2140. }
  2141. if (!rt_prio(p->prio))
  2142. p->sched_class = &fair_sched_class;
  2143. #ifdef CONFIG_SMP
  2144. cpu = p->sched_class->select_task_rq(p, SD_BALANCE_FORK, 0);
  2145. #endif
  2146. set_task_cpu(p, cpu);
  2147. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  2148. if (likely(sched_info_on()))
  2149. memset(&p->sched_info, 0, sizeof(p->sched_info));
  2150. #endif
  2151. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  2152. p->oncpu = 0;
  2153. #endif
  2154. #ifdef CONFIG_PREEMPT
  2155. /* Want to start with kernel preemption disabled. */
  2156. task_thread_info(p)->preempt_count = 1;
  2157. #endif
  2158. plist_node_init(&p->pushable_tasks, MAX_PRIO);
  2159. put_cpu();
  2160. }
  2161. /*
  2162. * wake_up_new_task - wake up a newly created task for the first time.
  2163. *
  2164. * This function will do some initial scheduler statistics housekeeping
  2165. * that must be done for every newly created context, then puts the task
  2166. * on the runqueue and wakes it.
  2167. */
  2168. void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  2169. {
  2170. unsigned long flags;
  2171. struct rq *rq;
  2172. rq = task_rq_lock(p, &flags);
  2173. BUG_ON(p->state != TASK_RUNNING);
  2174. update_rq_clock(rq);
  2175. p->prio = effective_prio(p);
  2176. if (!p->sched_class->task_new || !current->se.on_rq) {
  2177. activate_task(rq, p, 0);
  2178. } else {
  2179. /*
  2180. * Let the scheduling class do new task startup
  2181. * management (if any):
  2182. */
  2183. p->sched_class->task_new(rq, p);
  2184. inc_nr_running(rq);
  2185. }
  2186. trace_sched_wakeup_new(rq, p, 1);
  2187. check_preempt_curr(rq, p, WF_FORK);
  2188. #ifdef CONFIG_SMP
  2189. if (p->sched_class->task_wake_up)
  2190. p->sched_class->task_wake_up(rq, p);
  2191. #endif
  2192. task_rq_unlock(rq, &flags);
  2193. }
  2194. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2195. /**
  2196. * preempt_notifier_register - tell me when current is being preempted & rescheduled
  2197. * @notifier: notifier struct to register
  2198. */
  2199. void preempt_notifier_register(struct preempt_notifier *notifier)
  2200. {
  2201. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  2202. }
  2203. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  2204. /**
  2205. * preempt_notifier_unregister - no longer interested in preemption notifications
  2206. * @notifier: notifier struct to unregister
  2207. *
  2208. * This is safe to call from within a preemption notifier.
  2209. */
  2210. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  2211. {
  2212. hlist_del(&notifier->link);
  2213. }
  2214. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  2215. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2216. {
  2217. struct preempt_notifier *notifier;
  2218. struct hlist_node *node;
  2219. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2220. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  2221. }
  2222. static void
  2223. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2224. struct task_struct *next)
  2225. {
  2226. struct preempt_notifier *notifier;
  2227. struct hlist_node *node;
  2228. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2229. notifier->ops->sched_out(notifier, next);
  2230. }
  2231. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  2232. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2233. {
  2234. }
  2235. static void
  2236. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2237. struct task_struct *next)
  2238. {
  2239. }
  2240. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  2241. /**
  2242. * prepare_task_switch - prepare to switch tasks
  2243. * @rq: the runqueue preparing to switch
  2244. * @prev: the current task that is being switched out
  2245. * @next: the task we are going to switch to.
  2246. *
  2247. * This is called with the rq lock held and interrupts off. It must
  2248. * be paired with a subsequent finish_task_switch after the context
  2249. * switch.
  2250. *
  2251. * prepare_task_switch sets up locking and calls architecture specific
  2252. * hooks.
  2253. */
  2254. static inline void
  2255. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  2256. struct task_struct *next)
  2257. {
  2258. fire_sched_out_preempt_notifiers(prev, next);
  2259. prepare_lock_switch(rq, next);
  2260. prepare_arch_switch(next);
  2261. }
  2262. /**
  2263. * finish_task_switch - clean up after a task-switch
  2264. * @rq: runqueue associated with task-switch
  2265. * @prev: the thread we just switched away from.
  2266. *
  2267. * finish_task_switch must be called after the context switch, paired
  2268. * with a prepare_task_switch call before the context switch.
  2269. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  2270. * and do any other architecture-specific cleanup actions.
  2271. *
  2272. * Note that we may have delayed dropping an mm in context_switch(). If
  2273. * so, we finish that here outside of the runqueue lock. (Doing it
  2274. * with the lock held can cause deadlocks; see schedule() for
  2275. * details.)
  2276. */
  2277. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  2278. __releases(rq->lock)
  2279. {
  2280. struct mm_struct *mm = rq->prev_mm;
  2281. long prev_state;
  2282. rq->prev_mm = NULL;
  2283. /*
  2284. * A task struct has one reference for the use as "current".
  2285. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  2286. * schedule one last time. The schedule call will never return, and
  2287. * the scheduled task must drop that reference.
  2288. * The test for TASK_DEAD must occur while the runqueue locks are
  2289. * still held, otherwise prev could be scheduled on another cpu, die
  2290. * there before we look at prev->state, and then the reference would
  2291. * be dropped twice.
  2292. * Manfred Spraul <manfred@colorfullife.com>
  2293. */
  2294. prev_state = prev->state;
  2295. finish_arch_switch(prev);
  2296. perf_counter_task_sched_in(current, cpu_of(rq));
  2297. finish_lock_switch(rq, prev);
  2298. fire_sched_in_preempt_notifiers(current);
  2299. if (mm)
  2300. mmdrop(mm);
  2301. if (unlikely(prev_state == TASK_DEAD)) {
  2302. /*
  2303. * Remove function-return probe instances associated with this
  2304. * task and put them back on the free list.
  2305. */
  2306. kprobe_flush_task(prev);
  2307. put_task_struct(prev);
  2308. }
  2309. }
  2310. #ifdef CONFIG_SMP
  2311. /* assumes rq->lock is held */
  2312. static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
  2313. {
  2314. if (prev->sched_class->pre_schedule)
  2315. prev->sched_class->pre_schedule(rq, prev);
  2316. }
  2317. /* rq->lock is NOT held, but preemption is disabled */
  2318. static inline void post_schedule(struct rq *rq)
  2319. {
  2320. if (rq->post_schedule) {
  2321. unsigned long flags;
  2322. spin_lock_irqsave(&rq->lock, flags);
  2323. if (rq->curr->sched_class->post_schedule)
  2324. rq->curr->sched_class->post_schedule(rq);
  2325. spin_unlock_irqrestore(&rq->lock, flags);
  2326. rq->post_schedule = 0;
  2327. }
  2328. }
  2329. #else
  2330. static inline void pre_schedule(struct rq *rq, struct task_struct *p)
  2331. {
  2332. }
  2333. static inline void post_schedule(struct rq *rq)
  2334. {
  2335. }
  2336. #endif
  2337. /**
  2338. * schedule_tail - first thing a freshly forked thread must call.
  2339. * @prev: the thread we just switched away from.
  2340. */
  2341. asmlinkage void schedule_tail(struct task_struct *prev)
  2342. __releases(rq->lock)
  2343. {
  2344. struct rq *rq = this_rq();
  2345. finish_task_switch(rq, prev);
  2346. /*
  2347. * FIXME: do we need to worry about rq being invalidated by the
  2348. * task_switch?
  2349. */
  2350. post_schedule(rq);
  2351. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  2352. /* In this case, finish_task_switch does not reenable preemption */
  2353. preempt_enable();
  2354. #endif
  2355. if (current->set_child_tid)
  2356. put_user(task_pid_vnr(current), current->set_child_tid);
  2357. }
  2358. /*
  2359. * context_switch - switch to the new MM and the new
  2360. * thread's register state.
  2361. */
  2362. static inline void
  2363. context_switch(struct rq *rq, struct task_struct *prev,
  2364. struct task_struct *next)
  2365. {
  2366. struct mm_struct *mm, *oldmm;
  2367. prepare_task_switch(rq, prev, next);
  2368. trace_sched_switch(rq, prev, next);
  2369. mm = next->mm;
  2370. oldmm = prev->active_mm;
  2371. /*
  2372. * For paravirt, this is coupled with an exit in switch_to to
  2373. * combine the page table reload and the switch backend into
  2374. * one hypercall.
  2375. */
  2376. arch_start_context_switch(prev);
  2377. if (unlikely(!mm)) {
  2378. next->active_mm = oldmm;
  2379. atomic_inc(&oldmm->mm_count);
  2380. enter_lazy_tlb(oldmm, next);
  2381. } else
  2382. switch_mm(oldmm, mm, next);
  2383. if (unlikely(!prev->mm)) {
  2384. prev->active_mm = NULL;
  2385. rq->prev_mm = oldmm;
  2386. }
  2387. /*
  2388. * Since the runqueue lock will be released by the next
  2389. * task (which is an invalid locking op but in the case
  2390. * of the scheduler it's an obvious special-case), so we
  2391. * do an early lockdep release here:
  2392. */
  2393. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  2394. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  2395. #endif
  2396. /* Here we just switch the register state and the stack. */
  2397. switch_to(prev, next, prev);
  2398. barrier();
  2399. /*
  2400. * this_rq must be evaluated again because prev may have moved
  2401. * CPUs since it called schedule(), thus the 'rq' on its stack
  2402. * frame will be invalid.
  2403. */
  2404. finish_task_switch(this_rq(), prev);
  2405. }
  2406. /*
  2407. * nr_running, nr_uninterruptible and nr_context_switches:
  2408. *
  2409. * externally visible scheduler statistics: current number of runnable
  2410. * threads, current number of uninterruptible-sleeping threads, total
  2411. * number of context switches performed since bootup.
  2412. */
  2413. unsigned long nr_running(void)
  2414. {
  2415. unsigned long i, sum = 0;
  2416. for_each_online_cpu(i)
  2417. sum += cpu_rq(i)->nr_running;
  2418. return sum;
  2419. }
  2420. unsigned long nr_uninterruptible(void)
  2421. {
  2422. unsigned long i, sum = 0;
  2423. for_each_possible_cpu(i)
  2424. sum += cpu_rq(i)->nr_uninterruptible;
  2425. /*
  2426. * Since we read the counters lockless, it might be slightly
  2427. * inaccurate. Do not allow it to go below zero though:
  2428. */
  2429. if (unlikely((long)sum < 0))
  2430. sum = 0;
  2431. return sum;
  2432. }
  2433. unsigned long long nr_context_switches(void)
  2434. {
  2435. int i;
  2436. unsigned long long sum = 0;
  2437. for_each_possible_cpu(i)
  2438. sum += cpu_rq(i)->nr_switches;
  2439. return sum;
  2440. }
  2441. unsigned long nr_iowait(void)
  2442. {
  2443. unsigned long i, sum = 0;
  2444. for_each_possible_cpu(i)
  2445. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  2446. return sum;
  2447. }
  2448. /* Variables and functions for calc_load */
  2449. static atomic_long_t calc_load_tasks;
  2450. static unsigned long calc_load_update;
  2451. unsigned long avenrun[3];
  2452. EXPORT_SYMBOL(avenrun);
  2453. /**
  2454. * get_avenrun - get the load average array
  2455. * @loads: pointer to dest load array
  2456. * @offset: offset to add
  2457. * @shift: shift count to shift the result left
  2458. *
  2459. * These values are estimates at best, so no need for locking.
  2460. */
  2461. void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
  2462. {
  2463. loads[0] = (avenrun[0] + offset) << shift;
  2464. loads[1] = (avenrun[1] + offset) << shift;
  2465. loads[2] = (avenrun[2] + offset) << shift;
  2466. }
  2467. static unsigned long
  2468. calc_load(unsigned long load, unsigned long exp, unsigned long active)
  2469. {
  2470. load *= exp;
  2471. load += active * (FIXED_1 - exp);
  2472. return load >> FSHIFT;
  2473. }
  2474. /*
  2475. * calc_load - update the avenrun load estimates 10 ticks after the
  2476. * CPUs have updated calc_load_tasks.
  2477. */
  2478. void calc_global_load(void)
  2479. {
  2480. unsigned long upd = calc_load_update + 10;
  2481. long active;
  2482. if (time_before(jiffies, upd))
  2483. return;
  2484. active = atomic_long_read(&calc_load_tasks);
  2485. active = active > 0 ? active * FIXED_1 : 0;
  2486. avenrun[0] = calc_load(avenrun[0], EXP_1, active);
  2487. avenrun[1] = calc_load(avenrun[1], EXP_5, active);
  2488. avenrun[2] = calc_load(avenrun[2], EXP_15, active);
  2489. calc_load_update += LOAD_FREQ;
  2490. }
  2491. /*
  2492. * Either called from update_cpu_load() or from a cpu going idle
  2493. */
  2494. static void calc_load_account_active(struct rq *this_rq)
  2495. {
  2496. long nr_active, delta;
  2497. nr_active = this_rq->nr_running;
  2498. nr_active += (long) this_rq->nr_uninterruptible;
  2499. if (nr_active != this_rq->calc_load_active) {
  2500. delta = nr_active - this_rq->calc_load_active;
  2501. this_rq->calc_load_active = nr_active;
  2502. atomic_long_add(delta, &calc_load_tasks);
  2503. }
  2504. }
  2505. /*
  2506. * Externally visible per-cpu scheduler statistics:
  2507. * cpu_nr_migrations(cpu) - number of migrations into that cpu
  2508. */
  2509. u64 cpu_nr_migrations(int cpu)
  2510. {
  2511. return cpu_rq(cpu)->nr_migrations_in;
  2512. }
  2513. /*
  2514. * Update rq->cpu_load[] statistics. This function is usually called every
  2515. * scheduler tick (TICK_NSEC).
  2516. */
  2517. static void update_cpu_load(struct rq *this_rq)
  2518. {
  2519. unsigned long this_load = this_rq->load.weight;
  2520. int i, scale;
  2521. this_rq->nr_load_updates++;
  2522. /* Update our load: */
  2523. for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  2524. unsigned long old_load, new_load;
  2525. /* scale is effectively 1 << i now, and >> i divides by scale */
  2526. old_load = this_rq->cpu_load[i];
  2527. new_load = this_load;
  2528. /*
  2529. * Round up the averaging division if load is increasing. This
  2530. * prevents us from getting stuck on 9 if the load is 10, for
  2531. * example.
  2532. */
  2533. if (new_load > old_load)
  2534. new_load += scale-1;
  2535. this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
  2536. }
  2537. if (time_after_eq(jiffies, this_rq->calc_load_update)) {
  2538. this_rq->calc_load_update += LOAD_FREQ;
  2539. calc_load_account_active(this_rq);
  2540. }
  2541. }
  2542. #ifdef CONFIG_SMP
  2543. /*
  2544. * double_rq_lock - safely lock two runqueues
  2545. *
  2546. * Note this does not disable interrupts like task_rq_lock,
  2547. * you need to do so manually before calling.
  2548. */
  2549. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  2550. __acquires(rq1->lock)
  2551. __acquires(rq2->lock)
  2552. {
  2553. BUG_ON(!irqs_disabled());
  2554. if (rq1 == rq2) {
  2555. spin_lock(&rq1->lock);
  2556. __acquire(rq2->lock); /* Fake it out ;) */
  2557. } else {
  2558. if (rq1 < rq2) {
  2559. spin_lock(&rq1->lock);
  2560. spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
  2561. } else {
  2562. spin_lock(&rq2->lock);
  2563. spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
  2564. }
  2565. }
  2566. update_rq_clock(rq1);
  2567. update_rq_clock(rq2);
  2568. }
  2569. /*
  2570. * double_rq_unlock - safely unlock two runqueues
  2571. *
  2572. * Note this does not restore interrupts like task_rq_unlock,
  2573. * you need to do so manually after calling.
  2574. */
  2575. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  2576. __releases(rq1->lock)
  2577. __releases(rq2->lock)
  2578. {
  2579. spin_unlock(&rq1->lock);
  2580. if (rq1 != rq2)
  2581. spin_unlock(&rq2->lock);
  2582. else
  2583. __release(rq2->lock);
  2584. }
  2585. /*
  2586. * If dest_cpu is allowed for this process, migrate the task to it.
  2587. * This is accomplished by forcing the cpu_allowed mask to only
  2588. * allow dest_cpu, which will force the cpu onto dest_cpu. Then
  2589. * the cpu_allowed mask is restored.
  2590. */
  2591. static void sched_migrate_task(struct task_struct *p, int dest_cpu)
  2592. {
  2593. struct migration_req req;
  2594. unsigned long flags;
  2595. struct rq *rq;
  2596. rq = task_rq_lock(p, &flags);
  2597. if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
  2598. || unlikely(!cpu_active(dest_cpu)))
  2599. goto out;
  2600. /* force the process onto the specified CPU */
  2601. if (migrate_task(p, dest_cpu, &req)) {
  2602. /* Need to wait for migration thread (might exit: take ref). */
  2603. struct task_struct *mt = rq->migration_thread;
  2604. get_task_struct(mt);
  2605. task_rq_unlock(rq, &flags);
  2606. wake_up_process(mt);
  2607. put_task_struct(mt);
  2608. wait_for_completion(&req.done);
  2609. return;
  2610. }
  2611. out:
  2612. task_rq_unlock(rq, &flags);
  2613. }
  2614. /*
  2615. * sched_exec - execve() is a valuable balancing opportunity, because at
  2616. * this point the task has the smallest effective memory and cache footprint.
  2617. */
  2618. void sched_exec(void)
  2619. {
  2620. int new_cpu, this_cpu = get_cpu();
  2621. new_cpu = current->sched_class->select_task_rq(current, SD_BALANCE_EXEC, 0);
  2622. put_cpu();
  2623. if (new_cpu != this_cpu)
  2624. sched_migrate_task(current, new_cpu);
  2625. }
  2626. /*
  2627. * pull_task - move a task from a remote runqueue to the local runqueue.
  2628. * Both runqueues must be locked.
  2629. */
  2630. static void pull_task(struct rq *src_rq, struct task_struct *p,
  2631. struct rq *this_rq, int this_cpu)
  2632. {
  2633. deactivate_task(src_rq, p, 0);
  2634. set_task_cpu(p, this_cpu);
  2635. activate_task(this_rq, p, 0);
  2636. /*
  2637. * Note that idle threads have a prio of MAX_PRIO, for this test
  2638. * to be always true for them.
  2639. */
  2640. check_preempt_curr(this_rq, p, 0);
  2641. }
  2642. /*
  2643. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  2644. */
  2645. static
  2646. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  2647. struct sched_domain *sd, enum cpu_idle_type idle,
  2648. int *all_pinned)
  2649. {
  2650. int tsk_cache_hot = 0;
  2651. /*
  2652. * We do not migrate tasks that are:
  2653. * 1) running (obviously), or
  2654. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  2655. * 3) are cache-hot on their current CPU.
  2656. */
  2657. if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
  2658. schedstat_inc(p, se.nr_failed_migrations_affine);
  2659. return 0;
  2660. }
  2661. *all_pinned = 0;
  2662. if (task_running(rq, p)) {
  2663. schedstat_inc(p, se.nr_failed_migrations_running);
  2664. return 0;
  2665. }
  2666. /*
  2667. * Aggressive migration if:
  2668. * 1) task is cache cold, or
  2669. * 2) too many balance attempts have failed.
  2670. */
  2671. tsk_cache_hot = task_hot(p, rq->clock, sd);
  2672. if (!tsk_cache_hot ||
  2673. sd->nr_balance_failed > sd->cache_nice_tries) {
  2674. #ifdef CONFIG_SCHEDSTATS
  2675. if (tsk_cache_hot) {
  2676. schedstat_inc(sd, lb_hot_gained[idle]);
  2677. schedstat_inc(p, se.nr_forced_migrations);
  2678. }
  2679. #endif
  2680. return 1;
  2681. }
  2682. if (tsk_cache_hot) {
  2683. schedstat_inc(p, se.nr_failed_migrations_hot);
  2684. return 0;
  2685. }
  2686. return 1;
  2687. }
  2688. static unsigned long
  2689. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2690. unsigned long max_load_move, struct sched_domain *sd,
  2691. enum cpu_idle_type idle, int *all_pinned,
  2692. int *this_best_prio, struct rq_iterator *iterator)
  2693. {
  2694. int loops = 0, pulled = 0, pinned = 0;
  2695. struct task_struct *p;
  2696. long rem_load_move = max_load_move;
  2697. if (max_load_move == 0)
  2698. goto out;
  2699. pinned = 1;
  2700. /*
  2701. * Start the load-balancing iterator:
  2702. */
  2703. p = iterator->start(iterator->arg);
  2704. next:
  2705. if (!p || loops++ > sysctl_sched_nr_migrate)
  2706. goto out;
  2707. if ((p->se.load.weight >> 1) > rem_load_move ||
  2708. !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2709. p = iterator->next(iterator->arg);
  2710. goto next;
  2711. }
  2712. pull_task(busiest, p, this_rq, this_cpu);
  2713. pulled++;
  2714. rem_load_move -= p->se.load.weight;
  2715. #ifdef CONFIG_PREEMPT
  2716. /*
  2717. * NEWIDLE balancing is a source of latency, so preemptible kernels
  2718. * will stop after the first task is pulled to minimize the critical
  2719. * section.
  2720. */
  2721. if (idle == CPU_NEWLY_IDLE)
  2722. goto out;
  2723. #endif
  2724. /*
  2725. * We only want to steal up to the prescribed amount of weighted load.
  2726. */
  2727. if (rem_load_move > 0) {
  2728. if (p->prio < *this_best_prio)
  2729. *this_best_prio = p->prio;
  2730. p = iterator->next(iterator->arg);
  2731. goto next;
  2732. }
  2733. out:
  2734. /*
  2735. * Right now, this is one of only two places pull_task() is called,
  2736. * so we can safely collect pull_task() stats here rather than
  2737. * inside pull_task().
  2738. */
  2739. schedstat_add(sd, lb_gained[idle], pulled);
  2740. if (all_pinned)
  2741. *all_pinned = pinned;
  2742. return max_load_move - rem_load_move;
  2743. }
  2744. /*
  2745. * move_tasks tries to move up to max_load_move weighted load from busiest to
  2746. * this_rq, as part of a balancing operation within domain "sd".
  2747. * Returns 1 if successful and 0 otherwise.
  2748. *
  2749. * Called with both runqueues locked.
  2750. */
  2751. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2752. unsigned long max_load_move,
  2753. struct sched_domain *sd, enum cpu_idle_type idle,
  2754. int *all_pinned)
  2755. {
  2756. const struct sched_class *class = sched_class_highest;
  2757. unsigned long total_load_moved = 0;
  2758. int this_best_prio = this_rq->curr->prio;
  2759. do {
  2760. total_load_moved +=
  2761. class->load_balance(this_rq, this_cpu, busiest,
  2762. max_load_move - total_load_moved,
  2763. sd, idle, all_pinned, &this_best_prio);
  2764. class = class->next;
  2765. #ifdef CONFIG_PREEMPT
  2766. /*
  2767. * NEWIDLE balancing is a source of latency, so preemptible
  2768. * kernels will stop after the first task is pulled to minimize
  2769. * the critical section.
  2770. */
  2771. if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
  2772. break;
  2773. #endif
  2774. } while (class && max_load_move > total_load_moved);
  2775. return total_load_moved > 0;
  2776. }
  2777. static int
  2778. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2779. struct sched_domain *sd, enum cpu_idle_type idle,
  2780. struct rq_iterator *iterator)
  2781. {
  2782. struct task_struct *p = iterator->start(iterator->arg);
  2783. int pinned = 0;
  2784. while (p) {
  2785. if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2786. pull_task(busiest, p, this_rq, this_cpu);
  2787. /*
  2788. * Right now, this is only the second place pull_task()
  2789. * is called, so we can safely collect pull_task()
  2790. * stats here rather than inside pull_task().
  2791. */
  2792. schedstat_inc(sd, lb_gained[idle]);
  2793. return 1;
  2794. }
  2795. p = iterator->next(iterator->arg);
  2796. }
  2797. return 0;
  2798. }
  2799. /*
  2800. * move_one_task tries to move exactly one task from busiest to this_rq, as
  2801. * part of active balancing operations within "domain".
  2802. * Returns 1 if successful and 0 otherwise.
  2803. *
  2804. * Called with both runqueues locked.
  2805. */
  2806. static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2807. struct sched_domain *sd, enum cpu_idle_type idle)
  2808. {
  2809. const struct sched_class *class;
  2810. for_each_class(class) {
  2811. if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
  2812. return 1;
  2813. }
  2814. return 0;
  2815. }
  2816. /********** Helpers for find_busiest_group ************************/
  2817. /*
  2818. * sd_lb_stats - Structure to store the statistics of a sched_domain
  2819. * during load balancing.
  2820. */
  2821. struct sd_lb_stats {
  2822. struct sched_group *busiest; /* Busiest group in this sd */
  2823. struct sched_group *this; /* Local group in this sd */
  2824. unsigned long total_load; /* Total load of all groups in sd */
  2825. unsigned long total_pwr; /* Total power of all groups in sd */
  2826. unsigned long avg_load; /* Average load across all groups in sd */
  2827. /** Statistics of this group */
  2828. unsigned long this_load;
  2829. unsigned long this_load_per_task;
  2830. unsigned long this_nr_running;
  2831. /* Statistics of the busiest group */
  2832. unsigned long max_load;
  2833. unsigned long busiest_load_per_task;
  2834. unsigned long busiest_nr_running;
  2835. int group_imb; /* Is there imbalance in this sd */
  2836. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2837. int power_savings_balance; /* Is powersave balance needed for this sd */
  2838. struct sched_group *group_min; /* Least loaded group in sd */
  2839. struct sched_group *group_leader; /* Group which relieves group_min */
  2840. unsigned long min_load_per_task; /* load_per_task in group_min */
  2841. unsigned long leader_nr_running; /* Nr running of group_leader */
  2842. unsigned long min_nr_running; /* Nr running of group_min */
  2843. #endif
  2844. };
  2845. /*
  2846. * sg_lb_stats - stats of a sched_group required for load_balancing
  2847. */
  2848. struct sg_lb_stats {
  2849. unsigned long avg_load; /*Avg load across the CPUs of the group */
  2850. unsigned long group_load; /* Total load over the CPUs of the group */
  2851. unsigned long sum_nr_running; /* Nr tasks running in the group */
  2852. unsigned long sum_weighted_load; /* Weighted load of group's tasks */
  2853. unsigned long group_capacity;
  2854. int group_imb; /* Is there an imbalance in the group ? */
  2855. };
  2856. /**
  2857. * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
  2858. * @group: The group whose first cpu is to be returned.
  2859. */
  2860. static inline unsigned int group_first_cpu(struct sched_group *group)
  2861. {
  2862. return cpumask_first(sched_group_cpus(group));
  2863. }
  2864. /**
  2865. * get_sd_load_idx - Obtain the load index for a given sched domain.
  2866. * @sd: The sched_domain whose load_idx is to be obtained.
  2867. * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
  2868. */
  2869. static inline int get_sd_load_idx(struct sched_domain *sd,
  2870. enum cpu_idle_type idle)
  2871. {
  2872. int load_idx;
  2873. switch (idle) {
  2874. case CPU_NOT_IDLE:
  2875. load_idx = sd->busy_idx;
  2876. break;
  2877. case CPU_NEWLY_IDLE:
  2878. load_idx = sd->newidle_idx;
  2879. break;
  2880. default:
  2881. load_idx = sd->idle_idx;
  2882. break;
  2883. }
  2884. return load_idx;
  2885. }
  2886. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2887. /**
  2888. * init_sd_power_savings_stats - Initialize power savings statistics for
  2889. * the given sched_domain, during load balancing.
  2890. *
  2891. * @sd: Sched domain whose power-savings statistics are to be initialized.
  2892. * @sds: Variable containing the statistics for sd.
  2893. * @idle: Idle status of the CPU at which we're performing load-balancing.
  2894. */
  2895. static inline void init_sd_power_savings_stats(struct sched_domain *sd,
  2896. struct sd_lb_stats *sds, enum cpu_idle_type idle)
  2897. {
  2898. /*
  2899. * Busy processors will not participate in power savings
  2900. * balance.
  2901. */
  2902. if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2903. sds->power_savings_balance = 0;
  2904. else {
  2905. sds->power_savings_balance = 1;
  2906. sds->min_nr_running = ULONG_MAX;
  2907. sds->leader_nr_running = 0;
  2908. }
  2909. }
  2910. /**
  2911. * update_sd_power_savings_stats - Update the power saving stats for a
  2912. * sched_domain while performing load balancing.
  2913. *
  2914. * @group: sched_group belonging to the sched_domain under consideration.
  2915. * @sds: Variable containing the statistics of the sched_domain
  2916. * @local_group: Does group contain the CPU for which we're performing
  2917. * load balancing ?
  2918. * @sgs: Variable containing the statistics of the group.
  2919. */
  2920. static inline void update_sd_power_savings_stats(struct sched_group *group,
  2921. struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
  2922. {
  2923. if (!sds->power_savings_balance)
  2924. return;
  2925. /*
  2926. * If the local group is idle or completely loaded
  2927. * no need to do power savings balance at this domain
  2928. */
  2929. if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
  2930. !sds->this_nr_running))
  2931. sds->power_savings_balance = 0;
  2932. /*
  2933. * If a group is already running at full capacity or idle,
  2934. * don't include that group in power savings calculations
  2935. */
  2936. if (!sds->power_savings_balance ||
  2937. sgs->sum_nr_running >= sgs->group_capacity ||
  2938. !sgs->sum_nr_running)
  2939. return;
  2940. /*
  2941. * Calculate the group which has the least non-idle load.
  2942. * This is the group from where we need to pick up the load
  2943. * for saving power
  2944. */
  2945. if ((sgs->sum_nr_running < sds->min_nr_running) ||
  2946. (sgs->sum_nr_running == sds->min_nr_running &&
  2947. group_first_cpu(group) > group_first_cpu(sds->group_min))) {
  2948. sds->group_min = group;
  2949. sds->min_nr_running = sgs->sum_nr_running;
  2950. sds->min_load_per_task = sgs->sum_weighted_load /
  2951. sgs->sum_nr_running;
  2952. }
  2953. /*
  2954. * Calculate the group which is almost near its
  2955. * capacity but still has some space to pick up some load
  2956. * from other group and save more power
  2957. */
  2958. if (sgs->sum_nr_running + 1 > sgs->group_capacity)
  2959. return;
  2960. if (sgs->sum_nr_running > sds->leader_nr_running ||
  2961. (sgs->sum_nr_running == sds->leader_nr_running &&
  2962. group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
  2963. sds->group_leader = group;
  2964. sds->leader_nr_running = sgs->sum_nr_running;
  2965. }
  2966. }
  2967. /**
  2968. * check_power_save_busiest_group - see if there is potential for some power-savings balance
  2969. * @sds: Variable containing the statistics of the sched_domain
  2970. * under consideration.
  2971. * @this_cpu: Cpu at which we're currently performing load-balancing.
  2972. * @imbalance: Variable to store the imbalance.
  2973. *
  2974. * Description:
  2975. * Check if we have potential to perform some power-savings balance.
  2976. * If yes, set the busiest group to be the least loaded group in the
  2977. * sched_domain, so that it's CPUs can be put to idle.
  2978. *
  2979. * Returns 1 if there is potential to perform power-savings balance.
  2980. * Else returns 0.
