ctree.c 63 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469
  1. /*
  2. * Copyright (C) 2007 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include "ctree.h"
  19. #include "disk-io.h"
  20. #include "transaction.h"
  21. #include "print-tree.h"
  22. static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
  23. *root, struct btrfs_path *path, int level);
  24. static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
  25. *root, struct btrfs_key *ins_key,
  26. struct btrfs_path *path, int data_size);
  27. static int push_node_left(struct btrfs_trans_handle *trans,
  28. struct btrfs_root *root, struct extent_buffer *dst,
  29. struct extent_buffer *src);
  30. static int balance_node_right(struct btrfs_trans_handle *trans,
  31. struct btrfs_root *root,
  32. struct extent_buffer *dst_buf,
  33. struct extent_buffer *src_buf);
  34. static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  35. struct btrfs_path *path, int level, int slot);
  36. inline void btrfs_init_path(struct btrfs_path *p)
  37. {
  38. memset(p, 0, sizeof(*p));
  39. }
  40. struct btrfs_path *btrfs_alloc_path(void)
  41. {
  42. struct btrfs_path *path;
  43. path = kmem_cache_alloc(btrfs_path_cachep, GFP_NOFS);
  44. if (path) {
  45. btrfs_init_path(path);
  46. path->reada = 1;
  47. }
  48. return path;
  49. }
  50. void btrfs_free_path(struct btrfs_path *p)
  51. {
  52. btrfs_release_path(NULL, p);
  53. kmem_cache_free(btrfs_path_cachep, p);
  54. }
  55. void btrfs_release_path(struct btrfs_root *root, struct btrfs_path *p)
  56. {
  57. int i;
  58. for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
  59. if (!p->nodes[i])
  60. break;
  61. free_extent_buffer(p->nodes[i]);
  62. }
  63. memset(p, 0, sizeof(*p));
  64. }
  65. static int __btrfs_cow_block(struct btrfs_trans_handle *trans,
  66. struct btrfs_root *root,
  67. struct extent_buffer *buf,
  68. struct extent_buffer *parent, int parent_slot,
  69. struct extent_buffer **cow_ret,
  70. u64 search_start, u64 empty_size)
  71. {
  72. struct extent_buffer *cow;
  73. int ret = 0;
  74. int different_trans = 0;
  75. WARN_ON(root->ref_cows && trans->transid != root->last_trans);
  76. cow = btrfs_alloc_free_block(trans, root, buf->len,
  77. search_start, empty_size);
  78. if (IS_ERR(cow))
  79. return PTR_ERR(cow);
  80. copy_extent_buffer(cow, buf, 0, 0, cow->len);
  81. btrfs_set_header_bytenr(cow, cow->start);
  82. btrfs_set_header_generation(cow, trans->transid);
  83. btrfs_set_header_owner(cow, root->root_key.objectid);
  84. WARN_ON(btrfs_header_generation(buf) > trans->transid);
  85. if (btrfs_header_generation(buf) != trans->transid) {
  86. different_trans = 1;
  87. ret = btrfs_inc_ref(trans, root, buf);
  88. if (ret)
  89. return ret;
  90. } else {
  91. clean_tree_block(trans, root, buf);
  92. }
  93. if (buf == root->node) {
  94. root->node = cow;
  95. extent_buffer_get(cow);
  96. if (buf != root->commit_root) {
  97. btrfs_free_extent(trans, root, buf->start,
  98. buf->len, 1);
  99. }
  100. free_extent_buffer(buf);
  101. } else {
  102. btrfs_set_node_blockptr(parent, parent_slot,
  103. cow->start);
  104. btrfs_mark_buffer_dirty(parent);
  105. WARN_ON(btrfs_header_generation(parent) != trans->transid);
  106. btrfs_free_extent(trans, root, buf->start, buf->len, 1);
  107. }
  108. free_extent_buffer(buf);
  109. btrfs_mark_buffer_dirty(cow);
  110. *cow_ret = cow;
  111. return 0;
  112. }
  113. int btrfs_cow_block(struct btrfs_trans_handle *trans,
  114. struct btrfs_root *root, struct extent_buffer *buf,
  115. struct extent_buffer *parent, int parent_slot,
  116. struct extent_buffer **cow_ret)
  117. {
  118. u64 search_start;
  119. int ret;
  120. if (trans->transaction != root->fs_info->running_transaction) {
  121. printk(KERN_CRIT "trans %Lu running %Lu\n", trans->transid,
  122. root->fs_info->running_transaction->transid);
  123. WARN_ON(1);
  124. }
  125. if (trans->transid != root->fs_info->generation) {
  126. printk(KERN_CRIT "trans %Lu running %Lu\n", trans->transid,
  127. root->fs_info->generation);
  128. WARN_ON(1);
  129. }
  130. if (btrfs_header_generation(buf) == trans->transid) {
  131. *cow_ret = buf;
  132. return 0;
  133. }
  134. search_start = buf->start & ~((u64)BTRFS_BLOCK_GROUP_SIZE - 1);
  135. ret = __btrfs_cow_block(trans, root, buf, parent,
  136. parent_slot, cow_ret, search_start, 0);
  137. return ret;
  138. }
  139. static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
  140. {
  141. if (blocknr < other && other - (blocknr + blocksize) < 32768)
  142. return 1;
  143. if (blocknr > other && blocknr - (other + blocksize) < 32768)
  144. return 1;
  145. return 0;
  146. }
  147. static int should_defrag_leaf(struct extent_buffer *leaf)
  148. {
  149. struct btrfs_key key;
  150. u32 nritems;
  151. if (btrfs_buffer_defrag(leaf))
  152. return 1;
  153. nritems = btrfs_header_nritems(leaf);
  154. if (nritems == 0)
  155. return 0;
  156. btrfs_item_key_to_cpu(leaf, &key, 0);
  157. if (key.type == BTRFS_DIR_ITEM_KEY)
  158. return 1;
  159. btrfs_item_key_to_cpu(leaf, &key, nritems - 1);
  160. if (key.type == BTRFS_DIR_ITEM_KEY)
  161. return 1;
  162. if (nritems > 4) {
  163. btrfs_item_key_to_cpu(leaf, &key, nritems / 2);
  164. if (key.type == BTRFS_DIR_ITEM_KEY)
  165. return 1;
  166. }
  167. return 0;
  168. }
  169. int btrfs_realloc_node(struct btrfs_trans_handle *trans,
  170. struct btrfs_root *root, struct extent_buffer *parent,
  171. int cache_only, u64 *last_ret)
  172. {
  173. struct extent_buffer *cur;
  174. struct extent_buffer *tmp;
  175. u64 blocknr;
  176. u64 search_start = *last_ret;
  177. u64 last_block = 0;
  178. u64 other;
  179. u32 parent_nritems;
  180. int start_slot;
  181. int end_slot;
  182. int i;
  183. int err = 0;
  184. int parent_level;
  185. int uptodate;
  186. u32 blocksize;
  187. if (trans->transaction != root->fs_info->running_transaction) {
  188. printk(KERN_CRIT "trans %Lu running %Lu\n", trans->transid,
  189. root->fs_info->running_transaction->transid);
  190. WARN_ON(1);
  191. }
  192. if (trans->transid != root->fs_info->generation) {
  193. printk(KERN_CRIT "trans %Lu running %Lu\n", trans->transid,
  194. root->fs_info->generation);
  195. WARN_ON(1);
  196. }
  197. parent_level = btrfs_header_level(parent);
  198. parent_nritems = btrfs_header_nritems(parent);
  199. blocksize = btrfs_level_size(root, parent_level - 1);
  200. start_slot = 0;
  201. end_slot = parent_nritems;
  202. if (parent_nritems == 1)
  203. return 0;
  204. for (i = start_slot; i < end_slot; i++) {
  205. int close = 1;
  206. blocknr = btrfs_node_blockptr(parent, i);
  207. if (last_block == 0)
  208. last_block = blocknr;
  209. if (i > 0) {
  210. other = btrfs_node_blockptr(parent, i - 1);
  211. close = close_blocks(blocknr, other, blocksize);
  212. }
  213. if (close && i < end_slot - 1) {
  214. other = btrfs_node_blockptr(parent, i + 1);
  215. close = close_blocks(blocknr, other, blocksize);
  216. }
  217. if (close) {
  218. last_block = blocknr;
  219. continue;
  220. }
  221. cur = btrfs_find_tree_block(root, blocknr, blocksize);
  222. if (cur)
  223. uptodate = btrfs_buffer_uptodate(cur);
  224. else
  225. uptodate = 0;
  226. if (!cur || !uptodate ||
  227. (parent_level != 1 && !btrfs_buffer_defrag(cur)) ||
  228. (parent_level == 1 && !should_defrag_leaf(cur))) {
  229. if (cache_only) {
  230. free_extent_buffer(cur);
  231. continue;
  232. }
  233. if (!cur) {
  234. cur = read_tree_block(root, blocknr,
  235. blocksize);
  236. } else if (!uptodate) {
  237. btrfs_read_buffer(cur);
  238. }
  239. }
  240. if (search_start == 0)
  241. search_start = last_block;
  242. err = __btrfs_cow_block(trans, root, cur, parent, i,
  243. &tmp, search_start,
  244. min(16 * blocksize,
  245. (end_slot - i) * blocksize));
  246. if (err) {
  247. free_extent_buffer(cur);
  248. break;
  249. }
  250. search_start = tmp->start;
  251. *last_ret = search_start;
  252. if (parent_level == 1)
  253. btrfs_clear_buffer_defrag(tmp);
  254. free_extent_buffer(tmp);
  255. }
  256. return err;
  257. }
  258. /*
  259. * The leaf data grows from end-to-front in the node.
