xfs_attr_leaf.c 91 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329
  1. /*
  2. * Copyright (c) 2000-2005 Silicon Graphics, Inc.
  3. * Copyright (c) 2013 Red Hat, Inc.
  4. * All Rights Reserved.
  5. *
  6. * This program is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU General Public License as
  8. * published by the Free Software Foundation.
  9. *
  10. * This program is distributed in the hope that it would be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program; if not, write the Free Software Foundation,
  17. * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  18. */
  19. #include "xfs.h"
  20. #include "xfs_fs.h"
  21. #include "xfs_types.h"
  22. #include "xfs_bit.h"
  23. #include "xfs_log.h"
  24. #include "xfs_trans.h"
  25. #include "xfs_sb.h"
  26. #include "xfs_ag.h"
  27. #include "xfs_mount.h"
  28. #include "xfs_da_btree.h"
  29. #include "xfs_bmap_btree.h"
  30. #include "xfs_alloc_btree.h"
  31. #include "xfs_ialloc_btree.h"
  32. #include "xfs_alloc.h"
  33. #include "xfs_btree.h"
  34. #include "xfs_attr_sf.h"
  35. #include "xfs_attr_remote.h"
  36. #include "xfs_dinode.h"
  37. #include "xfs_inode.h"
  38. #include "xfs_inode_item.h"
  39. #include "xfs_bmap.h"
  40. #include "xfs_attr.h"
  41. #include "xfs_attr_leaf.h"
  42. #include "xfs_error.h"
  43. #include "xfs_trace.h"
  44. #include "xfs_buf_item.h"
  45. #include "xfs_cksum.h"
  46. /*
  47. * xfs_attr_leaf.c
  48. *
  49. * Routines to implement leaf blocks of attributes as Btrees of hashed names.
  50. */
  51. /*========================================================================
  52. * Function prototypes for the kernel.
  53. *========================================================================*/
  54. /*
  55. * Routines used for growing the Btree.
  56. */
  57. STATIC int xfs_attr3_leaf_create(struct xfs_da_args *args,
  58. xfs_dablk_t which_block, struct xfs_buf **bpp);
  59. STATIC int xfs_attr3_leaf_add_work(struct xfs_buf *leaf_buffer,
  60. struct xfs_attr3_icleaf_hdr *ichdr,
  61. struct xfs_da_args *args, int freemap_index);
  62. STATIC void xfs_attr3_leaf_compact(struct xfs_da_args *args,
  63. struct xfs_attr3_icleaf_hdr *ichdr,
  64. struct xfs_buf *leaf_buffer);
  65. STATIC void xfs_attr3_leaf_rebalance(xfs_da_state_t *state,
  66. xfs_da_state_blk_t *blk1,
  67. xfs_da_state_blk_t *blk2);
  68. STATIC int xfs_attr3_leaf_figure_balance(xfs_da_state_t *state,
  69. xfs_da_state_blk_t *leaf_blk_1,
  70. struct xfs_attr3_icleaf_hdr *ichdr1,
  71. xfs_da_state_blk_t *leaf_blk_2,
  72. struct xfs_attr3_icleaf_hdr *ichdr2,
  73. int *number_entries_in_blk1,
  74. int *number_usedbytes_in_blk1);
  75. /*
  76. * Routines used for shrinking the Btree.
  77. */
  78. STATIC int xfs_attr3_node_inactive(xfs_trans_t **trans, xfs_inode_t *dp,
  79. struct xfs_buf *bp, int level);
  80. STATIC int xfs_attr3_leaf_inactive(xfs_trans_t **trans, xfs_inode_t *dp,
  81. struct xfs_buf *bp);
  82. STATIC int xfs_attr3_leaf_freextent(xfs_trans_t **trans, xfs_inode_t *dp,
  83. xfs_dablk_t blkno, int blkcnt);
  84. /*
  85. * Utility routines.