  2981. */
  2982. static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
  2983. int this_cpu, unsigned long *imbalance)
  2984. {
  2985. if (!sds->power_savings_balance)
  2986. return 0;
  2987. if (sds->this != sds->group_leader ||
  2988. sds->group_leader == sds->group_min)
  2989. return 0;
  2990. *imbalance = sds->min_load_per_task;
  2991. sds->busiest = sds->group_min;
  2992. return 1;
  2993. }
  2994. #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  2995. static inline void init_sd_power_savings_stats(struct sched_domain *sd,
  2996. struct sd_lb_stats *sds, enum cpu_idle_type idle)
  2997. {
  2998. return;
  2999. }
  3000. static inline void update_sd_power_savings_stats(struct sched_group *group,
  3001. struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
  3002. {
  3003. return;
  3004. }
  3005. static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
  3006. int this_cpu, unsigned long *imbalance)
  3007. {
  3008. return 0;
  3009. }
  3010. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  3011. unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
  3012. {
  3013. return SCHED_LOAD_SCALE;
  3014. }
  3015. unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
  3016. {
  3017. return default_scale_freq_power(sd, cpu);
  3018. }
  3019. unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
  3020. {
  3021. unsigned long weight = cpumask_weight(sched_domain_span(sd));
  3022. unsigned long smt_gain = sd->smt_gain;
  3023. smt_gain /= weight;
  3024. return smt_gain;
  3025. }
  3026. unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
  3027. {
  3028. return default_scale_smt_power(sd, cpu);
  3029. }
  3030. unsigned long scale_rt_power(int cpu)
  3031. {
  3032. struct rq *rq = cpu_rq(cpu);
  3033. u64 total, available;
  3034. sched_avg_update(rq);
  3035. total = sched_avg_period() + (rq->clock - rq->age_stamp);
  3036. available = total - rq->rt_avg;
  3037. if (unlikely((s64)total < SCHED_LOAD_SCALE))
  3038. total = SCHED_LOAD_SCALE;
  3039. total >>= SCHED_LOAD_SHIFT;
  3040. return div_u64(available, total);
  3041. }
  3042. static void update_cpu_power(struct sched_domain *sd, int cpu)
  3043. {
  3044. unsigned long weight = cpumask_weight(sched_domain_span(sd));
  3045. unsigned long power = SCHED_LOAD_SCALE;
  3046. struct sched_group *sdg = sd->groups;
  3047. if (sched_feat(ARCH_POWER))
  3048. power *= arch_scale_freq_power(sd, cpu);
  3049. else
  3050. power *= default_scale_freq_power(sd, cpu);
  3051. power >>= SCHED_LOAD_SHIFT;
  3052. if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
  3053. if (sched_feat(ARCH_POWER))
  3054. power *= arch_scale_smt_power(sd, cpu);
  3055. else
  3056. power *= default_scale_smt_power(sd, cpu);
  3057. power >>= SCHED_LOAD_SHIFT;
  3058. }
  3059. power *= scale_rt_power(cpu);
  3060. power >>= SCHED_LOAD_SHIFT;
  3061. if (!power)
  3062. power = 1;
  3063. sdg->cpu_power = power;
  3064. }
  3065. static void update_group_power(struct sched_domain *sd, int cpu)
  3066. {
  3067. struct sched_domain *child = sd->child;
  3068. struct sched_group *group, *sdg = sd->groups;
  3069. unsigned long power;
  3070. if (!child) {
  3071. update_cpu_power(sd, cpu);
  3072. return;
  3073. }
  3074. power = 0;
  3075. group = child->groups;
  3076. do {
  3077. power += group->cpu_power;
  3078. group = group->next;
  3079. } while (group != child->groups);
  3080. sdg->cpu_power = power;
  3081. }
  3082. /**
  3083. * update_sg_lb_stats - Update sched_group's statistics for load balancing.
  3084. * @group: sched_group whose statistics are to be updated.
  3085. * @this_cpu: Cpu for which load balance is currently performed.
  3086. * @idle: Idle status of this_cpu
  3087. * @load_idx: Load index of sched_domain of this_cpu for load calc.
  3088. * @sd_idle: Idle status of the sched_domain containing group.
  3089. * @local_group: Does group contain this_cpu.
  3090. * @cpus: Set of cpus considered for load balancing.
  3091. * @balance: Should we balance.
  3092. * @sgs: variable to hold the statistics for this group.
  3093. */
  3094. static inline void update_sg_lb_stats(struct sched_domain *sd,
  3095. struct sched_group *group, int this_cpu,
  3096. enum cpu_idle_type idle, int load_idx, int *sd_idle,
  3097. int local_group, const struct cpumask *cpus,
  3098. int *balance, struct sg_lb_stats *sgs)
  3099. {
  3100. unsigned long load, max_cpu_load, min_cpu_load;
  3101. int i;
  3102. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  3103. unsigned long sum_avg_load_per_task;
  3104. unsigned long avg_load_per_task;
  3105. if (local_group) {
  3106. balance_cpu = group_first_cpu(group);
  3107. if (balance_cpu == this_cpu)
  3108. update_group_power(sd, this_cpu);
  3109. }
  3110. /* Tally up the load of all CPUs in the group */
  3111. sum_avg_load_per_task = avg_load_per_task = 0;
  3112. max_cpu_load = 0;
  3113. min_cpu_load = ~0UL;
  3114. for_each_cpu_and(i, sched_group_cpus(group), cpus) {
  3115. struct rq *rq = cpu_rq(i);
  3116. if (*sd_idle && rq->nr_running)
  3117. *sd_idle = 0;
  3118. /* Bias balancing toward cpus of our domain */
  3119. if (local_group) {
  3120. if (idle_cpu(i) && !first_idle_cpu) {
  3121. first_idle_cpu = 1;
  3122. balance_cpu = i;
  3123. }
  3124. load = target_load(i, load_idx);
  3125. } else {
  3126. load = source_load(i, load_idx);
  3127. if (load > max_cpu_load)
  3128. max_cpu_load = load;
  3129. if (min_cpu_load > load)
  3130. min_cpu_load = load;
  3131. }
  3132. sgs->group_load += load;
  3133. sgs->sum_nr_running += rq->nr_running;
  3134. sgs->sum_weighted_load += weighted_cpuload(i);
  3135. sum_avg_load_per_task += cpu_avg_load_per_task(i);
  3136. }
  3137. /*
  3138. * First idle cpu or the first cpu(busiest) in this sched group
  3139. * is eligible for doing load balancing at this and above
  3140. * domains. In the newly idle case, we will allow all the cpu's
  3141. * to do the newly idle load balance.
  3142. */
  3143. if (idle != CPU_NEWLY_IDLE && local_group &&
  3144. balance_cpu != this_cpu && balance) {
  3145. *balance = 0;
  3146. return;
  3147. }
  3148. /* Adjust by relative CPU power of the group */
  3149. sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
  3150. /*
  3151. * Consider the group unbalanced when the imbalance is larger
  3152. * than the average weight of two tasks.
  3153. *
  3154. * APZ: with cgroup the avg task weight can vary wildly and
  3155. * might not be a suitable number - should we keep a
  3156. * normalized nr_running number somewhere that negates
  3157. * the hierarchy?
  3158. */
  3159. avg_load_per_task = (sum_avg_load_per_task * SCHED_LOAD_SCALE) /
  3160. group->cpu_power;
  3161. if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
  3162. sgs->group_imb = 1;
  3163. sgs->group_capacity =
  3164. DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
  3165. }
  3166. /**
  3167. * update_sd_lb_stats - Update sched_group's statistics for load balancing.
  3168. * @sd: sched_domain whose statistics are to be updated.
  3169. * @this_cpu: Cpu for which load balance is currently performed.
  3170. * @idle: Idle status of this_cpu
  3171. * @sd_idle: Idle status of the sched_domain containing group.
  3172. * @cpus: Set of cpus considered for load balancing.
  3173. * @balance: Should we balance.
  3174. * @sds: variable to hold the statistics for this sched_domain.
  3175. */
  3176. static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
  3177. enum cpu_idle_type idle, int *sd_idle,
  3178. const struct cpumask *cpus, int *balance,
  3179. struct sd_lb_stats *sds)
  3180. {
  3181. struct sched_domain *child = sd->child;
  3182. struct sched_group *group = sd->groups;
  3183. struct sg_lb_stats sgs;
  3184. int load_idx, prefer_sibling = 0;
  3185. if (child && child->flags & SD_PREFER_SIBLING)
  3186. prefer_sibling = 1;
  3187. init_sd_power_savings_stats(sd, sds, idle);
  3188. load_idx = get_sd_load_idx(sd, idle);
  3189. do {
  3190. int local_group;
  3191. local_group = cpumask_test_cpu(this_cpu,
  3192. sched_group_cpus(group));
  3193. memset(&sgs, 0, sizeof(sgs));
  3194. update_sg_lb_stats(sd, group, this_cpu, idle, load_idx, sd_idle,
  3195. local_group, cpus, balance, &sgs);
  3196. if (local_group && balance && !(*balance))
  3197. return;
  3198. sds->total_load += sgs.group_load;
  3199. sds->total_pwr += group->cpu_power;
  3200. /*
  3201. * In case the child domain prefers tasks go to siblings
  3202. * first, lower the group capacity to one so that we'll try
  3203. * and move all the excess tasks away.
  3204. */
  3205. if (prefer_sibling)
  3206. sgs.group_capacity = min(sgs.group_capacity, 1UL);
  3207. if (local_group) {
  3208. sds->this_load = sgs.avg_load;
  3209. sds->this = group;
  3210. sds->this_nr_running = sgs.sum_nr_running;
  3211. sds->this_load_per_task = sgs.sum_weighted_load;
  3212. } else if (sgs.avg_load > sds->max_load &&
  3213. (sgs.sum_nr_running > sgs.group_capacity ||
  3214. sgs.group_imb)) {
  3215. sds->max_load = sgs.avg_load;
  3216. sds->busiest = group;
  3217. sds->busiest_nr_running = sgs.sum_nr_running;
  3218. sds->busiest_load_per_task = sgs.sum_weighted_load;
  3219. sds->group_imb = sgs.group_imb;
  3220. }
  3221. update_sd_power_savings_stats(group, sds, local_group, &sgs);
  3222. group = group->next;
  3223. } while (group != sd->groups);
  3224. }
  3225. /**
  3226. * fix_small_imbalance - Calculate the minor imbalance that exists
  3227. * amongst the groups of a sched_domain, during
  3228. * load balancing.
  3229. * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
  3230. * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
  3231. * @imbalance: Variable to store the imbalance.
  3232. */
  3233. static inline void fix_small_imbalance(struct sd_lb_stats *sds,
  3234. int this_cpu, unsigned long *imbalance)
  3235. {
  3236. unsigned long tmp, pwr_now = 0, pwr_move = 0;
  3237. unsigned int imbn = 2;
  3238. if (sds->this_nr_running) {
  3239. sds->this_load_per_task /= sds->this_nr_running;
  3240. if (sds->busiest_load_per_task >
  3241. sds->this_load_per_task)
  3242. imbn = 1;
  3243. } else
  3244. sds->this_load_per_task =
  3245. cpu_avg_load_per_task(this_cpu);
  3246. if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
  3247. sds->busiest_load_per_task * imbn) {
  3248. *imbalance = sds->busiest_load_per_task;
  3249. return;
  3250. }
  3251. /*
  3252. * OK, we don't have enough imbalance to justify moving tasks,
  3253. * however we may be able to increase total CPU power used by
  3254. * moving them.
  3255. */
  3256. pwr_now += sds->busiest->cpu_power *
  3257. min(sds->busiest_load_per_task, sds->max_load);
  3258. pwr_now += sds->this->cpu_power *
  3259. min(sds->this_load_per_task, sds->this_load);
  3260. pwr_now /= SCHED_LOAD_SCALE;
  3261. /* Amount of load we'd subtract */
  3262. tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
  3263. sds->busiest->cpu_power;
  3264. if (sds->max_load > tmp)
  3265. pwr_move += sds->busiest->cpu_power *
  3266. min(sds->busiest_load_per_task, sds->max_load - tmp);
  3267. /* Amount of load we'd add */
  3268. if (sds->max_load * sds->busiest->cpu_power <
  3269. sds->busiest_load_per_task * SCHED_LOAD_SCALE)
  3270. tmp = (sds->max_load * sds->busiest->cpu_power) /
  3271. sds->this->cpu_power;
  3272. else
  3273. tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
  3274. sds->this->cpu_power;
  3275. pwr_move += sds->this->cpu_power *
  3276. min(sds->this_load_per_task, sds->this_load + tmp);
  3277. pwr_move /= SCHED_LOAD_SCALE;
  3278. /* Move if we gain throughput */
  3279. if (pwr_move > pwr_now)
  3280. *imbalance = sds->busiest_load_per_task;
  3281. }
  3282. /**
  3283. * calculate_imbalance - Calculate the amount of imbalance present within the
  3284. * groups of a given sched_domain during load balance.
  3285. * @sds: statistics of the sched_domain whose imbalance is to be calculated.
  3286. * @this_cpu: Cpu for which currently load balance is being performed.
  3287. * @imbalance: The variable to store the imbalance.
  3288. */
  3289. static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
  3290. unsigned long *imbalance)
  3291. {
  3292. unsigned long max_pull;
  3293. /*
  3294. * In the presence of smp nice balancing, certain scenarios can have
  3295. * max load less than avg load(as we skip the groups at or below
  3296. * its cpu_power, while calculating max_load..)
  3297. */
  3298. if (sds->max_load < sds->avg_load) {
  3299. *imbalance = 0;
  3300. return fix_small_imbalance(sds, this_cpu, imbalance);
  3301. }
  3302. /* Don't want to pull so many tasks that a group would go idle */
  3303. max_pull = min(sds->max_load - sds->avg_load,
  3304. sds->max_load - sds->busiest_load_per_task);
  3305. /* How much load to actually move to equalise the imbalance */
  3306. *imbalance = min(max_pull * sds->busiest->cpu_power,
  3307. (sds->avg_load - sds->this_load) * sds->this->cpu_power)
  3308. / SCHED_LOAD_SCALE;
  3309. /*
  3310. * if *imbalance is less than the average load per runnable task
  3311. * there is no gaurantee that any tasks will be moved so we'll have
  3312. * a think about bumping its value to force at least one task to be
  3313. * moved
  3314. */
  3315. if (*imbalance < sds->busiest_load_per_task)
  3316. return fix_small_imbalance(sds, this_cpu, imbalance);
  3317. }
  3318. /******* find_busiest_group() helpers end here *********************/
  3319. /**
  3320. * find_busiest_group - Returns the busiest group within the sched_domain
  3321. * if there is an imbalance. If there isn't an imbalance, and
  3322. * the user has opted for power-savings, it returns a group whose
  3323. * CPUs can be put to idle by rebalancing those tasks elsewhere, if
  3324. * such a group exists.
  3325. *
  3326. * Also calculates the amount of weighted load which should be moved
  3327. * to restore balance.
  3328. *
  3329. * @sd: The sched_domain whose busiest group is to be returned.
  3330. * @this_cpu: The cpu for which load balancing is currently being performed.
  3331. * @imbalance: Variable which stores amount of weighted load which should
  3332. * be moved to restore balance/put a group to idle.
  3333. * @idle: The idle status of this_cpu.
  3334. * @sd_idle: The idleness of sd
  3335. * @cpus: The set of CPUs under consideration for load-balancing.
  3336. * @balance: Pointer to a variable indicating if this_cpu
  3337. * is the appropriate cpu to perform load balancing at this_level.
  3338. *
  3339. * Returns: - the busiest group if imbalance exists.
  3340. * - If no imbalance and user has opted for power-savings balance,
  3341. * return the least loaded group whose CPUs can be
  3342. * put to idle by rebalancing its tasks onto our group.
  3343. */
  3344. static struct sched_group *
  3345. find_busiest_group(struct sched_domain *sd, int this_cpu,
  3346. unsigned long *imbalance, enum cpu_idle_type idle,
  3347. int *sd_idle, const struct cpumask *cpus, int *balance)
  3348. {
  3349. struct sd_lb_stats sds;
  3350. memset(&sds, 0, sizeof(sds));
  3351. /*
  3352. * Compute the various statistics relavent for load balancing at
  3353. * this level.
  3354. */
  3355. update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
  3356. balance, &sds);
  3357. /* Cases where imbalance does not exist from POV of this_cpu */
  3358. /* 1) this_cpu is not the appropriate cpu to perform load balancing
  3359. * at this level.
  3360. * 2) There is no busy sibling group to pull from.
  3361. * 3) This group is the busiest group.
  3362. * 4) This group is more busy than the avg busieness at this
  3363. * sched_domain.
  3364. * 5) The imbalance is within the specified limit.
  3365. * 6) Any rebalance would lead to ping-pong
  3366. */
  3367. if (balance && !(*balance))
  3368. goto ret;
  3369. if (!sds.busiest || sds.busiest_nr_running == 0)
  3370. goto out_balanced;
  3371. if (sds.this_load >= sds.max_load)
  3372. goto out_balanced;
  3373. sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
  3374. if (sds.this_load >= sds.avg_load)
  3375. goto out_balanced;
  3376. if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
  3377. goto out_balanced;
  3378. sds.busiest_load_per_task /= sds.busiest_nr_running;
  3379. if (sds.group_imb)
  3380. sds.busiest_load_per_task =
  3381. min(sds.busiest_load_per_task, sds.avg_load);
  3382. /*
  3383. * We're trying to get all the cpus to the average_load, so we don't
  3384. * want to push ourselves above the average load, nor do we wish to
  3385. * reduce the max loaded cpu below the average load, as either of these
  3386. * actions would just result in more rebalancing later, and ping-pong
  3387. * tasks around. Thus we look for the minimum possible imbalance.
  3388. * Negative imbalances (*we* are more loaded than anyone else) will
  3389. * be counted as no imbalance for these purposes -- we can't fix that
  3390. * by pulling tasks to us. Be careful of negative numbers as they'll
  3391. * appear as very large values with unsigned longs.
  3392. */
  3393. if (sds.max_load <= sds.busiest_load_per_task)
  3394. goto out_balanced;
  3395. /* Looks like there is an imbalance. Compute it */
  3396. calculate_imbalance(&sds, this_cpu, imbalance);
  3397. return sds.busiest;
  3398. out_balanced:
  3399. /*
  3400. * There is no obvious imbalance. But check if we can do some balancing
  3401. * to save power.
  3402. */
  3403. if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
  3404. return sds.busiest;
  3405. ret:
  3406. *imbalance = 0;
  3407. return NULL;
  3408. }
  3409. /*
  3410. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  3411. */
  3412. static struct rq *
  3413. find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
  3414. unsigned long imbalance, const struct cpumask *cpus)
  3415. {
  3416. struct rq *busiest = NULL, *rq;
  3417. unsigned long max_load = 0;
  3418. int i;
  3419. for_each_cpu(i, sched_group_cpus(group)) {
  3420. unsigned long power = power_of(i);
  3421. unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
  3422. unsigned long wl;
  3423. if (!cpumask_test_cpu(i, cpus))
  3424. continue;
  3425. rq = cpu_rq(i);
  3426. wl = weighted_cpuload(i) * SCHED_LOAD_SCALE;
  3427. wl /= power;
  3428. if (capacity && rq->nr_running == 1 && wl > imbalance)
  3429. continue;
  3430. if (wl > max_load) {
  3431. max_load = wl;
  3432. busiest = rq;
  3433. }
  3434. }
  3435. return busiest;
  3436. }
  3437. /*
  3438. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  3439. * so long as it is large enough.
  3440. */
  3441. #define MAX_PINNED_INTERVAL 512
  3442. /* Working cpumask for load_balance and load_balance_newidle. */
  3443. static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
  3444. /*
  3445. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  3446. * tasks if there is an imbalance.
  3447. */
  3448. static int load_balance(int this_cpu, struct rq *this_rq,
  3449. struct sched_domain *sd, enum cpu_idle_type idle,
  3450. int *balance)
  3451. {
  3452. int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
  3453. struct sched_group *group;
  3454. unsigned long imbalance;
  3455. struct rq *busiest;
  3456. unsigned long flags;
  3457. struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
  3458. cpumask_setall(cpus);
  3459. /*
  3460. * When power savings policy is enabled for the parent domain, idle
  3461. * sibling can pick up load irrespective of busy siblings. In this case,
  3462. * let the state of idle sibling percolate up as CPU_IDLE, instead of
  3463. * portraying it as CPU_NOT_IDLE.
  3464. */
  3465. if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
  3466. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3467. sd_idle = 1;
  3468. schedstat_inc(sd, lb_count[idle]);
  3469. redo:
  3470. update_shares(sd);
  3471. group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
  3472. cpus, balance);
  3473. if (*balance == 0)
  3474. goto out_balanced;
  3475. if (!group) {
  3476. schedstat_inc(sd, lb_nobusyg[idle]);
  3477. goto out_balanced;
  3478. }
  3479. busiest = find_busiest_queue(group, idle, imbalance, cpus);
  3480. if (!busiest) {
  3481. schedstat_inc(sd, lb_nobusyq[idle]);
  3482. goto out_balanced;
  3483. }
  3484. BUG_ON(busiest == this_rq);
  3485. schedstat_add(sd, lb_imbalance[idle], imbalance);
  3486. ld_moved = 0;
  3487. if (busiest->nr_running > 1) {
  3488. /*
  3489. * Attempt to move tasks. If find_busiest_group has found
  3490. * an imbalance but busiest->nr_running <= 1, the group is
  3491. * still unbalanced. ld_moved simply stays zero, so it is
  3492. * correctly treated as an imbalance.
  3493. */
  3494. local_irq_save(flags);
  3495. double_rq_lock(this_rq, busiest);
  3496. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  3497. imbalance, sd, idle, &all_pinned);
  3498. double_rq_unlock(this_rq, busiest);
  3499. local_irq_restore(flags);
  3500. /*
  3501. * some other cpu did the load balance for us.
  3502. */
  3503. if (ld_moved && this_cpu != smp_processor_id())
  3504. resched_cpu(this_cpu);
  3505. /* All tasks on this runqueue were pinned by CPU affinity */
  3506. if (unlikely(all_pinned)) {
  3507. cpumask_clear_cpu(cpu_of(busiest), cpus);
  3508. if (!cpumask_empty(cpus))
  3509. goto redo;
  3510. goto out_balanced;
  3511. }
  3512. }
  3513. if (!ld_moved) {
  3514. schedstat_inc(sd, lb_failed[idle]);
  3515. sd->nr_balance_failed++;
  3516. if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
  3517. spin_lock_irqsave(&busiest->lock, flags);
  3518. /* don't kick the migration_thread, if the curr
  3519. * task on busiest cpu can't be moved to this_cpu
  3520. */
  3521. if (!cpumask_test_cpu(this_cpu,
  3522. &busiest->curr->cpus_allowed)) {
  3523. spin_unlock_irqrestore(&busiest->lock, flags);
  3524. all_pinned = 1;
  3525. goto out_one_pinned;
  3526. }
  3527. if (!busiest->active_balance) {
  3528. busiest->active_balance = 1;
  3529. busiest->push_cpu = this_cpu;
  3530. active_balance = 1;
  3531. }
  3532. spin_unlock_irqrestore(&busiest->lock, flags);
  3533. if (active_balance)
  3534. wake_up_process(busiest->migration_thread);
  3535. /*
  3536. * We've kicked active balancing, reset the failure
  3537. * counter.
  3538. */
  3539. sd->nr_balance_failed = sd->cache_nice_tries+1;
  3540. }
  3541. } else
  3542. sd->nr_balance_failed = 0;
  3543. if (likely(!active_balance)) {
  3544. /* We were unbalanced, so reset the balancing interval */
  3545. sd->balance_interval = sd->min_interval;
  3546. } else {
  3547. /*
  3548. * If we've begun active balancing, start to back off. This
  3549. * case may not be covered by the all_pinned logic if there
  3550. * is only 1 task on the busy runqueue (because we don't call
  3551. * move_tasks).
  3552. */
  3553. if (sd->balance_interval < sd->max_interval)
  3554. sd->balance_interval *= 2;
  3555. }
  3556. if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3557. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3558. ld_moved = -1;
  3559. goto out;
  3560. out_balanced:
  3561. schedstat_inc(sd, lb_balanced[idle]);
  3562. sd->nr_balance_failed = 0;
  3563. out_one_pinned:
  3564. /* tune up the balancing interval */
  3565. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  3566. (sd->balance_interval < sd->max_interval))
  3567. sd->balance_interval *= 2;
  3568. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3569. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3570. ld_moved = -1;
  3571. else
  3572. ld_moved = 0;
  3573. out:
  3574. if (ld_moved)
  3575. update_shares(sd);
  3576. return ld_moved;
  3577. }
  3578. /*
  3579. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  3580. * tasks if there is an imbalance.
  3581. *
  3582. * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
  3583. * this_rq is locked.
  3584. */
  3585. static int
  3586. load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
  3587. {
  3588. struct sched_group *group;
  3589. struct rq *busiest = NULL;
  3590. unsigned long imbalance;
  3591. int ld_moved = 0;
  3592. int sd_idle = 0;
  3593. int all_pinned = 0;
  3594. struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
  3595. cpumask_setall(cpus);
  3596. /*
  3597. * When power savings policy is enabled for the parent domain, idle
  3598. * sibling can pick up load irrespective of busy siblings. In this case,
  3599. * let the state of idle sibling percolate up as IDLE, instead of
  3600. * portraying it as CPU_NOT_IDLE.
  3601. */
  3602. if (sd->flags & SD_SHARE_CPUPOWER &&
  3603. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3604. sd_idle = 1;
  3605. schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
  3606. redo:
  3607. update_shares_locked(this_rq, sd);
  3608. group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
  3609. &sd_idle, cpus, NULL);
  3610. if (!group) {
  3611. schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
  3612. goto out_balanced;
  3613. }
  3614. busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
  3615. if (!busiest) {
  3616. schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
  3617. goto out_balanced;
  3618. }
  3619. BUG_ON(busiest == this_rq);
  3620. schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
  3621. ld_moved = 0;
  3622. if (busiest->nr_running > 1) {
  3623. /* Attempt to move tasks */
  3624. double_lock_balance(this_rq, busiest);
  3625. /* this_rq->clock is already updated */
  3626. update_rq_clock(busiest);
  3627. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  3628. imbalance, sd, CPU_NEWLY_IDLE,
  3629. &all_pinned);
  3630. double_unlock_balance(this_rq, busiest);
  3631. if (unlikely(all_pinned)) {
  3632. cpumask_clear_cpu(cpu_of(busiest), cpus);
  3633. if (!cpumask_empty(cpus))
  3634. goto redo;
  3635. }
  3636. }
  3637. if (!ld_moved) {
  3638. int active_balance = 0;
  3639. schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
  3640. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3641. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3642. return -1;
  3643. if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
  3644. return -1;
  3645. if (sd->nr_balance_failed++ < 2)
  3646. return -1;
  3647. /*
  3648. * The only task running in a non-idle cpu can be moved to this
  3649. * cpu in an attempt to completely freeup the other CPU
  3650. * package. The same method used to move task in load_balance()
  3651. * have been extended for load_balance_newidle() to speedup
  3652. * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
  3653. *
  3654. * The package power saving logic comes from
  3655. * find_busiest_group(). If there are no imbalance, then
  3656. * f_b_g() will return NULL. However when sched_mc={1,2} then
  3657. * f_b_g() will select a group from which a running task may be
  3658. * pulled to this cpu in order to make the other package idle.
  3659. * If there is no opportunity to make a package idle and if
  3660. * there are no imbalance, then f_b_g() will return NULL and no
  3661. * action will be taken in load_balance_newidle().
  3662. *
  3663. * Under normal task pull operation due to imbalance, there
  3664. * will be more than one task in the source run queue and
  3665. * move_tasks() will succeed. ld_moved will be true and this
  3666. * active balance code will not be triggered.
  3667. */
  3668. /* Lock busiest in correct order while this_rq is held */
  3669. double_lock_balance(this_rq, busiest);
  3670. /*
  3671. * don't kick the migration_thread, if the curr
  3672. * task on busiest cpu can't be moved to this_cpu
  3673. */
  3674. if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
  3675. double_unlock_balance(this_rq, busiest);
  3676. all_pinned = 1;
  3677. return ld_moved;
  3678. }
  3679. if (!busiest->active_balance) {
  3680. busiest->active_balance = 1;
  3681. busiest->push_cpu = this_cpu;
  3682. active_balance = 1;
  3683. }
  3684. double_unlock_balance(this_rq, busiest);
  3685. /*
  3686. * Should not call ttwu while holding a rq->lock
  3687. */
  3688. spin_unlock(&this_rq->lock);
  3689. if (active_balance)
  3690. wake_up_process(busiest->migration_thread);
  3691. spin_lock(&this_rq->lock);
  3692. } else
  3693. sd->nr_balance_failed = 0;
  3694. update_shares_locked(this_rq, sd);
  3695. return ld_moved;
  3696. out_balanced:
  3697. schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
  3698. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3699. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3700. return -1;
  3701. sd->nr_balance_failed = 0;
  3702. return 0;
  3703. }
  3704. /*
  3705. * idle_balance is called by schedule() if this_cpu is about to become
  3706. * idle. Attempts to pull tasks from other CPUs.
  3707. */
  3708. static void idle_balance(int this_cpu, struct rq *this_rq)
  3709. {
  3710. struct sched_domain *sd;
  3711. int pulled_task = 0;
  3712. unsigned long next_balance = jiffies + HZ;
  3713. for_each_domain(this_cpu, sd) {
  3714. unsigned long interval;
  3715. if (!(sd->flags & SD_LOAD_BALANCE))
  3716. continue;
  3717. if (sd->flags & SD_BALANCE_NEWIDLE)
  3718. /* If we've pulled tasks over stop searching: */
  3719. pulled_task = load_balance_newidle(this_cpu, this_rq,
  3720. sd);
  3721. interval = msecs_to_jiffies(sd->balance_interval);
  3722. if (time_after(next_balance, sd->last_balance + interval))
  3723. next_balance = sd->last_balance + interval;
  3724. if (pulled_task)
  3725. break;
  3726. }
  3727. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  3728. /*
  3729. * We are going idle. next_balance may be set based on
  3730. * a busy processor. So reset next_balance.
  3731. */
  3732. this_rq->next_balance = next_balance;
  3733. }
  3734. }
  3735. /*
  3736. * active_load_balance is run by migration threads. It pushes running tasks
  3737. * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
  3738. * running on each physical CPU where possible, and avoids physical /
  3739. * logical imbalances.
  3740. *
  3741. * Called with busiest_rq locked.
  3742. */
  3743. static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
  3744. {
  3745. int target_cpu = busiest_rq->push_cpu;
  3746. struct sched_domain *sd;
  3747. struct rq *target_rq;
  3748. /* Is there any task to move? */
  3749. if (busiest_rq->nr_running <= 1)
  3750. return;
  3751. target_rq = cpu_rq(target_cpu);
  3752. /*
  3753. * This condition is "impossible", if it occurs
  3754. * we need to fix it. Originally reported by
  3755. * Bjorn Helgaas on a 128-cpu setup.
  3756. */
  3757. BUG_ON(busiest_rq == target_rq);
  3758. /* move a task from busiest_rq to target_rq */
  3759. double_lock_balance(busiest_rq, target_rq);
  3760. update_rq_clock(busiest_rq);
  3761. update_rq_clock(target_rq);
  3762. /* Search for an sd spanning us and the target CPU. */
  3763. for_each_domain(target_cpu, sd) {
  3764. if ((sd->flags & SD_LOAD_BALANCE) &&
  3765. cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
  3766. break;
  3767. }
  3768. if (likely(sd)) {
  3769. schedstat_inc(sd, alb_count);
  3770. if (move_one_task(target_rq, target_cpu, busiest_rq,
  3771. sd, CPU_IDLE))
  3772. schedstat_inc(sd, alb_pushed);
  3773. else
  3774. schedstat_inc(sd, alb_failed);
  3775. }
  3776. double_unlock_balance(busiest_rq, target_rq);
  3777. }
  3778. #ifdef CONFIG_NO_HZ
  3779. static struct {
  3780. atomic_t load_balancer;
  3781. cpumask_var_t cpu_mask;
  3782. cpumask_var_t ilb_grp_nohz_mask;
  3783. } nohz ____cacheline_aligned = {
  3784. .load_balancer = ATOMIC_INIT(-1),
  3785. };
  3786. int get_nohz_load_balancer(void)
  3787. {
  3788. return atomic_read(&nohz.load_balancer);
  3789. }
  3790. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  3791. /**
  3792. * lowest_flag_domain - Return lowest sched_domain containing flag.
  3793. * @cpu: The cpu whose lowest level of sched domain is to
  3794. * be returned.
  3795. * @flag: The flag to check for the lowest sched_domain
  3796. * for the given cpu.
  3797. *
  3798. * Returns the lowest sched_domain of a cpu which contains the given flag.
  3799. */
  3800. static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
  3801. {
  3802. struct sched_domain *sd;
  3803. for_each_domain(cpu, sd)
  3804. if (sd && (sd->flags & flag))
  3805. break;
  3806. return sd;
  3807. }
  3808. /**
  3809. * for_each_flag_domain - Iterates over sched_domains containing the flag.
  3810. * @cpu: The cpu whose domains we're iterating over.
  3811. * @sd: variable holding the value of the power_savings_sd
  3812. * for cpu.
  3813. * @flag: The flag to filter the sched_domains to be iterated.
  3814. *
  3815. * Iterates over all the scheduler domains for a given cpu that has the 'flag'
  3816. * set, starting from the lowest sched_domain to the highest.
  3817. */
  3818. #define for_each_flag_domain(cpu, sd, flag) \
  3819. for (sd = lowest_flag_domain(cpu, flag); \
  3820. (sd && (sd->flags & flag)); sd = sd->parent)
  3821. /**
  3822. * is_semi_idle_group - Checks if the given sched_group is semi-idle.
  3823. * @ilb_group: group to be checked for semi-idleness
  3824. *
  3825. * Returns: 1 if the group is semi-idle. 0 otherwise.
  3826. *
  3827. * We define a sched_group to be semi idle if it has atleast one idle-CPU
  3828. * and atleast one non-idle CPU. This helper function checks if the given
  3829. * sched_group is semi-idle or not.
  3830. */
  3831. static inline int is_semi_idle_group(struct sched_group *ilb_group)
  3832. {
  3833. cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
  3834. sched_group_cpus(ilb_group));
  3835. /*
  3836. * A sched_group is semi-idle when it has atleast one busy cpu
  3837. * and atleast one idle cpu.