  260. * this returns the address of the start of the last item,
  261. * which is the stop of the leaf data stack
  262. */
  263. static inline unsigned int leaf_data_end(struct btrfs_root *root,
  264. struct extent_buffer *leaf)
  265. {
  266. u32 nr = btrfs_header_nritems(leaf);
  267. if (nr == 0)
  268. return BTRFS_LEAF_DATA_SIZE(root);
  269. return btrfs_item_offset_nr(leaf, nr - 1);
  270. }
  271. /*
  272. * compare two keys in a memcmp fashion
  273. */
  274. static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
  275. {
  276. struct btrfs_key k1;
  277. btrfs_disk_key_to_cpu(&k1, disk);
  278. if (k1.objectid > k2->objectid)
  279. return 1;
  280. if (k1.objectid < k2->objectid)
  281. return -1;
  282. if (k1.type > k2->type)
  283. return 1;
  284. if (k1.type < k2->type)
  285. return -1;
  286. if (k1.offset > k2->offset)
  287. return 1;
  288. if (k1.offset < k2->offset)
  289. return -1;
  290. return 0;
  291. }
  292. static int check_node(struct btrfs_root *root, struct btrfs_path *path,
  293. int level)
  294. {
  295. struct extent_buffer *parent = NULL;
  296. struct extent_buffer *node = path->nodes[level];
  297. struct btrfs_disk_key parent_key;
  298. struct btrfs_disk_key node_key;
  299. int parent_slot;
  300. int slot;
  301. struct btrfs_key cpukey;
  302. u32 nritems = btrfs_header_nritems(node);
  303. if (path->nodes[level + 1])
  304. parent = path->nodes[level + 1];
  305. slot = path->slots[level];
  306. BUG_ON(nritems == 0);
  307. if (parent) {
  308. parent_slot = path->slots[level + 1];
  309. btrfs_node_key(parent, &parent_key, parent_slot);
  310. btrfs_node_key(node, &node_key, 0);
  311. BUG_ON(memcmp(&parent_key, &node_key,
  312. sizeof(struct btrfs_disk_key)));
  313. BUG_ON(btrfs_node_blockptr(parent, parent_slot) !=
  314. btrfs_header_bytenr(node));
  315. }
  316. BUG_ON(nritems > BTRFS_NODEPTRS_PER_BLOCK(root));
  317. if (slot != 0) {
  318. btrfs_node_key_to_cpu(node, &cpukey, slot - 1);
  319. btrfs_node_key(node, &node_key, slot);
  320. BUG_ON(comp_keys(&node_key, &cpukey) <= 0);
  321. }
  322. if (slot < nritems - 1) {
  323. btrfs_node_key_to_cpu(node, &cpukey, slot + 1);
  324. btrfs_node_key(node, &node_key, slot);
  325. BUG_ON(comp_keys(&node_key, &cpukey) >= 0);
  326. }
  327. return 0;
  328. }
  329. static int check_leaf(struct btrfs_root *root, struct btrfs_path *path,
  330. int level)
  331. {
  332. struct extent_buffer *leaf = path->nodes[level];
  333. struct extent_buffer *parent = NULL;
  334. int parent_slot;
  335. struct btrfs_key cpukey;
  336. struct btrfs_disk_key parent_key;
  337. struct btrfs_disk_key leaf_key;
  338. int slot = path->slots[0];
  339. u32 nritems = btrfs_header_nritems(leaf);
  340. if (path->nodes[level + 1])
  341. parent = path->nodes[level + 1];
  342. if (nritems == 0)
  343. return 0;
  344. if (parent) {
  345. parent_slot = path->slots[level + 1];
  346. btrfs_node_key(parent, &parent_key, parent_slot);
  347. btrfs_item_key(leaf, &leaf_key, 0);
  348. BUG_ON(memcmp(&parent_key, &leaf_key,
  349. sizeof(struct btrfs_disk_key)));
  350. BUG_ON(btrfs_node_blockptr(parent, parent_slot) !=
  351. btrfs_header_bytenr(leaf));
  352. }
  353. #if 0
  354. for (i = 0; nritems > 1 && i < nritems - 2; i++) {
  355. btrfs_item_key_to_cpu(leaf, &cpukey, i + 1);
  356. btrfs_item_key(leaf, &leaf_key, i);
  357. if (comp_keys(&leaf_key, &cpukey) >= 0) {
  358. btrfs_print_leaf(root, leaf);
  359. printk("slot %d offset bad key\n", i);
  360. BUG_ON(1);
  361. }
  362. if (btrfs_item_offset_nr(leaf, i) !=
  363. btrfs_item_end_nr(leaf, i + 1)) {
  364. btrfs_print_leaf(root, leaf);
  365. printk("slot %d offset bad\n", i);
  366. BUG_ON(1);
  367. }
  368. if (i == 0) {
  369. if (btrfs_item_offset_nr(leaf, i) +
  370. btrfs_item_size_nr(leaf, i) !=
  371. BTRFS_LEAF_DATA_SIZE(root)) {
  372. btrfs_print_leaf(root, leaf);
  373. printk("slot %d first offset bad\n", i);
  374. BUG_ON(1);
  375. }
  376. }
  377. }
  378. if (nritems > 0) {
  379. if (btrfs_item_size_nr(leaf, nritems - 1) > 4096) {
  380. btrfs_print_leaf(root, leaf);
  381. printk("slot %d bad size \n", nritems - 1);
  382. BUG_ON(1);
  383. }
  384. }
  385. #endif
  386. if (slot != 0 && slot < nritems - 1) {
  387. btrfs_item_key(leaf, &leaf_key, slot);
  388. btrfs_item_key_to_cpu(leaf, &cpukey, slot - 1);
  389. if (comp_keys(&leaf_key, &cpukey) <= 0) {
  390. btrfs_print_leaf(root, leaf);
  391. printk("slot %d offset bad key\n", slot);
  392. BUG_ON(1);
  393. }
  394. if (btrfs_item_offset_nr(leaf, slot - 1) !=
  395. btrfs_item_end_nr(leaf, slot)) {
  396. btrfs_print_leaf(root, leaf);
  397. printk("slot %d offset bad\n", slot);
  398. BUG_ON(1);
  399. }
  400. }
  401. if (slot < nritems - 1) {
  402. btrfs_item_key(leaf, &leaf_key, slot);
  403. btrfs_item_key_to_cpu(leaf, &cpukey, slot + 1);
  404. BUG_ON(comp_keys(&leaf_key, &cpukey) >= 0);
  405. if (btrfs_item_offset_nr(leaf, slot) !=
  406. btrfs_item_end_nr(leaf, slot + 1)) {
  407. btrfs_print_leaf(root, leaf);
  408. printk("slot %d offset bad\n", slot);
  409. BUG_ON(1);
  410. }
  411. }
  412. BUG_ON(btrfs_item_offset_nr(leaf, 0) +
  413. btrfs_item_size_nr(leaf, 0) != BTRFS_LEAF_DATA_SIZE(root));
  414. return 0;
  415. }
  416. static int check_block(struct btrfs_root *root, struct btrfs_path *path,
  417. int level)
  418. {
  419. return 0;
  420. #if 0
  421. struct extent_buffer *buf = path->nodes[level];
  422. if (memcmp_extent_buffer(buf, root->fs_info->fsid,
  423. (unsigned long)btrfs_header_fsid(buf),
  424. BTRFS_FSID_SIZE)) {
  425. printk("warning bad block %Lu\n", buf->start);
  426. return 1;
  427. }
  428. #endif
  429. if (level == 0)
  430. return check_leaf(root, path, level);
  431. return check_node(root, path, level);
  432. }
  433. /*
  434. * search for key in the extent_buffer. The items start at offset p,
  435. * and they are item_size apart. There are 'max' items in p.
  436. *
  437. * the slot in the array is returned via slot, and it points to
  438. * the place where you would insert key if it is not found in
  439. * the array.
  440. *
  441. * slot may point to max if the key is bigger than all of the keys
  442. */
  443. static int generic_bin_search(struct extent_buffer *eb, unsigned long p,
  444. int item_size, struct btrfs_key *key,
  445. int max, int *slot)
  446. {
  447. int low = 0;
  448. int high = max;
  449. int mid;
  450. int ret;
  451. struct btrfs_disk_key *tmp = NULL;
  452. struct btrfs_disk_key unaligned;
  453. unsigned long offset;
  454. char *map_token = NULL;
  455. char *kaddr = NULL;
  456. unsigned long map_start = 0;
  457. unsigned long map_len = 0;
  458. int err;
  459. while(low < high) {
  460. mid = (low + high) / 2;
  461. offset = p + mid * item_size;
  462. if (!map_token || offset < map_start ||
  463. (offset + sizeof(struct btrfs_disk_key)) >
  464. map_start + map_len) {
  465. if (map_token) {
  466. unmap_extent_buffer(eb, map_token, KM_USER0);
  467. map_token = NULL;
  468. }
  469. err = map_extent_buffer(eb, offset,
  470. sizeof(struct btrfs_disk_key),
  471. &map_token, &kaddr,
  472. &map_start, &map_len, KM_USER0);
  473. if (!err) {
  474. tmp = (struct btrfs_disk_key *)(kaddr + offset -
  475. map_start);
  476. } else {
  477. read_extent_buffer(eb, &unaligned,
  478. offset, sizeof(unaligned));
  479. tmp = &unaligned;
  480. }
  481. } else {
  482. tmp = (struct btrfs_disk_key *)(kaddr + offset -
  483. map_start);
  484. }
  485. ret = comp_keys(tmp, key);
  486. if (ret < 0)
  487. low = mid + 1;
  488. else if (ret > 0)
  489. high = mid;
  490. else {
  491. *slot = mid;
  492. if (map_token)
  493. unmap_extent_buffer(eb, map_token, KM_USER0);
  494. return 0;
  495. }
  496. }
  497. *slot = low;
  498. if (map_token)
  499. unmap_extent_buffer(eb, map_token, KM_USER0);
  500. return 1;
  501. }
  502. /*
  503. * simple bin_search frontend that does the right thing for
  504. * leaves vs nodes
  505. */
  506. static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
  507. int level, int *slot)
  508. {
  509. if (level == 0) {
  510. return generic_bin_search(eb,
  511. offsetof(struct btrfs_leaf, items),
  512. sizeof(struct btrfs_item),
  513. key, btrfs_header_nritems(eb),
  514. slot);
  515. } else {
  516. return generic_bin_search(eb,
  517. offsetof(struct btrfs_node, ptrs),
  518. sizeof(struct btrfs_key_ptr),
  519. key, btrfs_header_nritems(eb),
  520. slot);
  521. }
  522. return -1;
  523. }
  524. static struct extent_buffer *read_node_slot(struct btrfs_root *root,
  525. struct extent_buffer *parent, int slot)
  526. {
  527. if (slot < 0)
  528. return NULL;
  529. if (slot >= btrfs_header_nritems(parent))
  530. return NULL;
  531. return read_tree_block(root, btrfs_node_blockptr(parent, slot),
  532. btrfs_level_size(root, btrfs_header_level(parent) - 1));
  533. }
  534. static int balance_level(struct btrfs_trans_handle *trans, struct btrfs_root
  535. *root, struct btrfs_path *path, int level)
  536. {
  537. struct extent_buffer *right = NULL;
  538. struct extent_buffer *mid;
  539. struct extent_buffer *left = NULL;
  540. struct extent_buffer *parent = NULL;
  541. int ret = 0;
  542. int wret;
  543. int pslot;
  544. int orig_slot = path->slots[level];
  545. int err_on_enospc = 0;
  546. u64 orig_ptr;
  547. if (level == 0)
  548. return 0;
  549. mid = path->nodes[level];
  550. orig_ptr = btrfs_node_blockptr(mid, orig_slot);
  551. if (level < BTRFS_MAX_LEVEL - 1)
  552. parent = path->nodes[level + 1];
  553. pslot = path->slots[level + 1];
  554. /*
  555. * deal with the case where there is only one pointer in the root
  556. * by promoting the node below to a root
  557. */
  558. if (!parent) {
  559. struct extent_buffer *child;
  560. if (btrfs_header_nritems(mid) != 1)
  561. return 0;
  562. /* promote the child to a root */
  563. child = read_node_slot(root, mid, 0);
  564. BUG_ON(!child);
  565. root->node = child;
  566. path->nodes[level] = NULL;
  567. clean_tree_block(trans, root, mid);
  568. wait_on_tree_block_writeback(root, mid);
  569. /* once for the path */
  570. free_extent_buffer(mid);
  571. ret = btrfs_free_extent(trans, root, mid->start, mid->len, 1);
  572. /* once for the root ptr */
  573. free_extent_buffer(mid);
  574. return ret;
  575. }
  576. if (btrfs_header_nritems(mid) >
  577. BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
  578. return 0;
  579. if (btrfs_header_nritems(mid) < 2)
  580. err_on_enospc = 1;
  581. left = read_node_slot(root, parent, pslot - 1);
  582. if (left) {
  583. wret = btrfs_cow_block(trans, root, left,
  584. parent, pslot - 1, &left);
  585. if (wret) {
  586. ret = wret;
  587. goto enospc;
  588. }
  589. }
  590. right = read_node_slot(root, parent, pslot + 1);
  591. if (right) {
  592. wret = btrfs_cow_block(trans, root, right,
  593. parent, pslot + 1, &right);
  594. if (wret) {
  595. ret = wret;
  596. goto enospc;
  597. }
  598. }
  599. /* first, try to make some room in the middle buffer */
  600. if (left) {
  601. orig_slot += btrfs_header_nritems(left);
  602. wret = push_node_left(trans, root, left, mid);
  603. if (wret < 0)
  604. ret = wret;
  605. if (btrfs_header_nritems(mid) < 2)
  606. err_on_enospc = 1;
  607. }
  608. /*
  609. * then try to empty the right most buffer into the middle
  610. */
  611. if (right) {
  612. wret = push_node_left(trans, root, mid, right);
  613. if (wret < 0 && wret != -ENOSPC)
  614. ret = wret;
  615. if (btrfs_header_nritems(right) == 0) {
  616. u64 bytenr = right->start;
  617. u32 blocksize = right->len;
  618. clean_tree_block(trans, root, right);
  619. wait_on_tree_block_writeback(root, right);
  620. free_extent_buffer(right);
  621. right = NULL;
  622. wret = del_ptr(trans, root, path, level + 1, pslot +
  623. 1);
  624. if (wret)
  625. ret = wret;
  626. wret = btrfs_free_extent(trans, root, bytenr,
  627. blocksize, 1);
  628. if (wret)
  629. ret = wret;
  630. } else {
  631. struct btrfs_disk_key right_key;
  632. btrfs_node_key(right, &right_key, 0);
  633. btrfs_set_node_key(parent, &right_key, pslot + 1);
  634. btrfs_mark_buffer_dirty(parent);
  635. }
  636. }
  637. if (btrfs_header_nritems(mid) == 1) {
  638. /*
  639. * we're not allowed to leave a node with one item in the
  640. * tree during a delete. A deletion from lower in the tree
  641. * could try to delete the only pointer in this node.