  86. */
  87. STATIC void xfs_attr3_leaf_moveents(struct xfs_attr_leafblock *src_leaf,
  88. struct xfs_attr3_icleaf_hdr *src_ichdr, int src_start,
  89. struct xfs_attr_leafblock *dst_leaf,
  90. struct xfs_attr3_icleaf_hdr *dst_ichdr, int dst_start,
  91. int move_count, struct xfs_mount *mp);
  92. STATIC int xfs_attr_leaf_entsize(xfs_attr_leafblock_t *leaf, int index);
  93. void
  94. xfs_attr3_leaf_hdr_from_disk(
  95. struct xfs_attr3_icleaf_hdr *to,
  96. struct xfs_attr_leafblock *from)
  97. {
  98. int i;
  99. ASSERT(from->hdr.info.magic == cpu_to_be16(XFS_ATTR_LEAF_MAGIC) ||
  100. from->hdr.info.magic == cpu_to_be16(XFS_ATTR3_LEAF_MAGIC));
  101. if (from->hdr.info.magic == cpu_to_be16(XFS_ATTR3_LEAF_MAGIC)) {
  102. struct xfs_attr3_leaf_hdr *hdr3 = (struct xfs_attr3_leaf_hdr *)from;
  103. to->forw = be32_to_cpu(hdr3->info.hdr.forw);
  104. to->back = be32_to_cpu(hdr3->info.hdr.back);
  105. to->magic = be16_to_cpu(hdr3->info.hdr.magic);
  106. to->count = be16_to_cpu(hdr3->count);
  107. to->usedbytes = be16_to_cpu(hdr3->usedbytes);
  108. to->firstused = be16_to_cpu(hdr3->firstused);
  109. to->holes = hdr3->holes;
  110. for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) {
  111. to->freemap[i].base = be16_to_cpu(hdr3->freemap[i].base);
  112. to->freemap[i].size = be16_to_cpu(hdr3->freemap[i].size);
  113. }
  114. return;
  115. }
  116. to->forw = be32_to_cpu(from->hdr.info.forw);
  117. to->back = be32_to_cpu(from->hdr.info.back);
  118. to->magic = be16_to_cpu(from->hdr.info.magic);
  119. to->count = be16_to_cpu(from->hdr.count);
  120. to->usedbytes = be16_to_cpu(from->hdr.usedbytes);
  121. to->firstused = be16_to_cpu(from->hdr.firstused);
  122. to->holes = from->hdr.holes;
  123. for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) {
  124. to->freemap[i].base = be16_to_cpu(from->hdr.freemap[i].base);
  125. to->freemap[i].size = be16_to_cpu(from->hdr.freemap[i].size);
  126. }
  127. }
  128. void
  129. xfs_attr3_leaf_hdr_to_disk(
  130. struct xfs_attr_leafblock *to,
  131. struct xfs_attr3_icleaf_hdr *from)
  132. {
  133. int i;
  134. ASSERT(from->magic == XFS_ATTR_LEAF_MAGIC ||
  135. from->magic == XFS_ATTR3_LEAF_MAGIC);
  136. if (from->magic == XFS_ATTR3_LEAF_MAGIC) {
  137. struct xfs_attr3_leaf_hdr *hdr3 = (struct xfs_attr3_leaf_hdr *)to;
  138. hdr3->info.hdr.forw = cpu_to_be32(from->forw);
  139. hdr3->info.hdr.back = cpu_to_be32(from->back);
  140. hdr3->info.hdr.magic = cpu_to_be16(from->magic);
  141. hdr3->count = cpu_to_be16(from->count);
  142. hdr3->usedbytes = cpu_to_be16(from->usedbytes);
  143. hdr3->firstused = cpu_to_be16(from->firstused);
  144. hdr3->holes = from->holes;
  145. hdr3->pad1 = 0;
  146. for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) {
  147. hdr3->freemap[i].base = cpu_to_be16(from->freemap[i].base);
  148. hdr3->freemap[i].size = cpu_to_be16(from->freemap[i].size);
  149. }
  150. return;
  151. }
  152. to->hdr.info.forw = cpu_to_be32(from->forw);
  153. to->hdr.info.back = cpu_to_be32(from->back);
  154. to->hdr.info.magic = cpu_to_be16(from->magic);
  155. to->hdr.count = cpu_to_be16(from->count);
  156. to->hdr.usedbytes = cpu_to_be16(from->usedbytes);
  157. to->hdr.firstused = cpu_to_be16(from->firstused);
  158. to->hdr.holes = from->holes;
  159. to->hdr.pad1 = 0;
  160. for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) {
  161. to->hdr.freemap[i].base = cpu_to_be16(from->freemap[i].base);
  162. to->hdr.freemap[i].size = cpu_to_be16(from->freemap[i].size);
  163. }
  164. }
  165. static bool
  166. xfs_attr3_leaf_verify(
  167. struct xfs_buf *bp)
  168. {
  169. struct xfs_mount *mp = bp->b_target->bt_mount;
  170. struct xfs_attr_leafblock *leaf = bp->b_addr;