  3838. */
  3839. if (cpumask_empty(nohz.ilb_grp_nohz_mask))
  3840. return 0;
  3841. if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
  3842. return 0;
  3843. return 1;
  3844. }
  3845. /**
  3846. * find_new_ilb - Finds the optimum idle load balancer for nomination.
  3847. * @cpu: The cpu which is nominating a new idle_load_balancer.
  3848. *
  3849. * Returns: Returns the id of the idle load balancer if it exists,
  3850. * Else, returns >= nr_cpu_ids.
  3851. *
  3852. * This algorithm picks the idle load balancer such that it belongs to a
  3853. * semi-idle powersavings sched_domain. The idea is to try and avoid
  3854. * completely idle packages/cores just for the purpose of idle load balancing
  3855. * when there are other idle cpu's which are better suited for that job.
  3856. */
  3857. static int find_new_ilb(int cpu)
  3858. {
  3859. struct sched_domain *sd;
  3860. struct sched_group *ilb_group;
  3861. /*
  3862. * Have idle load balancer selection from semi-idle packages only
  3863. * when power-aware load balancing is enabled
  3864. */
  3865. if (!(sched_smt_power_savings || sched_mc_power_savings))
  3866. goto out_done;
  3867. /*
  3868. * Optimize for the case when we have no idle CPUs or only one
  3869. * idle CPU. Don't walk the sched_domain hierarchy in such cases
  3870. */
  3871. if (cpumask_weight(nohz.cpu_mask) < 2)
  3872. goto out_done;
  3873. for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
  3874. ilb_group = sd->groups;
  3875. do {
  3876. if (is_semi_idle_group(ilb_group))
  3877. return cpumask_first(nohz.ilb_grp_nohz_mask);
  3878. ilb_group = ilb_group->next;
  3879. } while (ilb_group != sd->groups);
  3880. }
  3881. out_done:
  3882. return cpumask_first(nohz.cpu_mask);
  3883. }
  3884. #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
  3885. static inline int find_new_ilb(int call_cpu)
  3886. {
  3887. return cpumask_first(nohz.cpu_mask);
  3888. }
  3889. #endif
  3890. /*
  3891. * This routine will try to nominate the ilb (idle load balancing)
  3892. * owner among the cpus whose ticks are stopped. ilb owner will do the idle
  3893. * load balancing on behalf of all those cpus. If all the cpus in the system
  3894. * go into this tickless mode, then there will be no ilb owner (as there is
  3895. * no need for one) and all the cpus will sleep till the next wakeup event
  3896. * arrives...
  3897. *
  3898. * For the ilb owner, tick is not stopped. And this tick will be used
  3899. * for idle load balancing. ilb owner will still be part of
  3900. * nohz.cpu_mask..
  3901. *
  3902. * While stopping the tick, this cpu will become the ilb owner if there
  3903. * is no other owner. And will be the owner till that cpu becomes busy
  3904. * or if all cpus in the system stop their ticks at which point
  3905. * there is no need for ilb owner.
  3906. *
  3907. * When the ilb owner becomes busy, it nominates another owner, during the
  3908. * next busy scheduler_tick()
  3909. */
  3910. int select_nohz_load_balancer(int stop_tick)
  3911. {
  3912. int cpu = smp_processor_id();
  3913. if (stop_tick) {
  3914. cpu_rq(cpu)->in_nohz_recently = 1;
  3915. if (!cpu_active(cpu)) {
  3916. if (atomic_read(&nohz.load_balancer) != cpu)
  3917. return 0;
  3918. /*
  3919. * If we are going offline and still the leader,
  3920. * give up!
  3921. */
  3922. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  3923. BUG();
  3924. return 0;
  3925. }
  3926. cpumask_set_cpu(cpu, nohz.cpu_mask);
  3927. /* time for ilb owner also to sleep */
  3928. if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
  3929. if (atomic_read(&nohz.load_balancer) == cpu)
  3930. atomic_set(&nohz.load_balancer, -1);
  3931. return 0;
  3932. }
  3933. if (atomic_read(&nohz.load_balancer) == -1) {
  3934. /* make me the ilb owner */
  3935. if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
  3936. return 1;
  3937. } else if (atomic_read(&nohz.load_balancer) == cpu) {
  3938. int new_ilb;
  3939. if (!(sched_smt_power_savings ||
  3940. sched_mc_power_savings))
  3941. return 1;
  3942. /*
  3943. * Check to see if there is a more power-efficient
  3944. * ilb.
  3945. */
  3946. new_ilb = find_new_ilb(cpu);
  3947. if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
  3948. atomic_set(&nohz.load_balancer, -1);
  3949. resched_cpu(new_ilb);
  3950. return 0;
  3951. }
  3952. return 1;
  3953. }
  3954. } else {
  3955. if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
  3956. return 0;
  3957. cpumask_clear_cpu(cpu, nohz.cpu_mask);
  3958. if (atomic_read(&nohz.load_balancer) == cpu)
  3959. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  3960. BUG();
  3961. }
  3962. return 0;
  3963. }
  3964. #endif
  3965. static DEFINE_SPINLOCK(balancing);
  3966. /*
  3967. * It checks each scheduling domain to see if it is due to be balanced,
  3968. * and initiates a balancing operation if so.
  3969. *
  3970. * Balancing parameters are set up in arch_init_sched_domains.
  3971. */
  3972. static void rebalance_domains(int cpu, enum cpu_idle_type idle)
  3973. {
  3974. int balance = 1;
  3975. struct rq *rq = cpu_rq(cpu);
  3976. unsigned long interval;
  3977. struct sched_domain *sd;
  3978. /* Earliest time when we have to do rebalance again */
  3979. unsigned long next_balance = jiffies + 60*HZ;
  3980. int update_next_balance = 0;
  3981. int need_serialize;
  3982. for_each_domain(cpu, sd) {
  3983. if (!(sd->flags & SD_LOAD_BALANCE))
  3984. continue;
  3985. interval = sd->balance_interval;
  3986. if (idle != CPU_IDLE)
  3987. interval *= sd->busy_factor;
  3988. /* scale ms to jiffies */
  3989. interval = msecs_to_jiffies(interval);
  3990. if (unlikely(!interval))
  3991. interval = 1;
  3992. if (interval > HZ*NR_CPUS/10)
  3993. interval = HZ*NR_CPUS/10;
  3994. need_serialize = sd->flags & SD_SERIALIZE;
  3995. if (need_serialize) {
  3996. if (!spin_trylock(&balancing))
  3997. goto out;
  3998. }
  3999. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  4000. if (load_balance(cpu, rq, sd, idle, &balance)) {
  4001. /*
  4002. * We've pulled tasks over so either we're no
  4003. * longer idle, or one of our SMT siblings is
  4004. * not idle.
  4005. */
  4006. idle = CPU_NOT_IDLE;
  4007. }
  4008. sd->last_balance = jiffies;
  4009. }
  4010. if (need_serialize)
  4011. spin_unlock(&balancing);
  4012. out:
  4013. if (time_after(next_balance, sd->last_balance + interval)) {
  4014. next_balance = sd->last_balance + interval;
  4015. update_next_balance = 1;
  4016. }
  4017. /*
  4018. * Stop the load balance at this level. There is another
  4019. * CPU in our sched group which is doing load balancing more
  4020. * actively.
  4021. */
  4022. if (!balance)
  4023. break;
  4024. }
  4025. /*
  4026. * next_balance will be updated only when there is a need.
  4027. * When the cpu is attached to null domain for ex, it will not be
  4028. * updated.
  4029. */
  4030. if (likely(update_next_balance))
  4031. rq->next_balance = next_balance;
  4032. }
  4033. /*
  4034. * run_rebalance_domains is triggered when needed from the scheduler tick.
  4035. * In CONFIG_NO_HZ case, the idle load balance owner will do the
  4036. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  4037. */
  4038. static void run_rebalance_domains(struct softirq_action *h)
  4039. {
  4040. int this_cpu = smp_processor_id();
  4041. struct rq *this_rq = cpu_rq(this_cpu);
  4042. enum cpu_idle_type idle = this_rq->idle_at_tick ?
  4043. CPU_IDLE : CPU_NOT_IDLE;
  4044. rebalance_domains(this_cpu, idle);
  4045. #ifdef CONFIG_NO_HZ
  4046. /*
  4047. * If this cpu is the owner for idle load balancing, then do the
  4048. * balancing on behalf of the other idle cpus whose ticks are
  4049. * stopped.
  4050. */
  4051. if (this_rq->idle_at_tick &&
  4052. atomic_read(&nohz.load_balancer) == this_cpu) {
  4053. struct rq *rq;
  4054. int balance_cpu;
  4055. for_each_cpu(balance_cpu, nohz.cpu_mask) {
  4056. if (balance_cpu == this_cpu)
  4057. continue;
  4058. /*
  4059. * If this cpu gets work to do, stop the load balancing
  4060. * work being done for other cpus. Next load
  4061. * balancing owner will pick it up.
  4062. */
  4063. if (need_resched())
  4064. break;
  4065. rebalance_domains(balance_cpu, CPU_IDLE);
  4066. rq = cpu_rq(balance_cpu);
  4067. if (time_after(this_rq->next_balance, rq->next_balance))
  4068. this_rq->next_balance = rq->next_balance;
  4069. }
  4070. }
  4071. #endif
  4072. }
  4073. static inline int on_null_domain(int cpu)
  4074. {
  4075. return !rcu_dereference(cpu_rq(cpu)->sd);
  4076. }
  4077. /*
  4078. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  4079. *
  4080. * In case of CONFIG_NO_HZ, this is the place where we nominate a new
  4081. * idle load balancing owner or decide to stop the periodic load balancing,
  4082. * if the whole system is idle.
  4083. */
  4084. static inline void trigger_load_balance(struct rq *rq, int cpu)
  4085. {
  4086. #ifdef CONFIG_NO_HZ
  4087. /*
  4088. * If we were in the nohz mode recently and busy at the current
  4089. * scheduler tick, then check if we need to nominate new idle
  4090. * load balancer.
  4091. */
  4092. if (rq->in_nohz_recently && !rq->idle_at_tick) {
  4093. rq->in_nohz_recently = 0;
  4094. if (atomic_read(&nohz.load_balancer) == cpu) {
  4095. cpumask_clear_cpu(cpu, nohz.cpu_mask);
  4096. atomic_set(&nohz.load_balancer, -1);
  4097. }
  4098. if (atomic_read(&nohz.load_balancer) == -1) {
  4099. int ilb = find_new_ilb(cpu);
  4100. if (ilb < nr_cpu_ids)
  4101. resched_cpu(ilb);
  4102. }
  4103. }
  4104. /*
  4105. * If this cpu is idle and doing idle load balancing for all the
  4106. * cpus with ticks stopped, is it time for that to stop?
  4107. */
  4108. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
  4109. cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
  4110. resched_cpu(cpu);
  4111. return;
  4112. }
  4113. /*
  4114. * If this cpu is idle and the idle load balancing is done by
  4115. * someone else, then no need raise the SCHED_SOFTIRQ
  4116. */
  4117. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
  4118. cpumask_test_cpu(cpu, nohz.cpu_mask))
  4119. return;
  4120. #endif
  4121. /* Don't need to rebalance while attached to NULL domain */
  4122. if (time_after_eq(jiffies, rq->next_balance) &&
  4123. likely(!on_null_domain(cpu)))
  4124. raise_softirq(SCHED_SOFTIRQ);
  4125. }
  4126. #else /* CONFIG_SMP */
  4127. /*
  4128. * on UP we do not need to balance between CPUs:
  4129. */
  4130. static inline void idle_balance(int cpu, struct rq *rq)
  4131. {
  4132. }
  4133. #endif
  4134. DEFINE_PER_CPU(struct kernel_stat, kstat);
  4135. EXPORT_PER_CPU_SYMBOL(kstat);
  4136. /*
  4137. * Return any ns on the sched_clock that have not yet been accounted in
  4138. * @p in case that task is currently running.
  4139. *
  4140. * Called with task_rq_lock() held on @rq.
  4141. */
  4142. static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
  4143. {
  4144. u64 ns = 0;
  4145. if (task_current(rq, p)) {
  4146. update_rq_clock(rq);
  4147. ns = rq->clock - p->se.exec_start;
  4148. if ((s64)ns < 0)
  4149. ns = 0;
  4150. }
  4151. return ns;
  4152. }
  4153. unsigned long long task_delta_exec(struct task_struct *p)
  4154. {
  4155. unsigned long flags;
  4156. struct rq *rq;
  4157. u64 ns = 0;
  4158. rq = task_rq_lock(p, &flags);
  4159. ns = do_task_delta_exec(p, rq);
  4160. task_rq_unlock(rq, &flags);
  4161. return ns;
  4162. }
  4163. /*
  4164. * Return accounted runtime for the task.
  4165. * In case the task is currently running, return the runtime plus current's
  4166. * pending runtime that have not been accounted yet.
  4167. */
  4168. unsigned long long task_sched_runtime(struct task_struct *p)
  4169. {
  4170. unsigned long flags;
  4171. struct rq *rq;
  4172. u64 ns = 0;
  4173. rq = task_rq_lock(p, &flags);
  4174. ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
  4175. task_rq_unlock(rq, &flags);
  4176. return ns;
  4177. }
  4178. /*
  4179. * Return sum_exec_runtime for the thread group.
  4180. * In case the task is currently running, return the sum plus current's
  4181. * pending runtime that have not been accounted yet.
  4182. *
  4183. * Note that the thread group might have other running tasks as well,
  4184. * so the return value not includes other pending runtime that other
  4185. * running tasks might have.
  4186. */
  4187. unsigned long long thread_group_sched_runtime(struct task_struct *p)
  4188. {
  4189. struct task_cputime totals;
  4190. unsigned long flags;
  4191. struct rq *rq;
  4192. u64 ns;
  4193. rq = task_rq_lock(p, &flags);
  4194. thread_group_cputime(p, &totals);
  4195. ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
  4196. task_rq_unlock(rq, &flags);
  4197. return ns;
  4198. }
  4199. /*
  4200. * Account user cpu time to a process.
  4201. * @p: the process that the cpu time gets accounted to
  4202. * @cputime: the cpu time spent in user space since the last update
  4203. * @cputime_scaled: cputime scaled by cpu frequency
  4204. */
  4205. void account_user_time(struct task_struct *p, cputime_t cputime,
  4206. cputime_t cputime_scaled)
  4207. {
  4208. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  4209. cputime64_t tmp;
  4210. /* Add user time to process. */
  4211. p->utime = cputime_add(p->utime, cputime);
  4212. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  4213. account_group_user_time(p, cputime);
  4214. /* Add user time to cpustat. */
  4215. tmp = cputime_to_cputime64(cputime);
  4216. if (TASK_NICE(p) > 0)
  4217. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  4218. else
  4219. cpustat->user = cputime64_add(cpustat->user, tmp);
  4220. cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
  4221. /* Account for user time used */
  4222. acct_update_integrals(p);
  4223. }
  4224. /*
  4225. * Account guest cpu time to a process.
  4226. * @p: the process that the cpu time gets accounted to
  4227. * @cputime: the cpu time spent in virtual machine since the last update
  4228. * @cputime_scaled: cputime scaled by cpu frequency
  4229. */
  4230. static void account_guest_time(struct task_struct *p, cputime_t cputime,
  4231. cputime_t cputime_scaled)
  4232. {
  4233. cputime64_t tmp;
  4234. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  4235. tmp = cputime_to_cputime64(cputime);
  4236. /* Add guest time to process. */
  4237. p->utime = cputime_add(p->utime, cputime);
  4238. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  4239. account_group_user_time(p, cputime);
  4240. p->gtime = cputime_add(p->gtime, cputime);
  4241. /* Add guest time to cpustat. */
  4242. cpustat->user = cputime64_add(cpustat->user, tmp);
  4243. cpustat->guest = cputime64_add(cpustat->guest, tmp);
  4244. }
  4245. /*
  4246. * Account system cpu time to a process.
  4247. * @p: the process that the cpu time gets accounted to
  4248. * @hardirq_offset: the offset to subtract from hardirq_count()
  4249. * @cputime: the cpu time spent in kernel space since the last update
  4250. * @cputime_scaled: cputime scaled by cpu frequency
  4251. */
  4252. void account_system_time(struct task_struct *p, int hardirq_offset,
  4253. cputime_t cputime, cputime_t cputime_scaled)
  4254. {
  4255. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  4256. cputime64_t tmp;
  4257. if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
  4258. account_guest_time(p, cputime, cputime_scaled);
  4259. return;
  4260. }
  4261. /* Add system time to process. */
  4262. p->stime = cputime_add(p->stime, cputime);
  4263. p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
  4264. account_group_system_time(p, cputime);
  4265. /* Add system time to cpustat. */
  4266. tmp = cputime_to_cputime64(cputime);
  4267. if (hardirq_count() - hardirq_offset)
  4268. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  4269. else if (softirq_count())
  4270. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  4271. else
  4272. cpustat->system = cputime64_add(cpustat->system, tmp);
  4273. cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
  4274. /* Account for system time used */
  4275. acct_update_integrals(p);
  4276. }
  4277. /*
  4278. * Account for involuntary wait time.
  4279. * @steal: the cpu time spent in involuntary wait
  4280. */
  4281. void account_steal_time(cputime_t cputime)
  4282. {
  4283. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  4284. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  4285. cpustat->steal = cputime64_add(cpustat->steal, cputime64);
  4286. }
  4287. /*
  4288. * Account for idle time.
  4289. * @cputime: the cpu time spent in idle wait
  4290. */
  4291. void account_idle_time(cputime_t cputime)
  4292. {
  4293. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  4294. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  4295. struct rq *rq = this_rq();
  4296. if (atomic_read(&rq->nr_iowait) > 0)
  4297. cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
  4298. else
  4299. cpustat->idle = cputime64_add(cpustat->idle, cputime64);
  4300. }
  4301. #ifndef CONFIG_VIRT_CPU_ACCOUNTING
  4302. /*
  4303. * Account a single tick of cpu time.
  4304. * @p: the process that the cpu time gets accounted to
  4305. * @user_tick: indicates if the tick is a user or a system tick
  4306. */
  4307. void account_process_tick(struct task_struct *p, int user_tick)
  4308. {
  4309. cputime_t one_jiffy = jiffies_to_cputime(1);
  4310. cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy);
  4311. struct rq *rq = this_rq();
  4312. if (user_tick)
  4313. account_user_time(p, one_jiffy, one_jiffy_scaled);
  4314. else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
  4315. account_system_time(p, HARDIRQ_OFFSET, one_jiffy,
  4316. one_jiffy_scaled);
  4317. else
  4318. account_idle_time(one_jiffy);
  4319. }
  4320. /*
  4321. * Account multiple ticks of steal time.
  4322. * @p: the process from which the cpu time has been stolen
  4323. * @ticks: number of stolen ticks
  4324. */
  4325. void account_steal_ticks(unsigned long ticks)
  4326. {
  4327. account_steal_time(jiffies_to_cputime(ticks));
  4328. }
  4329. /*
  4330. * Account multiple ticks of idle time.
  4331. * @ticks: number of stolen ticks
  4332. */
  4333. void account_idle_ticks(unsigned long ticks)
  4334. {
  4335. account_idle_time(jiffies_to_cputime(ticks));
  4336. }
  4337. #endif
  4338. /*
  4339. * Use precise platform statistics if available:
  4340. */
  4341. #ifdef CONFIG_VIRT_CPU_ACCOUNTING
  4342. cputime_t task_utime(struct task_struct *p)
  4343. {
  4344. return p->utime;
  4345. }
  4346. cputime_t task_stime(struct task_struct *p)
  4347. {
  4348. return p->stime;
  4349. }
  4350. #else
  4351. cputime_t task_utime(struct task_struct *p)
  4352. {
  4353. clock_t utime = cputime_to_clock_t(p->utime),
  4354. total = utime + cputime_to_clock_t(p->stime);
  4355. u64 temp;
  4356. /*
  4357. * Use CFS's precise accounting:
  4358. */
  4359. temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
  4360. if (total) {
  4361. temp *= utime;
  4362. do_div(temp, total);
  4363. }
  4364. utime = (clock_t)temp;
  4365. p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
  4366. return p->prev_utime;
  4367. }
  4368. cputime_t task_stime(struct task_struct *p)
  4369. {
  4370. clock_t stime;
  4371. /*
  4372. * Use CFS's precise accounting. (we subtract utime from
  4373. * the total, to make sure the total observed by userspace
  4374. * grows monotonically - apps rely on that):
  4375. */
  4376. stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
  4377. cputime_to_clock_t(task_utime(p));
  4378. if (stime >= 0)
  4379. p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
  4380. return p->prev_stime;
  4381. }
  4382. #endif
  4383. inline cputime_t task_gtime(struct task_struct *p)
  4384. {
  4385. return p->gtime;
  4386. }
  4387. /*
  4388. * This function gets called by the timer code, with HZ frequency.
  4389. * We call it with interrupts disabled.
  4390. *
  4391. * It also gets called by the fork code, when changing the parent's
  4392. * timeslices.
  4393. */
  4394. void scheduler_tick(void)
  4395. {
  4396. int cpu = smp_processor_id();
  4397. struct rq *rq = cpu_rq(cpu);
  4398. struct task_struct *curr = rq->curr;
  4399. sched_clock_tick();
  4400. spin_lock(&rq->lock);
  4401. update_rq_clock(rq);
  4402. update_cpu_load(rq);
  4403. curr->sched_class->task_tick(rq, curr, 0);
  4404. spin_unlock(&rq->lock);
  4405. perf_counter_task_tick(curr, cpu);
  4406. #ifdef CONFIG_SMP
  4407. rq->idle_at_tick = idle_cpu(cpu);
  4408. trigger_load_balance(rq, cpu);
  4409. #endif
  4410. }
  4411. notrace unsigned long get_parent_ip(unsigned long addr)
  4412. {
  4413. if (in_lock_functions(addr)) {
  4414. addr = CALLER_ADDR2;
  4415. if (in_lock_functions(addr))
  4416. addr = CALLER_ADDR3;
  4417. }
  4418. return addr;
  4419. }
  4420. #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
  4421. defined(CONFIG_PREEMPT_TRACER))
  4422. void __kprobes add_preempt_count(int val)
  4423. {
  4424. #ifdef CONFIG_DEBUG_PREEMPT
  4425. /*
  4426. * Underflow?
  4427. */
  4428. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  4429. return;
  4430. #endif
  4431. preempt_count() += val;
  4432. #ifdef CONFIG_DEBUG_PREEMPT
  4433. /*
  4434. * Spinlock count overflowing soon?
  4435. */
  4436. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  4437. PREEMPT_MASK - 10);
  4438. #endif
  4439. if (preempt_count() == val)
  4440. trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  4441. }
  4442. EXPORT_SYMBOL(add_preempt_count);
  4443. void __kprobes sub_preempt_count(int val)
  4444. {
  4445. #ifdef CONFIG_DEBUG_PREEMPT
  4446. /*
  4447. * Underflow?
  4448. */
  4449. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  4450. return;
  4451. /*
  4452. * Is the spinlock portion underflowing?
  4453. */
  4454. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  4455. !(preempt_count() & PREEMPT_MASK)))
  4456. return;
  4457. #endif
  4458. if (preempt_count() == val)
  4459. trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  4460. preempt_count() -= val;
  4461. }
  4462. EXPORT_SYMBOL(sub_preempt_count);
  4463. #endif
  4464. /*
  4465. * Print scheduling while atomic bug:
  4466. */
  4467. static noinline void __schedule_bug(struct task_struct *prev)
  4468. {
  4469. struct pt_regs *regs = get_irq_regs();
  4470. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  4471. prev->comm, prev->pid, preempt_count());
  4472. debug_show_held_locks(prev);
  4473. print_modules();
  4474. if (irqs_disabled())
  4475. print_irqtrace_events(prev);
  4476. if (regs)
  4477. show_regs(regs);
  4478. else
  4479. dump_stack();
  4480. }
  4481. /*
  4482. * Various schedule()-time debugging checks and statistics:
  4483. */
  4484. static inline void schedule_debug(struct task_struct *prev)
  4485. {
  4486. /*
  4487. * Test if we are atomic. Since do_exit() needs to call into
  4488. * schedule() atomically, we ignore that path for now.
  4489. * Otherwise, whine if we are scheduling when we should not be.
  4490. */
  4491. if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
  4492. __schedule_bug(prev);
  4493. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  4494. schedstat_inc(this_rq(), sched_count);
  4495. #ifdef CONFIG_SCHEDSTATS
  4496. if (unlikely(prev->lock_depth >= 0)) {
  4497. schedstat_inc(this_rq(), bkl_count);
  4498. schedstat_inc(prev, sched_info.bkl_count);
  4499. }
  4500. #endif
  4501. }
  4502. static void put_prev_task(struct rq *rq, struct task_struct *p)
  4503. {
  4504. u64 runtime = p->se.sum_exec_runtime - p->se.prev_sum_exec_runtime;
  4505. update_avg(&p->se.avg_running, runtime);
  4506. if (p->state == TASK_RUNNING) {
  4507. /*
  4508. * In order to avoid avg_overlap growing stale when we are
  4509. * indeed overlapping and hence not getting put to sleep, grow
  4510. * the avg_overlap on preemption.
  4511. *
  4512. * We use the average preemption runtime because that
  4513. * correlates to the amount of cache footprint a task can
  4514. * build up.
  4515. */
  4516. runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
  4517. update_avg(&p->se.avg_overlap, runtime);
  4518. } else {
  4519. update_avg(&p->se.avg_running, 0);
  4520. }
  4521. p->sched_class->put_prev_task(rq, p);
  4522. }
  4523. /*
  4524. * Pick up the highest-prio task:
  4525. */
  4526. static inline struct task_struct *
  4527. pick_next_task(struct rq *rq)
  4528. {
  4529. const struct sched_class *class;
  4530. struct task_struct *p;
  4531. /*
  4532. * Optimization: we know that if all tasks are in
  4533. * the fair class we can call that function directly:
  4534. */
  4535. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  4536. p = fair_sched_class.pick_next_task(rq);
  4537. if (likely(p))
  4538. return p;
  4539. }
  4540. class = sched_class_highest;
  4541. for ( ; ; ) {
  4542. p = class->pick_next_task(rq);
  4543. if (p)
  4544. return p;
  4545. /*
  4546. * Will never be NULL as the idle class always
  4547. * returns a non-NULL p:
  4548. */
  4549. class = class->next;
  4550. }
  4551. }
  4552. /*
  4553. * schedule() is the main scheduler function.
  4554. */
  4555. asmlinkage void __sched schedule(void)
  4556. {
  4557. struct task_struct *prev, *next;
  4558. unsigned long *switch_count;
  4559. struct rq *rq;
  4560. int cpu;
  4561. need_resched:
  4562. preempt_disable();
  4563. cpu = smp_processor_id();
  4564. rq = cpu_rq(cpu);
  4565. rcu_sched_qs(cpu);
  4566. prev = rq->curr;
  4567. switch_count = &prev->nivcsw;
  4568. release_kernel_lock(prev);
  4569. need_resched_nonpreemptible:
  4570. schedule_debug(prev);
  4571. if (sched_feat(HRTICK))
  4572. hrtick_clear(rq);
  4573. spin_lock_irq(&rq->lock);
  4574. update_rq_clock(rq);
  4575. clear_tsk_need_resched(prev);
  4576. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  4577. if (unlikely(signal_pending_state(prev->state, prev)))
  4578. prev->state = TASK_RUNNING;
  4579. else
  4580. deactivate_task(rq, prev, 1);
  4581. switch_count = &prev->nvcsw;
  4582. }
  4583. pre_schedule(rq, prev);
  4584. if (unlikely(!rq->nr_running))
  4585. idle_balance(cpu, rq);
  4586. put_prev_task(rq, prev);
  4587. next = pick_next_task(rq);
  4588. if (likely(prev != next)) {
  4589. sched_info_switch(prev, next);
  4590. perf_counter_task_sched_out(prev, next, cpu);
  4591. rq->nr_switches++;
  4592. rq->curr = next;
  4593. ++*switch_count;
  4594. context_switch(rq, prev, next); /* unlocks the rq */
  4595. /*
  4596. * the context switch might have flipped the stack from under
  4597. * us, hence refresh the local variables.
  4598. */
  4599. cpu = smp_processor_id();
  4600. rq = cpu_rq(cpu);
  4601. } else
  4602. spin_unlock_irq(&rq->lock);
  4603. post_schedule(rq);
  4604. if (unlikely(reacquire_kernel_lock(current) < 0))
  4605. goto need_resched_nonpreemptible;
  4606. preempt_enable_no_resched();
  4607. if (need_resched())
  4608. goto need_resched;
  4609. }
  4610. EXPORT_SYMBOL(schedule);
  4611. #ifdef CONFIG_SMP
  4612. /*
  4613. * Look out! "owner" is an entirely speculative pointer
  4614. * access and not reliable.
  4615. */
  4616. int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
  4617. {
  4618. unsigned int cpu;
  4619. struct rq *rq;
  4620. if (!sched_feat(OWNER_SPIN))
  4621. return 0;
  4622. #ifdef CONFIG_DEBUG_PAGEALLOC
  4623. /*
  4624. * Need to access the cpu field knowing that
  4625. * DEBUG_PAGEALLOC could have unmapped it if
  4626. * the mutex owner just released it and exited.
  4627. */
  4628. if (probe_kernel_address(&owner->cpu, cpu))
  4629. goto out;
  4630. #else
  4631. cpu = owner->cpu;
  4632. #endif
  4633. /*
  4634. * Even if the access succeeded (likely case),
  4635. * the cpu field may no longer be valid.
  4636. */
  4637. if (cpu >= nr_cpumask_bits)
  4638. goto out;
  4639. /*
  4640. * We need to validate that we can do a
  4641. * get_cpu() and that we have the percpu area.
  4642. */
  4643. if (!cpu_online(cpu))
  4644. goto out;
  4645. rq = cpu_rq(cpu);
  4646. for (;;) {
  4647. /*
  4648. * Owner changed, break to re-assess state.
  4649. */
  4650. if (lock->owner != owner)
  4651. break;
  4652. /*
  4653. * Is that owner really running on that cpu?
  4654. */
  4655. if (task_thread_info(rq->curr) != owner || need_resched())
  4656. return 0;
  4657. cpu_relax();
  4658. }
  4659. out:
  4660. return 1;
  4661. }
  4662. #endif
  4663. #ifdef CONFIG_PREEMPT
  4664. /*
  4665. * this is the entry point to schedule() from in-kernel preemption
  4666. * off of preempt_enable. Kernel preemptions off return from interrupt
  4667. * occur there and call schedule directly.
  4668. */
  4669. asmlinkage void __sched preempt_schedule(void)
  4670. {
  4671. struct thread_info *ti = current_thread_info();
  4672. /*
  4673. * If there is a non-zero preempt_count or interrupts are disabled,
  4674. * we do not want to preempt the current task. Just return..
  4675. */
  4676. if (likely(ti->preempt_count || irqs_disabled()))
  4677. return;
  4678. do {
  4679. add_preempt_count(PREEMPT_ACTIVE);
  4680. schedule();
  4681. sub_preempt_count(PREEMPT_ACTIVE);
  4682. /*
  4683. * Check again in case we missed a preemption opportunity
  4684. * between schedule and now.
  4685. */
  4686. barrier();
  4687. } while (need_resched());
  4688. }
  4689. EXPORT_SYMBOL(preempt_schedule);
  4690. /*
  4691. * this is the entry point to schedule() from kernel preemption
  4692. * off of irq context.
  4693. * Note, that this is called and return with irqs disabled. This will
  4694. * protect us against recursive calling from irq.
  4695. */
  4696. asmlinkage void __sched preempt_schedule_irq(void)
  4697. {
  4698. struct thread_info *ti = current_thread_info();
  4699. /* Catch callers which need to be fixed */
  4700. BUG_ON(ti->preempt_count || !irqs_disabled());
  4701. do {
  4702. add_preempt_count(PREEMPT_ACTIVE);
  4703. local_irq_enable();
  4704. schedule();
  4705. local_irq_disable();
  4706. sub_preempt_count(PREEMPT_ACTIVE);
  4707. /*
  4708. * Check again in case we missed a preemption opportunity
  4709. * between schedule and now.
  4710. */
  4711. barrier();
  4712. } while (need_resched());
  4713. }
  4714. #endif /* CONFIG_PREEMPT */
  4715. int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
  4716. void *key)
  4717. {
  4718. return try_to_wake_up(curr->private, mode, wake_flags);
  4719. }
  4720. EXPORT_SYMBOL(default_wake_function);
  4721. /*
  4722. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  4723. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  4724. * number) then we wake all the non-exclusive tasks and one exclusive task.
  4725. *
  4726. * There are circumstances in which we can try to wake a task which has already
  4727. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  4728. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  4729. */
  4730. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  4731. int nr_exclusive, int wake_flags, void *key)
  4732. {
  4733. wait_queue_t *curr, *next;
  4734. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  4735. unsigned flags = curr->flags;
  4736. if (curr->func(curr, mode, wake_flags, key) &&
  4737. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  4738. break;
  4739. }
  4740. }
  4741. /**
  4742. * __wake_up - wake up threads blocked on a waitqueue.