  642. * So, pull some keys from the left.
  643. * There has to be a left pointer at this point because
  644. * otherwise we would have pulled some pointers from the
  645. * right
  646. */
  647. BUG_ON(!left);
  648. wret = balance_node_right(trans, root, mid, left);
  649. if (wret < 0) {
  650. ret = wret;
  651. goto enospc;
  652. }
  653. BUG_ON(wret == 1);
  654. }
  655. if (btrfs_header_nritems(mid) == 0) {
  656. /* we've managed to empty the middle node, drop it */
  657. u64 bytenr = mid->start;
  658. u32 blocksize = mid->len;
  659. clean_tree_block(trans, root, mid);
  660. wait_on_tree_block_writeback(root, mid);
  661. free_extent_buffer(mid);
  662. mid = NULL;
  663. wret = del_ptr(trans, root, path, level + 1, pslot);
  664. if (wret)
  665. ret = wret;
  666. wret = btrfs_free_extent(trans, root, bytenr, blocksize, 1);
  667. if (wret)
  668. ret = wret;
  669. } else {
  670. /* update the parent key to reflect our changes */
  671. struct btrfs_disk_key mid_key;
  672. btrfs_node_key(mid, &mid_key, 0);
  673. btrfs_set_node_key(parent, &mid_key, pslot);
  674. btrfs_mark_buffer_dirty(parent);
  675. }
  676. /* update the path */
  677. if (left) {
  678. if (btrfs_header_nritems(left) > orig_slot) {
  679. extent_buffer_get(left);
  680. path->nodes[level] = left;
  681. path->slots[level + 1] -= 1;
  682. path->slots[level] = orig_slot;
  683. if (mid)
  684. free_extent_buffer(mid);
  685. } else {
  686. orig_slot -= btrfs_header_nritems(left);
  687. path->slots[level] = orig_slot;
  688. }
  689. }
  690. /* double check we haven't messed things up */
  691. check_block(root, path, level);
  692. if (orig_ptr !=
  693. btrfs_node_blockptr(path->nodes[level], path->slots[level]))
  694. BUG();
  695. enospc:
  696. if (right)
  697. free_extent_buffer(right);
  698. if (left)
  699. free_extent_buffer(left);
  700. return ret;
  701. }
  702. /* returns zero if the push worked, non-zero otherwise */
  703. static int push_nodes_for_insert(struct btrfs_trans_handle *trans,
  704. struct btrfs_root *root,
  705. struct btrfs_path *path, int level)
  706. {
  707. struct extent_buffer *right = NULL;
  708. struct extent_buffer *mid;
  709. struct extent_buffer *left = NULL;
  710. struct extent_buffer *parent = NULL;
  711. int ret = 0;
  712. int wret;
  713. int pslot;
  714. int orig_slot = path->slots[level];
  715. u64 orig_ptr;
  716. if (level == 0)
  717. return 1;
  718. mid = path->nodes[level];
  719. orig_ptr = btrfs_node_blockptr(mid, orig_slot);
  720. if (level < BTRFS_MAX_LEVEL - 1)
  721. parent = path->nodes[level + 1];
  722. pslot = path->slots[level + 1];
  723. if (!parent)
  724. return 1;
  725. left = read_node_slot(root, parent, pslot - 1);
  726. /* first, try to make some room in the middle buffer */
  727. if (left) {
  728. u32 left_nr;
  729. left_nr = btrfs_header_nritems(left);
  730. if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
  731. wret = 1;
  732. } else {
  733. ret = btrfs_cow_block(trans, root, left, parent,
  734. pslot - 1, &left);
  735. if (ret)
  736. wret = 1;
  737. else {
  738. wret = push_node_left(trans, root,
  739. left, mid);
  740. }
  741. }
  742. if (wret < 0)
  743. ret = wret;
  744. if (wret == 0) {
  745. struct btrfs_disk_key disk_key;
  746. orig_slot += left_nr;
  747. btrfs_node_key(mid, &disk_key, 0);
  748. btrfs_set_node_key(parent, &disk_key, pslot);
  749. btrfs_mark_buffer_dirty(parent);
  750. if (btrfs_header_nritems(left) > orig_slot) {
  751. path->nodes[level] = left;
  752. path->slots[level + 1] -= 1;
  753. path->slots[level] = orig_slot;
  754. free_extent_buffer(mid);
  755. } else {
  756. orig_slot -=
  757. btrfs_header_nritems(left);
  758. path->slots[level] = orig_slot;
  759. free_extent_buffer(left);
  760. }
  761. return 0;
  762. }
  763. free_extent_buffer(left);
  764. }
  765. right= read_node_slot(root, parent, pslot + 1);
  766. /*
  767. * then try to empty the right most buffer into the middle
  768. */
  769. if (right) {
  770. u32 right_nr;
  771. right_nr = btrfs_header_nritems(right);
  772. if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
  773. wret = 1;
  774. } else {
  775. ret = btrfs_cow_block(trans, root, right,
  776. parent, pslot + 1,
  777. &right);
  778. if (ret)
  779. wret = 1;
  780. else {
  781. wret = balance_node_right(trans, root,
  782. right, mid);
  783. }
  784. }
  785. if (wret < 0)
  786. ret = wret;
  787. if (wret == 0) {
  788. struct btrfs_disk_key disk_key;
  789. btrfs_node_key(right, &disk_key, 0);
  790. btrfs_set_node_key(parent, &disk_key, pslot + 1);
  791. btrfs_mark_buffer_dirty(parent);
  792. if (btrfs_header_nritems(mid) <= orig_slot) {
  793. path->nodes[level] = right;
  794. path->slots[level + 1] += 1;
  795. path->slots[level] = orig_slot -
  796. btrfs_header_nritems(mid);
  797. free_extent_buffer(mid);
  798. } else {
  799. free_extent_buffer(right);
  800. }
  801. return 0;
  802. }
  803. free_extent_buffer(right);
  804. }
  805. return 1;
  806. }
  807. /*
  808. * readahead one full node of leaves
  809. */
  810. static void reada_for_search(struct btrfs_root *root, struct btrfs_path *path,
  811. int level, int slot)
  812. {
  813. struct extent_buffer *node;
  814. u32 nritems;
  815. u64 search;
  816. u64 lowest_read;
  817. u64 highest_read;
  818. u64 nread = 0;
  819. int direction = path->reada;
  820. struct extent_buffer *eb;
  821. u32 nr;
  822. u32 blocksize;
  823. u32 nscan = 0;
  824. if (level == 0)
  825. return;
  826. if (!path->nodes[level])
  827. return;
  828. node = path->nodes[level];
  829. search = btrfs_node_blockptr(node, slot);
  830. blocksize = btrfs_level_size(root, level - 1);
  831. eb = btrfs_find_tree_block(root, search, blocksize);
  832. if (eb) {
  833. free_extent_buffer(eb);
  834. return;
  835. }
  836. highest_read = search;
  837. lowest_read = search;
  838. nritems = btrfs_header_nritems(node);
  839. nr = slot;
  840. while(1) {
  841. if (direction < 0) {
  842. if (nr == 0)
  843. break;
  844. nr--;
  845. } else if (direction > 0) {
  846. nr++;
  847. if (nr >= nritems)
  848. break;
  849. }
  850. search = btrfs_node_blockptr(node, nr);
  851. if ((search >= lowest_read && search <= highest_read) ||
  852. (search < lowest_read && lowest_read - search <= 32768) ||
  853. (search > highest_read && search - highest_read <= 32768)) {
  854. readahead_tree_block(root, search, blocksize);
  855. nread += blocksize;
  856. }
  857. nscan++;
  858. if (path->reada < 2 && (nread > (256 * 1024) || nscan > 32))
  859. break;
  860. if(nread > (1024 * 1024) || nscan > 128)
  861. break;
  862. if (search < lowest_read)
  863. lowest_read = search;
  864. if (search > highest_read)
  865. highest_read = search;
  866. }
  867. }
  868. /*
  869. * look for key in the tree. path is filled in with nodes along the way
  870. * if key is found, we return zero and you can find the item in the leaf
  871. * level of the path (level 0)
  872. *
  873. * If the key isn't found, the path points to the slot where it should
  874. * be inserted, and 1 is returned. If there are other errors during the
  875. * search a negative error number is returned.