  171. struct xfs_attr3_icleaf_hdr ichdr;
  172. xfs_attr3_leaf_hdr_from_disk(&ichdr, leaf);
  173. if (xfs_sb_version_hascrc(&mp->m_sb)) {
  174. struct xfs_da3_node_hdr *hdr3 = bp->b_addr;
  175. if (ichdr.magic != XFS_ATTR3_LEAF_MAGIC)
  176. return false;
  177. if (!uuid_equal(&hdr3->info.uuid, &mp->m_sb.sb_uuid))
  178. return false;
  179. if (be64_to_cpu(hdr3->info.blkno) != bp->b_bn)
  180. return false;
  181. } else {
  182. if (ichdr.magic != XFS_ATTR_LEAF_MAGIC)
  183. return false;
  184. }
  185. if (ichdr.count == 0)
  186. return false;
  187. /* XXX: need to range check rest of attr header values */
  188. /* XXX: hash order check? */
  189. return true;
  190. }
  191. static void
  192. xfs_attr3_leaf_write_verify(
  193. struct xfs_buf *bp)
  194. {
  195. struct xfs_mount *mp = bp->b_target->bt_mount;
  196. struct xfs_buf_log_item *bip = bp->b_fspriv;
  197. struct xfs_attr3_leaf_hdr *hdr3 = bp->b_addr;
  198. if (!xfs_attr3_leaf_verify(bp)) {
  199. XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp, bp->b_addr);
  200. xfs_buf_ioerror(bp, EFSCORRUPTED);
  201. return;
  202. }
  203. if (!xfs_sb_version_hascrc(&mp->m_sb))
  204. return;
  205. if (bip)
  206. hdr3->info.lsn = cpu_to_be64(bip->bli_item.li_lsn);
  207. xfs_update_cksum(bp->b_addr, BBTOB(bp->b_length), XFS_ATTR3_LEAF_CRC_OFF);
  208. }
  209. /*
  210. * leaf/node format detection on trees is sketchy, so a node read can be done on
  211. * leaf level blocks when detection identifies the tree as a node format tree
  212. * incorrectly. In this case, we need to swap the verifier to match the correct
  213. * format of the block being read.
  214. */
  215. static void
  216. xfs_attr3_leaf_read_verify(
  217. struct xfs_buf *bp)
  218. {
  219. struct xfs_mount *mp = bp->b_target->bt_mount;
  220. if ((xfs_sb_version_hascrc(&mp->m_sb) &&
  221. !xfs_verify_cksum(bp->b_addr, BBTOB(bp->b_length),
  222. XFS_ATTR3_LEAF_CRC_OFF)) ||
  223. !xfs_attr3_leaf_verify(bp)) {
  224. XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp, bp->b_addr);
  225. xfs_buf_ioerror(bp, EFSCORRUPTED);
  226. }
  227. }
  228. const struct xfs_buf_ops xfs_attr3_leaf_buf_ops = {
  229. .verify_read = xfs_attr3_leaf_read_verify,
  230. .verify_write = xfs_attr3_leaf_write_verify,
  231. };
  232. int
  233. xfs_attr3_leaf_read(
  234. struct xfs_trans *tp,
  235. struct xfs_inode *dp,
  236. xfs_dablk_t bno,
  237. xfs_daddr_t mappedbno,
  238. struct xfs_buf **bpp)
  239. {
  240. int err;
  241. err = xfs_da_read_buf(tp, dp, bno, mappedbno, bpp,
  242. XFS_ATTR_FORK, &xfs_attr3_leaf_buf_ops);
  243. if (!err && tp)
  244. xfs_trans_buf_set_type(tp, *bpp, XFS_BLFT_ATTR_LEAF_BUF);
  245. return err;
  246. }
  247. /*========================================================================
  248. * Namespace helper routines
  249. *========================================================================*/
  250. /*
  251. * If namespace bits don't match return 0.
  252. * If all match then return 1.
  253. */
  254. STATIC int
  255. xfs_attr_namesp_match(int arg_flags, int ondisk_flags)
  256. {
  257. return XFS_ATTR_NSP_ONDISK(ondisk_flags) == XFS_ATTR_NSP_ARGS_TO_ONDISK(arg_flags);
  258. }
  259. /*========================================================================
  260. * External routines when attribute fork size < XFS_LITINO(mp).
  261. *========================================================================*/
  262. /*
  263. * Query whether the requested number of additional bytes of extended
  264. * attribute space will be able to fit inline.
  265. *
  266. * Returns zero if not, else the di_forkoff fork offset to be used in the
  267. * literal area for attribute data once the new bytes have been added.