  4743. * @q: the waitqueue
  4744. * @mode: which threads
  4745. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  4746. * @key: is directly passed to the wakeup function
  4747. *
  4748. * It may be assumed that this function implies a write memory barrier before
  4749. * changing the task state if and only if any tasks are woken up.
  4750. */
  4751. void __wake_up(wait_queue_head_t *q, unsigned int mode,
  4752. int nr_exclusive, void *key)
  4753. {
  4754. unsigned long flags;
  4755. spin_lock_irqsave(&q->lock, flags);
  4756. __wake_up_common(q, mode, nr_exclusive, 0, key);
  4757. spin_unlock_irqrestore(&q->lock, flags);
  4758. }
  4759. EXPORT_SYMBOL(__wake_up);
  4760. /*
  4761. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  4762. */
  4763. void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  4764. {
  4765. __wake_up_common(q, mode, 1, 0, NULL);
  4766. }
  4767. void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
  4768. {
  4769. __wake_up_common(q, mode, 1, 0, key);
  4770. }
  4771. /**
  4772. * __wake_up_sync_key - wake up threads blocked on a waitqueue.
  4773. * @q: the waitqueue
  4774. * @mode: which threads
  4775. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  4776. * @key: opaque value to be passed to wakeup targets
  4777. *
  4778. * The sync wakeup differs that the waker knows that it will schedule
  4779. * away soon, so while the target thread will be woken up, it will not
  4780. * be migrated to another CPU - ie. the two threads are 'synchronized'
  4781. * with each other. This can prevent needless bouncing between CPUs.
  4782. *
  4783. * On UP it can prevent extra preemption.
  4784. *
  4785. * It may be assumed that this function implies a write memory barrier before
  4786. * changing the task state if and only if any tasks are woken up.
  4787. */
  4788. void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
  4789. int nr_exclusive, void *key)
  4790. {
  4791. unsigned long flags;
  4792. int wake_flags = WF_SYNC;
  4793. if (unlikely(!q))
  4794. return;
  4795. if (unlikely(!nr_exclusive))
  4796. wake_flags = 0;
  4797. spin_lock_irqsave(&q->lock, flags);
  4798. __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
  4799. spin_unlock_irqrestore(&q->lock, flags);
  4800. }
  4801. EXPORT_SYMBOL_GPL(__wake_up_sync_key);
  4802. /*
  4803. * __wake_up_sync - see __wake_up_sync_key()
  4804. */
  4805. void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  4806. {
  4807. __wake_up_sync_key(q, mode, nr_exclusive, NULL);
  4808. }
  4809. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  4810. /**
  4811. * complete: - signals a single thread waiting on this completion
  4812. * @x: holds the state of this particular completion
  4813. *
  4814. * This will wake up a single thread waiting on this completion. Threads will be
  4815. * awakened in the same order in which they were queued.
  4816. *
  4817. * See also complete_all(), wait_for_completion() and related routines.
  4818. *
  4819. * It may be assumed that this function implies a write memory barrier before
  4820. * changing the task state if and only if any tasks are woken up.
  4821. */
  4822. void complete(struct completion *x)
  4823. {
  4824. unsigned long flags;
  4825. spin_lock_irqsave(&x->wait.lock, flags);
  4826. x->done++;
  4827. __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
  4828. spin_unlock_irqrestore(&x->wait.lock, flags);
  4829. }
  4830. EXPORT_SYMBOL(complete);
  4831. /**
  4832. * complete_all: - signals all threads waiting on this completion
  4833. * @x: holds the state of this particular completion
  4834. *
  4835. * This will wake up all threads waiting on this particular completion event.
  4836. *
  4837. * It may be assumed that this function implies a write memory barrier before
  4838. * changing the task state if and only if any tasks are woken up.
  4839. */
  4840. void complete_all(struct completion *x)
  4841. {
  4842. unsigned long flags;
  4843. spin_lock_irqsave(&x->wait.lock, flags);
  4844. x->done += UINT_MAX/2;
  4845. __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
  4846. spin_unlock_irqrestore(&x->wait.lock, flags);
  4847. }
  4848. EXPORT_SYMBOL(complete_all);
  4849. static inline long __sched
  4850. do_wait_for_common(struct completion *x, long timeout, int state)
  4851. {
  4852. if (!x->done) {
  4853. DECLARE_WAITQUEUE(wait, current);
  4854. wait.flags |= WQ_FLAG_EXCLUSIVE;
  4855. __add_wait_queue_tail(&x->wait, &wait);
  4856. do {
  4857. if (signal_pending_state(state, current)) {
  4858. timeout = -ERESTARTSYS;
  4859. break;
  4860. }
  4861. __set_current_state(state);
  4862. spin_unlock_irq(&x->wait.lock);
  4863. timeout = schedule_timeout(timeout);
  4864. spin_lock_irq(&x->wait.lock);
  4865. } while (!x->done && timeout);
  4866. __remove_wait_queue(&x->wait, &wait);
  4867. if (!x->done)
  4868. return timeout;
  4869. }
  4870. x->done--;
  4871. return timeout ?: 1;
  4872. }
  4873. static long __sched
  4874. wait_for_common(struct completion *x, long timeout, int state)
  4875. {
  4876. might_sleep();
  4877. spin_lock_irq(&x->wait.lock);
  4878. timeout = do_wait_for_common(x, timeout, state);
  4879. spin_unlock_irq(&x->wait.lock);
  4880. return timeout;
  4881. }
  4882. /**
  4883. * wait_for_completion: - waits for completion of a task
  4884. * @x: holds the state of this particular completion
  4885. *
  4886. * This waits to be signaled for completion of a specific task. It is NOT
  4887. * interruptible and there is no timeout.
  4888. *
  4889. * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
  4890. * and interrupt capability. Also see complete().
  4891. */
  4892. void __sched wait_for_completion(struct completion *x)
  4893. {
  4894. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  4895. }
  4896. EXPORT_SYMBOL(wait_for_completion);
  4897. /**
  4898. * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
  4899. * @x: holds the state of this particular completion
  4900. * @timeout: timeout value in jiffies
  4901. *
  4902. * This waits for either a completion of a specific task to be signaled or for a
  4903. * specified timeout to expire. The timeout is in jiffies. It is not
  4904. * interruptible.
  4905. */
  4906. unsigned long __sched
  4907. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  4908. {
  4909. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  4910. }
  4911. EXPORT_SYMBOL(wait_for_completion_timeout);
  4912. /**
  4913. * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
  4914. * @x: holds the state of this particular completion
  4915. *
  4916. * This waits for completion of a specific task to be signaled. It is
  4917. * interruptible.
  4918. */
  4919. int __sched wait_for_completion_interruptible(struct completion *x)
  4920. {
  4921. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  4922. if (t == -ERESTARTSYS)
  4923. return t;
  4924. return 0;
  4925. }
  4926. EXPORT_SYMBOL(wait_for_completion_interruptible);
  4927. /**
  4928. * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
  4929. * @x: holds the state of this particular completion
  4930. * @timeout: timeout value in jiffies
  4931. *
  4932. * This waits for either a completion of a specific task to be signaled or for a
  4933. * specified timeout to expire. It is interruptible. The timeout is in jiffies.
  4934. */
  4935. unsigned long __sched
  4936. wait_for_completion_interruptible_timeout(struct completion *x,
  4937. unsigned long timeout)
  4938. {
  4939. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  4940. }
  4941. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  4942. /**
  4943. * wait_for_completion_killable: - waits for completion of a task (killable)
  4944. * @x: holds the state of this particular completion
  4945. *
  4946. * This waits to be signaled for completion of a specific task. It can be
  4947. * interrupted by a kill signal.
  4948. */
  4949. int __sched wait_for_completion_killable(struct completion *x)
  4950. {
  4951. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
  4952. if (t == -ERESTARTSYS)
  4953. return t;
  4954. return 0;
  4955. }
  4956. EXPORT_SYMBOL(wait_for_completion_killable);
  4957. /**
  4958. * try_wait_for_completion - try to decrement a completion without blocking
  4959. * @x: completion structure
  4960. *
  4961. * Returns: 0 if a decrement cannot be done without blocking
  4962. * 1 if a decrement succeeded.
  4963. *
  4964. * If a completion is being used as a counting completion,
  4965. * attempt to decrement the counter without blocking. This
  4966. * enables us to avoid waiting if the resource the completion
  4967. * is protecting is not available.
  4968. */
  4969. bool try_wait_for_completion(struct completion *x)
  4970. {
  4971. int ret = 1;
  4972. spin_lock_irq(&x->wait.lock);
  4973. if (!x->done)
  4974. ret = 0;
  4975. else
  4976. x->done--;
  4977. spin_unlock_irq(&x->wait.lock);
  4978. return ret;
  4979. }
  4980. EXPORT_SYMBOL(try_wait_for_completion);
  4981. /**
  4982. * completion_done - Test to see if a completion has any waiters
  4983. * @x: completion structure
  4984. *
  4985. * Returns: 0 if there are waiters (wait_for_completion() in progress)
  4986. * 1 if there are no waiters.
  4987. *
  4988. */
  4989. bool completion_done(struct completion *x)
  4990. {
  4991. int ret = 1;
  4992. spin_lock_irq(&x->wait.lock);
  4993. if (!x->done)
  4994. ret = 0;
  4995. spin_unlock_irq(&x->wait.lock);
  4996. return ret;
  4997. }
  4998. EXPORT_SYMBOL(completion_done);
  4999. static long __sched
  5000. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  5001. {
  5002. unsigned long flags;
  5003. wait_queue_t wait;
  5004. init_waitqueue_entry(&wait, current);
  5005. __set_current_state(state);
  5006. spin_lock_irqsave(&q->lock, flags);
  5007. __add_wait_queue(q, &wait);
  5008. spin_unlock(&q->lock);
  5009. timeout = schedule_timeout(timeout);
  5010. spin_lock_irq(&q->lock);
  5011. __remove_wait_queue(q, &wait);
  5012. spin_unlock_irqrestore(&q->lock, flags);
  5013. return timeout;
  5014. }
  5015. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  5016. {
  5017. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  5018. }
  5019. EXPORT_SYMBOL(interruptible_sleep_on);
  5020. long __sched
  5021. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  5022. {
  5023. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  5024. }
  5025. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  5026. void __sched sleep_on(wait_queue_head_t *q)
  5027. {
  5028. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  5029. }
  5030. EXPORT_SYMBOL(sleep_on);
  5031. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  5032. {
  5033. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  5034. }
  5035. EXPORT_SYMBOL(sleep_on_timeout);
  5036. #ifdef CONFIG_RT_MUTEXES
  5037. /*
  5038. * rt_mutex_setprio - set the current priority of a task
  5039. * @p: task
  5040. * @prio: prio value (kernel-internal form)
  5041. *
  5042. * This function changes the 'effective' priority of a task. It does
  5043. * not touch ->normal_prio like __setscheduler().
  5044. *
  5045. * Used by the rt_mutex code to implement priority inheritance logic.
  5046. */
  5047. void rt_mutex_setprio(struct task_struct *p, int prio)
  5048. {
  5049. unsigned long flags;
  5050. int oldprio, on_rq, running;
  5051. struct rq *rq;
  5052. const struct sched_class *prev_class = p->sched_class;
  5053. BUG_ON(prio < 0 || prio > MAX_PRIO);
  5054. rq = task_rq_lock(p, &flags);
  5055. update_rq_clock(rq);
  5056. oldprio = p->prio;
  5057. on_rq = p->se.on_rq;
  5058. running = task_current(rq, p);
  5059. if (on_rq)
  5060. dequeue_task(rq, p, 0);
  5061. if (running)
  5062. p->sched_class->put_prev_task(rq, p);
  5063. if (rt_prio(prio))
  5064. p->sched_class = &rt_sched_class;
  5065. else
  5066. p->sched_class = &fair_sched_class;
  5067. p->prio = prio;
  5068. if (running)
  5069. p->sched_class->set_curr_task(rq);
  5070. if (on_rq) {
  5071. enqueue_task(rq, p, 0);
  5072. check_class_changed(rq, p, prev_class, oldprio, running);
  5073. }
  5074. task_rq_unlock(rq, &flags);
  5075. }
  5076. #endif
  5077. void set_user_nice(struct task_struct *p, long nice)
  5078. {
  5079. int old_prio, delta, on_rq;
  5080. unsigned long flags;
  5081. struct rq *rq;
  5082. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  5083. return;
  5084. /*
  5085. * We have to be careful, if called from sys_setpriority(),
  5086. * the task might be in the middle of scheduling on another CPU.
  5087. */
  5088. rq = task_rq_lock(p, &flags);
  5089. update_rq_clock(rq);
  5090. /*
  5091. * The RT priorities are set via sched_setscheduler(), but we still
  5092. * allow the 'normal' nice value to be set - but as expected
  5093. * it wont have any effect on scheduling until the task is
  5094. * SCHED_FIFO/SCHED_RR:
  5095. */
  5096. if (task_has_rt_policy(p)) {
  5097. p->static_prio = NICE_TO_PRIO(nice);
  5098. goto out_unlock;
  5099. }
  5100. on_rq = p->se.on_rq;
  5101. if (on_rq)
  5102. dequeue_task(rq, p, 0);
  5103. p->static_prio = NICE_TO_PRIO(nice);
  5104. set_load_weight(p);
  5105. old_prio = p->prio;
  5106. p->prio = effective_prio(p);
  5107. delta = p->prio - old_prio;
  5108. if (on_rq) {
  5109. enqueue_task(rq, p, 0);
  5110. /*
  5111. * If the task increased its priority or is running and
  5112. * lowered its priority, then reschedule its CPU:
  5113. */
  5114. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  5115. resched_task(rq->curr);
  5116. }
  5117. out_unlock:
  5118. task_rq_unlock(rq, &flags);
  5119. }
  5120. EXPORT_SYMBOL(set_user_nice);
  5121. /*
  5122. * can_nice - check if a task can reduce its nice value
  5123. * @p: task
  5124. * @nice: nice value
  5125. */
  5126. int can_nice(const struct task_struct *p, const int nice)
  5127. {
  5128. /* convert nice value [19,-20] to rlimit style value [1,40] */
  5129. int nice_rlim = 20 - nice;
  5130. return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
  5131. capable(CAP_SYS_NICE));
  5132. }
  5133. #ifdef __ARCH_WANT_SYS_NICE
  5134. /*
  5135. * sys_nice - change the priority of the current process.
  5136. * @increment: priority increment
  5137. *
  5138. * sys_setpriority is a more generic, but much slower function that
  5139. * does similar things.
  5140. */
  5141. SYSCALL_DEFINE1(nice, int, increment)
  5142. {
  5143. long nice, retval;
  5144. /*
  5145. * Setpriority might change our priority at the same moment.
  5146. * We don't have to worry. Conceptually one call occurs first
  5147. * and we have a single winner.
  5148. */
  5149. if (increment < -40)
  5150. increment = -40;
  5151. if (increment > 40)
  5152. increment = 40;
  5153. nice = TASK_NICE(current) + increment;
  5154. if (nice < -20)
  5155. nice = -20;
  5156. if (nice > 19)
  5157. nice = 19;
  5158. if (increment < 0 && !can_nice(current, nice))
  5159. return -EPERM;
  5160. retval = security_task_setnice(current, nice);
  5161. if (retval)
  5162. return retval;
  5163. set_user_nice(current, nice);
  5164. return 0;
  5165. }
  5166. #endif
  5167. /**
  5168. * task_prio - return the priority value of a given task.
  5169. * @p: the task in question.
  5170. *
  5171. * This is the priority value as seen by users in /proc.
  5172. * RT tasks are offset by -200. Normal tasks are centered
  5173. * around 0, value goes from -16 to +15.
  5174. */
  5175. int task_prio(const struct task_struct *p)
  5176. {
  5177. return p->prio - MAX_RT_PRIO;
  5178. }
  5179. /**
  5180. * task_nice - return the nice value of a given task.
  5181. * @p: the task in question.
  5182. */
  5183. int task_nice(const struct task_struct *p)
  5184. {
  5185. return TASK_NICE(p);
  5186. }
  5187. EXPORT_SYMBOL(task_nice);
  5188. /**
  5189. * idle_cpu - is a given cpu idle currently?
  5190. * @cpu: the processor in question.
  5191. */
  5192. int idle_cpu(int cpu)
  5193. {
  5194. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  5195. }
  5196. /**
  5197. * idle_task - return the idle task for a given cpu.
  5198. * @cpu: the processor in question.
  5199. */
  5200. struct task_struct *idle_task(int cpu)
  5201. {
  5202. return cpu_rq(cpu)->idle;
  5203. }
  5204. /**
  5205. * find_process_by_pid - find a process with a matching PID value.
  5206. * @pid: the pid in question.
  5207. */
  5208. static struct task_struct *find_process_by_pid(pid_t pid)
  5209. {
  5210. return pid ? find_task_by_vpid(pid) : current;
  5211. }
  5212. /* Actually do priority change: must hold rq lock. */
  5213. static void
  5214. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  5215. {
  5216. BUG_ON(p->se.on_rq);
  5217. p->policy = policy;
  5218. switch (p->policy) {
  5219. case SCHED_NORMAL:
  5220. case SCHED_BATCH:
  5221. case SCHED_IDLE:
  5222. p->sched_class = &fair_sched_class;
  5223. break;
  5224. case SCHED_FIFO:
  5225. case SCHED_RR:
  5226. p->sched_class = &rt_sched_class;
  5227. break;
  5228. }
  5229. p->rt_priority = prio;
  5230. p->normal_prio = normal_prio(p);
  5231. /* we are holding p->pi_lock already */
  5232. p->prio = rt_mutex_getprio(p);
  5233. set_load_weight(p);
  5234. }
  5235. /*
  5236. * check the target process has a UID that matches the current process's
  5237. */
  5238. static bool check_same_owner(struct task_struct *p)
  5239. {
  5240. const struct cred *cred = current_cred(), *pcred;
  5241. bool match;
  5242. rcu_read_lock();
  5243. pcred = __task_cred(p);
  5244. match = (cred->euid == pcred->euid ||
  5245. cred->euid == pcred->uid);
  5246. rcu_read_unlock();
  5247. return match;
  5248. }
  5249. static int __sched_setscheduler(struct task_struct *p, int policy,
  5250. struct sched_param *param, bool user)
  5251. {
  5252. int retval, oldprio, oldpolicy = -1, on_rq, running;
  5253. unsigned long flags;
  5254. const struct sched_class *prev_class = p->sched_class;
  5255. struct rq *rq;
  5256. int reset_on_fork;
  5257. /* may grab non-irq protected spin_locks */
  5258. BUG_ON(in_interrupt());
  5259. recheck:
  5260. /* double check policy once rq lock held */
  5261. if (policy < 0) {
  5262. reset_on_fork = p->sched_reset_on_fork;
  5263. policy = oldpolicy = p->policy;
  5264. } else {
  5265. reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
  5266. policy &= ~SCHED_RESET_ON_FORK;
  5267. if (policy != SCHED_FIFO && policy != SCHED_RR &&
  5268. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  5269. policy != SCHED_IDLE)
  5270. return -EINVAL;
  5271. }
  5272. /*
  5273. * Valid priorities for SCHED_FIFO and SCHED_RR are
  5274. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  5275. * SCHED_BATCH and SCHED_IDLE is 0.
  5276. */
  5277. if (param->sched_priority < 0 ||
  5278. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  5279. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  5280. return -EINVAL;
  5281. if (rt_policy(policy) != (param->sched_priority != 0))
  5282. return -EINVAL;
  5283. /*
  5284. * Allow unprivileged RT tasks to decrease priority:
  5285. */
  5286. if (user && !capable(CAP_SYS_NICE)) {
  5287. if (rt_policy(policy)) {
  5288. unsigned long rlim_rtprio;
  5289. if (!lock_task_sighand(p, &flags))
  5290. return -ESRCH;
  5291. rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
  5292. unlock_task_sighand(p, &flags);
  5293. /* can't set/change the rt policy */
  5294. if (policy != p->policy && !rlim_rtprio)
  5295. return -EPERM;
  5296. /* can't increase priority */
  5297. if (param->sched_priority > p->rt_priority &&
  5298. param->sched_priority > rlim_rtprio)
  5299. return -EPERM;
  5300. }
  5301. /*
  5302. * Like positive nice levels, dont allow tasks to
  5303. * move out of SCHED_IDLE either:
  5304. */
  5305. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
  5306. return -EPERM;
  5307. /* can't change other user's priorities */
  5308. if (!check_same_owner(p))
  5309. return -EPERM;
  5310. /* Normal users shall not reset the sched_reset_on_fork flag */
  5311. if (p->sched_reset_on_fork && !reset_on_fork)
  5312. return -EPERM;
  5313. }
  5314. if (user) {
  5315. #ifdef CONFIG_RT_GROUP_SCHED
  5316. /*
  5317. * Do not allow realtime tasks into groups that have no runtime
  5318. * assigned.
  5319. */
  5320. if (rt_bandwidth_enabled() && rt_policy(policy) &&
  5321. task_group(p)->rt_bandwidth.rt_runtime == 0)
  5322. return -EPERM;
  5323. #endif
  5324. retval = security_task_setscheduler(p, policy, param);
  5325. if (retval)
  5326. return retval;
  5327. }
  5328. /*
  5329. * make sure no PI-waiters arrive (or leave) while we are
  5330. * changing the priority of the task:
  5331. */
  5332. spin_lock_irqsave(&p->pi_lock, flags);
  5333. /*
  5334. * To be able to change p->policy safely, the apropriate
  5335. * runqueue lock must be held.
  5336. */
  5337. rq = __task_rq_lock(p);
  5338. /* recheck policy now with rq lock held */
  5339. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  5340. policy = oldpolicy = -1;
  5341. __task_rq_unlock(rq);
  5342. spin_unlock_irqrestore(&p->pi_lock, flags);
  5343. goto recheck;
  5344. }
  5345. update_rq_clock(rq);
  5346. on_rq = p->se.on_rq;
  5347. running = task_current(rq, p);
  5348. if (on_rq)
  5349. deactivate_task(rq, p, 0);
  5350. if (running)
  5351. p->sched_class->put_prev_task(rq, p);
  5352. p->sched_reset_on_fork = reset_on_fork;
  5353. oldprio = p->prio;
  5354. __setscheduler(rq, p, policy, param->sched_priority);
  5355. if (running)
  5356. p->sched_class->set_curr_task(rq);
  5357. if (on_rq) {
  5358. activate_task(rq, p, 0);
  5359. check_class_changed(rq, p, prev_class, oldprio, running);
  5360. }
  5361. __task_rq_unlock(rq);
  5362. spin_unlock_irqrestore(&p->pi_lock, flags);
  5363. rt_mutex_adjust_pi(p);
  5364. return 0;
  5365. }
  5366. /**
  5367. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  5368. * @p: the task in question.
  5369. * @policy: new policy.
  5370. * @param: structure containing the new RT priority.
  5371. *
  5372. * NOTE that the task may be already dead.
  5373. */
  5374. int sched_setscheduler(struct task_struct *p, int policy,
  5375. struct sched_param *param)
  5376. {
  5377. return __sched_setscheduler(p, policy, param, true);
  5378. }
  5379. EXPORT_SYMBOL_GPL(sched_setscheduler);
  5380. /**
  5381. * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
  5382. * @p: the task in question.
  5383. * @policy: new policy.
  5384. * @param: structure containing the new RT priority.
  5385. *
  5386. * Just like sched_setscheduler, only don't bother checking if the
  5387. * current context has permission. For example, this is needed in
  5388. * stop_machine(): we create temporary high priority worker threads,
  5389. * but our caller might not have that capability.
  5390. */
  5391. int sched_setscheduler_nocheck(struct task_struct *p, int policy,
  5392. struct sched_param *param)
  5393. {
  5394. return __sched_setscheduler(p, policy, param, false);
  5395. }
  5396. static int
  5397. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  5398. {
  5399. struct sched_param lparam;
  5400. struct task_struct *p;
  5401. int retval;
  5402. if (!param || pid < 0)
  5403. return -EINVAL;
  5404. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  5405. return -EFAULT;
  5406. rcu_read_lock();
  5407. retval = -ESRCH;
  5408. p = find_process_by_pid(pid);
  5409. if (p != NULL)
  5410. retval = sched_setscheduler(p, policy, &lparam);
  5411. rcu_read_unlock();
  5412. return retval;
  5413. }
  5414. /**
  5415. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  5416. * @pid: the pid in question.
  5417. * @policy: new policy.
  5418. * @param: structure containing the new RT priority.
  5419. */
  5420. SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
  5421. struct sched_param __user *, param)
  5422. {
  5423. /* negative values for policy are not valid */
  5424. if (policy < 0)
  5425. return -EINVAL;
  5426. return do_sched_setscheduler(pid, policy, param);
  5427. }
  5428. /**
  5429. * sys_sched_setparam - set/change the RT priority of a thread
  5430. * @pid: the pid in question.
  5431. * @param: structure containing the new RT priority.
  5432. */
  5433. SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
  5434. {
  5435. return do_sched_setscheduler(pid, -1, param);
  5436. }
  5437. /**
  5438. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  5439. * @pid: the pid in question.
  5440. */
  5441. SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
  5442. {
  5443. struct task_struct *p;
  5444. int retval;
  5445. if (pid < 0)
  5446. return -EINVAL;
  5447. retval = -ESRCH;
  5448. read_lock(&tasklist_lock);
  5449. p = find_process_by_pid(pid);
  5450. if (p) {
  5451. retval = security_task_getscheduler(p);
  5452. if (!retval)
  5453. retval = p->policy
  5454. | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
  5455. }
  5456. read_unlock(&tasklist_lock);
  5457. return retval;
  5458. }
  5459. /**
  5460. * sys_sched_getparam - get the RT priority of a thread
  5461. * @pid: the pid in question.
  5462. * @param: structure containing the RT priority.
  5463. */
  5464. SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
  5465. {
  5466. struct sched_param lp;
  5467. struct task_struct *p;
  5468. int retval;
  5469. if (!param || pid < 0)
  5470. return -EINVAL;
  5471. read_lock(&tasklist_lock);
  5472. p = find_process_by_pid(pid);
  5473. retval = -ESRCH;
  5474. if (!p)
  5475. goto out_unlock;
  5476. retval = security_task_getscheduler(p);
  5477. if (retval)
  5478. goto out_unlock;
  5479. lp.sched_priority = p->rt_priority;
  5480. read_unlock(&tasklist_lock);
  5481. /*
  5482. * This one might sleep, we cannot do it with a spinlock held ...
  5483. */
  5484. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  5485. return retval;
  5486. out_unlock:
  5487. read_unlock(&tasklist_lock);
  5488. return retval;
  5489. }
  5490. long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
  5491. {
  5492. cpumask_var_t cpus_allowed, new_mask;
  5493. struct task_struct *p;
  5494. int retval;
  5495. get_online_cpus();
  5496. read_lock(&tasklist_lock);
  5497. p = find_process_by_pid(pid);
  5498. if (!p) {
  5499. read_unlock(&tasklist_lock);
  5500. put_online_cpus();
  5501. return -ESRCH;
  5502. }
  5503. /*
  5504. * It is not safe to call set_cpus_allowed with the
  5505. * tasklist_lock held. We will bump the task_struct's
  5506. * usage count and then drop tasklist_lock.
  5507. */
  5508. get_task_struct(p);
  5509. read_unlock(&tasklist_lock);
  5510. if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
  5511. retval = -ENOMEM;
  5512. goto out_put_task;
  5513. }
  5514. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
  5515. retval = -ENOMEM;
  5516. goto out_free_cpus_allowed;
  5517. }
  5518. retval = -EPERM;
  5519. if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
  5520. goto out_unlock;
  5521. retval = security_task_setscheduler(p, 0, NULL);
  5522. if (retval)
  5523. goto out_unlock;
  5524. cpuset_cpus_allowed(p, cpus_allowed);
  5525. cpumask_and(new_mask, in_mask, cpus_allowed);
  5526. again:
  5527. retval = set_cpus_allowed_ptr(p, new_mask);
  5528. if (!retval) {
  5529. cpuset_cpus_allowed(p, cpus_allowed);
  5530. if (!cpumask_subset(new_mask, cpus_allowed)) {
  5531. /*
  5532. * We must have raced with a concurrent cpuset
  5533. * update. Just reset the cpus_allowed to the
  5534. * cpuset's cpus_allowed
  5535. */
  5536. cpumask_copy(new_mask, cpus_allowed);
  5537. goto again;
  5538. }
  5539. }
  5540. out_unlock:
  5541. free_cpumask_var(new_mask);
  5542. out_free_cpus_allowed:
  5543. free_cpumask_var(cpus_allowed);
  5544. out_put_task:
  5545. put_task_struct(p);
  5546. put_online_cpus();
  5547. return retval;
  5548. }
  5549. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  5550. struct cpumask *new_mask)
  5551. {
  5552. if (len < cpumask_size())
  5553. cpumask_clear(new_mask);
  5554. else if (len > cpumask_size())
  5555. len = cpumask_size();
  5556. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  5557. }
  5558. /**
  5559. * sys_sched_setaffinity - set the cpu affinity of a process
  5560. * @pid: pid of the process
  5561. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  5562. * @user_mask_ptr: user-space pointer to the new cpu mask
  5563. */
  5564. SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
  5565. unsigned long __user *, user_mask_ptr)
  5566. {
  5567. cpumask_var_t new_mask;
  5568. int retval;
  5569. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
  5570. return -ENOMEM;
  5571. retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
  5572. if (retval == 0)
  5573. retval = sched_setaffinity(pid, new_mask);
  5574. free_cpumask_var(new_mask);
  5575. return retval;
  5576. }
  5577. long sched_getaffinity(pid_t pid, struct cpumask *mask)
  5578. {
  5579. struct task_struct *p;
  5580. int retval;
  5581. get_online_cpus();
  5582. read_lock(&tasklist_lock);
  5583. retval = -ESRCH;
  5584. p = find_process_by_pid(pid);
  5585. if (!p)
  5586. goto out_unlock;
  5587. retval = security_task_getscheduler(p);
  5588. if (retval)
  5589. goto out_unlock;
  5590. cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
  5591. out_unlock:
  5592. read_unlock(&tasklist_lock);
  5593. put_online_cpus();
  5594. return retval;
  5595. }
  5596. /**
  5597. * sys_sched_getaffinity - get the cpu affinity of a process
  5598. * @pid: pid of the process
  5599. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  5600. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  5601. */
  5602. SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
  5603. unsigned long __user *, user_mask_ptr)
  5604. {
  5605. int ret;
  5606. cpumask_var_t mask;
  5607. if (len < cpumask_size())
  5608. return -EINVAL;
  5609. if (!alloc_cpumask_var(&mask, GFP_KERNEL))
  5610. return -ENOMEM;
  5611. ret = sched_getaffinity(pid, mask);
  5612. if (ret == 0) {
  5613. if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
  5614. ret = -EFAULT;
  5615. else
  5616. ret = cpumask_size();
  5617. }
  5618. free_cpumask_var(mask);
  5619. return ret;
  5620. }
  5621. /**
  5622. * sys_sched_yield - yield the current processor to other threads.
  5623. *
  5624. * This function yields the current CPU to other tasks. If there are no
  5625. * other threads running on this CPU then this function will return.
  5626. */
  5627. SYSCALL_DEFINE0(sched_yield)
  5628. {
  5629. struct rq *rq = this_rq_lock();
  5630. schedstat_inc(rq, yld_count);
  5631. current->sched_class->yield_task(rq);
  5632. /*
  5633. * Since we are going to call schedule() anyway, there's
  5634. * no need to preempt or enable interrupts:
  5635. */
  5636. __release(rq->lock);
  5637. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  5638. _raw_spin_unlock(&rq->lock);
  5639. preempt_enable_no_resched();
  5640. schedule();
  5641. return 0;
  5642. }
  5643. static inline int should_resched(void)
  5644. {
  5645. return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
  5646. }
  5647. static void __cond_resched(void)
  5648. {
  5649. add_preempt_count(PREEMPT_ACTIVE);
  5650. schedule();
  5651. sub_preempt_count(PREEMPT_ACTIVE);
  5652. }
  5653. int __sched _cond_resched(void)
  5654. {
  5655. if (should_resched()) {
  5656. __cond_resched();
  5657. return 1;
  5658. }
  5659. return 0;
  5660. }
  5661. EXPORT_SYMBOL(_cond_resched);
  5662. /*
  5663. * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
  5664. * call schedule, and on return reacquire the lock.
  5665. *
  5666. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  5667. * operations here to prevent schedule() from being called twice (once via
  5668. * spin_unlock(), once by hand).