  876. *
  877. * if ins_len > 0, nodes and leaves will be split as we walk down the
  878. * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if
  879. * possible)
  880. */
  881. int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
  882. *root, struct btrfs_key *key, struct btrfs_path *p, int
  883. ins_len, int cow)
  884. {
  885. struct extent_buffer *b;
  886. u64 bytenr;
  887. int slot;
  888. int ret;
  889. int level;
  890. int should_reada = p->reada;
  891. u8 lowest_level = 0;
  892. lowest_level = p->lowest_level;
  893. WARN_ON(lowest_level && ins_len);
  894. WARN_ON(p->nodes[0] != NULL);
  895. WARN_ON(!mutex_is_locked(&root->fs_info->fs_mutex));
  896. again:
  897. b = root->node;
  898. extent_buffer_get(b);
  899. while (b) {
  900. level = btrfs_header_level(b);
  901. if (cow) {
  902. int wret;
  903. wret = btrfs_cow_block(trans, root, b,
  904. p->nodes[level + 1],
  905. p->slots[level + 1],
  906. &b);
  907. if (wret) {
  908. free_extent_buffer(b);
  909. return wret;
  910. }
  911. }
  912. BUG_ON(!cow && ins_len);
  913. if (level != btrfs_header_level(b))
  914. WARN_ON(1);
  915. level = btrfs_header_level(b);
  916. p->nodes[level] = b;
  917. ret = check_block(root, p, level);
  918. if (ret)
  919. return -1;
  920. ret = bin_search(b, key, level, &slot);
  921. if (level != 0) {
  922. if (ret && slot > 0)
  923. slot -= 1;
  924. p->slots[level] = slot;
  925. if (ins_len > 0 && btrfs_header_nritems(b) >=
  926. BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
  927. int sret = split_node(trans, root, p, level);
  928. BUG_ON(sret > 0);
  929. if (sret)
  930. return sret;
  931. b = p->nodes[level];
  932. slot = p->slots[level];
  933. } else if (ins_len < 0) {
  934. int sret = balance_level(trans, root, p,
  935. level);
  936. if (sret)
  937. return sret;
  938. b = p->nodes[level];
  939. if (!b) {
  940. btrfs_release_path(NULL, p);
  941. goto again;
  942. }
  943. slot = p->slots[level];
  944. BUG_ON(btrfs_header_nritems(b) == 1);
  945. }
  946. /* this is only true while dropping a snapshot */
  947. if (level == lowest_level)
  948. break;
  949. bytenr = btrfs_node_blockptr(b, slot);
  950. if (should_reada)
  951. reada_for_search(root, p, level, slot);
  952. b = read_tree_block(root, bytenr,
  953. btrfs_level_size(root, level - 1));
  954. } else {
  955. p->slots[level] = slot;
  956. if (ins_len > 0 && btrfs_leaf_free_space(root, b) <
  957. sizeof(struct btrfs_item) + ins_len) {
  958. int sret = split_leaf(trans, root, key,
  959. p, ins_len);
  960. BUG_ON(sret > 0);
  961. if (sret)
  962. return sret;
  963. }
  964. return ret;
  965. }
  966. }
  967. return 1;
  968. }
  969. /*
  970. * adjust the pointers going up the tree, starting at level
  971. * making sure the right key of each node is points to 'key'.
  972. * This is used after shifting pointers to the left, so it stops
  973. * fixing up pointers when a given leaf/node is not in slot 0 of the
  974. * higher levels
  975. *
  976. * If this fails to write a tree block, it returns -1, but continues
  977. * fixing up the blocks in ram so the tree is consistent.
  978. */
  979. static int fixup_low_keys(struct btrfs_trans_handle *trans,
  980. struct btrfs_root *root, struct btrfs_path *path,
  981. struct btrfs_disk_key *key, int level)
  982. {
  983. int i;
  984. int ret = 0;
  985. struct extent_buffer *t;
  986. for (i = level; i < BTRFS_MAX_LEVEL; i++) {
  987. int tslot = path->slots[i];
  988. if (!path->nodes[i])
  989. break;
  990. t = path->nodes[i];
  991. btrfs_set_node_key(t, key, tslot);
  992. btrfs_mark_buffer_dirty(path->nodes[i]);
  993. if (tslot != 0)
  994. break;
  995. }
  996. return ret;
  997. }
  998. /*
  999. * try to push data from one node into the next node left in the
  1000. * tree.
  1001. *
  1002. * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
  1003. * error, and > 0 if there was no room in the left hand block.
  1004. */
  1005. static int push_node_left(struct btrfs_trans_handle *trans, struct btrfs_root
  1006. *root, struct extent_buffer *dst,
  1007. struct extent_buffer *src)
  1008. {
  1009. int push_items = 0;
  1010. int src_nritems;
  1011. int dst_nritems;
  1012. int ret = 0;
  1013. src_nritems = btrfs_header_nritems(src);
  1014. dst_nritems = btrfs_header_nritems(dst);
  1015. push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
  1016. if (push_items <= 0) {
  1017. return 1;
  1018. }
  1019. if (src_nritems < push_items)
  1020. push_items = src_nritems;
  1021. copy_extent_buffer(dst, src,
  1022. btrfs_node_key_ptr_offset(dst_nritems),
  1023. btrfs_node_key_ptr_offset(0),
  1024. push_items * sizeof(struct btrfs_key_ptr));
  1025. if (push_items < src_nritems) {
  1026. memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
  1027. btrfs_node_key_ptr_offset(push_items),
  1028. (src_nritems - push_items) *
  1029. sizeof(struct btrfs_key_ptr));
  1030. }
  1031. btrfs_set_header_nritems(src, src_nritems - push_items);
  1032. btrfs_set_header_nritems(dst, dst_nritems + push_items);
  1033. btrfs_mark_buffer_dirty(src);
  1034. btrfs_mark_buffer_dirty(dst);
  1035. return ret;
  1036. }
  1037. /*
  1038. * try to push data from one node into the next node right in the
  1039. * tree.
  1040. *
  1041. * returns 0 if some ptrs were pushed, < 0 if there was some horrible
  1042. * error, and > 0 if there was no room in the right hand block.
  1043. *
  1044. * this will only push up to 1/2 the contents of the left node over
  1045. */
  1046. static int balance_node_right(struct btrfs_trans_handle *trans,
  1047. struct btrfs_root *root,
  1048. struct extent_buffer *dst,
  1049. struct extent_buffer *src)
  1050. {
  1051. int push_items = 0;
  1052. int max_push;
  1053. int src_nritems;
  1054. int dst_nritems;
  1055. int ret = 0;
  1056. src_nritems = btrfs_header_nritems(src);
  1057. dst_nritems = btrfs_header_nritems(dst);
  1058. push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
  1059. if (push_items <= 0)
  1060. return 1;
  1061. max_push = src_nritems / 2 + 1;
  1062. /* don't try to empty the node */
  1063. if (max_push >= src_nritems)
  1064. return 1;
  1065. if (max_push < push_items)
  1066. push_items = max_push;
  1067. memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
  1068. btrfs_node_key_ptr_offset(0),
  1069. (dst_nritems) *
  1070. sizeof(struct btrfs_key_ptr));
  1071. copy_extent_buffer(dst, src,
  1072. btrfs_node_key_ptr_offset(0),
  1073. btrfs_node_key_ptr_offset(src_nritems - push_items),
  1074. push_items * sizeof(struct btrfs_key_ptr));
  1075. btrfs_set_header_nritems(src, src_nritems - push_items);
  1076. btrfs_set_header_nritems(dst, dst_nritems + push_items);
  1077. btrfs_mark_buffer_dirty(src);
  1078. btrfs_mark_buffer_dirty(dst);
  1079. return ret;
  1080. }
  1081. /*
  1082. * helper function to insert a new root level in the tree.
  1083. * A new node is allocated, and a single item is inserted to
  1084. * point to the existing root
  1085. *
  1086. * returns zero on success or < 0 on failure.
  1087. */
  1088. static int insert_new_root(struct btrfs_trans_handle *trans,
  1089. struct btrfs_root *root,
  1090. struct btrfs_path *path, int level)
  1091. {
  1092. struct extent_buffer *lower;
  1093. struct extent_buffer *c;
  1094. struct btrfs_disk_key lower_key;
  1095. BUG_ON(path->nodes[level]);
  1096. BUG_ON(path->nodes[level-1] != root->node);
  1097. c = btrfs_alloc_free_block(trans, root, root->nodesize,
  1098. root->node->start, 0);
  1099. if (IS_ERR(c))
  1100. return PTR_ERR(c);
  1101. memset_extent_buffer(c, 0, 0, root->nodesize);
  1102. btrfs_set_header_nritems(c, 1);
  1103. btrfs_set_header_level(c, level);
  1104. btrfs_set_header_bytenr(c, c->start);
  1105. btrfs_set_header_generation(c, trans->transid);
  1106. btrfs_set_header_owner(c, root->root_key.objectid);
  1107. lower = path->nodes[level-1];
  1108. write_extent_buffer(c, root->fs_info->fsid,
  1109. (unsigned long)btrfs_header_fsid(c),
  1110. BTRFS_FSID_SIZE);
  1111. if (level == 1)
  1112. btrfs_item_key(lower, &lower_key, 0);
  1113. else
  1114. btrfs_node_key(lower, &lower_key, 0);
  1115. btrfs_set_node_key(c, &lower_key, 0);
  1116. btrfs_set_node_blockptr(c, 0, lower->start);
  1117. btrfs_mark_buffer_dirty(c);
  1118. /* the super has an extra ref to root->node */
  1119. free_extent_buffer(root->node);
  1120. root->node = c;
  1121. extent_buffer_get(c);
  1122. path->nodes[level] = c;
  1123. path->slots[level] = 0;
  1124. return 0;
  1125. }
  1126. /*
  1127. * worker function to insert a single pointer in a node.
  1128. * the node should have enough room for the pointer already
  1129. *
  1130. * slot and level indicate where you want the key to go, and
  1131. * blocknr is the block the key points to.
  1132. *
  1133. * returns zero on success and < 0 on any error
  1134. */
  1135. static int insert_ptr(struct btrfs_trans_handle *trans, struct btrfs_root
  1136. *root, struct btrfs_path *path, struct btrfs_disk_key
  1137. *key, u64 bytenr, int slot, int level)
  1138. {
  1139. struct extent_buffer *lower;
  1140. int nritems;
  1141. BUG_ON(!path->nodes[level]);
  1142. lower = path->nodes[level];
  1143. nritems = btrfs_header_nritems(lower);
  1144. if (slot > nritems)
  1145. BUG();
  1146. if (nritems == BTRFS_NODEPTRS_PER_BLOCK(root))
  1147. BUG();
  1148. if (slot != nritems) {
  1149. memmove_extent_buffer(lower,
  1150. btrfs_node_key_ptr_offset(slot + 1),
  1151. btrfs_node_key_ptr_offset(slot),
  1152. (nritems - slot) * sizeof(struct btrfs_key_ptr));
  1153. }
  1154. btrfs_set_node_key(lower, key, slot);
  1155. btrfs_set_node_blockptr(lower, slot, bytenr);
  1156. btrfs_set_header_nritems(lower, nritems + 1);
  1157. btrfs_mark_buffer_dirty(lower);
  1158. return 0;
  1159. }
  1160. /*
  1161. * split the node at the specified level in path in two.