  5669. */
  5670. int __cond_resched_lock(spinlock_t *lock)
  5671. {
  5672. int resched = should_resched();
  5673. int ret = 0;
  5674. lockdep_assert_held(lock);
  5675. if (spin_needbreak(lock) || resched) {
  5676. spin_unlock(lock);
  5677. if (resched)
  5678. __cond_resched();
  5679. else
  5680. cpu_relax();
  5681. ret = 1;
  5682. spin_lock(lock);
  5683. }
  5684. return ret;
  5685. }
  5686. EXPORT_SYMBOL(__cond_resched_lock);
  5687. int __sched __cond_resched_softirq(void)
  5688. {
  5689. BUG_ON(!in_softirq());
  5690. if (should_resched()) {
  5691. local_bh_enable();
  5692. __cond_resched();
  5693. local_bh_disable();
  5694. return 1;
  5695. }
  5696. return 0;
  5697. }
  5698. EXPORT_SYMBOL(__cond_resched_softirq);
  5699. /**
  5700. * yield - yield the current processor to other threads.
  5701. *
  5702. * This is a shortcut for kernel-space yielding - it marks the
  5703. * thread runnable and calls sys_sched_yield().
  5704. */
  5705. void __sched yield(void)
  5706. {
  5707. set_current_state(TASK_RUNNING);
  5708. sys_sched_yield();
  5709. }
  5710. EXPORT_SYMBOL(yield);
  5711. /*
  5712. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  5713. * that process accounting knows that this is a task in IO wait state.
  5714. *
  5715. * But don't do that if it is a deliberate, throttling IO wait (this task
  5716. * has set its backing_dev_info: the queue against which it should throttle)
  5717. */
  5718. void __sched io_schedule(void)
  5719. {
  5720. struct rq *rq = raw_rq();
  5721. delayacct_blkio_start();
  5722. atomic_inc(&rq->nr_iowait);
  5723. current->in_iowait = 1;
  5724. schedule();
  5725. current->in_iowait = 0;
  5726. atomic_dec(&rq->nr_iowait);
  5727. delayacct_blkio_end();
  5728. }
  5729. EXPORT_SYMBOL(io_schedule);
  5730. long __sched io_schedule_timeout(long timeout)
  5731. {
  5732. struct rq *rq = raw_rq();
  5733. long ret;
  5734. delayacct_blkio_start();
  5735. atomic_inc(&rq->nr_iowait);
  5736. current->in_iowait = 1;
  5737. ret = schedule_timeout(timeout);
  5738. current->in_iowait = 0;
  5739. atomic_dec(&rq->nr_iowait);
  5740. delayacct_blkio_end();
  5741. return ret;
  5742. }
  5743. /**
  5744. * sys_sched_get_priority_max - return maximum RT priority.
  5745. * @policy: scheduling class.
  5746. *
  5747. * this syscall returns the maximum rt_priority that can be used
  5748. * by a given scheduling class.
  5749. */
  5750. SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
  5751. {
  5752. int ret = -EINVAL;
  5753. switch (policy) {
  5754. case SCHED_FIFO:
  5755. case SCHED_RR:
  5756. ret = MAX_USER_RT_PRIO-1;
  5757. break;
  5758. case SCHED_NORMAL:
  5759. case SCHED_BATCH:
  5760. case SCHED_IDLE:
  5761. ret = 0;
  5762. break;
  5763. }
  5764. return ret;
  5765. }
  5766. /**
  5767. * sys_sched_get_priority_min - return minimum RT priority.
  5768. * @policy: scheduling class.
  5769. *
  5770. * this syscall returns the minimum rt_priority that can be used
  5771. * by a given scheduling class.
  5772. */
  5773. SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
  5774. {
  5775. int ret = -EINVAL;
  5776. switch (policy) {
  5777. case SCHED_FIFO:
  5778. case SCHED_RR:
  5779. ret = 1;
  5780. break;
  5781. case SCHED_NORMAL:
  5782. case SCHED_BATCH:
  5783. case SCHED_IDLE:
  5784. ret = 0;
  5785. }
  5786. return ret;
  5787. }
  5788. /**
  5789. * sys_sched_rr_get_interval - return the default timeslice of a process.
  5790. * @pid: pid of the process.
  5791. * @interval: userspace pointer to the timeslice value.
  5792. *
  5793. * this syscall writes the default timeslice value of a given process
  5794. * into the user-space timespec buffer. A value of '0' means infinity.
  5795. */
  5796. SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
  5797. struct timespec __user *, interval)
  5798. {
  5799. struct task_struct *p;
  5800. unsigned int time_slice;
  5801. int retval;
  5802. struct timespec t;
  5803. if (pid < 0)
  5804. return -EINVAL;
  5805. retval = -ESRCH;
  5806. read_lock(&tasklist_lock);
  5807. p = find_process_by_pid(pid);
  5808. if (!p)
  5809. goto out_unlock;
  5810. retval = security_task_getscheduler(p);
  5811. if (retval)
  5812. goto out_unlock;
  5813. time_slice = p->sched_class->get_rr_interval(p);
  5814. read_unlock(&tasklist_lock);
  5815. jiffies_to_timespec(time_slice, &t);
  5816. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  5817. return retval;
  5818. out_unlock:
  5819. read_unlock(&tasklist_lock);
  5820. return retval;
  5821. }
  5822. static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
  5823. void sched_show_task(struct task_struct *p)
  5824. {
  5825. unsigned long free = 0;
  5826. unsigned state;
  5827. state = p->state ? __ffs(p->state) + 1 : 0;
  5828. printk(KERN_INFO "%-13.13s %c", p->comm,
  5829. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  5830. #if BITS_PER_LONG == 32
  5831. if (state == TASK_RUNNING)
  5832. printk(KERN_CONT " running ");
  5833. else
  5834. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  5835. #else
  5836. if (state == TASK_RUNNING)
  5837. printk(KERN_CONT " running task ");
  5838. else
  5839. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  5840. #endif
  5841. #ifdef CONFIG_DEBUG_STACK_USAGE
  5842. free = stack_not_used(p);
  5843. #endif
  5844. printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
  5845. task_pid_nr(p), task_pid_nr(p->real_parent),
  5846. (unsigned long)task_thread_info(p)->flags);
  5847. show_stack(p, NULL);
  5848. }
  5849. void show_state_filter(unsigned long state_filter)
  5850. {
  5851. struct task_struct *g, *p;
  5852. #if BITS_PER_LONG == 32
  5853. printk(KERN_INFO
  5854. " task PC stack pid father\n");
  5855. #else
  5856. printk(KERN_INFO
  5857. " task PC stack pid father\n");
  5858. #endif
  5859. read_lock(&tasklist_lock);
  5860. do_each_thread(g, p) {
  5861. /*
  5862. * reset the NMI-timeout, listing all files on a slow
  5863. * console might take alot of time:
  5864. */
  5865. touch_nmi_watchdog();
  5866. if (!state_filter || (p->state & state_filter))
  5867. sched_show_task(p);
  5868. } while_each_thread(g, p);
  5869. touch_all_softlockup_watchdogs();
  5870. #ifdef CONFIG_SCHED_DEBUG
  5871. sysrq_sched_debug_show();
  5872. #endif
  5873. read_unlock(&tasklist_lock);
  5874. /*
  5875. * Only show locks if all tasks are dumped:
  5876. */
  5877. if (state_filter == -1)
  5878. debug_show_all_locks();
  5879. }
  5880. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  5881. {
  5882. idle->sched_class = &idle_sched_class;
  5883. }
  5884. /**
  5885. * init_idle - set up an idle thread for a given CPU
  5886. * @idle: task in question
  5887. * @cpu: cpu the idle task belongs to
  5888. *
  5889. * NOTE: this function does not set the idle thread's NEED_RESCHED
  5890. * flag, to make booting more robust.
  5891. */
  5892. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  5893. {
  5894. struct rq *rq = cpu_rq(cpu);
  5895. unsigned long flags;
  5896. spin_lock_irqsave(&rq->lock, flags);
  5897. __sched_fork(idle);
  5898. idle->se.exec_start = sched_clock();
  5899. idle->prio = idle->normal_prio = MAX_PRIO;
  5900. cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
  5901. __set_task_cpu(idle, cpu);
  5902. rq->curr = rq->idle = idle;
  5903. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  5904. idle->oncpu = 1;
  5905. #endif
  5906. spin_unlock_irqrestore(&rq->lock, flags);
  5907. /* Set the preempt count _outside_ the spinlocks! */
  5908. #if defined(CONFIG_PREEMPT)
  5909. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  5910. #else
  5911. task_thread_info(idle)->preempt_count = 0;
  5912. #endif
  5913. /*
  5914. * The idle tasks have their own, simple scheduling class:
  5915. */
  5916. idle->sched_class = &idle_sched_class;
  5917. ftrace_graph_init_task(idle);
  5918. }
  5919. /*
  5920. * In a system that switches off the HZ timer nohz_cpu_mask
  5921. * indicates which cpus entered this state. This is used
  5922. * in the rcu update to wait only for active cpus. For system
  5923. * which do not switch off the HZ timer nohz_cpu_mask should
  5924. * always be CPU_BITS_NONE.
  5925. */
  5926. cpumask_var_t nohz_cpu_mask;
  5927. /*
  5928. * Increase the granularity value when there are more CPUs,
  5929. * because with more CPUs the 'effective latency' as visible
  5930. * to users decreases. But the relationship is not linear,
  5931. * so pick a second-best guess by going with the log2 of the
  5932. * number of CPUs.
  5933. *
  5934. * This idea comes from the SD scheduler of Con Kolivas:
  5935. */
  5936. static inline void sched_init_granularity(void)
  5937. {
  5938. unsigned int factor = 1 + ilog2(num_online_cpus());
  5939. const unsigned long limit = 200000000;
  5940. sysctl_sched_min_granularity *= factor;
  5941. if (sysctl_sched_min_granularity > limit)
  5942. sysctl_sched_min_granularity = limit;
  5943. sysctl_sched_latency *= factor;
  5944. if (sysctl_sched_latency > limit)
  5945. sysctl_sched_latency = limit;
  5946. sysctl_sched_wakeup_granularity *= factor;
  5947. sysctl_sched_shares_ratelimit *= factor;
  5948. }
  5949. #ifdef CONFIG_SMP
  5950. /*
  5951. * This is how migration works:
  5952. *
  5953. * 1) we queue a struct migration_req structure in the source CPU's
  5954. * runqueue and wake up that CPU's migration thread.
  5955. * 2) we down() the locked semaphore => thread blocks.
  5956. * 3) migration thread wakes up (implicitly it forces the migrated
  5957. * thread off the CPU)
  5958. * 4) it gets the migration request and checks whether the migrated
  5959. * task is still in the wrong runqueue.
  5960. * 5) if it's in the wrong runqueue then the migration thread removes
  5961. * it and puts it into the right queue.
  5962. * 6) migration thread up()s the semaphore.
  5963. * 7) we wake up and the migration is done.
  5964. */
  5965. /*
  5966. * Change a given task's CPU affinity. Migrate the thread to a
  5967. * proper CPU and schedule it away if the CPU it's executing on
  5968. * is removed from the allowed bitmask.
  5969. *
  5970. * NOTE: the caller must have a valid reference to the task, the
  5971. * task must not exit() & deallocate itself prematurely. The
  5972. * call is not atomic; no spinlocks may be held.
  5973. */
  5974. int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
  5975. {
  5976. struct migration_req req;
  5977. unsigned long flags;
  5978. struct rq *rq;
  5979. int ret = 0;
  5980. rq = task_rq_lock(p, &flags);
  5981. if (!cpumask_intersects(new_mask, cpu_online_mask)) {
  5982. ret = -EINVAL;
  5983. goto out;
  5984. }
  5985. if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
  5986. !cpumask_equal(&p->cpus_allowed, new_mask))) {
  5987. ret = -EINVAL;
  5988. goto out;
  5989. }
  5990. if (p->sched_class->set_cpus_allowed)
  5991. p->sched_class->set_cpus_allowed(p, new_mask);
  5992. else {
  5993. cpumask_copy(&p->cpus_allowed, new_mask);
  5994. p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
  5995. }
  5996. /* Can the task run on the task's current CPU? If so, we're done */
  5997. if (cpumask_test_cpu(task_cpu(p), new_mask))
  5998. goto out;
  5999. if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
  6000. /* Need help from migration thread: drop lock and wait. */
  6001. struct task_struct *mt = rq->migration_thread;
  6002. get_task_struct(mt);
  6003. task_rq_unlock(rq, &flags);
  6004. wake_up_process(rq->migration_thread);
  6005. put_task_struct(mt);
  6006. wait_for_completion(&req.done);
  6007. tlb_migrate_finish(p->mm);
  6008. return 0;
  6009. }
  6010. out:
  6011. task_rq_unlock(rq, &flags);
  6012. return ret;
  6013. }
  6014. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  6015. /*
  6016. * Move (not current) task off this cpu, onto dest cpu. We're doing
  6017. * this because either it can't run here any more (set_cpus_allowed()
  6018. * away from this CPU, or CPU going down), or because we're
  6019. * attempting to rebalance this task on exec (sched_exec).
  6020. *
  6021. * So we race with normal scheduler movements, but that's OK, as long
  6022. * as the task is no longer on this CPU.
  6023. *
  6024. * Returns non-zero if task was successfully migrated.
  6025. */
  6026. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  6027. {
  6028. struct rq *rq_dest, *rq_src;
  6029. int ret = 0, on_rq;
  6030. if (unlikely(!cpu_active(dest_cpu)))
  6031. return ret;
  6032. rq_src = cpu_rq(src_cpu);
  6033. rq_dest = cpu_rq(dest_cpu);
  6034. double_rq_lock(rq_src, rq_dest);
  6035. /* Already moved. */
  6036. if (task_cpu(p) != src_cpu)
  6037. goto done;
  6038. /* Affinity changed (again). */
  6039. if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  6040. goto fail;
  6041. on_rq = p->se.on_rq;
  6042. if (on_rq)
  6043. deactivate_task(rq_src, p, 0);
  6044. set_task_cpu(p, dest_cpu);
  6045. if (on_rq) {
  6046. activate_task(rq_dest, p, 0);
  6047. check_preempt_curr(rq_dest, p, 0);
  6048. }
  6049. done:
  6050. ret = 1;
  6051. fail:
  6052. double_rq_unlock(rq_src, rq_dest);
  6053. return ret;
  6054. }
  6055. #define RCU_MIGRATION_IDLE 0
  6056. #define RCU_MIGRATION_NEED_QS 1
  6057. #define RCU_MIGRATION_GOT_QS 2
  6058. #define RCU_MIGRATION_MUST_SYNC 3
  6059. /*
  6060. * migration_thread - this is a highprio system thread that performs
  6061. * thread migration by bumping thread off CPU then 'pushing' onto
  6062. * another runqueue.
  6063. */
  6064. static int migration_thread(void *data)
  6065. {
  6066. int badcpu;
  6067. int cpu = (long)data;
  6068. struct rq *rq;
  6069. rq = cpu_rq(cpu);
  6070. BUG_ON(rq->migration_thread != current);
  6071. set_current_state(TASK_INTERRUPTIBLE);
  6072. while (!kthread_should_stop()) {
  6073. struct migration_req *req;
  6074. struct list_head *head;
  6075. spin_lock_irq(&rq->lock);
  6076. if (cpu_is_offline(cpu)) {
  6077. spin_unlock_irq(&rq->lock);
  6078. break;
  6079. }
  6080. if (rq->active_balance) {
  6081. active_load_balance(rq, cpu);
  6082. rq->active_balance = 0;
  6083. }
  6084. head = &rq->migration_queue;
  6085. if (list_empty(head)) {
  6086. spin_unlock_irq(&rq->lock);
  6087. schedule();
  6088. set_current_state(TASK_INTERRUPTIBLE);
  6089. continue;
  6090. }
  6091. req = list_entry(head->next, struct migration_req, list);
  6092. list_del_init(head->next);
  6093. if (req->task != NULL) {
  6094. spin_unlock(&rq->lock);
  6095. __migrate_task(req->task, cpu, req->dest_cpu);
  6096. } else if (likely(cpu == (badcpu = smp_processor_id()))) {
  6097. req->dest_cpu = RCU_MIGRATION_GOT_QS;
  6098. spin_unlock(&rq->lock);
  6099. } else {
  6100. req->dest_cpu = RCU_MIGRATION_MUST_SYNC;
  6101. spin_unlock(&rq->lock);
  6102. WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu);
  6103. }
  6104. local_irq_enable();
  6105. complete(&req->done);
  6106. }
  6107. __set_current_state(TASK_RUNNING);
  6108. return 0;
  6109. }
  6110. #ifdef CONFIG_HOTPLUG_CPU
  6111. static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
  6112. {
  6113. int ret;
  6114. local_irq_disable();
  6115. ret = __migrate_task(p, src_cpu, dest_cpu);
  6116. local_irq_enable();
  6117. return ret;
  6118. }
  6119. /*
  6120. * Figure out where task on dead CPU should go, use force if necessary.
  6121. */
  6122. static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
  6123. {
  6124. int dest_cpu;
  6125. const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
  6126. again:
  6127. /* Look for allowed, online CPU in same node. */
  6128. for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
  6129. if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  6130. goto move;
  6131. /* Any allowed, online CPU? */
  6132. dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
  6133. if (dest_cpu < nr_cpu_ids)
  6134. goto move;
  6135. /* No more Mr. Nice Guy. */
  6136. if (dest_cpu >= nr_cpu_ids) {
  6137. cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
  6138. dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
  6139. /*
  6140. * Don't tell them about moving exiting tasks or
  6141. * kernel threads (both mm NULL), since they never
  6142. * leave kernel.
  6143. */
  6144. if (p->mm && printk_ratelimit()) {
  6145. printk(KERN_INFO "process %d (%s) no "
  6146. "longer affine to cpu%d\n",
  6147. task_pid_nr(p), p->comm, dead_cpu);
  6148. }
  6149. }
  6150. move:
  6151. /* It can have affinity changed while we were choosing. */
  6152. if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
  6153. goto again;
  6154. }
  6155. /*
  6156. * While a dead CPU has no uninterruptible tasks queued at this point,
  6157. * it might still have a nonzero ->nr_uninterruptible counter, because
  6158. * for performance reasons the counter is not stricly tracking tasks to
  6159. * their home CPUs. So we just add the counter to another CPU's counter,
  6160. * to keep the global sum constant after CPU-down:
  6161. */
  6162. static void migrate_nr_uninterruptible(struct rq *rq_src)
  6163. {
  6164. struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
  6165. unsigned long flags;
  6166. local_irq_save(flags);
  6167. double_rq_lock(rq_src, rq_dest);
  6168. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  6169. rq_src->nr_uninterruptible = 0;
  6170. double_rq_unlock(rq_src, rq_dest);
  6171. local_irq_restore(flags);
  6172. }
  6173. /* Run through task list and migrate tasks from the dead cpu. */
  6174. static void migrate_live_tasks(int src_cpu)
  6175. {
  6176. struct task_struct *p, *t;
  6177. read_lock(&tasklist_lock);
  6178. do_each_thread(t, p) {
  6179. if (p == current)
  6180. continue;
  6181. if (task_cpu(p) == src_cpu)
  6182. move_task_off_dead_cpu(src_cpu, p);
  6183. } while_each_thread(t, p);
  6184. read_unlock(&tasklist_lock);
  6185. }
  6186. /*
  6187. * Schedules idle task to be the next runnable task on current CPU.
  6188. * It does so by boosting its priority to highest possible.
  6189. * Used by CPU offline code.
  6190. */
  6191. void sched_idle_next(void)
  6192. {
  6193. int this_cpu = smp_processor_id();
  6194. struct rq *rq = cpu_rq(this_cpu);
  6195. struct task_struct *p = rq->idle;
  6196. unsigned long flags;
  6197. /* cpu has to be offline */
  6198. BUG_ON(cpu_online(this_cpu));
  6199. /*
  6200. * Strictly not necessary since rest of the CPUs are stopped by now
  6201. * and interrupts disabled on the current cpu.
  6202. */
  6203. spin_lock_irqsave(&rq->lock, flags);
  6204. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  6205. update_rq_clock(rq);
  6206. activate_task(rq, p, 0);
  6207. spin_unlock_irqrestore(&rq->lock, flags);
  6208. }
  6209. /*
  6210. * Ensures that the idle task is using init_mm right before its cpu goes
  6211. * offline.
  6212. */
  6213. void idle_task_exit(void)
  6214. {
  6215. struct mm_struct *mm = current->active_mm;
  6216. BUG_ON(cpu_online(smp_processor_id()));
  6217. if (mm != &init_mm)
  6218. switch_mm(mm, &init_mm, current);
  6219. mmdrop(mm);
  6220. }
  6221. /* called under rq->lock with disabled interrupts */
  6222. static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
  6223. {
  6224. struct rq *rq = cpu_rq(dead_cpu);
  6225. /* Must be exiting, otherwise would be on tasklist. */
  6226. BUG_ON(!p->exit_state);
  6227. /* Cannot have done final schedule yet: would have vanished. */
  6228. BUG_ON(p->state == TASK_DEAD);
  6229. get_task_struct(p);
  6230. /*
  6231. * Drop lock around migration; if someone else moves it,
  6232. * that's OK. No task can be added to this CPU, so iteration is
  6233. * fine.
  6234. */
  6235. spin_unlock_irq(&rq->lock);
  6236. move_task_off_dead_cpu(dead_cpu, p);
  6237. spin_lock_irq(&rq->lock);
  6238. put_task_struct(p);
  6239. }
  6240. /* release_task() removes task from tasklist, so we won't find dead tasks. */
  6241. static void migrate_dead_tasks(unsigned int dead_cpu)
  6242. {
  6243. struct rq *rq = cpu_rq(dead_cpu);
  6244. struct task_struct *next;
  6245. for ( ; ; ) {
  6246. if (!rq->nr_running)
  6247. break;
  6248. update_rq_clock(rq);
  6249. next = pick_next_task(rq);
  6250. if (!next)
  6251. break;
  6252. next->sched_class->put_prev_task(rq, next);
  6253. migrate_dead(dead_cpu, next);
  6254. }
  6255. }
  6256. /*
  6257. * remove the tasks which were accounted by rq from calc_load_tasks.
  6258. */
  6259. static void calc_global_load_remove(struct rq *rq)
  6260. {
  6261. atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
  6262. rq->calc_load_active = 0;
  6263. }
  6264. #endif /* CONFIG_HOTPLUG_CPU */
  6265. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  6266. static struct ctl_table sd_ctl_dir[] = {
  6267. {
  6268. .procname = "sched_domain",
  6269. .mode = 0555,
  6270. },
  6271. {0, },
  6272. };
  6273. static struct ctl_table sd_ctl_root[] = {
  6274. {
  6275. .ctl_name = CTL_KERN,
  6276. .procname = "kernel",
  6277. .mode = 0555,
  6278. .child = sd_ctl_dir,
  6279. },
  6280. {0, },
  6281. };
  6282. static struct ctl_table *sd_alloc_ctl_entry(int n)
  6283. {
  6284. struct ctl_table *entry =
  6285. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  6286. return entry;
  6287. }
  6288. static void sd_free_ctl_entry(struct ctl_table **tablep)
  6289. {
  6290. struct ctl_table *entry;
  6291. /*
  6292. * In the intermediate directories, both the child directory and
  6293. * procname are dynamically allocated and could fail but the mode
  6294. * will always be set. In the lowest directory the names are
  6295. * static strings and all have proc handlers.
  6296. */
  6297. for (entry = *tablep; entry->mode; entry++) {
  6298. if (entry->child)
  6299. sd_free_ctl_entry(&entry->child);
  6300. if (entry->proc_handler == NULL)
  6301. kfree(entry->procname);
  6302. }
  6303. kfree(*tablep);
  6304. *tablep = NULL;
  6305. }
  6306. static void
  6307. set_table_entry(struct ctl_table *entry,
  6308. const char *procname, void *data, int maxlen,
  6309. mode_t mode, proc_handler *proc_handler)
  6310. {
  6311. entry->procname = procname;
  6312. entry->data = data;
  6313. entry->maxlen = maxlen;
  6314. entry->mode = mode;
  6315. entry->proc_handler = proc_handler;
  6316. }
  6317. static struct ctl_table *
  6318. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  6319. {
  6320. struct ctl_table *table = sd_alloc_ctl_entry(13);
  6321. if (table == NULL)
  6322. return NULL;
  6323. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  6324. sizeof(long), 0644, proc_doulongvec_minmax);
  6325. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  6326. sizeof(long), 0644, proc_doulongvec_minmax);
  6327. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  6328. sizeof(int), 0644, proc_dointvec_minmax);
  6329. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  6330. sizeof(int), 0644, proc_dointvec_minmax);
  6331. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  6332. sizeof(int), 0644, proc_dointvec_minmax);
  6333. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  6334. sizeof(int), 0644, proc_dointvec_minmax);
  6335. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  6336. sizeof(int), 0644, proc_dointvec_minmax);
  6337. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  6338. sizeof(int), 0644, proc_dointvec_minmax);
  6339. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  6340. sizeof(int), 0644, proc_dointvec_minmax);
  6341. set_table_entry(&table[9], "cache_nice_tries",
  6342. &sd->cache_nice_tries,
  6343. sizeof(int), 0644, proc_dointvec_minmax);
  6344. set_table_entry(&table[10], "flags", &sd->flags,
  6345. sizeof(int), 0644, proc_dointvec_minmax);
  6346. set_table_entry(&table[11], "name", sd->name,
  6347. CORENAME_MAX_SIZE, 0444, proc_dostring);
  6348. /* &table[12] is terminator */
  6349. return table;
  6350. }
  6351. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  6352. {
  6353. struct ctl_table *entry, *table;
  6354. struct sched_domain *sd;
  6355. int domain_num = 0, i;
  6356. char buf[32];
  6357. for_each_domain(cpu, sd)
  6358. domain_num++;
  6359. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  6360. if (table == NULL)
  6361. return NULL;
  6362. i = 0;
  6363. for_each_domain(cpu, sd) {
  6364. snprintf(buf, 32, "domain%d", i);
  6365. entry->procname = kstrdup(buf, GFP_KERNEL);
  6366. entry->mode = 0555;
  6367. entry->child = sd_alloc_ctl_domain_table(sd);
  6368. entry++;
  6369. i++;
  6370. }
  6371. return table;
  6372. }
  6373. static struct ctl_table_header *sd_sysctl_header;
  6374. static void register_sched_domain_sysctl(void)
  6375. {
  6376. int i, cpu_num = num_online_cpus();
  6377. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  6378. char buf[32];
  6379. WARN_ON(sd_ctl_dir[0].child);
  6380. sd_ctl_dir[0].child = entry;
  6381. if (entry == NULL)
  6382. return;
  6383. for_each_online_cpu(i) {
  6384. snprintf(buf, 32, "cpu%d", i);
  6385. entry->procname = kstrdup(buf, GFP_KERNEL);
  6386. entry->mode = 0555;
  6387. entry->child = sd_alloc_ctl_cpu_table(i);
  6388. entry++;
  6389. }
  6390. WARN_ON(sd_sysctl_header);
  6391. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  6392. }
  6393. /* may be called multiple times per register */
  6394. static void unregister_sched_domain_sysctl(void)
  6395. {
  6396. if (sd_sysctl_header)
  6397. unregister_sysctl_table(sd_sysctl_header);
  6398. sd_sysctl_header = NULL;
  6399. if (sd_ctl_dir[0].child)
  6400. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  6401. }
  6402. #else
  6403. static void register_sched_domain_sysctl(void)
  6404. {
  6405. }
  6406. static void unregister_sched_domain_sysctl(void)
  6407. {
  6408. }
  6409. #endif
  6410. static void set_rq_online(struct rq *rq)
  6411. {
  6412. if (!rq->online) {
  6413. const struct sched_class *class;
  6414. cpumask_set_cpu(rq->cpu, rq->rd->online);
  6415. rq->online = 1;
  6416. for_each_class(class) {
  6417. if (class->rq_online)
  6418. class->rq_online(rq);
  6419. }
  6420. }
  6421. }
  6422. static void set_rq_offline(struct rq *rq)
  6423. {
  6424. if (rq->online) {
  6425. const struct sched_class *class;
  6426. for_each_class(class) {
  6427. if (class->rq_offline)
  6428. class->rq_offline(rq);
  6429. }
  6430. cpumask_clear_cpu(rq->cpu, rq->rd->online);
  6431. rq->online = 0;
  6432. }
  6433. }
  6434. /*
  6435. * migration_call - callback that gets triggered when a CPU is added.
  6436. * Here we can start up the necessary migration thread for the new CPU.
  6437. */
  6438. static int __cpuinit
  6439. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  6440. {
  6441. struct task_struct *p;
  6442. int cpu = (long)hcpu;
  6443. unsigned long flags;
  6444. struct rq *rq;
  6445. switch (action) {
  6446. case CPU_UP_PREPARE:
  6447. case CPU_UP_PREPARE_FROZEN:
  6448. p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
  6449. if (IS_ERR(p))
  6450. return NOTIFY_BAD;
  6451. kthread_bind(p, cpu);
  6452. /* Must be high prio: stop_machine expects to yield to it. */
  6453. rq = task_rq_lock(p, &flags);
  6454. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  6455. task_rq_unlock(rq, &flags);
  6456. get_task_struct(p);
  6457. cpu_rq(cpu)->migration_thread = p;
  6458. rq->calc_load_update = calc_load_update;
  6459. break;
  6460. case CPU_ONLINE:
  6461. case CPU_ONLINE_FROZEN:
  6462. /* Strictly unnecessary, as first user will wake it. */
  6463. wake_up_process(cpu_rq(cpu)->migration_thread);
  6464. /* Update our root-domain */
  6465. rq = cpu_rq(cpu);
  6466. spin_lock_irqsave(&rq->lock, flags);
  6467. if (rq->rd) {
  6468. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  6469. set_rq_online(rq);
  6470. }
  6471. spin_unlock_irqrestore(&rq->lock, flags);
  6472. break;
  6473. #ifdef CONFIG_HOTPLUG_CPU
  6474. case CPU_UP_CANCELED:
  6475. case CPU_UP_CANCELED_FROZEN:
  6476. if (!cpu_rq(cpu)->migration_thread)
  6477. break;
  6478. /* Unbind it from offline cpu so it can run. Fall thru. */
  6479. kthread_bind(cpu_rq(cpu)->migration_thread,
  6480. cpumask_any(cpu_online_mask));
  6481. kthread_stop(cpu_rq(cpu)->migration_thread);
  6482. put_task_struct(cpu_rq(cpu)->migration_thread);
  6483. cpu_rq(cpu)->migration_thread = NULL;
  6484. break;
  6485. case CPU_DEAD:
  6486. case CPU_DEAD_FROZEN:
  6487. cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
  6488. migrate_live_tasks(cpu);
  6489. rq = cpu_rq(cpu);
  6490. kthread_stop(rq->migration_thread);
  6491. put_task_struct(rq->migration_thread);
  6492. rq->migration_thread = NULL;
  6493. /* Idle task back to normal (off runqueue, low prio) */
  6494. spin_lock_irq(&rq->lock);
  6495. update_rq_clock(rq);
  6496. deactivate_task(rq, rq->idle, 0);
  6497. rq->idle->static_prio = MAX_PRIO;
  6498. __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
  6499. rq->idle->sched_class = &idle_sched_class;
  6500. migrate_dead_tasks(cpu);
  6501. spin_unlock_irq(&rq->lock);
  6502. cpuset_unlock();
  6503. migrate_nr_uninterruptible(rq);
  6504. BUG_ON(rq->nr_running != 0);
  6505. calc_global_load_remove(rq);
  6506. /*
  6507. * No need to migrate the tasks: it was best-effort if
  6508. * they didn't take sched_hotcpu_mutex. Just wake up
  6509. * the requestors.
  6510. */
  6511. spin_lock_irq(&rq->lock);
  6512. while (!list_empty(&rq->migration_queue)) {
  6513. struct migration_req *req;
  6514. req = list_entry(rq->migration_queue.next,
  6515. struct migration_req, list);
  6516. list_del_init(&req->list);
  6517. spin_unlock_irq(&rq->lock);
  6518. complete(&req->done);
  6519. spin_lock_irq(&rq->lock);
  6520. }
  6521. spin_unlock_irq(&rq->lock);
  6522. break;
  6523. case CPU_DYING:
  6524. case CPU_DYING_FROZEN:
  6525. /* Update our root-domain */
  6526. rq = cpu_rq(cpu);
  6527. spin_lock_irqsave(&rq->lock, flags);
  6528. if (rq->rd) {
  6529. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  6530. set_rq_offline(rq);
  6531. }
  6532. spin_unlock_irqrestore(&rq->lock, flags);
  6533. break;
  6534. #endif
  6535. }
  6536. return NOTIFY_OK;
  6537. }
  6538. /*
  6539. * Register at high priority so that task migration (migrate_all_tasks)
  6540. * happens before everything else. This has to be lower priority than
  6541. * the notifier in the perf_counter subsystem, though.
  6542. */
  6543. static struct notifier_block __cpuinitdata migration_notifier = {
  6544. .notifier_call = migration_call,
  6545. .priority = 10
  6546. };
  6547. static int __init migration_init(void)
  6548. {
  6549. void *cpu = (void *)(long)smp_processor_id();
  6550. int err;
  6551. /* Start one for the boot CPU: */
  6552. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  6553. BUG_ON(err == NOTIFY_BAD);
  6554. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  6555. register_cpu_notifier(&migration_notifier);
  6556. return 0;
  6557. }
  6558. early_initcall(migration_init);
  6559. #endif
  6560. #ifdef CONFIG_SMP
  6561. #ifdef CONFIG_SCHED_DEBUG
  6562. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  6563. struct cpumask *groupmask)
  6564. {
  6565. struct sched_group *group = sd->groups;
  6566. char str[256];
  6567. cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
  6568. cpumask_clear(groupmask);
  6569. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  6570. if (!(sd->flags & SD_LOAD_BALANCE)) {
  6571. printk("does not load-balance\n");
  6572. if (sd->parent)
  6573. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  6574. " has parent");
  6575. return -1;
  6576. }
  6577. printk(KERN_CONT "span %s level %s\n", str, sd->name);
  6578. if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  6579. printk(KERN_ERR "ERROR: domain->span does not contain "
  6580. "CPU%d\n", cpu);
  6581. }
  6582. if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
  6583. printk(KERN_ERR "ERROR: domain->groups does not contain"
  6584. " CPU%d\n", cpu);
  6585. }
  6586. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  6587. do {
  6588. if (!group) {
  6589. printk("\n");
  6590. printk(KERN_ERR "ERROR: group is NULL\n");
  6591. break;
  6592. }
  6593. if (!group->cpu_power) {
  6594. printk(KERN_CONT "\n");
  6595. printk(KERN_ERR "ERROR: domain->cpu_power not "
  6596. "set\n");
  6597. break;
  6598. }
  6599. if (!cpumask_weight(sched_group_cpus(group))) {
  6600. printk(KERN_CONT "\n");
  6601. printk(KERN_ERR "ERROR: empty group\n");
  6602. break;
  6603. }
  6604. if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
  6605. printk(KERN_CONT "\n");
  6606. printk(KERN_ERR "ERROR: repeated CPUs\n");
  6607. break;
  6608. }
  6609. cpumask_or(groupmask, groupmask, sched_group_cpus(group));
  6610. cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
  6611. printk(KERN_CONT " %s", str);
  6612. if (group->cpu_power != SCHED_LOAD_SCALE) {
  6613. printk(KERN_CONT " (cpu_power = %d)",
  6614. group->cpu_power);
  6615. }
  6616. group = group->next;
  6617. } while (group != sd->groups);
  6618. printk(KERN_CONT "\n");
  6619. if (!cpumask_equal(sched_domain_span(sd), groupmask))
  6620. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  6621. if (sd->parent &&
  6622. !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
  6623. printk(KERN_ERR "ERROR: parent span is not a superset "
  6624. "of domain->span\n");
  6625. return 0;
  6626. }
  6627. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  6628. {
  6629. cpumask_var_t groupmask;
  6630. int level = 0;
  6631. if (!sd) {
  6632. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  6633. return;
  6634. }
  6635. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  6636. if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
  6637. printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
  6638. return;
  6639. }
  6640. for (;;) {
  6641. if (sched_domain_debug_one(sd, cpu, level, groupmask))
  6642. break;
  6643. level++;
  6644. sd = sd->parent;
  6645. if (!sd)
  6646. break;
  6647. }
  6648. free_cpumask_var(groupmask);
  6649. }
  6650. #else /* !CONFIG_SCHED_DEBUG */
  6651. # define sched_domain_debug(sd, cpu) do { } while (0)
  6652. #endif /* CONFIG_SCHED_DEBUG */
  6653. static int sd_degenerate(struct sched_domain *sd)
  6654. {
  6655. if (cpumask_weight(sched_domain_span(sd)) == 1)
  6656. return 1;
  6657. /* Following flags need at least 2 groups */
  6658. if (sd->flags & (SD_LOAD_BALANCE |
  6659. SD_BALANCE_NEWIDLE |
  6660. SD_BALANCE_FORK |
  6661. SD_BALANCE_EXEC |
  6662. SD_SHARE_CPUPOWER |
  6663. SD_SHARE_PKG_RESOURCES)) {
  6664. if (sd->groups != sd->groups->next)
  6665. return 0;
  6666. }
  6667. /* Following flags don't use groups */
  6668. if (sd->flags & (SD_WAKE_AFFINE))
  6669. return 0;
  6670. return 1;
  6671. }
  6672. static int
  6673. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  6674. {
  6675. unsigned long cflags = sd->flags, pflags = parent->flags;
  6676. if (sd_degenerate(parent))
  6677. return 1;
  6678. if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
  6679. return 0;
  6680. /* Flags needing groups don't count if only 1 group in parent */
  6681. if (parent->groups == parent->groups->next) {
  6682. pflags &= ~(SD_LOAD_BALANCE |
  6683. SD_BALANCE_NEWIDLE |
  6684. SD_BALANCE_FORK |
  6685. SD_BALANCE_EXEC |
  6686. SD_SHARE_CPUPOWER |
  6687. SD_SHARE_PKG_RESOURCES);
  6688. if (nr_node_ids == 1)
  6689. pflags &= ~SD_SERIALIZE;
  6690. }
  6691. if (~cflags & pflags)
  6692. return 0;
  6693. return 1;
  6694. }
  6695. static void free_rootdomain(struct root_domain *rd)
  6696. {
  6697. cpupri_cleanup(&rd->cpupri);
  6698. free_cpumask_var(rd->rto_mask);
  6699. free_cpumask_var(rd->online);
  6700. free_cpumask_var(rd->span);
  6701. kfree(rd);
  6702. }
  6703. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  6704. {
  6705. struct root_domain *old_rd = NULL;
  6706. unsigned long flags;
  6707. spin_lock_irqsave(&rq->lock, flags);
  6708. if (rq->rd) {
  6709. old_rd = rq->rd;
  6710. if (cpumask_test_cpu(rq->cpu, old_rd->online))
  6711. set_rq_offline(rq);
  6712. cpumask_clear_cpu(rq->cpu, old_rd->span);
  6713. /*
  6714. * If we dont want to free the old_rt yet then
  6715. * set old_rd to NULL to skip the freeing later
  6716. * in this function:
  6717. */
  6718. if (!atomic_dec_and_test(&old_rd->refcount))
  6719. old_rd = NULL;
  6720. }
  6721. atomic_inc(&rd->refcount);
  6722. rq->rd = rd;
  6723. cpumask_set_cpu(rq->cpu, rd->span);
  6724. if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
  6725. set_rq_online(rq);
  6726. spin_unlock_irqrestore(&rq->lock, flags);
  6727. if (old_rd)
  6728. free_rootdomain(old_rd);
  6729. }
  6730. static int init_rootdomain(struct root_domain *rd, bool bootmem)
  6731. {
  6732. gfp_t gfp = GFP_KERNEL;
  6733. memset(rd, 0, sizeof(*rd));
  6734. if (bootmem)
  6735. gfp = GFP_NOWAIT;
  6736. if (!alloc_cpumask_var(&rd->span, gfp))
  6737. goto out;
  6738. if (!alloc_cpumask_var(&rd->online, gfp))
  6739. goto free_span;
  6740. if (!alloc_cpumask_var(&rd->rto_mask, gfp))
  6741. goto free_online;
  6742. if (cpupri_init(&rd->cpupri, bootmem) != 0)
  6743. goto free_rto_mask;
  6744. return 0;
  6745. free_rto_mask:
  6746. free_cpumask_var(rd->rto_mask);
  6747. free_online:
  6748. free_cpumask_var(rd->online);
  6749. free_span:
  6750. free_cpumask_var(rd->span);
  6751. out:
  6752. return -ENOMEM;
  6753. }
  6754. static void init_defrootdomain(void)
  6755. {
  6756. init_rootdomain(&def_root_domain, true);
  6757. atomic_set(&def_root_domain.refcount, 1);
  6758. }
  6759. static struct root_domain *alloc_rootdomain(void)
  6760. {
  6761. struct root_domain *rd;
  6762. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  6763. if (!rd)
  6764. return NULL;
  6765. if (init_rootdomain(rd, false) != 0) {
  6766. kfree(rd);
  6767. return NULL;
  6768. }
  6769. return rd;
  6770. }
  6771. /*
  6772. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  6773. * hold the hotplug lock.
  6774. */
  6775. static void
  6776. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  6777. {
  6778. struct rq *rq = cpu_rq(cpu);
  6779. struct sched_domain *tmp;
  6780. /* Remove the sched domains which do not contribute to scheduling. */
  6781. for (tmp = sd; tmp; ) {
  6782. struct sched_domain *parent = tmp->parent;
  6783. if (!parent)
  6784. break;
  6785. if (sd_parent_degenerate(tmp, parent)) {
  6786. tmp->parent = parent->parent;
  6787. if (parent->parent)
  6788. parent->parent->child = tmp;
  6789. } else
  6790. tmp = tmp->parent;
  6791. }
  6792. if (sd && sd_degenerate(sd)) {
  6793. sd = sd->parent;
  6794. if (sd)
  6795. sd->child = NULL;
  6796. }
  6797. sched_domain_debug(sd, cpu);
  6798. rq_attach_root(rq, rd);
  6799. rcu_assign_pointer(rq->sd, sd);
  6800. }
  6801. /* cpus with isolated domains */
  6802. static cpumask_var_t cpu_isolated_map;
  6803. /* Setup the mask of cpus configured for isolated domains */
  6804. static int __init isolated_cpu_setup(char *str)
  6805. {
  6806. cpulist_parse(str, cpu_isolated_map);
  6807. return 1;
  6808. }
  6809. __setup("isolcpus=", isolated_cpu_setup);
  6810. /*
  6811. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  6812. * to a function which identifies what group(along with sched group) a CPU
  6813. * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
  6814. * (due to the fact that we keep track of groups covered with a struct cpumask).
  6815. *
  6816. * init_sched_build_groups will build a circular linked list of the groups
  6817. * covered by the given span, and will set each group's ->cpumask correctly,
  6818. * and ->cpu_power to 0.
  6819. */
  6820. static void
  6821. init_sched_build_groups(const struct cpumask *span,
  6822. const struct cpumask *cpu_map,
  6823. int (*group_fn)(int cpu, const struct cpumask *cpu_map,
  6824. struct sched_group **sg,
  6825. struct cpumask *tmpmask),
  6826. struct cpumask *covered, struct cpumask *tmpmask)
  6827. {
  6828. struct sched_group *first = NULL, *last = NULL;
  6829. int i;
  6830. cpumask_clear(covered);
  6831. for_each_cpu(i, span) {
  6832. struct sched_group *sg;
  6833. int group = group_fn(i, cpu_map, &sg, tmpmask);
  6834. int j;
  6835. if (cpumask_test_cpu(i, covered))
  6836. continue;
  6837. cpumask_clear(sched_group_cpus(sg));
  6838. sg->cpu_power = 0;
  6839. for_each_cpu(j, span) {
  6840. if (group_fn(j, cpu_map, NULL, tmpmask) != group)
  6841. continue;
  6842. cpumask_set_cpu(j, covered);
  6843. cpumask_set_cpu(j, sched_group_cpus(sg));
  6844. }
  6845. if (!first)
  6846. first = sg;
  6847. if (last)
  6848. last->next = sg;
  6849. last = sg;
  6850. }
  6851. last->next = first;
  6852. }
  6853. #define SD_NODES_PER_DOMAIN 16
  6854. #ifdef CONFIG_NUMA
  6855. /**
  6856. * find_next_best_node - find the next node to include in a sched_domain
  6857. * @node: node whose sched_domain we're building
  6858. * @used_nodes: nodes already in the sched_domain
  6859. *
  6860. * Find the next node to include in a given scheduling domain. Simply
  6861. * finds the closest node not already in the @used_nodes map.
  6862. *
  6863. * Should use nodemask_t.
  6864. */
  6865. static int find_next_best_node(int node, nodemask_t *used_nodes)
  6866. {
  6867. int i, n, val, min_val, best_node = 0;
  6868. min_val = INT_MAX;
  6869. for (i = 0; i < nr_node_ids; i++) {
  6870. /* Start at @node */
  6871. n = (node + i) % nr_node_ids;
  6872. if (!nr_cpus_node(n))
  6873. continue;
  6874. /* Skip already used nodes */
  6875. if (node_isset(n, *used_nodes))
  6876. continue;
  6877. /* Simple min distance search */
  6878. val = node_distance(node, n);
  6879. if (val < min_val) {
  6880. min_val = val;
  6881. best_node = n;
  6882. }
  6883. }
  6884. node_set(best_node, *used_nodes);
  6885. return best_node;
  6886. }
  6887. /**
  6888. * sched_domain_node_span - get a cpumask for a node's sched_domain
  6889. * @node: node whose cpumask we're constructing
  6890. * @span: resulting cpumask
  6891. *
  6892. * Given a node, construct a good cpumask for its sched_domain to span. It
  6893. * should be one that prevents unnecessary balancing, but also spreads tasks
  6894. * out optimally.
  6895. */
  6896. static void sched_domain_node_span(int node, struct cpumask *span)
  6897. {
  6898. nodemask_t used_nodes;
  6899. int i;
  6900. cpumask_clear(span);
  6901. nodes_clear(used_nodes);
  6902. cpumask_or(span, span, cpumask_of_node(node));
  6903. node_set(node, used_nodes);
  6904. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  6905. int next_node = find_next_best_node(node, &used_nodes);
  6906. cpumask_or(span, span, cpumask_of_node(next_node));
  6907. }
  6908. }
  6909. #endif /* CONFIG_NUMA */
  6910. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  6911. /*
  6912. * The cpus mask in sched_group and sched_domain hangs off the end.
  6913. *
  6914. * ( See the the comments in include/linux/sched.h:struct sched_group
  6915. * and struct sched_domain. )
  6916. */
  6917. struct static_sched_group {
  6918. struct sched_group sg;
  6919. DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
  6920. };
  6921. struct static_sched_domain {
  6922. struct sched_domain sd;
  6923. DECLARE_BITMAP(span, CONFIG_NR_CPUS);
  6924. };
  6925. struct s_data {
  6926. #ifdef CONFIG_NUMA
  6927. int sd_allnodes;
  6928. cpumask_var_t domainspan;
  6929. cpumask_var_t covered;
  6930. cpumask_var_t notcovered;
  6931. #endif
  6932. cpumask_var_t nodemask;
  6933. cpumask_var_t this_sibling_map;
  6934. cpumask_var_t this_core_map;
  6935. cpumask_var_t send_covered;
  6936. cpumask_var_t tmpmask;
  6937. struct sched_group **sched_group_nodes;
  6938. struct root_domain *rd;
  6939. };
  6940. enum s_alloc {
  6941. sa_sched_groups = 0,
  6942. sa_rootdomain,
  6943. sa_tmpmask,
  6944. sa_send_covered,
  6945. sa_this_core_map,
  6946. sa_this_sibling_map,
  6947. sa_nodemask,
  6948. sa_sched_group_nodes,
  6949. #ifdef CONFIG_NUMA
  6950. sa_notcovered,
  6951. sa_covered,
  6952. sa_domainspan,
  6953. #endif
  6954. sa_none,
  6955. };
  6956. /*
  6957. * SMT sched-domains:
  6958. */
  6959. #ifdef CONFIG_SCHED_SMT
  6960. static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
  6961. static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
  6962. static int
  6963. cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
  6964. struct sched_group **sg, struct cpumask *unused)
  6965. {
  6966. if (sg)
  6967. *sg = &per_cpu(sched_group_cpus, cpu).sg;
  6968. return cpu;
  6969. }
  6970. #endif /* CONFIG_SCHED_SMT */
  6971. /*
  6972. * multi-core sched-domains:
  6973. */
  6974. #ifdef CONFIG_SCHED_MC
  6975. static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
  6976. static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
  6977. #endif /* CONFIG_SCHED_MC */
  6978. #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
  6979. static int
  6980. cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
  6981. struct sched_group **sg, struct cpumask *mask)
  6982. {
  6983. int group;
  6984. cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
  6985. group = cpumask_first(mask);
  6986. if (sg)
  6987. *sg = &per_cpu(sched_group_core, group).sg;
  6988. return group;
  6989. }
  6990. #elif defined(CONFIG_SCHED_MC)
  6991. static int
  6992. cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
  6993. struct sched_group **sg, struct cpumask *unused)
  6994. {
  6995. if (sg)
  6996. *sg = &per_cpu(sched_group_core, cpu).sg;
  6997. return cpu;
  6998. }
  6999. #endif
  7000. static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
  7001. static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
  7002. static int
  7003. cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
  7004. struct sched_group **sg, struct cpumask *mask)
  7005. {
  7006. int group;
  7007. #ifdef CONFIG_SCHED_MC
  7008. cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
  7009. group = cpumask_first(mask);
  7010. #elif defined(CONFIG_SCHED_SMT)
  7011. cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
  7012. group = cpumask_first(mask);
  7013. #else
  7014. group = cpu;
  7015. #endif
  7016. if (sg)
  7017. *sg = &per_cpu(sched_group_phys, group).sg;
  7018. return group;
  7019. }
  7020. #ifdef CONFIG_NUMA
  7021. /*
  7022. * The init_sched_build_groups can't handle what we want to do with node
  7023. * groups, so roll our own. Now each node has its own list of groups which
  7024. * gets dynamically allocated.
  7025. */
  7026. static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
  7027. static struct sched_group ***sched_group_nodes_bycpu;
  7028. static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
  7029. static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
  7030. static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
  7031. struct sched_group **sg,
  7032. struct cpumask *nodemask)
  7033. {
  7034. int group;
  7035. cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
  7036. group = cpumask_first(nodemask);
  7037. if (sg)
  7038. *sg = &per_cpu(sched_group_allnodes, group).sg;
  7039. return group;
  7040. }
  7041. static void init_numa_sched_groups_power(struct sched_group *group_head)
  7042. {
  7043. struct sched_group *sg = group_head;
  7044. int j;
  7045. if (!sg)
  7046. return;
  7047. do {
  7048. for_each_cpu(j, sched_group_cpus(sg)) {
  7049. struct sched_domain *sd;
  7050. sd = &per_cpu(phys_domains, j).sd;
  7051. if (j != group_first_cpu(sd->groups)) {
  7052. /*
  7053. * Only add "power" once for each
  7054. * physical package.
  7055. */
  7056. continue;
  7057. }
  7058. sg->cpu_power += sd->groups->cpu_power;
  7059. }
  7060. sg = sg->next;
  7061. } while (sg != group_head);
  7062. }
  7063. static int build_numa_sched_groups(struct s_data *d,
  7064. const struct cpumask *cpu_map, int num)
  7065. {
  7066. struct sched_domain *sd;
  7067. struct sched_group *sg, *prev;
  7068. int n, j;
  7069. cpumask_clear(d->covered);
  7070. cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
  7071. if (cpumask_empty(d->nodemask)) {
  7072. d->sched_group_nodes[num] = NULL;
  7073. goto out;
  7074. }
  7075. sched_domain_node_span(num, d->domainspan);
  7076. cpumask_and(d->domainspan, d->domainspan, cpu_map);
  7077. sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
  7078. GFP_KERNEL, num);
  7079. if (!sg) {
  7080. printk(KERN_WARNING "Can not alloc domain group for node %d\n",
  7081. num);
  7082. return -ENOMEM;
  7083. }
  7084. d->sched_group_nodes[num] = sg;
  7085. for_each_cpu(j, d->nodemask) {
  7086. sd = &per_cpu(node_domains, j).sd;
  7087. sd->groups = sg;
  7088. }
  7089. sg->cpu_power = 0;
  7090. cpumask_copy(sched_group_cpus(sg), d->nodemask);
  7091. sg->next = sg;
  7092. cpumask_or(d->covered, d->covered, d->nodemask);
  7093. prev = sg;
  7094. for (j = 0; j < nr_node_ids; j++) {
  7095. n = (num + j) % nr_node_ids;
  7096. cpumask_complement(d->notcovered, d->covered);
  7097. cpumask_and(d->tmpmask, d->notcovered, cpu_map);
  7098. cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
  7099. if (cpumask_empty(d->tmpmask))
  7100. break;
  7101. cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
  7102. if (cpumask_empty(d->tmpmask))
  7103. continue;
  7104. sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
  7105. GFP_KERNEL, num);
  7106. if (!sg) {
  7107. printk(KERN_WARNING
  7108. "Can not alloc domain group for node %d\n", j);
  7109. return -ENOMEM;
  7110. }
  7111. sg->cpu_power = 0;
  7112. cpumask_copy(sched_group_cpus(sg), d->tmpmask);
  7113. sg->next = prev->next;
  7114. cpumask_or(d->covered, d->covered, d->tmpmask);
  7115. prev->next = sg;
  7116. prev = sg;
  7117. }
  7118. out:
  7119. return 0;
  7120. }
  7121. #endif /* CONFIG_NUMA */
  7122. #ifdef CONFIG_NUMA
  7123. /* Free memory allocated for various sched_group structures */
  7124. static void free_sched_groups(const struct cpumask *cpu_map,
  7125. struct cpumask *nodemask)
  7126. {
  7127. int cpu, i;
  7128. for_each_cpu(cpu, cpu_map) {
  7129. struct sched_group **sched_group_nodes
  7130. = sched_group_nodes_bycpu[cpu];
  7131. if (!sched_group_nodes)
  7132. continue;
  7133. for (i = 0; i < nr_node_ids; i++) {
  7134. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  7135. cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
  7136. if (cpumask_empty(nodemask))
  7137. continue;
  7138. if (sg == NULL)
  7139. continue;
  7140. sg = sg->next;
  7141. next_sg:
  7142. oldsg = sg;
  7143. sg = sg->next;
  7144. kfree(oldsg);
  7145. if (oldsg != sched_group_nodes[i])
  7146. goto next_sg;
  7147. }
  7148. kfree(sched_group_nodes);
  7149. sched_group_nodes_bycpu[cpu] = NULL;
  7150. }
  7151. }
  7152. #else /* !CONFIG_NUMA */
  7153. static void free_sched_groups(const struct cpumask *cpu_map,
  7154. struct cpumask *nodemask)
  7155. {
  7156. }
  7157. #endif /* CONFIG_NUMA */
  7158. /*
  7159. * Initialize sched groups cpu_power.
  7160. *
  7161. * cpu_power indicates the capacity of sched group, which is used while
  7162. * distributing the load between different sched groups in a sched domain.
  7163. * Typically cpu_power for all the groups in a sched domain will be same unless
  7164. * there are asymmetries in the topology. If there are asymmetries, group
  7165. * having more cpu_power will pickup more load compared to the group having
  7166. * less cpu_power.
  7167. */
  7168. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  7169. {
  7170. struct sched_domain *child;
  7171. struct sched_group *group;
  7172. long power;
  7173. int weight;
  7174. WARN_ON(!sd || !sd->groups);
  7175. if (cpu != group_first_cpu(sd->groups))
  7176. return;
  7177. child = sd->child;
  7178. sd->groups->cpu_power = 0;
  7179. if (!child) {
  7180. power = SCHED_LOAD_SCALE;
  7181. weight = cpumask_weight(sched_domain_span(sd));
  7182. /*
  7183. * SMT siblings share the power of a single core.
  7184. * Usually multiple threads get a better yield out of
  7185. * that one core than a single thread would have,
  7186. * reflect that in sd->smt_gain.
  7187. */
  7188. if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
  7189. power *= sd->smt_gain;
  7190. power /= weight;
  7191. power >>= SCHED_LOAD_SHIFT;
  7192. }
  7193. sd->groups->cpu_power += power;
  7194. return;
  7195. }
  7196. /*
  7197. * Add cpu_power of each child group to this groups cpu_power.
  7198. */
  7199. group = child->groups;
  7200. do {
  7201. sd->groups->cpu_power += group->cpu_power;
  7202. group = group->next;
  7203. } while (group != child->groups);
  7204. }
  7205. /*
  7206. * Initializers for schedule domains
  7207. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  7208. */
  7209. #ifdef CONFIG_SCHED_DEBUG
  7210. # define SD_INIT_NAME(sd, type) sd->name = #type
  7211. #else
  7212. # define SD_INIT_NAME(sd, type) do { } while (0)
  7213. #endif
  7214. #define SD_INIT(sd, type) sd_init_##type(sd)
  7215. #define SD_INIT_FUNC(type) \
  7216. static noinline void sd_init_##type(struct sched_domain *sd) \
  7217. { \
  7218. memset(sd, 0, sizeof(*sd)); \
  7219. *sd = SD_##type##_INIT; \
  7220. sd->level = SD_LV_##type; \
  7221. SD_INIT_NAME(sd, type); \
  7222. }
  7223. SD_INIT_FUNC(CPU)
  7224. #ifdef CONFIG_NUMA
  7225. SD_INIT_FUNC(ALLNODES)
  7226. SD_INIT_FUNC(NODE)
  7227. #endif
  7228. #ifdef CONFIG_SCHED_SMT
  7229. SD_INIT_FUNC(SIBLING)
  7230. #endif
  7231. #ifdef CONFIG_SCHED_MC
  7232. SD_INIT_FUNC(MC)
  7233. #endif
  7234. static int default_relax_domain_level = -1;
  7235. static int __init setup_relax_domain_level(char *str)
  7236. {
  7237. unsigned long val;
  7238. val = simple_strtoul(str, NULL, 0);
  7239. if (val < SD_LV_MAX)
  7240. default_relax_domain_level = val;
  7241. return 1;
  7242. }
  7243. __setup("relax_domain_level=", setup_relax_domain_level);
  7244. static void set_domain_attribute(struct sched_domain *sd,
  7245. struct sched_domain_attr *attr)
  7246. {
  7247. int request;
  7248. if (!attr || attr->relax_domain_level < 0) {
  7249. if (default_relax_domain_level < 0)
  7250. return;
  7251. else
  7252. request = default_relax_domain_level;
  7253. } else
  7254. request = attr->relax_domain_level;
  7255. if (request < sd->level) {
  7256. /* turn off idle balance on this domain */
  7257. sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  7258. } else {
  7259. /* turn on idle balance on this domain */
  7260. sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  7261. }
  7262. }
  7263. static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
  7264. const struct cpumask *cpu_map)
  7265. {
  7266. switch (what) {
  7267. case sa_sched_groups:
  7268. free_sched_groups(cpu_map, d->tmpmask); /* fall through */
  7269. d->sched_group_nodes = NULL;
  7270. case sa_rootdomain:
  7271. free_rootdomain(d->rd); /* fall through */
  7272. case sa_tmpmask:
  7273. free_cpumask_var(d->tmpmask); /* fall through */
  7274. case sa_send_covered:
  7275. free_cpumask_var(d->send_covered); /* fall through */
  7276. case sa_this_core_map:
  7277. free_cpumask_var(d->this_core_map); /* fall through */
  7278. case sa_this_sibling_map:
  7279. free_cpumask_var(d->this_sibling_map); /* fall through */
  7280. case sa_nodemask:
  7281. free_cpumask_var(d->nodemask); /* fall through */
  7282. case sa_sched_group_nodes:
  7283. #ifdef CONFIG_NUMA
  7284. kfree(d->sched_group_nodes); /* fall through */
  7285. case sa_notcovered:
  7286. free_cpumask_var(d->notcovered); /* fall through */
  7287. case sa_covered:
  7288. free_cpumask_var(d->covered); /* fall through */
  7289. case sa_domainspan:
  7290. free_cpumask_var(d->domainspan); /* fall through */
  7291. #endif
  7292. case sa_none:
  7293. break;
  7294. }
  7295. }
  7296. static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
  7297. const struct cpumask *cpu_map)
  7298. {
  7299. #ifdef CONFIG_NUMA
  7300. if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
  7301. return sa_none;
  7302. if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
  7303. return sa_domainspan;
  7304. if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
  7305. return sa_covered;
  7306. /* Allocate the per-node list of sched groups */
  7307. d->sched_group_nodes = kcalloc(nr_node_ids,
  7308. sizeof(struct sched_group *), GFP_KERNEL);
  7309. if (!d->sched_group_nodes) {
  7310. printk(KERN_WARNING "Can not alloc sched group node list\n");
  7311. return sa_notcovered;
  7312. }
  7313. sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
  7314. #endif
  7315. if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
  7316. return sa_sched_group_nodes;
  7317. if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
  7318. return sa_nodemask;
  7319. if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
  7320. return sa_this_sibling_map;
  7321. if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
  7322. return sa_this_core_map;
  7323. if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
  7324. return sa_send_covered;
  7325. d->rd = alloc_rootdomain();
  7326. if (!d->rd) {
  7327. printk(KERN_WARNING "Cannot alloc root domain\n");
  7328. return sa_tmpmask;
  7329. }
  7330. return sa_rootdomain;
  7331. }
  7332. static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
  7333. const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
  7334. {
  7335. struct sched_domain *sd = NULL;
  7336. #ifdef CONFIG_NUMA
  7337. struct sched_domain *parent;
  7338. d->sd_allnodes = 0;
  7339. if (cpumask_weight(cpu_map) >
  7340. SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
  7341. sd = &per_cpu(allnodes_domains, i).sd;
  7342. SD_INIT(sd, ALLNODES);
  7343. set_domain_attribute(sd, attr);
  7344. cpumask_copy(sched_domain_span(sd), cpu_map);
  7345. cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
  7346. d->sd_allnodes = 1;
  7347. }
  7348. parent = sd;
  7349. sd = &per_cpu(node_domains, i).sd;
  7350. SD_INIT(sd, NODE);
  7351. set_domain_attribute(sd, attr);
  7352. sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
  7353. sd->parent = parent;
  7354. if (parent)
  7355. parent->child = sd;
  7356. cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
  7357. #endif
  7358. return sd;
  7359. }
  7360. static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
  7361. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  7362. struct sched_domain *parent, int i)
  7363. {
  7364. struct sched_domain *sd;
  7365. sd = &per_cpu(phys_domains, i).sd;
  7366. SD_INIT(sd, CPU);
  7367. set_domain_attribute(sd, attr);
  7368. cpumask_copy(sched_domain_span(sd), d->nodemask);
  7369. sd->parent = parent;
  7370. if (parent)
  7371. parent->child = sd;
  7372. cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
  7373. return sd;
  7374. }
  7375. static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
  7376. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  7377. struct sched_domain *parent, int i)
  7378. {
  7379. struct sched_domain *sd = parent;
  7380. #ifdef CONFIG_SCHED_MC
  7381. sd = &per_cpu(core_domains, i).sd;
  7382. SD_INIT(sd, MC);
  7383. set_domain_attribute(sd, attr);
  7384. cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
  7385. sd->parent = parent;
  7386. parent->child = sd;
  7387. cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
  7388. #endif
  7389. return sd;
  7390. }
  7391. static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
  7392. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  7393. struct sched_domain *parent, int i)
  7394. {
  7395. struct sched_domain *sd = parent;
  7396. #ifdef CONFIG_SCHED_SMT
  7397. sd = &per_cpu(cpu_domains, i).sd;
  7398. SD_INIT(sd, SIBLING);
  7399. set_domain_attribute(sd, attr);
  7400. cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
  7401. sd->parent = parent;
  7402. parent->child = sd;
  7403. cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
  7404. #endif
  7405. return sd;
  7406. }
  7407. static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
  7408. const struct cpumask *cpu_map, int cpu)
  7409. {
  7410. switch (l) {
  7411. #ifdef CONFIG_SCHED_SMT
  7412. case SD_LV_SIBLING: /* set up CPU (sibling) groups */
  7413. cpumask_and(d->this_sibling_map, cpu_map,
  7414. topology_thread_cpumask(cpu));
  7415. if (cpu == cpumask_first(d->this_sibling_map))
  7416. init_sched_build_groups(d->this_sibling_map, cpu_map,
  7417. &cpu_to_cpu_group,
  7418. d->send_covered, d->tmpmask);
  7419. break;
  7420. #endif
  7421. #ifdef CONFIG_SCHED_MC
  7422. case SD_LV_MC: /* set up multi-core groups */
  7423. cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
  7424. if (cpu == cpumask_first(d->this_core_map))
  7425. init_sched_build_groups(d->this_core_map, cpu_map,
  7426. &cpu_to_core_group,
  7427. d->send_covered, d->tmpmask);
  7428. break;
  7429. #endif
  7430. case SD_LV_CPU: /* set up physical groups */
  7431. cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
  7432. if (!cpumask_empty(d->nodemask))
  7433. init_sched_build_groups(d->nodemask, cpu_map,
  7434. &cpu_to_phys_group,
  7435. d->send_covered, d->tmpmask);
  7436. break;
  7437. #ifdef CONFIG_NUMA
  7438. case SD_LV_ALLNODES:
  7439. init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
  7440. d->send_covered, d->tmpmask);
  7441. break;
  7442. #endif
  7443. default:
  7444. break;
  7445. }
  7446. }
  7447. /*
  7448. * Build sched domains for a given set of cpus and attach the sched domains
  7449. * to the individual cpus
  7450. */
  7451. static int __build_sched_domains(const struct cpumask *cpu_map,
  7452. struct sched_domain_attr *attr)
  7453. {
  7454. enum s_alloc alloc_state = sa_none;
  7455. struct s_data d;
  7456. struct sched_domain *sd;
  7457. int i;
  7458. #ifdef CONFIG_NUMA
  7459. d.sd_allnodes = 0;
  7460. #endif
  7461. alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
  7462. if (alloc_state != sa_rootdomain)
  7463. goto error;
  7464. alloc_state = sa_sched_groups;
  7465. /*
  7466. * Set up domains for cpus specified by the cpu_map.