  1162. * The path is corrected to point to the appropriate node after the split
  1163. *
  1164. * Before splitting this tries to make some room in the node by pushing
  1165. * left and right, if either one works, it returns right away.
  1166. *
  1167. * returns 0 on success and < 0 on failure
  1168. */
  1169. static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
  1170. *root, struct btrfs_path *path, int level)
  1171. {
  1172. struct extent_buffer *c;
  1173. struct extent_buffer *split;
  1174. struct btrfs_disk_key disk_key;
  1175. int mid;
  1176. int ret;
  1177. int wret;
  1178. u32 c_nritems;
  1179. c = path->nodes[level];
  1180. if (c == root->node) {
  1181. /* trying to split the root, lets make a new one */
  1182. ret = insert_new_root(trans, root, path, level + 1);
  1183. if (ret)
  1184. return ret;
  1185. } else {
  1186. ret = push_nodes_for_insert(trans, root, path, level);
  1187. c = path->nodes[level];
  1188. if (!ret && btrfs_header_nritems(c) <
  1189. BTRFS_NODEPTRS_PER_BLOCK(root) - 1)
  1190. return 0;
  1191. if (ret < 0)
  1192. return ret;
  1193. }
  1194. c_nritems = btrfs_header_nritems(c);
  1195. split = btrfs_alloc_free_block(trans, root, root->nodesize,
  1196. c->start, 0);
  1197. if (IS_ERR(split))
  1198. return PTR_ERR(split);
  1199. btrfs_set_header_flags(split, btrfs_header_flags(c));
  1200. btrfs_set_header_level(split, btrfs_header_level(c));
  1201. btrfs_set_header_bytenr(split, split->start);
  1202. btrfs_set_header_generation(split, trans->transid);
  1203. btrfs_set_header_owner(split, root->root_key.objectid);
  1204. write_extent_buffer(split, root->fs_info->fsid,
  1205. (unsigned long)btrfs_header_fsid(split),
  1206. BTRFS_FSID_SIZE);
  1207. mid = (c_nritems + 1) / 2;
  1208. copy_extent_buffer(split, c,
  1209. btrfs_node_key_ptr_offset(0),
  1210. btrfs_node_key_ptr_offset(mid),
  1211. (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
  1212. btrfs_set_header_nritems(split, c_nritems - mid);
  1213. btrfs_set_header_nritems(c, mid);
  1214. ret = 0;
  1215. btrfs_mark_buffer_dirty(c);
  1216. btrfs_mark_buffer_dirty(split);
  1217. btrfs_node_key(split, &disk_key, 0);
  1218. wret = insert_ptr(trans, root, path, &disk_key, split->start,
  1219. path->slots[level + 1] + 1,
  1220. level + 1);
  1221. if (wret)
  1222. ret = wret;
  1223. if (path->slots[level] >= mid) {
  1224. path->slots[level] -= mid;
  1225. free_extent_buffer(c);
  1226. path->nodes[level] = split;
  1227. path->slots[level + 1] += 1;
  1228. } else {
  1229. free_extent_buffer(split);
  1230. }
  1231. return ret;
  1232. }
  1233. /*
  1234. * how many bytes are required to store the items in a leaf. start
  1235. * and nr indicate which items in the leaf to check. This totals up the
  1236. * space used both by the item structs and the item data
  1237. */
  1238. static int leaf_space_used(struct extent_buffer *l, int start, int nr)
  1239. {
  1240. int data_len;
  1241. int nritems = btrfs_header_nritems(l);
  1242. int end = min(nritems, start + nr) - 1;
  1243. if (!nr)
  1244. return 0;
  1245. data_len = btrfs_item_end_nr(l, start);
  1246. data_len = data_len - btrfs_item_offset_nr(l, end);
  1247. data_len += sizeof(struct btrfs_item) * nr;
  1248. WARN_ON(data_len < 0);
  1249. return data_len;
  1250. }
  1251. /*
  1252. * The space between the end of the leaf items and
  1253. * the start of the leaf data. IOW, how much room
  1254. * the leaf has left for both items and data
  1255. */
  1256. int btrfs_leaf_free_space(struct btrfs_root *root, struct extent_buffer *leaf)
  1257. {
  1258. int nritems = btrfs_header_nritems(leaf);
  1259. int ret;
  1260. ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
  1261. if (ret < 0) {
  1262. printk("leaf free space ret %d, leaf data size %lu, used %d nritems %d\n",
  1263. ret, BTRFS_LEAF_DATA_SIZE(root),
  1264. leaf_space_used(leaf, 0, nritems), nritems);
  1265. }
  1266. return ret;
  1267. }
  1268. /*
  1269. * push some data in the path leaf to the right, trying to free up at
  1270. * least data_size bytes. returns zero if the push worked, nonzero otherwise
  1271. *
  1272. * returns 1 if the push failed because the other node didn't have enough
  1273. * room, 0 if everything worked out and < 0 if there were major errors.
  1274. */
  1275. static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
  1276. *root, struct btrfs_path *path, int data_size)
  1277. {
  1278. struct extent_buffer *left = path->nodes[0];
  1279. struct extent_buffer *right;
  1280. struct extent_buffer *upper;
  1281. struct btrfs_disk_key disk_key;
  1282. int slot;
  1283. int i;
  1284. int free_space;
  1285. int push_space = 0;
  1286. int push_items = 0;
  1287. struct btrfs_item *item;
  1288. u32 left_nritems;
  1289. u32 right_nritems;
  1290. u32 data_end;
  1291. u32 this_item_size;
  1292. int ret;
  1293. slot = path->slots[1];
  1294. if (!path->nodes[1]) {
  1295. return 1;
  1296. }
  1297. upper = path->nodes[1];
  1298. if (slot >= btrfs_header_nritems(upper) - 1)
  1299. return 1;
  1300. right = read_tree_block(root, btrfs_node_blockptr(upper, slot + 1),
  1301. root->leafsize);
  1302. free_space = btrfs_leaf_free_space(root, right);
  1303. if (free_space < data_size + sizeof(struct btrfs_item)) {
  1304. free_extent_buffer(right);
  1305. return 1;
  1306. }
  1307. /* cow and double check */
  1308. ret = btrfs_cow_block(trans, root, right, upper,
  1309. slot + 1, &right);
  1310. if (ret) {
  1311. free_extent_buffer(right);
  1312. return 1;
  1313. }
  1314. free_space = btrfs_leaf_free_space(root, right);
  1315. if (free_space < data_size + sizeof(struct btrfs_item)) {
  1316. free_extent_buffer(right);
  1317. return 1;
  1318. }
  1319. left_nritems = btrfs_header_nritems(left);
  1320. if (left_nritems == 0) {
  1321. free_extent_buffer(right);
  1322. return 1;
  1323. }
  1324. for (i = left_nritems - 1; i >= 1; i--) {
  1325. item = btrfs_item_nr(left, i);
  1326. if (path->slots[0] == i)
  1327. push_space += data_size + sizeof(*item);
  1328. if (!left->map_token) {
  1329. map_extent_buffer(left, (unsigned long)item,
  1330. sizeof(struct btrfs_item),
  1331. &left->map_token, &left->kaddr,
  1332. &left->map_start, &left->map_len,
  1333. KM_USER1);
  1334. }
  1335. this_item_size = btrfs_item_size(left, item);
  1336. if (this_item_size + sizeof(*item) + push_space > free_space)
  1337. break;
  1338. push_items++;
  1339. push_space += this_item_size + sizeof(*item);
  1340. }
  1341. if (left->map_token) {
  1342. unmap_extent_buffer(left, left->map_token, KM_USER1);
  1343. left->map_token = NULL;
  1344. }
  1345. if (push_items == 0) {
  1346. free_extent_buffer(right);
  1347. return 1;
  1348. }
  1349. if (push_items == left_nritems)
  1350. WARN_ON(1);
  1351. /* push left to right */
  1352. right_nritems = btrfs_header_nritems(right);
  1353. push_space = btrfs_item_end_nr(left, left_nritems - push_items);
  1354. push_space -= leaf_data_end(root, left);
  1355. /* make room in the right data area */
  1356. data_end = leaf_data_end(root, right);
  1357. memmove_extent_buffer(right,
  1358. btrfs_leaf_data(right) + data_end - push_space,
  1359. btrfs_leaf_data(right) + data_end,
  1360. BTRFS_LEAF_DATA_SIZE(root) - data_end);
  1361. /* copy from the left data area */
  1362. copy_extent_buffer(right, left, btrfs_leaf_data(right) +
  1363. BTRFS_LEAF_DATA_SIZE(root) - push_space,
  1364. btrfs_leaf_data(left) + leaf_data_end(root, left),
  1365. push_space);
  1366. memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
  1367. btrfs_item_nr_offset(0),
  1368. right_nritems * sizeof(struct btrfs_item));
  1369. /* copy the items from left to right */
  1370. copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
  1371. btrfs_item_nr_offset(left_nritems - push_items),
  1372. push_items * sizeof(struct btrfs_item));
  1373. /* update the item pointers */
  1374. right_nritems += push_items;
  1375. btrfs_set_header_nritems(right, right_nritems);
  1376. push_space = BTRFS_LEAF_DATA_SIZE(root);
  1377. for (i = 0; i < right_nritems; i++) {
  1378. item = btrfs_item_nr(right, i);
  1379. if (!right->map_token) {
  1380. map_extent_buffer(right, (unsigned long)item,
  1381. sizeof(struct btrfs_item),
  1382. &right->map_token, &right->kaddr,
  1383. &right->map_start, &right->map_len,
  1384. KM_USER1);
  1385. }
  1386. push_space -= btrfs_item_size(right, item);
  1387. btrfs_set_item_offset(right, item, push_space);
  1388. }
  1389. if (right->map_token) {
  1390. unmap_extent_buffer(right, right->map_token, KM_USER1);
  1391. right->map_token = NULL;
  1392. }
  1393. left_nritems -= push_items;
  1394. btrfs_set_header_nritems(left, left_nritems);
  1395. btrfs_mark_buffer_dirty(left);
  1396. btrfs_mark_buffer_dirty(right);
  1397. btrfs_item_key(right, &disk_key, 0);
  1398. btrfs_set_node_key(upper, &disk_key, slot + 1);
  1399. btrfs_mark_buffer_dirty(upper);
  1400. /* then fixup the leaf pointer in the path */
  1401. if (path->slots[0] >= left_nritems) {
  1402. path->slots[0] -= left_nritems;
  1403. free_extent_buffer(path->nodes[0]);
  1404. path->nodes[0] = right;
  1405. path->slots[1] += 1;
  1406. } else {
  1407. free_extent_buffer(right);
  1408. }
  1409. return 0;
  1410. }
  1411. /*
  1412. * push some data in the path leaf to the left, trying to free up at
  1413. * least data_size bytes. returns zero if the push worked, nonzero otherwise
  1414. */
  1415. static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
  1416. *root, struct btrfs_path *path, int data_size)
  1417. {
  1418. struct btrfs_disk_key disk_key;
  1419. struct extent_buffer *right = path->nodes[0];
  1420. struct extent_buffer *left;
  1421. int slot;
  1422. int i;
  1423. int free_space;
  1424. int push_space = 0;
  1425. int push_items = 0;
  1426. struct btrfs_item *item;
  1427. u32 old_left_nritems;
  1428. u32 right_nritems;
  1429. int ret = 0;
  1430. int wret;
  1431. u32 this_item_size;
  1432. u32 old_left_item_size;
  1433. slot = path->slots[1];
  1434. if (slot == 0)
  1435. return 1;
  1436. if (!path->nodes[1])
  1437. return 1;
  1438. left = read_tree_block(root, btrfs_node_blockptr(path->nodes[1],
  1439. slot - 1), root->leafsize);
  1440. free_space = btrfs_leaf_free_space(root, left);
  1441. if (free_space < data_size + sizeof(struct btrfs_item)) {
  1442. free_extent_buffer(left);
  1443. return 1;
  1444. }
  1445. /* cow and double check */
  1446. ret = btrfs_cow_block(trans, root, left,
  1447. path->nodes[1], slot - 1, &left);
  1448. if (ret) {
  1449. /* we hit -ENOSPC, but it isn't fatal here */
  1450. free_extent_buffer(left);
  1451. return 1;
  1452. }
  1453. free_space = btrfs_leaf_free_space(root, left);
  1454. if (free_space < data_size + sizeof(struct btrfs_item)) {
  1455. free_extent_buffer(left);
  1456. return 1;
  1457. }
  1458. right_nritems = btrfs_header_nritems(right);
  1459. if (right_nritems == 0) {
  1460. free_extent_buffer(left);
  1461. return 1;
  1462. }
  1463. for (i = 0; i < right_nritems - 1; i++) {
  1464. item = btrfs_item_nr(right, i);
  1465. if (!right->map_token) {
  1466. map_extent_buffer(right, (unsigned long)item,
  1467. sizeof(struct btrfs_item),
  1468. &right->map_token, &right->kaddr,
  1469. &right->map_start, &right->map_len,
  1470. KM_USER1);
  1471. }
  1472. if (path->slots[0] == i)
  1473. push_space += data_size + sizeof(*item);
  1474. this_item_size = btrfs_item_size(right, item);
  1475. if (this_item_size + sizeof(*item) + push_space > free_space)
  1476. break;
  1477. push_items++;
  1478. push_space += this_item_size + sizeof(*item);
  1479. }
  1480. if (right->map_token) {
  1481. unmap_extent_buffer(right, right->map_token, KM_USER1);
  1482. right->map_token = NULL;
  1483. }
  1484. if (push_items == 0) {
  1485. free_extent_buffer(left);
  1486. return 1;
  1487. }
  1488. if (push_items == btrfs_header_nritems(right))
  1489. WARN_ON(1);
  1490. /* push data from right to left */
  1491. copy_extent_buffer(left, right,
  1492. btrfs_item_nr_offset(btrfs_header_nritems(left)),
  1493. btrfs_item_nr_offset(0),
  1494. push_items * sizeof(struct btrfs_item));
  1495. push_space = BTRFS_LEAF_DATA_SIZE(root) -
  1496. btrfs_item_offset_nr(right, push_items -1);
  1497. copy_extent_buffer(left, right, btrfs_leaf_data(left) +
  1498. leaf_data_end(root, left) - push_space,
  1499. btrfs_leaf_data(right) +
  1500. btrfs_item_offset_nr(right, push_items - 1),
  1501. push_space);
  1502. old_left_nritems = btrfs_header_nritems(left);
  1503. BUG_ON(old_left_nritems < 0);
  1504. old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
  1505. for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
  1506. u32 ioff;
  1507. item = btrfs_item_nr(left, i);
  1508. if (!left->map_token) {
  1509. map_extent_buffer(left, (unsigned long)item,
  1510. sizeof(struct btrfs_item),
  1511. &left->map_token, &left->kaddr,
  1512. &left->map_start, &left->map_len,
  1513. KM_USER1);
  1514. }
  1515. ioff = btrfs_item_offset(left, item);
  1516. btrfs_set_item_offset(left, item,
  1517. ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size));
  1518. }
  1519. btrfs_set_header_nritems(left, old_left_nritems + push_items);
  1520. if (left->map_token) {
  1521. unmap_extent_buffer(left, left->map_token, KM_USER1);
  1522. left->map_token = NULL;
  1523. }
  1524. /* fixup right node */
  1525. push_space = btrfs_item_offset_nr(right, push_items - 1) -
  1526. leaf_data_end(root, right);
  1527. memmove_extent_buffer(right, btrfs_leaf_data(right) +
  1528. BTRFS_LEAF_DATA_SIZE(root) - push_space,
  1529. btrfs_leaf_data(right) +
  1530. leaf_data_end(root, right), push_space);
  1531. memmove_extent_buffer(right, btrfs_item_nr_offset(0),
  1532. btrfs_item_nr_offset(push_items),
  1533. (btrfs_header_nritems(right) - push_items) *
  1534. sizeof(struct btrfs_item));
  1535. right_nritems = btrfs_header_nritems(right) - push_items;
  1536. btrfs_set_header_nritems(right, right_nritems);
  1537. push_space = BTRFS_LEAF_DATA_SIZE(root);
  1538. for (i = 0; i < right_nritems; i++) {
  1539. item = btrfs_item_nr(right, i);
  1540. if (!right->map_token) {
  1541. map_extent_buffer(right, (unsigned long)item,
  1542. sizeof(struct btrfs_item),
  1543. &right->map_token, &right->kaddr,
  1544. &right->map_start, &right->map_len,
  1545. KM_USER1);
  1546. }
  1547. push_space = push_space - btrfs_item_size(right, item);
  1548. btrfs_set_item_offset(right, item, push_space);
  1549. }
  1550. if (right->map_token) {
  1551. unmap_extent_buffer(right, right->map_token, KM_USER1);
  1552. right->map_token = NULL;
  1553. }
  1554. btrfs_mark_buffer_dirty(left);
  1555. btrfs_mark_buffer_dirty(right);
  1556. btrfs_item_key(right, &disk_key, 0);
  1557. wret = fixup_low_keys(trans, root, path, &disk_key, 1);
  1558. if (wret)
  1559. ret = wret;
  1560. /* then fixup the leaf pointer in the path */
  1561. if (path->slots[0] < push_items) {
  1562. path->slots[0] += old_left_nritems;
  1563. free_extent_buffer(path->nodes[0]);
  1564. path->nodes[0] = left;
  1565. path->slots[1] -= 1;
  1566. } else {
  1567. free_extent_buffer(left);
  1568. path->slots[0] -= push_items;
  1569. }
  1570. BUG_ON(path->slots[0] < 0);
  1571. return ret;
  1572. }
  1573. /*
  1574. * split the path's leaf in two, making sure there is at least data_size
  1575. * available for the resulting leaf level of the path.
  1576. *
  1577. * returns 0 if all went well and < 0 on failure.
  1578. */
  1579. static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
  1580. *root, struct btrfs_key *ins_key,
  1581. struct btrfs_path *path, int data_size)
  1582. {
  1583. struct extent_buffer *l;
  1584. u32 nritems;
  1585. int mid;
  1586. int slot;
  1587. struct extent_buffer *right;
  1588. int space_needed = data_size + sizeof(struct btrfs_item);
  1589. int data_copy_size;
  1590. int rt_data_off;
  1591. int i;
  1592. int ret = 0;
  1593. int wret;
  1594. int double_split = 0;
  1595. struct btrfs_disk_key disk_key;
  1596. /* first try to make some room by pushing left and right */
  1597. wret = push_leaf_left(trans, root, path, data_size);
  1598. if (wret < 0) {
  1599. return wret;
  1600. }
  1601. if (wret) {
  1602. wret = push_leaf_right(trans, root, path, data_size);
  1603. if (wret < 0)
  1604. return wret;
  1605. }
  1606. l = path->nodes[0];
  1607. /* did the pushes work? */
  1608. if (btrfs_leaf_free_space(root, l) >=
  1609. sizeof(struct btrfs_item) + data_size) {
  1610. return 0;
  1611. }
  1612. if (!path->nodes[1]) {
  1613. ret = insert_new_root(trans, root, path, 1);
  1614. if (ret)
  1615. return ret;
  1616. }
  1617. slot = path->slots[0];
  1618. nritems = btrfs_header_nritems(l);
  1619. mid = (nritems + 1)/ 2;
  1620. right = btrfs_alloc_free_block(trans, root, root->leafsize,
  1621. l->start, 0);
  1622. if (IS_ERR(right))
  1623. return PTR_ERR(right);
  1624. memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
  1625. btrfs_set_header_bytenr(right, right->start);
  1626. btrfs_set_header_generation(right, trans->transid);
  1627. btrfs_set_header_owner(right, root->root_key.objectid);
  1628. btrfs_set_header_level(right, 0);
  1629. write_extent_buffer(right, root->fs_info->fsid,
  1630. (unsigned long)btrfs_header_fsid(right),
  1631. BTRFS_FSID_SIZE);
  1632. if (mid <= slot) {
  1633. if (nritems == 1 ||
  1634. leaf_space_used(l, mid, nritems - mid) + space_needed >
  1635. BTRFS_LEAF_DATA_SIZE(root)) {
  1636. if (slot >= nritems) {