  7467. */
  7468. for_each_cpu(i, cpu_map) {
  7469. cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
  7470. cpu_map);
  7471. sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
  7472. sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
  7473. sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
  7474. sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
  7475. }
  7476. for_each_cpu(i, cpu_map) {
  7477. build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
  7478. build_sched_groups(&d, SD_LV_MC, cpu_map, i);
  7479. }
  7480. /* Set up physical groups */
  7481. for (i = 0; i < nr_node_ids; i++)
  7482. build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
  7483. #ifdef CONFIG_NUMA
  7484. /* Set up node groups */
  7485. if (d.sd_allnodes)
  7486. build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
  7487. for (i = 0; i < nr_node_ids; i++)
  7488. if (build_numa_sched_groups(&d, cpu_map, i))
  7489. goto error;
  7490. #endif
  7491. /* Calculate CPU power for physical packages and nodes */
  7492. #ifdef CONFIG_SCHED_SMT
  7493. for_each_cpu(i, cpu_map) {
  7494. sd = &per_cpu(cpu_domains, i).sd;
  7495. init_sched_groups_power(i, sd);
  7496. }
  7497. #endif
  7498. #ifdef CONFIG_SCHED_MC
  7499. for_each_cpu(i, cpu_map) {
  7500. sd = &per_cpu(core_domains, i).sd;
  7501. init_sched_groups_power(i, sd);
  7502. }
  7503. #endif
  7504. for_each_cpu(i, cpu_map) {
  7505. sd = &per_cpu(phys_domains, i).sd;
  7506. init_sched_groups_power(i, sd);
  7507. }
  7508. #ifdef CONFIG_NUMA
  7509. for (i = 0; i < nr_node_ids; i++)
  7510. init_numa_sched_groups_power(d.sched_group_nodes[i]);
  7511. if (d.sd_allnodes) {
  7512. struct sched_group *sg;
  7513. cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
  7514. d.tmpmask);
  7515. init_numa_sched_groups_power(sg);
  7516. }
  7517. #endif
  7518. /* Attach the domains */
  7519. for_each_cpu(i, cpu_map) {
  7520. #ifdef CONFIG_SCHED_SMT
  7521. sd = &per_cpu(cpu_domains, i).sd;
  7522. #elif defined(CONFIG_SCHED_MC)
  7523. sd = &per_cpu(core_domains, i).sd;
  7524. #else
  7525. sd = &per_cpu(phys_domains, i).sd;
  7526. #endif
  7527. cpu_attach_domain(sd, d.rd, i);
  7528. }
  7529. d.sched_group_nodes = NULL; /* don't free this we still need it */
  7530. __free_domain_allocs(&d, sa_tmpmask, cpu_map);
  7531. return 0;
  7532. error:
  7533. __free_domain_allocs(&d, alloc_state, cpu_map);
  7534. return -ENOMEM;
  7535. }
  7536. static int build_sched_domains(const struct cpumask *cpu_map)
  7537. {
  7538. return __build_sched_domains(cpu_map, NULL);
  7539. }
  7540. static struct cpumask *doms_cur; /* current sched domains */
  7541. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  7542. static struct sched_domain_attr *dattr_cur;
  7543. /* attribues of custom domains in 'doms_cur' */
  7544. /*
  7545. * Special case: If a kmalloc of a doms_cur partition (array of
  7546. * cpumask) fails, then fallback to a single sched domain,
  7547. * as determined by the single cpumask fallback_doms.
  7548. */
  7549. static cpumask_var_t fallback_doms;
  7550. /*
  7551. * arch_update_cpu_topology lets virtualized architectures update the
  7552. * cpu core maps. It is supposed to return 1 if the topology changed
  7553. * or 0 if it stayed the same.
  7554. */
  7555. int __attribute__((weak)) arch_update_cpu_topology(void)
  7556. {
  7557. return 0;
  7558. }
  7559. /*
  7560. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  7561. * For now this just excludes isolated cpus, but could be used to
  7562. * exclude other special cases in the future.
  7563. */
  7564. static int arch_init_sched_domains(const struct cpumask *cpu_map)
  7565. {
  7566. int err;
  7567. arch_update_cpu_topology();
  7568. ndoms_cur = 1;
  7569. doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
  7570. if (!doms_cur)
  7571. doms_cur = fallback_doms;
  7572. cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
  7573. dattr_cur = NULL;
  7574. err = build_sched_domains(doms_cur);
  7575. register_sched_domain_sysctl();
  7576. return err;
  7577. }
  7578. static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
  7579. struct cpumask *tmpmask)
  7580. {
  7581. free_sched_groups(cpu_map, tmpmask);
  7582. }
  7583. /*
  7584. * Detach sched domains from a group of cpus specified in cpu_map
  7585. * These cpus will now be attached to the NULL domain
  7586. */
  7587. static void detach_destroy_domains(const struct cpumask *cpu_map)
  7588. {
  7589. /* Save because hotplug lock held. */
  7590. static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
  7591. int i;
  7592. for_each_cpu(i, cpu_map)
  7593. cpu_attach_domain(NULL, &def_root_domain, i);
  7594. synchronize_sched();
  7595. arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
  7596. }
  7597. /* handle null as "default" */
  7598. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  7599. struct sched_domain_attr *new, int idx_new)
  7600. {
  7601. struct sched_domain_attr tmp;
  7602. /* fast path */
  7603. if (!new && !cur)
  7604. return 1;
  7605. tmp = SD_ATTR_INIT;
  7606. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  7607. new ? (new + idx_new) : &tmp,
  7608. sizeof(struct sched_domain_attr));
  7609. }
  7610. /*
  7611. * Partition sched domains as specified by the 'ndoms_new'
  7612. * cpumasks in the array doms_new[] of cpumasks. This compares
  7613. * doms_new[] to the current sched domain partitioning, doms_cur[].
  7614. * It destroys each deleted domain and builds each new domain.
  7615. *
  7616. * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
  7617. * The masks don't intersect (don't overlap.) We should setup one
  7618. * sched domain for each mask. CPUs not in any of the cpumasks will
  7619. * not be load balanced. If the same cpumask appears both in the
  7620. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  7621. * it as it is.
  7622. *
  7623. * The passed in 'doms_new' should be kmalloc'd. This routine takes
  7624. * ownership of it and will kfree it when done with it. If the caller
  7625. * failed the kmalloc call, then it can pass in doms_new == NULL &&
  7626. * ndoms_new == 1, and partition_sched_domains() will fallback to
  7627. * the single partition 'fallback_doms', it also forces the domains
  7628. * to be rebuilt.
  7629. *
  7630. * If doms_new == NULL it will be replaced with cpu_online_mask.
  7631. * ndoms_new == 0 is a special case for destroying existing domains,
  7632. * and it will not create the default domain.
  7633. *
  7634. * Call with hotplug lock held
  7635. */
  7636. /* FIXME: Change to struct cpumask *doms_new[] */
  7637. void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
  7638. struct sched_domain_attr *dattr_new)
  7639. {
  7640. int i, j, n;
  7641. int new_topology;
  7642. mutex_lock(&sched_domains_mutex);
  7643. /* always unregister in case we don't destroy any domains */
  7644. unregister_sched_domain_sysctl();
  7645. /* Let architecture update cpu core mappings. */
  7646. new_topology = arch_update_cpu_topology();
  7647. n = doms_new ? ndoms_new : 0;
  7648. /* Destroy deleted domains */
  7649. for (i = 0; i < ndoms_cur; i++) {
  7650. for (j = 0; j < n && !new_topology; j++) {
  7651. if (cpumask_equal(&doms_cur[i], &doms_new[j])
  7652. && dattrs_equal(dattr_cur, i, dattr_new, j))
  7653. goto match1;
  7654. }
  7655. /* no match - a current sched domain not in new doms_new[] */
  7656. detach_destroy_domains(doms_cur + i);
  7657. match1:
  7658. ;
  7659. }
  7660. if (doms_new == NULL) {
  7661. ndoms_cur = 0;
  7662. doms_new = fallback_doms;
  7663. cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
  7664. WARN_ON_ONCE(dattr_new);
  7665. }
  7666. /* Build new domains */
  7667. for (i = 0; i < ndoms_new; i++) {
  7668. for (j = 0; j < ndoms_cur && !new_topology; j++) {
  7669. if (cpumask_equal(&doms_new[i], &doms_cur[j])
  7670. && dattrs_equal(dattr_new, i, dattr_cur, j))
  7671. goto match2;
  7672. }
  7673. /* no match - add a new doms_new */
  7674. __build_sched_domains(doms_new + i,
  7675. dattr_new ? dattr_new + i : NULL);
  7676. match2:
  7677. ;
  7678. }
  7679. /* Remember the new sched domains */
  7680. if (doms_cur != fallback_doms)
  7681. kfree(doms_cur);
  7682. kfree(dattr_cur); /* kfree(NULL) is safe */
  7683. doms_cur = doms_new;
  7684. dattr_cur = dattr_new;
  7685. ndoms_cur = ndoms_new;
  7686. register_sched_domain_sysctl();
  7687. mutex_unlock(&sched_domains_mutex);
  7688. }
  7689. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  7690. static void arch_reinit_sched_domains(void)
  7691. {
  7692. get_online_cpus();
  7693. /* Destroy domains first to force the rebuild */
  7694. partition_sched_domains(0, NULL, NULL);
  7695. rebuild_sched_domains();
  7696. put_online_cpus();
  7697. }
  7698. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  7699. {
  7700. unsigned int level = 0;
  7701. if (sscanf(buf, "%u", &level) != 1)
  7702. return -EINVAL;
  7703. /*
  7704. * level is always be positive so don't check for
  7705. * level < POWERSAVINGS_BALANCE_NONE which is 0
  7706. * What happens on 0 or 1 byte write,
  7707. * need to check for count as well?
  7708. */
  7709. if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
  7710. return -EINVAL;
  7711. if (smt)
  7712. sched_smt_power_savings = level;
  7713. else
  7714. sched_mc_power_savings = level;
  7715. arch_reinit_sched_domains();
  7716. return count;
  7717. }
  7718. #ifdef CONFIG_SCHED_MC
  7719. static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
  7720. char *page)
  7721. {
  7722. return sprintf(page, "%u\n", sched_mc_power_savings);
  7723. }
  7724. static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
  7725. const char *buf, size_t count)
  7726. {
  7727. return sched_power_savings_store(buf, count, 0);
  7728. }
  7729. static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
  7730. sched_mc_power_savings_show,
  7731. sched_mc_power_savings_store);
  7732. #endif
  7733. #ifdef CONFIG_SCHED_SMT
  7734. static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
  7735. char *page)
  7736. {
  7737. return sprintf(page, "%u\n", sched_smt_power_savings);
  7738. }
  7739. static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
  7740. const char *buf, size_t count)
  7741. {
  7742. return sched_power_savings_store(buf, count, 1);
  7743. }
  7744. static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
  7745. sched_smt_power_savings_show,
  7746. sched_smt_power_savings_store);
  7747. #endif
  7748. int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  7749. {
  7750. int err = 0;
  7751. #ifdef CONFIG_SCHED_SMT
  7752. if (smt_capable())
  7753. err = sysfs_create_file(&cls->kset.kobj,
  7754. &attr_sched_smt_power_savings.attr);
  7755. #endif
  7756. #ifdef CONFIG_SCHED_MC
  7757. if (!err && mc_capable())
  7758. err = sysfs_create_file(&cls->kset.kobj,
  7759. &attr_sched_mc_power_savings.attr);
  7760. #endif
  7761. return err;
  7762. }
  7763. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  7764. #ifndef CONFIG_CPUSETS
  7765. /*
  7766. * Add online and remove offline CPUs from the scheduler domains.
  7767. * When cpusets are enabled they take over this function.
  7768. */
  7769. static int update_sched_domains(struct notifier_block *nfb,
  7770. unsigned long action, void *hcpu)
  7771. {
  7772. switch (action) {
  7773. case CPU_ONLINE:
  7774. case CPU_ONLINE_FROZEN:
  7775. case CPU_DEAD:
  7776. case CPU_DEAD_FROZEN:
  7777. partition_sched_domains(1, NULL, NULL);
  7778. return NOTIFY_OK;
  7779. default:
  7780. return NOTIFY_DONE;
  7781. }
  7782. }
  7783. #endif
  7784. static int update_runtime(struct notifier_block *nfb,
  7785. unsigned long action, void *hcpu)
  7786. {
  7787. int cpu = (int)(long)hcpu;
  7788. switch (action) {
  7789. case CPU_DOWN_PREPARE:
  7790. case CPU_DOWN_PREPARE_FROZEN:
  7791. disable_runtime(cpu_rq(cpu));
  7792. return NOTIFY_OK;
  7793. case CPU_DOWN_FAILED:
  7794. case CPU_DOWN_FAILED_FROZEN:
  7795. case CPU_ONLINE:
  7796. case CPU_ONLINE_FROZEN:
  7797. enable_runtime(cpu_rq(cpu));
  7798. return NOTIFY_OK;
  7799. default:
  7800. return NOTIFY_DONE;
  7801. }
  7802. }
  7803. void __init sched_init_smp(void)
  7804. {
  7805. cpumask_var_t non_isolated_cpus;
  7806. alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
  7807. alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
  7808. #if defined(CONFIG_NUMA)
  7809. sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
  7810. GFP_KERNEL);
  7811. BUG_ON(sched_group_nodes_bycpu == NULL);
  7812. #endif
  7813. get_online_cpus();
  7814. mutex_lock(&sched_domains_mutex);
  7815. arch_init_sched_domains(cpu_online_mask);
  7816. cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
  7817. if (cpumask_empty(non_isolated_cpus))
  7818. cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
  7819. mutex_unlock(&sched_domains_mutex);
  7820. put_online_cpus();
  7821. #ifndef CONFIG_CPUSETS
  7822. /* XXX: Theoretical race here - CPU may be hotplugged now */
  7823. hotcpu_notifier(update_sched_domains, 0);
  7824. #endif
  7825. /* RT runtime code needs to handle some hotplug events */
  7826. hotcpu_notifier(update_runtime, 0);
  7827. init_hrtick();
  7828. /* Move init over to a non-isolated CPU */
  7829. if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
  7830. BUG();
  7831. sched_init_granularity();
  7832. free_cpumask_var(non_isolated_cpus);
  7833. init_sched_rt_class();
  7834. }
  7835. #else
  7836. void __init sched_init_smp(void)
  7837. {
  7838. sched_init_granularity();
  7839. }
  7840. #endif /* CONFIG_SMP */
  7841. const_debug unsigned int sysctl_timer_migration = 1;
  7842. int in_sched_functions(unsigned long addr)
  7843. {
  7844. return in_lock_functions(addr) ||
  7845. (addr >= (unsigned long)__sched_text_start
  7846. && addr < (unsigned long)__sched_text_end);
  7847. }
  7848. static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  7849. {
  7850. cfs_rq->tasks_timeline = RB_ROOT;
  7851. INIT_LIST_HEAD(&cfs_rq->tasks);
  7852. #ifdef CONFIG_FAIR_GROUP_SCHED
  7853. cfs_rq->rq = rq;
  7854. #endif
  7855. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  7856. }
  7857. static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
  7858. {
  7859. struct rt_prio_array *array;
  7860. int i;
  7861. array = &rt_rq->active;
  7862. for (i = 0; i < MAX_RT_PRIO; i++) {
  7863. INIT_LIST_HEAD(array->queue + i);
  7864. __clear_bit(i, array->bitmap);
  7865. }
  7866. /* delimiter for bitsearch: */
  7867. __set_bit(MAX_RT_PRIO, array->bitmap);
  7868. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  7869. rt_rq->highest_prio.curr = MAX_RT_PRIO;
  7870. #ifdef CONFIG_SMP
  7871. rt_rq->highest_prio.next = MAX_RT_PRIO;
  7872. #endif
  7873. #endif
  7874. #ifdef CONFIG_SMP
  7875. rt_rq->rt_nr_migratory = 0;
  7876. rt_rq->overloaded = 0;
  7877. plist_head_init(&rt_rq->pushable_tasks, &rq->lock);
  7878. #endif
  7879. rt_rq->rt_time = 0;
  7880. rt_rq->rt_throttled = 0;
  7881. rt_rq->rt_runtime = 0;
  7882. spin_lock_init(&rt_rq->rt_runtime_lock);
  7883. #ifdef CONFIG_RT_GROUP_SCHED
  7884. rt_rq->rt_nr_boosted = 0;
  7885. rt_rq->rq = rq;
  7886. #endif
  7887. }
  7888. #ifdef CONFIG_FAIR_GROUP_SCHED
  7889. static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
  7890. struct sched_entity *se, int cpu, int add,
  7891. struct sched_entity *parent)
  7892. {
  7893. struct rq *rq = cpu_rq(cpu);
  7894. tg->cfs_rq[cpu] = cfs_rq;
  7895. init_cfs_rq(cfs_rq, rq);
  7896. cfs_rq->tg = tg;
  7897. if (add)
  7898. list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
  7899. tg->se[cpu] = se;
  7900. /* se could be NULL for init_task_group */
  7901. if (!se)
  7902. return;
  7903. if (!parent)
  7904. se->cfs_rq = &rq->cfs;
  7905. else
  7906. se->cfs_rq = parent->my_q;
  7907. se->my_q = cfs_rq;
  7908. se->load.weight = tg->shares;
  7909. se->load.inv_weight = 0;
  7910. se->parent = parent;
  7911. }
  7912. #endif
  7913. #ifdef CONFIG_RT_GROUP_SCHED
  7914. static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
  7915. struct sched_rt_entity *rt_se, int cpu, int add,
  7916. struct sched_rt_entity *parent)
  7917. {
  7918. struct rq *rq = cpu_rq(cpu);
  7919. tg->rt_rq[cpu] = rt_rq;
  7920. init_rt_rq(rt_rq, rq);
  7921. rt_rq->tg = tg;
  7922. rt_rq->rt_se = rt_se;
  7923. rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
  7924. if (add)
  7925. list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
  7926. tg->rt_se[cpu] = rt_se;
  7927. if (!rt_se)
  7928. return;
  7929. if (!parent)
  7930. rt_se->rt_rq = &rq->rt;
  7931. else
  7932. rt_se->rt_rq = parent->my_q;
  7933. rt_se->my_q = rt_rq;
  7934. rt_se->parent = parent;
  7935. INIT_LIST_HEAD(&rt_se->run_list);
  7936. }
  7937. #endif
  7938. void __init sched_init(void)
  7939. {
  7940. int i, j;
  7941. unsigned long alloc_size = 0, ptr;
  7942. #ifdef CONFIG_FAIR_GROUP_SCHED
  7943. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  7944. #endif
  7945. #ifdef CONFIG_RT_GROUP_SCHED
  7946. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  7947. #endif
  7948. #ifdef CONFIG_USER_SCHED
  7949. alloc_size *= 2;
  7950. #endif
  7951. #ifdef CONFIG_CPUMASK_OFFSTACK
  7952. alloc_size += num_possible_cpus() * cpumask_size();
  7953. #endif
  7954. if (alloc_size) {
  7955. ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
  7956. #ifdef CONFIG_FAIR_GROUP_SCHED
  7957. init_task_group.se = (struct sched_entity **)ptr;
  7958. ptr += nr_cpu_ids * sizeof(void **);
  7959. init_task_group.cfs_rq = (struct cfs_rq **)ptr;
  7960. ptr += nr_cpu_ids * sizeof(void **);
  7961. #ifdef CONFIG_USER_SCHED
  7962. root_task_group.se = (struct sched_entity **)ptr;
  7963. ptr += nr_cpu_ids * sizeof(void **);
  7964. root_task_group.cfs_rq = (struct cfs_rq **)ptr;
  7965. ptr += nr_cpu_ids * sizeof(void **);
  7966. #endif /* CONFIG_USER_SCHED */
  7967. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7968. #ifdef CONFIG_RT_GROUP_SCHED
  7969. init_task_group.rt_se = (struct sched_rt_entity **)ptr;
  7970. ptr += nr_cpu_ids * sizeof(void **);
  7971. init_task_group.rt_rq = (struct rt_rq **)ptr;
  7972. ptr += nr_cpu_ids * sizeof(void **);
  7973. #ifdef CONFIG_USER_SCHED
  7974. root_task_group.rt_se = (struct sched_rt_entity **)ptr;
  7975. ptr += nr_cpu_ids * sizeof(void **);
  7976. root_task_group.rt_rq = (struct rt_rq **)ptr;
  7977. ptr += nr_cpu_ids * sizeof(void **);
  7978. #endif /* CONFIG_USER_SCHED */
  7979. #endif /* CONFIG_RT_GROUP_SCHED */
  7980. #ifdef CONFIG_CPUMASK_OFFSTACK
  7981. for_each_possible_cpu(i) {
  7982. per_cpu(load_balance_tmpmask, i) = (void *)ptr;
  7983. ptr += cpumask_size();
  7984. }
  7985. #endif /* CONFIG_CPUMASK_OFFSTACK */
  7986. }
  7987. #ifdef CONFIG_SMP
  7988. init_defrootdomain();
  7989. #endif
  7990. init_rt_bandwidth(&def_rt_bandwidth,
  7991. global_rt_period(), global_rt_runtime());
  7992. #ifdef CONFIG_RT_GROUP_SCHED
  7993. init_rt_bandwidth(&init_task_group.rt_bandwidth,
  7994. global_rt_period(), global_rt_runtime());
  7995. #ifdef CONFIG_USER_SCHED
  7996. init_rt_bandwidth(&root_task_group.rt_bandwidth,
  7997. global_rt_period(), RUNTIME_INF);
  7998. #endif /* CONFIG_USER_SCHED */
  7999. #endif /* CONFIG_RT_GROUP_SCHED */
  8000. #ifdef CONFIG_GROUP_SCHED
  8001. list_add(&init_task_group.list, &task_groups);
  8002. INIT_LIST_HEAD(&init_task_group.children);
  8003. #ifdef CONFIG_USER_SCHED
  8004. INIT_LIST_HEAD(&root_task_group.children);
  8005. init_task_group.parent = &root_task_group;
  8006. list_add(&init_task_group.siblings, &root_task_group.children);
  8007. #endif /* CONFIG_USER_SCHED */
  8008. #endif /* CONFIG_GROUP_SCHED */
  8009. for_each_possible_cpu(i) {
  8010. struct rq *rq;
  8011. rq = cpu_rq(i);
  8012. spin_lock_init(&rq->lock);
  8013. rq->nr_running = 0;
  8014. rq->calc_load_active = 0;
  8015. rq->calc_load_update = jiffies + LOAD_FREQ;
  8016. init_cfs_rq(&rq->cfs, rq);
  8017. init_rt_rq(&rq->rt, rq);
  8018. #ifdef CONFIG_FAIR_GROUP_SCHED
  8019. init_task_group.shares = init_task_group_load;
  8020. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  8021. #ifdef CONFIG_CGROUP_SCHED
  8022. /*
  8023. * How much cpu bandwidth does init_task_group get?
  8024. *
  8025. * In case of task-groups formed thr' the cgroup filesystem, it
  8026. * gets 100% of the cpu resources in the system. This overall
  8027. * system cpu resource is divided among the tasks of
  8028. * init_task_group and its child task-groups in a fair manner,
  8029. * based on each entity's (task or task-group's) weight
  8030. * (se->load.weight).
  8031. *
  8032. * In other words, if init_task_group has 10 tasks of weight
  8033. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  8034. * then A0's share of the cpu resource is:
  8035. *
  8036. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  8037. *
  8038. * We achieve this by letting init_task_group's tasks sit
  8039. * directly in rq->cfs (i.e init_task_group->se[] = NULL).
  8040. */
  8041. init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
  8042. #elif defined CONFIG_USER_SCHED
  8043. root_task_group.shares = NICE_0_LOAD;
  8044. init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
  8045. /*
  8046. * In case of task-groups formed thr' the user id of tasks,
  8047. * init_task_group represents tasks belonging to root user.
  8048. * Hence it forms a sibling of all subsequent groups formed.
  8049. * In this case, init_task_group gets only a fraction of overall
  8050. * system cpu resource, based on the weight assigned to root
  8051. * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
  8052. * by letting tasks of init_task_group sit in a separate cfs_rq
  8053. * (init_tg_cfs_rq) and having one entity represent this group of
  8054. * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
  8055. */
  8056. init_tg_cfs_entry(&init_task_group,
  8057. &per_cpu(init_tg_cfs_rq, i),
  8058. &per_cpu(init_sched_entity, i), i, 1,
  8059. root_task_group.se[i]);
  8060. #endif
  8061. #endif /* CONFIG_FAIR_GROUP_SCHED */
  8062. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  8063. #ifdef CONFIG_RT_GROUP_SCHED
  8064. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  8065. #ifdef CONFIG_CGROUP_SCHED
  8066. init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
  8067. #elif defined CONFIG_USER_SCHED
  8068. init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
  8069. init_tg_rt_entry(&init_task_group,
  8070. &per_cpu(init_rt_rq, i),
  8071. &per_cpu(init_sched_rt_entity, i), i, 1,
  8072. root_task_group.rt_se[i]);
  8073. #endif
  8074. #endif
  8075. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  8076. rq->cpu_load[j] = 0;
  8077. #ifdef CONFIG_SMP
  8078. rq->sd = NULL;
  8079. rq->rd = NULL;
  8080. rq->post_schedule = 0;
  8081. rq->active_balance = 0;
  8082. rq->next_balance = jiffies;
  8083. rq->push_cpu = 0;
  8084. rq->cpu = i;
  8085. rq->online = 0;
  8086. rq->migration_thread = NULL;
  8087. INIT_LIST_HEAD(&rq->migration_queue);
  8088. rq_attach_root(rq, &def_root_domain);
  8089. #endif
  8090. init_rq_hrtick(rq);
  8091. atomic_set(&rq->nr_iowait, 0);
  8092. }
  8093. set_load_weight(&init_task);
  8094. #ifdef CONFIG_PREEMPT_NOTIFIERS
  8095. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  8096. #endif
  8097. #ifdef CONFIG_SMP
  8098. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
  8099. #endif
  8100. #ifdef CONFIG_RT_MUTEXES
  8101. plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
  8102. #endif
  8103. /*
  8104. * The boot idle thread does lazy MMU switching as well:
  8105. */
  8106. atomic_inc(&init_mm.mm_count);
  8107. enter_lazy_tlb(&init_mm, current);
  8108. /*
  8109. * Make us the idle thread. Technically, schedule() should not be
  8110. * called from this thread, however somewhere below it might be,
  8111. * but because we are the idle thread, we just pick up running again
  8112. * when this runqueue becomes "idle".
  8113. */
  8114. init_idle(current, smp_processor_id());
  8115. calc_load_update = jiffies + LOAD_FREQ;
  8116. /*
  8117. * During early bootup we pretend to be a normal task:
  8118. */
  8119. current->sched_class = &fair_sched_class;
  8120. /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
  8121. alloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
  8122. #ifdef CONFIG_SMP
  8123. #ifdef CONFIG_NO_HZ
  8124. alloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
  8125. alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
  8126. #endif
  8127. alloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
  8128. #endif /* SMP */
  8129. perf_counter_init();
  8130. scheduler_running = 1;
  8131. }
  8132. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  8133. static inline int preempt_count_equals(int preempt_offset)
  8134. {
  8135. int nested = preempt_count() & ~PREEMPT_ACTIVE;
  8136. return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
  8137. }
  8138. void __might_sleep(char *file, int line, int preempt_offset)
  8139. {
  8140. #ifdef in_atomic
  8141. static unsigned long prev_jiffy; /* ratelimiting */
  8142. if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
  8143. system_state != SYSTEM_RUNNING || oops_in_progress)
  8144. return;
  8145. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  8146. return;
  8147. prev_jiffy = jiffies;
  8148. printk(KERN_ERR
  8149. "BUG: sleeping function called from invalid context at %s:%d\n",
  8150. file, line);
  8151. printk(KERN_ERR
  8152. "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
  8153. in_atomic(), irqs_disabled(),
  8154. current->pid, current->comm);
  8155. debug_show_held_locks(current);
  8156. if (irqs_disabled())
  8157. print_irqtrace_events(current);
  8158. dump_stack();
  8159. #endif
  8160. }
  8161. EXPORT_SYMBOL(__might_sleep);
  8162. #endif
  8163. #ifdef CONFIG_MAGIC_SYSRQ
  8164. static void normalize_task(struct rq *rq, struct task_struct *p)
  8165. {
  8166. int on_rq;
  8167. update_rq_clock(rq);
  8168. on_rq = p->se.on_rq;
  8169. if (on_rq)
  8170. deactivate_task(rq, p, 0);
  8171. __setscheduler(rq, p, SCHED_NORMAL, 0);
  8172. if (on_rq) {
  8173. activate_task(rq, p, 0);
  8174. resched_task(rq->curr);
  8175. }
  8176. }
  8177. void normalize_rt_tasks(void)
  8178. {
  8179. struct task_struct *g, *p;
  8180. unsigned long flags;
  8181. struct rq *rq;
  8182. read_lock_irqsave(&tasklist_lock, flags);
  8183. do_each_thread(g, p) {
  8184. /*
  8185. * Only normalize user tasks:
  8186. */
  8187. if (!p->mm)
  8188. continue;
  8189. p->se.exec_start = 0;
  8190. #ifdef CONFIG_SCHEDSTATS
  8191. p->se.wait_start = 0;
  8192. p->se.sleep_start = 0;
  8193. p->se.block_start = 0;
  8194. #endif
  8195. if (!rt_task(p)) {
  8196. /*
  8197. * Renice negative nice level userspace
  8198. * tasks back to 0:
  8199. */
  8200. if (TASK_NICE(p) < 0 && p->mm)
  8201. set_user_nice(p, 0);
  8202. continue;
  8203. }
  8204. spin_lock(&p->pi_lock);
  8205. rq = __task_rq_lock(p);
  8206. normalize_task(rq, p);
  8207. __task_rq_unlock(rq);
  8208. spin_unlock(&p->pi_lock);
  8209. } while_each_thread(g, p);
  8210. read_unlock_irqrestore(&tasklist_lock, flags);
  8211. }
  8212. #endif /* CONFIG_MAGIC_SYSRQ */
  8213. #ifdef CONFIG_IA64
  8214. /*
  8215. * These functions are only useful for the IA64 MCA handling.
  8216. *
  8217. * They can only be called when the whole system has been
  8218. * stopped - every CPU needs to be quiescent, and no scheduling
  8219. * activity can take place. Using them for anything else would
  8220. * be a serious bug, and as a result, they aren't even visible
  8221. * under any other configuration.
  8222. */
  8223. /**
  8224. * curr_task - return the current task for a given cpu.
  8225. * @cpu: the processor in question.
  8226. *
  8227. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  8228. */
  8229. struct task_struct *curr_task(int cpu)
  8230. {
  8231. return cpu_curr(cpu);
  8232. }
  8233. /**
  8234. * set_curr_task - set the current task for a given cpu.
  8235. * @cpu: the processor in question.
  8236. * @p: the task pointer to set.
  8237. *
  8238. * Description: This function must only be used when non-maskable interrupts
  8239. * are serviced on a separate stack. It allows the architecture to switch the
  8240. * notion of the current task on a cpu in a non-blocking manner. This function
  8241. * must be called with all CPU's synchronized, and interrupts disabled, the
  8242. * and caller must save the original value of the current task (see
  8243. * curr_task() above) and restore that value before reenabling interrupts and
  8244. * re-starting the system.