  1637. btrfs_cpu_key_to_disk(&disk_key, ins_key);
  1638. btrfs_set_header_nritems(right, 0);
  1639. wret = insert_ptr(trans, root, path,
  1640. &disk_key, right->start,
  1641. path->slots[1] + 1, 1);
  1642. if (wret)
  1643. ret = wret;
  1644. free_extent_buffer(path->nodes[0]);
  1645. path->nodes[0] = right;
  1646. path->slots[0] = 0;
  1647. path->slots[1] += 1;
  1648. return ret;
  1649. }
  1650. mid = slot;
  1651. if (mid != nritems &&
  1652. leaf_space_used(l, mid, nritems - mid) +
  1653. space_needed > BTRFS_LEAF_DATA_SIZE(root)) {
  1654. double_split = 1;
  1655. }
  1656. }
  1657. } else {
  1658. if (leaf_space_used(l, 0, mid + 1) + space_needed >
  1659. BTRFS_LEAF_DATA_SIZE(root)) {
  1660. if (slot == 0) {
  1661. btrfs_cpu_key_to_disk(&disk_key, ins_key);
  1662. btrfs_set_header_nritems(right, 0);
  1663. wret = insert_ptr(trans, root, path,
  1664. &disk_key,
  1665. right->start,
  1666. path->slots[1], 1);
  1667. if (wret)
  1668. ret = wret;
  1669. free_extent_buffer(path->nodes[0]);
  1670. path->nodes[0] = right;
  1671. path->slots[0] = 0;
  1672. if (path->slots[1] == 0) {
  1673. wret = fixup_low_keys(trans, root,
  1674. path, &disk_key, 1);
  1675. if (wret)
  1676. ret = wret;
  1677. }
  1678. return ret;
  1679. }
  1680. mid = slot;
  1681. double_split = 1;
  1682. }
  1683. }
  1684. nritems = nritems - mid;
  1685. btrfs_set_header_nritems(right, nritems);
  1686. data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
  1687. copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
  1688. btrfs_item_nr_offset(mid),
  1689. nritems * sizeof(struct btrfs_item));
  1690. copy_extent_buffer(right, l,
  1691. btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
  1692. data_copy_size, btrfs_leaf_data(l) +
  1693. leaf_data_end(root, l), data_copy_size);
  1694. rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
  1695. btrfs_item_end_nr(l, mid);
  1696. for (i = 0; i < nritems; i++) {
  1697. struct btrfs_item *item = btrfs_item_nr(right, i);
  1698. u32 ioff;
  1699. if (!right->map_token) {
  1700. map_extent_buffer(right, (unsigned long)item,
  1701. sizeof(struct btrfs_item),
  1702. &right->map_token, &right->kaddr,
  1703. &right->map_start, &right->map_len,
  1704. KM_USER1);
  1705. }
  1706. ioff = btrfs_item_offset(right, item);
  1707. btrfs_set_item_offset(right, item, ioff + rt_data_off);
  1708. }
  1709. if (right->map_token) {
  1710. unmap_extent_buffer(right, right->map_token, KM_USER1);
  1711. right->map_token = NULL;
  1712. }
  1713. btrfs_set_header_nritems(l, mid);
  1714. ret = 0;
  1715. btrfs_item_key(right, &disk_key, 0);
  1716. wret = insert_ptr(trans, root, path, &disk_key, right->start,
  1717. path->slots[1] + 1, 1);
  1718. if (wret)
  1719. ret = wret;
  1720. btrfs_mark_buffer_dirty(right);
  1721. btrfs_mark_buffer_dirty(l);
  1722. BUG_ON(path->slots[0] != slot);
  1723. if (mid <= slot) {
  1724. free_extent_buffer(path->nodes[0]);
  1725. path->nodes[0] = right;
  1726. path->slots[0] -= mid;
  1727. path->slots[1] += 1;
  1728. } else
  1729. free_extent_buffer(right);
  1730. BUG_ON(path->slots[0] < 0);
  1731. if (!double_split) {
  1732. return ret;
  1733. }
  1734. right = btrfs_alloc_free_block(trans, root, root->leafsize,
  1735. l->start, 0);
  1736. if (IS_ERR(right))
  1737. return PTR_ERR(right);
  1738. memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
  1739. btrfs_set_header_bytenr(right, right->start);
  1740. btrfs_set_header_generation(right, trans->transid);
  1741. btrfs_set_header_owner(right, root->root_key.objectid);
  1742. btrfs_set_header_level(right, 0);
  1743. write_extent_buffer(right, root->fs_info->fsid,
  1744. (unsigned long)btrfs_header_fsid(right),
  1745. BTRFS_FSID_SIZE);
  1746. btrfs_cpu_key_to_disk(&disk_key, ins_key);
  1747. btrfs_set_header_nritems(right, 0);
  1748. wret = insert_ptr(trans, root, path,
  1749. &disk_key, right->start,
  1750. path->slots[1], 1);
  1751. if (wret)
  1752. ret = wret;
  1753. if (path->slots[1] == 0) {
  1754. wret = fixup_low_keys(trans, root, path, &disk_key, 1);
  1755. if (wret)
  1756. ret = wret;
  1757. }
  1758. free_extent_buffer(path->nodes[0]);
  1759. path->nodes[0] = right;
  1760. path->slots[0] = 0;
  1761. return ret;
  1762. }
  1763. int btrfs_truncate_item(struct btrfs_trans_handle *trans,
  1764. struct btrfs_root *root,
  1765. struct btrfs_path *path,
  1766. u32 new_size)
  1767. {
  1768. int ret = 0;
  1769. int slot;
  1770. int slot_orig;
  1771. struct extent_buffer *leaf;
  1772. struct btrfs_item *item;
  1773. u32 nritems;
  1774. unsigned int data_end;
  1775. unsigned int old_data_start;
  1776. unsigned int old_size;
  1777. unsigned int size_diff;
  1778. int i;
  1779. slot_orig = path->slots[0];
  1780. leaf = path->nodes[0];
  1781. nritems = btrfs_header_nritems(leaf);
  1782. data_end = leaf_data_end(root, leaf);
  1783. slot = path->slots[0];
  1784. old_data_start = btrfs_item_offset_nr(leaf, slot);
  1785. old_size = btrfs_item_size_nr(leaf, slot);
  1786. BUG_ON(old_size <= new_size);
  1787. size_diff = old_size - new_size;
  1788. BUG_ON(slot < 0);
  1789. BUG_ON(slot >= nritems);
  1790. /*
  1791. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  1792. */
  1793. /* first correct the data pointers */
  1794. for (i = slot; i < nritems; i++) {
  1795. u32 ioff;
  1796. item = btrfs_item_nr(leaf, i);
  1797. if (!leaf->map_token) {
  1798. map_extent_buffer(leaf, (unsigned long)item,
  1799. sizeof(struct btrfs_item),
  1800. &leaf->map_token, &leaf->kaddr,
  1801. &leaf->map_start, &leaf->map_len,
  1802. KM_USER1);
  1803. }
  1804. ioff = btrfs_item_offset(leaf, item);
  1805. btrfs_set_item_offset(leaf, item, ioff + size_diff);
  1806. }
  1807. if (leaf->map_token) {
  1808. unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
  1809. leaf->map_token = NULL;
  1810. }
  1811. /* shift the data */
  1812. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  1813. data_end + size_diff, btrfs_leaf_data(leaf) +
  1814. data_end, old_data_start + new_size - data_end);
  1815. item = btrfs_item_nr(leaf, slot);
  1816. btrfs_set_item_size(leaf, item, new_size);
  1817. btrfs_mark_buffer_dirty(leaf);
  1818. ret = 0;
  1819. if (btrfs_leaf_free_space(root, leaf) < 0) {
  1820. btrfs_print_leaf(root, leaf);
  1821. BUG();
  1822. }
  1823. return ret;
  1824. }
  1825. int btrfs_extend_item(struct btrfs_trans_handle *trans,
  1826. struct btrfs_root *root, struct btrfs_path *path,
  1827. u32 data_size)
  1828. {
  1829. int ret = 0;
  1830. int slot;
  1831. int slot_orig;
  1832. struct extent_buffer *leaf;
  1833. struct btrfs_item *item;
  1834. u32 nritems;
  1835. unsigned int data_end;
  1836. unsigned int old_data;
  1837. unsigned int old_size;
  1838. int i;
  1839. slot_orig = path->slots[0];
  1840. leaf = path->nodes[0];
  1841. nritems = btrfs_header_nritems(leaf);
  1842. data_end = leaf_data_end(root, leaf);
  1843. if (btrfs_leaf_free_space(root, leaf) < data_size) {
  1844. btrfs_print_leaf(root, leaf);
  1845. BUG();
  1846. }
  1847. slot = path->slots[0];
  1848. old_data = btrfs_item_end_nr(leaf, slot);
  1849. BUG_ON(slot < 0);
  1850. if (slot >= nritems) {
  1851. btrfs_print_leaf(root, leaf);
  1852. printk("slot %d too large, nritems %d\n", slot, nritems);
  1853. BUG_ON(1);
  1854. }
  1855. /*
  1856. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  1857. */
  1858. /* first correct the data pointers */
  1859. for (i = slot; i < nritems; i++) {
  1860. u32 ioff;
  1861. item = btrfs_item_nr(leaf, i);
  1862. if (!leaf->map_token) {
  1863. map_extent_buffer(leaf, (unsigned long)item,
  1864. sizeof(struct btrfs_item),
  1865. &leaf->map_token, &leaf->kaddr,
  1866. &leaf->map_start, &leaf->map_len,
  1867. KM_USER1);
  1868. }
  1869. ioff = btrfs_item_offset(leaf, item);
  1870. btrfs_set_item_offset(leaf, item, ioff - data_size);
  1871. }
  1872. if (leaf->map_token) {
  1873. unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
  1874. leaf->map_token = NULL;
  1875. }
  1876. /* shift the data */
  1877. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  1878. data_end - data_size, btrfs_leaf_data(leaf) +
  1879. data_end, old_data - data_end);
  1880. data_end = old_data;
  1881. old_size = btrfs_item_size_nr(leaf, slot);
  1882. item = btrfs_item_nr(leaf, slot);
  1883. btrfs_set_item_size(leaf, item, old_size + data_size);
  1884. btrfs_mark_buffer_dirty(leaf);
  1885. ret = 0;
  1886. if (btrfs_leaf_free_space(root, leaf) < 0) {
  1887. btrfs_print_leaf(root, leaf);
  1888. BUG();
  1889. }
  1890. return ret;
  1891. }
  1892. /*
  1893. * Given a key and some data, insert an item into the tree.
  1894. * This does all the path init required, making room in the tree if needed.
  1895. */
  1896. int btrfs_insert_empty_item(struct btrfs_trans_handle *trans,
  1897. struct btrfs_root *root,
  1898. struct btrfs_path *path,
  1899. struct btrfs_key *cpu_key, u32 data_size)
  1900. {
  1901. struct extent_buffer *leaf;
  1902. struct btrfs_item *item;
  1903. int ret = 0;
  1904. int slot;
  1905. int slot_orig;
  1906. u32 nritems;
  1907. unsigned int data_end;
  1908. struct btrfs_disk_key disk_key;
  1909. btrfs_cpu_key_to_disk(&disk_key, cpu_key);
  1910. /* create a root if there isn't one */
  1911. if (!root->node)
  1912. BUG();
  1913. ret = btrfs_search_slot(trans, root, cpu_key, path, data_size, 1);
  1914. if (ret == 0) {
  1915. return -EEXIST;
  1916. }
  1917. if (ret < 0)
  1918. goto out;
  1919. slot_orig = path->slots[0];
  1920. leaf = path->nodes[0];
  1921. nritems = btrfs_header_nritems(leaf);
  1922. data_end = leaf_data_end(root, leaf);
  1923. if (btrfs_leaf_free_space(root, leaf) <
  1924. sizeof(struct btrfs_item) + data_size) {
  1925. btrfs_print_leaf(root, leaf);
  1926. printk("not enough freespace need %u have %d\n",
  1927. data_size, btrfs_leaf_free_space(root, leaf));
  1928. BUG();
  1929. }
  1930. slot = path->slots[0];
  1931. BUG_ON(slot < 0);
  1932. if (slot != nritems) {
  1933. int i;
  1934. unsigned int old_data = btrfs_item_end_nr(leaf, slot);
  1935. if (old_data < data_end) {
  1936. btrfs_print_leaf(root, leaf);
  1937. printk("slot %d old_data %d data_end %d\n",
  1938. slot, old_data, data_end);
  1939. BUG_ON(1);
  1940. }
  1941. /*
  1942. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  1943. */
  1944. /* first correct the data pointers */
  1945. WARN_ON(leaf->map_token);
  1946. for (i = slot; i < nritems; i++) {
  1947. u32 ioff;
  1948. item = btrfs_item_nr(leaf, i);
  1949. if (!leaf->map_token) {
  1950. map_extent_buffer(leaf, (unsigned long)item,
  1951. sizeof(struct btrfs_item),
  1952. &leaf->map_token, &leaf->kaddr,
  1953. &leaf->map_start, &leaf->map_len,
  1954. KM_USER1);
  1955. }
  1956. ioff = btrfs_item_offset(leaf, item);
  1957. btrfs_set_item_offset(leaf, item, ioff - data_size);
  1958. }
  1959. if (leaf->map_token) {
  1960. unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
  1961. leaf->map_token = NULL;
  1962. }
  1963. /* shift the items */
  1964. memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
  1965. btrfs_item_nr_offset(slot),
  1966. (nritems - slot) * sizeof(struct btrfs_item));
  1967. /* shift the data */
  1968. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  1969. data_end - data_size, btrfs_leaf_data(leaf) +
  1970. data_end, old_data - data_end);
  1971. data_end = old_data;
  1972. }
  1973. /* setup the item for the new data */
  1974. btrfs_set_item_key(leaf, &disk_key, slot);
  1975. item = btrfs_item_nr(leaf, slot);
  1976. btrfs_set_item_offset(leaf, item, data_end - data_size);
  1977. btrfs_set_item_size(leaf, item, data_size);
  1978. btrfs_set_header_nritems(leaf, nritems + 1);
  1979. btrfs_mark_buffer_dirty(leaf);
  1980. ret = 0;
  1981. if (slot == 0)
  1982. ret = fixup_low_keys(trans, root, path, &disk_key, 1);
  1983. if (btrfs_leaf_free_space(root, leaf) < 0) {
  1984. btrfs_print_leaf(root, leaf);
  1985. BUG();
  1986. }
  1987. out:
  1988. return ret;
  1989. }
  1990. /*
  1991. * Given a key and some data, insert an item into the tree.
  1992. * This does all the path init required, making room in the tree if needed.
  1993. */
  1994. int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
  1995. *root, struct btrfs_key *cpu_key, void *data, u32
  1996. data_size)
  1997. {
  1998. int ret = 0;
  1999. struct btrfs_path *path;
  2000. struct extent_buffer *leaf;
  2001. unsigned long ptr;
  2002. path = btrfs_alloc_path();
  2003. BUG_ON(!path);
  2004. ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
  2005. if (!ret) {
  2006. leaf = path->nodes[0];
  2007. ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
  2008. write_extent_buffer(leaf, data, ptr, data_size);
  2009. btrfs_mark_buffer_dirty(leaf);
  2010. }
  2011. btrfs_free_path(path);
  2012. return ret;
  2013. }
  2014. /*
  2015. * delete the pointer from a given node.
  2016. *
  2017. * If the delete empties a node, the node is removed from the tree,
  2018. * continuing all the way the root if required. The root is converted into
  2019. * a leaf if all the nodes are emptied.
  2020. */
  2021. static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  2022. struct btrfs_path *path, int level, int slot)
  2023. {
  2024. struct extent_buffer *parent = path->nodes[level];
  2025. u32 nritems;
  2026. int ret = 0;
  2027. int wret;
  2028. nritems = btrfs_header_nritems(parent);
  2029. if (slot != nritems -1) {
  2030. memmove_extent_buffer(parent,
  2031. btrfs_node_key_ptr_offset(slot),
  2032. btrfs_node_key_ptr_offset(slot + 1),
  2033. sizeof(struct btrfs_key_ptr) *
  2034. (nritems - slot - 1));
  2035. }
  2036. nritems--;
  2037. btrfs_set_header_nritems(parent, nritems);
  2038. if (nritems == 0 && parent == root->node) {
  2039. BUG_ON(btrfs_header_level(root->node) != 1);
  2040. /* just turn the root into a leaf and break */
  2041. btrfs_set_header_level(root->node, 0);
  2042. } else if (slot == 0) {
  2043. struct btrfs_disk_key disk_key;
  2044. btrfs_node_key(parent, &disk_key, 0);
  2045. wret = fixup_low_keys(trans, root, path, &disk_key, level + 1);
  2046. if (wret)
  2047. ret = wret;
  2048. }
  2049. btrfs_mark_buffer_dirty(parent);
  2050. return ret;
  2051. }
  2052. /*
  2053. * delete the item at the leaf level in path. If that empties
  2054. * the leaf, remove it from the tree
  2055. */
  2056. int btrfs_del_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  2057. struct btrfs_path *path)
  2058. {
  2059. int slot;
  2060. struct extent_buffer *leaf;
  2061. struct btrfs_item *item;
  2062. int doff;
  2063. int dsize;
  2064. int ret = 0;
  2065. int wret;
  2066. u32 nritems;
  2067. leaf = path->nodes[0];
  2068. slot = path->slots[0];
  2069. doff = btrfs_item_offset_nr(leaf, slot);
  2070. dsize = btrfs_item_size_nr(leaf, slot);
  2071. nritems = btrfs_header_nritems(leaf);
  2072. if (slot != nritems - 1) {
  2073. int i;
  2074. int data_end = leaf_data_end(root, leaf);
  2075. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  2076. data_end + dsize,
  2077. btrfs_leaf_data(leaf) + data_end,
  2078. doff - data_end);
  2079. for (i = slot + 1; i < nritems; i++) {
  2080. u32 ioff;
  2081. item = btrfs_item_nr(leaf, i);
  2082. if (!leaf->map_token) {
  2083. map_extent_buffer(leaf, (unsigned long)item,
  2084. sizeof(struct btrfs_item),
  2085. &leaf->map_token, &leaf->kaddr,
  2086. &leaf->map_start, &leaf->map_len,
  2087. KM_USER1);
  2088. }
  2089. ioff = btrfs_item_offset(leaf, item);
  2090. btrfs_set_item_offset(leaf, item, ioff + dsize);
  2091. }
  2092. if (leaf->map_token) {
  2093. unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
  2094. leaf->map_token = NULL;
  2095. }
  2096. memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
  2097. btrfs_item_nr_offset(slot + 1),
  2098. sizeof(struct btrfs_item) *
  2099. (nritems - slot - 1));
  2100. }
  2101. btrfs_set_header_nritems(leaf, nritems - 1);
  2102. nritems--;
  2103. /* delete the leaf if we've emptied it */
  2104. if (nritems == 0) {
  2105. if (leaf == root->node) {
  2106. btrfs_set_header_level(leaf, 0);
  2107. } else {
  2108. clean_tree_block(trans, root, leaf);
  2109. wait_on_tree_block_writeback(root, leaf);
  2110. wret = del_ptr(trans, root, path, 1, path->slots[1]);
  2111. if (wret)
  2112. ret = wret;
  2113. wret = btrfs_free_extent(trans, root,
  2114. leaf->start, leaf->len, 1);
  2115. if (wret)
  2116. ret = wret;
  2117. }
  2118. } else {
  2119. int used = leaf_space_used(leaf, 0, nritems);
  2120. if (slot == 0) {
  2121. struct btrfs_disk_key disk_key;
  2122. btrfs_item_key(leaf, &disk_key, 0);
  2123. wret = fixup_low_keys(trans, root, path,
  2124. &disk_key, 1);
  2125. if (wret)
  2126. ret = wret;
  2127. }
  2128. /* delete the leaf if it is mostly empty */
  2129. if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
  2130. /* push_leaf_left fixes the path.
  2131. * make sure the path still points to our leaf
  2132. * for possible call to del_ptr below
  2133. */
  2134. slot = path->slots[1];
  2135. extent_buffer_get(leaf);
  2136. wret = push_leaf_left(trans, root, path, 1);
  2137. if (wret < 0 && wret != -ENOSPC)
  2138. ret = wret;
  2139. if (path->nodes[0] == leaf &&
  2140. btrfs_header_nritems(leaf)) {
  2141. wret = push_leaf_right(trans, root, path, 1);
  2142. if (wret < 0 && wret != -ENOSPC)
  2143. ret = wret;
  2144. }
  2145. if (btrfs_header_nritems(leaf) == 0) {
  2146. u64 bytenr = leaf->start;
  2147. u32 blocksize = leaf->len;
  2148. clean_tree_block(trans, root, leaf);
  2149. wait_on_tree_block_writeback(root, leaf);
  2150. wret = del_ptr(trans, root, path, 1, slot);
  2151. if (wret)
  2152. ret = wret;
  2153. free_extent_buffer(leaf);
  2154. wret = btrfs_free_extent(trans, root, bytenr,
  2155. blocksize, 1);
  2156. if (wret)
  2157. ret = wret;
  2158. } else {
  2159. btrfs_mark_buffer_dirty(leaf);
  2160. free_extent_buffer(leaf);
  2161. }
  2162. } else {
  2163. btrfs_mark_buffer_dirty(leaf);
  2164. }
  2165. }
  2166. return ret;
  2167. }
  2168. /*
  2169. * walk up the tree as far as required to find the next leaf.
  2170. * returns 0 if it found something or 1 if there are no greater leaves.
  2171. * returns < 0 on io errors.
  2172. */
  2173. int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
  2174. {
  2175. int slot;
  2176. int level = 1;
  2177. u64 bytenr;
  2178. struct extent_buffer *c;
  2179. struct extent_buffer *next = NULL;
  2180. while(level < BTRFS_MAX_LEVEL) {
  2181. if (!path->nodes[level])
  2182. return 1;
  2183. slot = path->slots[level] + 1;
  2184. c = path->nodes[level];
  2185. if (slot >= btrfs_header_nritems(c)) {
  2186. level++;
  2187. continue;
  2188. }
  2189. bytenr = btrfs_node_blockptr(c, slot);
  2190. if (next)
  2191. free_extent_buffer(next);
  2192. if (path->reada)
  2193. reada_for_search(root, path, level, slot);
  2194. next = read_tree_block(root, bytenr,
  2195. btrfs_level_size(root, level -1));
  2196. break;
  2197. }
  2198. path->slots[level] = slot;
  2199. while(1) {
  2200. level--;
  2201. c = path->nodes[level];
  2202. free_extent_buffer(c);
  2203. path->nodes[level] = next;
  2204. path->slots[level] = 0;
  2205. if (!level)
  2206. break;
  2207. if (path->reada)
  2208. reada_for_search(root, path, level, 0);
  2209. next = read_tree_block(root, btrfs_node_blockptr(next, 0),
  2210. btrfs_level_size(root, level - 1));
  2211. }
  2212. return 0;
  2213. }