  8245. *
  8246. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  8247. */
  8248. void set_curr_task(int cpu, struct task_struct *p)
  8249. {
  8250. cpu_curr(cpu) = p;
  8251. }
  8252. #endif
  8253. #ifdef CONFIG_FAIR_GROUP_SCHED
  8254. static void free_fair_sched_group(struct task_group *tg)
  8255. {
  8256. int i;
  8257. for_each_possible_cpu(i) {
  8258. if (tg->cfs_rq)
  8259. kfree(tg->cfs_rq[i]);
  8260. if (tg->se)
  8261. kfree(tg->se[i]);
  8262. }
  8263. kfree(tg->cfs_rq);
  8264. kfree(tg->se);
  8265. }
  8266. static
  8267. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  8268. {
  8269. struct cfs_rq *cfs_rq;
  8270. struct sched_entity *se;
  8271. struct rq *rq;
  8272. int i;
  8273. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
  8274. if (!tg->cfs_rq)
  8275. goto err;
  8276. tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
  8277. if (!tg->se)
  8278. goto err;
  8279. tg->shares = NICE_0_LOAD;
  8280. for_each_possible_cpu(i) {
  8281. rq = cpu_rq(i);
  8282. cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
  8283. GFP_KERNEL, cpu_to_node(i));
  8284. if (!cfs_rq)
  8285. goto err;
  8286. se = kzalloc_node(sizeof(struct sched_entity),
  8287. GFP_KERNEL, cpu_to_node(i));
  8288. if (!se)
  8289. goto err;
  8290. init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
  8291. }
  8292. return 1;
  8293. err:
  8294. return 0;
  8295. }
  8296. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  8297. {
  8298. list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
  8299. &cpu_rq(cpu)->leaf_cfs_rq_list);
  8300. }
  8301. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  8302. {
  8303. list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
  8304. }
  8305. #else /* !CONFG_FAIR_GROUP_SCHED */
  8306. static inline void free_fair_sched_group(struct task_group *tg)
  8307. {
  8308. }
  8309. static inline
  8310. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  8311. {
  8312. return 1;
  8313. }
  8314. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  8315. {
  8316. }
  8317. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  8318. {
  8319. }
  8320. #endif /* CONFIG_FAIR_GROUP_SCHED */
  8321. #ifdef CONFIG_RT_GROUP_SCHED
  8322. static void free_rt_sched_group(struct task_group *tg)
  8323. {
  8324. int i;
  8325. destroy_rt_bandwidth(&tg->rt_bandwidth);
  8326. for_each_possible_cpu(i) {
  8327. if (tg->rt_rq)
  8328. kfree(tg->rt_rq[i]);
  8329. if (tg->rt_se)
  8330. kfree(tg->rt_se[i]);
  8331. }
  8332. kfree(tg->rt_rq);
  8333. kfree(tg->rt_se);
  8334. }
  8335. static
  8336. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  8337. {
  8338. struct rt_rq *rt_rq;
  8339. struct sched_rt_entity *rt_se;
  8340. struct rq *rq;
  8341. int i;
  8342. tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
  8343. if (!tg->rt_rq)
  8344. goto err;
  8345. tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
  8346. if (!tg->rt_se)
  8347. goto err;
  8348. init_rt_bandwidth(&tg->rt_bandwidth,
  8349. ktime_to_ns(def_rt_bandwidth.rt_period), 0);
  8350. for_each_possible_cpu(i) {
  8351. rq = cpu_rq(i);
  8352. rt_rq = kzalloc_node(sizeof(struct rt_rq),
  8353. GFP_KERNEL, cpu_to_node(i));
  8354. if (!rt_rq)
  8355. goto err;
  8356. rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
  8357. GFP_KERNEL, cpu_to_node(i));
  8358. if (!rt_se)
  8359. goto err;
  8360. init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
  8361. }
  8362. return 1;
  8363. err:
  8364. return 0;
  8365. }
  8366. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  8367. {
  8368. list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
  8369. &cpu_rq(cpu)->leaf_rt_rq_list);
  8370. }
  8371. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  8372. {
  8373. list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
  8374. }
  8375. #else /* !CONFIG_RT_GROUP_SCHED */
  8376. static inline void free_rt_sched_group(struct task_group *tg)
  8377. {
  8378. }
  8379. static inline
  8380. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  8381. {
  8382. return 1;
  8383. }
  8384. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  8385. {
  8386. }
  8387. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  8388. {
  8389. }
  8390. #endif /* CONFIG_RT_GROUP_SCHED */
  8391. #ifdef CONFIG_GROUP_SCHED
  8392. static void free_sched_group(struct task_group *tg)
  8393. {
  8394. free_fair_sched_group(tg);
  8395. free_rt_sched_group(tg);
  8396. kfree(tg);
  8397. }
  8398. /* allocate runqueue etc for a new task group */
  8399. struct task_group *sched_create_group(struct task_group *parent)
  8400. {
  8401. struct task_group *tg;
  8402. unsigned long flags;
  8403. int i;
  8404. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  8405. if (!tg)
  8406. return ERR_PTR(-ENOMEM);
  8407. if (!alloc_fair_sched_group(tg, parent))
  8408. goto err;
  8409. if (!alloc_rt_sched_group(tg, parent))
  8410. goto err;
  8411. spin_lock_irqsave(&task_group_lock, flags);
  8412. for_each_possible_cpu(i) {
  8413. register_fair_sched_group(tg, i);
  8414. register_rt_sched_group(tg, i);
  8415. }
  8416. list_add_rcu(&tg->list, &task_groups);
  8417. WARN_ON(!parent); /* root should already exist */
  8418. tg->parent = parent;
  8419. INIT_LIST_HEAD(&tg->children);
  8420. list_add_rcu(&tg->siblings, &parent->children);
  8421. spin_unlock_irqrestore(&task_group_lock, flags);
  8422. return tg;
  8423. err:
  8424. free_sched_group(tg);
  8425. return ERR_PTR(-ENOMEM);
  8426. }
  8427. /* rcu callback to free various structures associated with a task group */
  8428. static void free_sched_group_rcu(struct rcu_head *rhp)
  8429. {
  8430. /* now it should be safe to free those cfs_rqs */
  8431. free_sched_group(container_of(rhp, struct task_group, rcu));
  8432. }
  8433. /* Destroy runqueue etc associated with a task group */
  8434. void sched_destroy_group(struct task_group *tg)
  8435. {
  8436. unsigned long flags;
  8437. int i;
  8438. spin_lock_irqsave(&task_group_lock, flags);
  8439. for_each_possible_cpu(i) {
  8440. unregister_fair_sched_group(tg, i);
  8441. unregister_rt_sched_group(tg, i);
  8442. }
  8443. list_del_rcu(&tg->list);
  8444. list_del_rcu(&tg->siblings);
  8445. spin_unlock_irqrestore(&task_group_lock, flags);
  8446. /* wait for possible concurrent references to cfs_rqs complete */
  8447. call_rcu(&tg->rcu, free_sched_group_rcu);
  8448. }
  8449. /* change task's runqueue when it moves between groups.
  8450. * The caller of this function should have put the task in its new group
  8451. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  8452. * reflect its new group.
  8453. */
  8454. void sched_move_task(struct task_struct *tsk)
  8455. {
  8456. int on_rq, running;
  8457. unsigned long flags;
  8458. struct rq *rq;
  8459. rq = task_rq_lock(tsk, &flags);
  8460. update_rq_clock(rq);
  8461. running = task_current(rq, tsk);
  8462. on_rq = tsk->se.on_rq;
  8463. if (on_rq)
  8464. dequeue_task(rq, tsk, 0);
  8465. if (unlikely(running))
  8466. tsk->sched_class->put_prev_task(rq, tsk);
  8467. set_task_rq(tsk, task_cpu(tsk));
  8468. #ifdef CONFIG_FAIR_GROUP_SCHED
  8469. if (tsk->sched_class->moved_group)
  8470. tsk->sched_class->moved_group(tsk);
  8471. #endif
  8472. if (unlikely(running))
  8473. tsk->sched_class->set_curr_task(rq);
  8474. if (on_rq)
  8475. enqueue_task(rq, tsk, 0);
  8476. task_rq_unlock(rq, &flags);
  8477. }
  8478. #endif /* CONFIG_GROUP_SCHED */
  8479. #ifdef CONFIG_FAIR_GROUP_SCHED
  8480. static void __set_se_shares(struct sched_entity *se, unsigned long shares)
  8481. {
  8482. struct cfs_rq *cfs_rq = se->cfs_rq;
  8483. int on_rq;
  8484. on_rq = se->on_rq;
  8485. if (on_rq)
  8486. dequeue_entity(cfs_rq, se, 0);
  8487. se->load.weight = shares;
  8488. se->load.inv_weight = 0;
  8489. if (on_rq)
  8490. enqueue_entity(cfs_rq, se, 0);
  8491. }
  8492. static void set_se_shares(struct sched_entity *se, unsigned long shares)
  8493. {
  8494. struct cfs_rq *cfs_rq = se->cfs_rq;
  8495. struct rq *rq = cfs_rq->rq;
  8496. unsigned long flags;
  8497. spin_lock_irqsave(&rq->lock, flags);
  8498. __set_se_shares(se, shares);
  8499. spin_unlock_irqrestore(&rq->lock, flags);
  8500. }
  8501. static DEFINE_MUTEX(shares_mutex);
  8502. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  8503. {
  8504. int i;
  8505. unsigned long flags;
  8506. /*
  8507. * We can't change the weight of the root cgroup.
  8508. */
  8509. if (!tg->se[0])
  8510. return -EINVAL;
  8511. if (shares < MIN_SHARES)
  8512. shares = MIN_SHARES;
  8513. else if (shares > MAX_SHARES)
  8514. shares = MAX_SHARES;
  8515. mutex_lock(&shares_mutex);
  8516. if (tg->shares == shares)
  8517. goto done;
  8518. spin_lock_irqsave(&task_group_lock, flags);
  8519. for_each_possible_cpu(i)
  8520. unregister_fair_sched_group(tg, i);
  8521. list_del_rcu(&tg->siblings);
  8522. spin_unlock_irqrestore(&task_group_lock, flags);
  8523. /* wait for any ongoing reference to this group to finish */
  8524. synchronize_sched();
  8525. /*
  8526. * Now we are free to modify the group's share on each cpu
  8527. * w/o tripping rebalance_share or load_balance_fair.
  8528. */
  8529. tg->shares = shares;
  8530. for_each_possible_cpu(i) {
  8531. /*
  8532. * force a rebalance
  8533. */
  8534. cfs_rq_set_shares(tg->cfs_rq[i], 0);
  8535. set_se_shares(tg->se[i], shares);
  8536. }
  8537. /*
  8538. * Enable load balance activity on this group, by inserting it back on
  8539. * each cpu's rq->leaf_cfs_rq_list.
  8540. */
  8541. spin_lock_irqsave(&task_group_lock, flags);
  8542. for_each_possible_cpu(i)
  8543. register_fair_sched_group(tg, i);
  8544. list_add_rcu(&tg->siblings, &tg->parent->children);
  8545. spin_unlock_irqrestore(&task_group_lock, flags);
  8546. done:
  8547. mutex_unlock(&shares_mutex);
  8548. return 0;
  8549. }
  8550. unsigned long sched_group_shares(struct task_group *tg)
  8551. {
  8552. return tg->shares;
  8553. }
  8554. #endif
  8555. #ifdef CONFIG_RT_GROUP_SCHED
  8556. /*
  8557. * Ensure that the real time constraints are schedulable.
  8558. */
  8559. static DEFINE_MUTEX(rt_constraints_mutex);
  8560. static unsigned long to_ratio(u64 period, u64 runtime)
  8561. {
  8562. if (runtime == RUNTIME_INF)
  8563. return 1ULL << 20;
  8564. return div64_u64(runtime << 20, period);
  8565. }
  8566. /* Must be called with tasklist_lock held */
  8567. static inline int tg_has_rt_tasks(struct task_group *tg)
  8568. {
  8569. struct task_struct *g, *p;
  8570. do_each_thread(g, p) {
  8571. if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
  8572. return 1;
  8573. } while_each_thread(g, p);
  8574. return 0;
  8575. }
  8576. struct rt_schedulable_data {
  8577. struct task_group *tg;
  8578. u64 rt_period;
  8579. u64 rt_runtime;
  8580. };
  8581. static int tg_schedulable(struct task_group *tg, void *data)
  8582. {
  8583. struct rt_schedulable_data *d = data;
  8584. struct task_group *child;
  8585. unsigned long total, sum = 0;
  8586. u64 period, runtime;
  8587. period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  8588. runtime = tg->rt_bandwidth.rt_runtime;
  8589. if (tg == d->tg) {
  8590. period = d->rt_period;
  8591. runtime = d->rt_runtime;
  8592. }
  8593. #ifdef CONFIG_USER_SCHED
  8594. if (tg == &root_task_group) {
  8595. period = global_rt_period();
  8596. runtime = global_rt_runtime();
  8597. }
  8598. #endif
  8599. /*
  8600. * Cannot have more runtime than the period.
  8601. */
  8602. if (runtime > period && runtime != RUNTIME_INF)
  8603. return -EINVAL;
  8604. /*
  8605. * Ensure we don't starve existing RT tasks.
  8606. */
  8607. if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
  8608. return -EBUSY;
  8609. total = to_ratio(period, runtime);
  8610. /*
  8611. * Nobody can have more than the global setting allows.
  8612. */
  8613. if (total > to_ratio(global_rt_period(), global_rt_runtime()))
  8614. return -EINVAL;
  8615. /*
  8616. * The sum of our children's runtime should not exceed our own.
  8617. */
  8618. list_for_each_entry_rcu(child, &tg->children, siblings) {
  8619. period = ktime_to_ns(child->rt_bandwidth.rt_period);
  8620. runtime = child->rt_bandwidth.rt_runtime;
  8621. if (child == d->tg) {
  8622. period = d->rt_period;
  8623. runtime = d->rt_runtime;
  8624. }
  8625. sum += to_ratio(period, runtime);
  8626. }
  8627. if (sum > total)
  8628. return -EINVAL;
  8629. return 0;
  8630. }
  8631. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  8632. {
  8633. struct rt_schedulable_data data = {
  8634. .tg = tg,
  8635. .rt_period = period,
  8636. .rt_runtime = runtime,
  8637. };
  8638. return walk_tg_tree(tg_schedulable, tg_nop, &data);
  8639. }
  8640. static int tg_set_bandwidth(struct task_group *tg,
  8641. u64 rt_period, u64 rt_runtime)
  8642. {
  8643. int i, err = 0;
  8644. mutex_lock(&rt_constraints_mutex);
  8645. read_lock(&tasklist_lock);
  8646. err = __rt_schedulable(tg, rt_period, rt_runtime);
  8647. if (err)
  8648. goto unlock;
  8649. spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  8650. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  8651. tg->rt_bandwidth.rt_runtime = rt_runtime;
  8652. for_each_possible_cpu(i) {
  8653. struct rt_rq *rt_rq = tg->rt_rq[i];
  8654. spin_lock(&rt_rq->rt_runtime_lock);
  8655. rt_rq->rt_runtime = rt_runtime;
  8656. spin_unlock(&rt_rq->rt_runtime_lock);
  8657. }
  8658. spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  8659. unlock:
  8660. read_unlock(&tasklist_lock);
  8661. mutex_unlock(&rt_constraints_mutex);
  8662. return err;
  8663. }
  8664. int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  8665. {
  8666. u64 rt_runtime, rt_period;
  8667. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  8668. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  8669. if (rt_runtime_us < 0)
  8670. rt_runtime = RUNTIME_INF;
  8671. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  8672. }
  8673. long sched_group_rt_runtime(struct task_group *tg)
  8674. {
  8675. u64 rt_runtime_us;
  8676. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  8677. return -1;
  8678. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  8679. do_div(rt_runtime_us, NSEC_PER_USEC);
  8680. return rt_runtime_us;
  8681. }
  8682. int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  8683. {
  8684. u64 rt_runtime, rt_period;
  8685. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  8686. rt_runtime = tg->rt_bandwidth.rt_runtime;
  8687. if (rt_period == 0)
  8688. return -EINVAL;
  8689. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  8690. }
  8691. long sched_group_rt_period(struct task_group *tg)
  8692. {
  8693. u64 rt_period_us;
  8694. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  8695. do_div(rt_period_us, NSEC_PER_USEC);
  8696. return rt_period_us;
  8697. }
  8698. static int sched_rt_global_constraints(void)
  8699. {
  8700. u64 runtime, period;
  8701. int ret = 0;
  8702. if (sysctl_sched_rt_period <= 0)
  8703. return -EINVAL;
  8704. runtime = global_rt_runtime();
  8705. period = global_rt_period();
  8706. /*
  8707. * Sanity check on the sysctl variables.
  8708. */
  8709. if (runtime > period && runtime != RUNTIME_INF)
  8710. return -EINVAL;
  8711. mutex_lock(&rt_constraints_mutex);
  8712. read_lock(&tasklist_lock);
  8713. ret = __rt_schedulable(NULL, 0, 0);
  8714. read_unlock(&tasklist_lock);
  8715. mutex_unlock(&rt_constraints_mutex);
  8716. return ret;
  8717. }
  8718. int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
  8719. {
  8720. /* Don't accept realtime tasks when there is no way for them to run */
  8721. if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
  8722. return 0;
  8723. return 1;
  8724. }
  8725. #else /* !CONFIG_RT_GROUP_SCHED */
  8726. static int sched_rt_global_constraints(void)
  8727. {
  8728. unsigned long flags;
  8729. int i;
  8730. if (sysctl_sched_rt_period <= 0)
  8731. return -EINVAL;
  8732. /*
  8733. * There's always some RT tasks in the root group
  8734. * -- migration, kstopmachine etc..
  8735. */
  8736. if (sysctl_sched_rt_runtime == 0)
  8737. return -EBUSY;
  8738. spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  8739. for_each_possible_cpu(i) {
  8740. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  8741. spin_lock(&rt_rq->rt_runtime_lock);
  8742. rt_rq->rt_runtime = global_rt_runtime();
  8743. spin_unlock(&rt_rq->rt_runtime_lock);
  8744. }
  8745. spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  8746. return 0;
  8747. }
  8748. #endif /* CONFIG_RT_GROUP_SCHED */
  8749. int sched_rt_handler(struct ctl_table *table, int write,
  8750. struct file *filp, void __user *buffer, size_t *lenp,
  8751. loff_t *ppos)
  8752. {
  8753. int ret;
  8754. int old_period, old_runtime;
  8755. static DEFINE_MUTEX(mutex);
  8756. mutex_lock(&mutex);
  8757. old_period = sysctl_sched_rt_period;
  8758. old_runtime = sysctl_sched_rt_runtime;
  8759. ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
  8760. if (!ret && write) {
  8761. ret = sched_rt_global_constraints();
  8762. if (ret) {
  8763. sysctl_sched_rt_period = old_period;
  8764. sysctl_sched_rt_runtime = old_runtime;
  8765. } else {
  8766. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  8767. def_rt_bandwidth.rt_period =
  8768. ns_to_ktime(global_rt_period());
  8769. }
  8770. }
  8771. mutex_unlock(&mutex);
  8772. return ret;
  8773. }
  8774. #ifdef CONFIG_CGROUP_SCHED
  8775. /* return corresponding task_group object of a cgroup */
  8776. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  8777. {
  8778. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  8779. struct task_group, css);
  8780. }
  8781. static struct cgroup_subsys_state *
  8782. cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
  8783. {
  8784. struct task_group *tg, *parent;
  8785. if (!cgrp->parent) {
  8786. /* This is early initialization for the top cgroup */
  8787. return &init_task_group.css;
  8788. }
  8789. parent = cgroup_tg(cgrp->parent);
  8790. tg = sched_create_group(parent);
  8791. if (IS_ERR(tg))
  8792. return ERR_PTR(-ENOMEM);
  8793. return &tg->css;
  8794. }
  8795. static void
  8796. cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  8797. {
  8798. struct task_group *tg = cgroup_tg(cgrp);
  8799. sched_destroy_group(tg);
  8800. }
  8801. static int
  8802. cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  8803. struct task_struct *tsk)
  8804. {
  8805. #ifdef CONFIG_RT_GROUP_SCHED
  8806. if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
  8807. return -EINVAL;
  8808. #else
  8809. /* We don't support RT-tasks being in separate groups */
  8810. if (tsk->sched_class != &fair_sched_class)
  8811. return -EINVAL;
  8812. #endif
  8813. return 0;
  8814. }
  8815. static void
  8816. cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  8817. struct cgroup *old_cont, struct task_struct *tsk)
  8818. {
  8819. sched_move_task(tsk);
  8820. }
  8821. #ifdef CONFIG_FAIR_GROUP_SCHED
  8822. static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  8823. u64 shareval)
  8824. {
  8825. return sched_group_set_shares(cgroup_tg(cgrp), shareval);
  8826. }
  8827. static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
  8828. {
  8829. struct task_group *tg = cgroup_tg(cgrp);
  8830. return (u64) tg->shares;
  8831. }
  8832. #endif /* CONFIG_FAIR_GROUP_SCHED */
  8833. #ifdef CONFIG_RT_GROUP_SCHED
  8834. static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
  8835. s64 val)
  8836. {
  8837. return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
  8838. }
  8839. static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
  8840. {
  8841. return sched_group_rt_runtime(cgroup_tg(cgrp));
  8842. }
  8843. static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  8844. u64 rt_period_us)
  8845. {
  8846. return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
  8847. }
  8848. static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
  8849. {
  8850. return sched_group_rt_period(cgroup_tg(cgrp));
  8851. }
  8852. #endif /* CONFIG_RT_GROUP_SCHED */
  8853. static struct cftype cpu_files[] = {
  8854. #ifdef CONFIG_FAIR_GROUP_SCHED
  8855. {
  8856. .name = "shares",
  8857. .read_u64 = cpu_shares_read_u64,
  8858. .write_u64 = cpu_shares_write_u64,
  8859. },
  8860. #endif
  8861. #ifdef CONFIG_RT_GROUP_SCHED
  8862. {
  8863. .name = "rt_runtime_us",
  8864. .read_s64 = cpu_rt_runtime_read,
  8865. .write_s64 = cpu_rt_runtime_write,
  8866. },
  8867. {
  8868. .name = "rt_period_us",
  8869. .read_u64 = cpu_rt_period_read_uint,
  8870. .write_u64 = cpu_rt_period_write_uint,
  8871. },
  8872. #endif
  8873. };
  8874. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  8875. {
  8876. return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
  8877. }
  8878. struct cgroup_subsys cpu_cgroup_subsys = {
  8879. .name = "cpu",
  8880. .create = cpu_cgroup_create,
  8881. .destroy = cpu_cgroup_destroy,
  8882. .can_attach = cpu_cgroup_can_attach,
  8883. .attach = cpu_cgroup_attach,
  8884. .populate = cpu_cgroup_populate,
  8885. .subsys_id = cpu_cgroup_subsys_id,
  8886. .early_init = 1,
  8887. };
  8888. #endif /* CONFIG_CGROUP_SCHED */
  8889. #ifdef CONFIG_CGROUP_CPUACCT
  8890. /*
  8891. * CPU accounting code for task groups.
  8892. *
  8893. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  8894. * (balbir@in.ibm.com).
  8895. */
  8896. /* track cpu usage of a group of tasks and its child groups */
  8897. struct cpuacct {
  8898. struct cgroup_subsys_state css;
  8899. /* cpuusage holds pointer to a u64-type object on every cpu */
  8900. u64 *cpuusage;
  8901. struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
  8902. struct cpuacct *parent;
  8903. };
  8904. struct cgroup_subsys cpuacct_subsys;
  8905. /* return cpu accounting group corresponding to this container */
  8906. static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
  8907. {
  8908. return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
  8909. struct cpuacct, css);
  8910. }
  8911. /* return cpu accounting group to which this task belongs */
  8912. static inline struct cpuacct *task_ca(struct task_struct *tsk)
  8913. {
  8914. return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
  8915. struct cpuacct, css);
  8916. }
  8917. /* create a new cpu accounting group */
  8918. static struct cgroup_subsys_state *cpuacct_create(
  8919. struct cgroup_subsys *ss, struct cgroup *cgrp)
  8920. {
  8921. struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  8922. int i;
  8923. if (!ca)
  8924. goto out;
  8925. ca->cpuusage = alloc_percpu(u64);
  8926. if (!ca->cpuusage)
  8927. goto out_free_ca;
  8928. for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
  8929. if (percpu_counter_init(&ca->cpustat[i], 0))
  8930. goto out_free_counters;
  8931. if (cgrp->parent)
  8932. ca->parent = cgroup_ca(cgrp->parent);
  8933. return &ca->css;
  8934. out_free_counters:
  8935. while (--i >= 0)
  8936. percpu_counter_destroy(&ca->cpustat[i]);
  8937. free_percpu(ca->cpuusage);
  8938. out_free_ca:
  8939. kfree(ca);
  8940. out:
  8941. return ERR_PTR(-ENOMEM);
  8942. }
  8943. /* destroy an existing cpu accounting group */
  8944. static void
  8945. cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  8946. {
  8947. struct cpuacct *ca = cgroup_ca(cgrp);
  8948. int i;
  8949. for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
  8950. percpu_counter_destroy(&ca->cpustat[i]);
  8951. free_percpu(ca->cpuusage);
  8952. kfree(ca);
  8953. }
  8954. static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
  8955. {
  8956. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  8957. u64 data;
  8958. #ifndef CONFIG_64BIT
  8959. /*
  8960. * Take rq->lock to make 64-bit read safe on 32-bit platforms.
  8961. */
  8962. spin_lock_irq(&cpu_rq(cpu)->lock);
  8963. data = *cpuusage;
  8964. spin_unlock_irq(&cpu_rq(cpu)->lock);
  8965. #else
  8966. data = *cpuusage;
  8967. #endif
  8968. return data;
  8969. }
  8970. static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
  8971. {
  8972. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  8973. #ifndef CONFIG_64BIT
  8974. /*
  8975. * Take rq->lock to make 64-bit write safe on 32-bit platforms.
  8976. */
  8977. spin_lock_irq(&cpu_rq(cpu)->lock);
  8978. *cpuusage = val;
  8979. spin_unlock_irq(&cpu_rq(cpu)->lock);
  8980. #else
  8981. *cpuusage = val;
  8982. #endif
  8983. }
  8984. /* return total cpu usage (in nanoseconds) of a group */
  8985. static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
  8986. {
  8987. struct cpuacct *ca = cgroup_ca(cgrp);
  8988. u64 totalcpuusage = 0;
  8989. int i;
  8990. for_each_present_cpu(i)
  8991. totalcpuusage += cpuacct_cpuusage_read(ca, i);
  8992. return totalcpuusage;
  8993. }
  8994. static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
  8995. u64 reset)
  8996. {
  8997. struct cpuacct *ca = cgroup_ca(cgrp);
  8998. int err = 0;
  8999. int i;
  9000. if (reset) {
  9001. err = -EINVAL;
  9002. goto out;
  9003. }
  9004. for_each_present_cpu(i)
  9005. cpuacct_cpuusage_write(ca, i, 0);
  9006. out:
  9007. return err;
  9008. }
  9009. static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
  9010. struct seq_file *m)
  9011. {
  9012. struct cpuacct *ca = cgroup_ca(cgroup);
  9013. u64 percpu;
  9014. int i;
  9015. for_each_present_cpu(i) {
  9016. percpu = cpuacct_cpuusage_read(ca, i);
  9017. seq_printf(m, "%llu ", (unsigned long long) percpu);
  9018. }
  9019. seq_printf(m, "\n");
  9020. return 0;
  9021. }
  9022. static const char *cpuacct_stat_desc[] = {
  9023. [CPUACCT_STAT_USER] = "user",
  9024. [CPUACCT_STAT_SYSTEM] = "system",
  9025. };
  9026. static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
  9027. struct cgroup_map_cb *cb)
  9028. {
  9029. struct cpuacct *ca = cgroup_ca(cgrp);
  9030. int i;
  9031. for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
  9032. s64 val = percpu_counter_read(&ca->cpustat[i]);
  9033. val = cputime64_to_clock_t(val);
  9034. cb->fill(cb, cpuacct_stat_desc[i], val);
  9035. }
  9036. return 0;
  9037. }
  9038. static struct cftype files[] = {
  9039. {
  9040. .name = "usage",
  9041. .read_u64 = cpuusage_read,
  9042. .write_u64 = cpuusage_write,
  9043. },
  9044. {
  9045. .name = "usage_percpu",
  9046. .read_seq_string = cpuacct_percpu_seq_read,
  9047. },
  9048. {
  9049. .name = "stat",
  9050. .read_map = cpuacct_stats_show,
  9051. },
  9052. };
  9053. static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
  9054. {
  9055. return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
  9056. }
  9057. /*
  9058. * charge this task's execution time to its accounting group.
  9059. *
  9060. * called with rq->lock held.
  9061. */
  9062. static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  9063. {
  9064. struct cpuacct *ca;
  9065. int cpu;
  9066. if (unlikely(!cpuacct_subsys.active))
  9067. return;
  9068. cpu = task_cpu(tsk);
  9069. rcu_read_lock();
  9070. ca = task_ca(tsk);
  9071. for (; ca; ca = ca->parent) {
  9072. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  9073. *cpuusage += cputime;
  9074. }
  9075. rcu_read_unlock();
  9076. }
  9077. /*
  9078. * Charge the system/user time to the task's accounting group.
  9079. */
  9080. static void cpuacct_update_stats(struct task_struct *tsk,
  9081. enum cpuacct_stat_index idx, cputime_t val)
  9082. {
  9083. struct cpuacct *ca;
  9084. if (unlikely(!cpuacct_subsys.active))
  9085. return;
  9086. rcu_read_lock();
  9087. ca = task_ca(tsk);
  9088. do {
  9089. percpu_counter_add(&ca->cpustat[idx], val);
  9090. ca = ca->parent;
  9091. } while (ca);
  9092. rcu_read_unlock();
  9093. }
  9094. struct cgroup_subsys cpuacct_subsys = {
  9095. .name = "cpuacct",
  9096. .create = cpuacct_create,
  9097. .destroy = cpuacct_destroy,
  9098. .populate = cpuacct_populate,
  9099. .subsys_id = cpuacct_subsys_id,
  9100. };
  9101. #endif /* CONFIG_CGROUP_CPUACCT */
  9102. #ifndef CONFIG_SMP
  9103. int rcu_expedited_torture_stats(char *page)
  9104. {
  9105. return 0;
  9106. }
  9107. EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
  9108. void synchronize_sched_expedited(void)
  9109. {
  9110. }
  9111. EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
  9112. #else /* #ifndef CONFIG_SMP */
  9113. static DEFINE_PER_CPU(struct migration_req, rcu_migration_req);
  9114. static DEFINE_MUTEX(rcu_sched_expedited_mutex);
  9115. #define RCU_EXPEDITED_STATE_POST -2
  9116. #define RCU_EXPEDITED_STATE_IDLE -1
  9117. static int rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
  9118. int rcu_expedited_torture_stats(char *page)
  9119. {
  9120. int cnt = 0;
  9121. int cpu;
  9122. cnt += sprintf(&page[cnt], "state: %d /", rcu_expedited_state);
  9123. for_each_online_cpu(cpu) {
  9124. cnt += sprintf(&page[cnt], " %d:%d",
  9125. cpu, per_cpu(rcu_migration_req, cpu).dest_cpu);
  9126. }
  9127. cnt += sprintf(&page[cnt], "\n");
  9128. return cnt;
  9129. }
  9130. EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
  9131. static long synchronize_sched_expedited_count;
  9132. /*
  9133. * Wait for an rcu-sched grace period to elapse, but use "big hammer"
  9134. * approach to force grace period to end quickly. This consumes
  9135. * significant time on all CPUs, and is thus not recommended for
  9136. * any sort of common-case code.
  9137. *
  9138. * Note that it is illegal to call this function while holding any
  9139. * lock that is acquired by a CPU-hotplug notifier. Failing to
  9140. * observe this restriction will result in deadlock.
  9141. */
  9142. void synchronize_sched_expedited(void)
  9143. {
  9144. int cpu;
  9145. unsigned long flags;
  9146. bool need_full_sync = 0;
  9147. struct rq *rq;
  9148. struct migration_req *req;
  9149. long snap;
  9150. int trycount = 0;
  9151. smp_mb(); /* ensure prior mod happens before capturing snap. */
  9152. snap = ACCESS_ONCE(synchronize_sched_expedited_count) + 1;
  9153. get_online_cpus();
  9154. while (!mutex_trylock(&rcu_sched_expedited_mutex)) {
  9155. put_online_cpus();
  9156. if (trycount++ < 10)
  9157. udelay(trycount * num_online_cpus());
  9158. else {
  9159. synchronize_sched();
  9160. return;
  9161. }
  9162. if (ACCESS_ONCE(synchronize_sched_expedited_count) - snap > 0) {
  9163. smp_mb(); /* ensure test happens before caller kfree */
  9164. return;
  9165. }
  9166. get_online_cpus();
  9167. }
  9168. rcu_expedited_state = RCU_EXPEDITED_STATE_POST;
  9169. for_each_online_cpu(cpu) {
  9170. rq = cpu_rq(cpu);
  9171. req = &per_cpu(rcu_migration_req, cpu);
  9172. init_completion(&req->done);
  9173. req->task = NULL;
  9174. req->dest_cpu = RCU_MIGRATION_NEED_QS;
  9175. spin_lock_irqsave(&rq->lock, flags);
  9176. list_add(&req->list, &rq->migration_queue);
  9177. spin_unlock_irqrestore(&rq->lock, flags);
  9178. wake_up_process(rq->migration_thread);
  9179. }
  9180. for_each_online_cpu(cpu) {
  9181. rcu_expedited_state = cpu;
  9182. req = &per_cpu(rcu_migration_req, cpu);
  9183. rq = cpu_rq(cpu);
  9184. wait_for_completion(&req->done);
  9185. spin_lock_irqsave(&rq->lock, flags);
  9186. if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC))
  9187. need_full_sync = 1;
  9188. req->dest_cpu = RCU_MIGRATION_IDLE;
  9189. spin_unlock_irqrestore(&rq->lock, flags);
  9190. }
  9191. rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
  9192. mutex_unlock(&rcu_sched_expedited_mutex);
  9193. put_online_cpus();
  9194. if (need_full_sync)
  9195. synchronize_sched();
  9196. }
  9197. EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
  9198. #endif /* #else #ifndef CONFIG_SMP */