  268. *
  269. * di_forkoff must be 8 byte aligned, hence is stored as a >>3 value;
  270. * special case for dev/uuid inodes, they have fixed size data forks.
  271. */
  272. int
  273. xfs_attr_shortform_bytesfit(xfs_inode_t *dp, int bytes)
  274. {
  275. int offset;
  276. int minforkoff; /* lower limit on valid forkoff locations */
  277. int maxforkoff; /* upper limit on valid forkoff locations */
  278. int dsize;
  279. xfs_mount_t *mp = dp->i_mount;
  280. /* rounded down */
  281. offset = (XFS_LITINO(mp, dp->i_d.di_version) - bytes) >> 3;
  282. switch (dp->i_d.di_format) {
  283. case XFS_DINODE_FMT_DEV:
  284. minforkoff = roundup(sizeof(xfs_dev_t), 8) >> 3;
  285. return (offset >= minforkoff) ? minforkoff : 0;
  286. case XFS_DINODE_FMT_UUID:
  287. minforkoff = roundup(sizeof(uuid_t), 8) >> 3;
  288. return (offset >= minforkoff) ? minforkoff : 0;
  289. }
  290. /*
  291. * If the requested numbers of bytes is smaller or equal to the
  292. * current attribute fork size we can always proceed.
  293. *
  294. * Note that if_bytes in the data fork might actually be larger than
  295. * the current data fork size is due to delalloc extents. In that
  296. * case either the extent count will go down when they are converted
  297. * to real extents, or the delalloc conversion will take care of the
  298. * literal area rebalancing.
  299. */
  300. if (bytes <= XFS_IFORK_ASIZE(dp))
  301. return dp->i_d.di_forkoff;
  302. /*
  303. * For attr2 we can try to move the forkoff if there is space in the
  304. * literal area, but for the old format we are done if there is no
  305. * space in the fixed attribute fork.
  306. */
  307. if (!(mp->m_flags & XFS_MOUNT_ATTR2))
  308. return 0;
  309. dsize = dp->i_df.if_bytes;
  310. switch (dp->i_d.di_format) {
  311. case XFS_DINODE_FMT_EXTENTS:
  312. /*
  313. * If there is no attr fork and the data fork is extents,
  314. * determine if creating the default attr fork will result
  315. * in the extents form migrating to btree. If so, the
  316. * minimum offset only needs to be the space required for
  317. * the btree root.
  318. */
  319. if (!dp->i_d.di_forkoff && dp->i_df.if_bytes >
  320. xfs_default_attroffset(dp))
  321. dsize = XFS_BMDR_SPACE_CALC(MINDBTPTRS);
  322. break;
  323. case XFS_DINODE_FMT_BTREE:
  324. /*
  325. * If we have a data btree then keep forkoff if we have one,
  326. * otherwise we are adding a new attr, so then we set
  327. * minforkoff to where the btree root can finish so we have
  328. * plenty of room for attrs
  329. */
  330. if (dp->i_d.di_forkoff) {
  331. if (offset < dp->i_d.di_forkoff)
  332. return 0;
  333. return dp->i_d.di_forkoff;
  334. }
  335. dsize = XFS_BMAP_BROOT_SPACE(mp, dp->i_df.if_broot);
  336. break;
  337. }
  338. /*
  339. * A data fork btree root must have space for at least
  340. * MINDBTPTRS key/ptr pairs if the data fork is small or empty.
  341. */
  342. minforkoff = MAX(dsize, XFS_BMDR_SPACE_CALC(MINDBTPTRS));
  343. minforkoff = roundup(minforkoff, 8) >> 3;
  344. /* attr fork btree root can have at least this many key/ptr pairs */
  345. maxforkoff = XFS_LITINO(mp, dp->i_d.di_version) -
  346. XFS_BMDR_SPACE_CALC(MINABTPTRS);
  347. maxforkoff = maxforkoff >> 3; /* rounded down */
  348. if (offset >= maxforkoff)
  349. return maxforkoff;
  350. if (offset >= minforkoff)
  351. return offset;
  352. return 0;
  353. }
  354. /*
  355. * Switch on the ATTR2 superblock bit (implies also FEATURES2)
  356. */
  357. STATIC void
  358. xfs_sbversion_add_attr2(xfs_mount_t *mp, xfs_trans_t *tp)
  359. {
  360. if ((mp->m_flags & XFS_MOUNT_ATTR2) &&
  361. !(xfs_sb_version_hasattr2(&mp->m_sb))) {
  362. spin_lock(&mp->m_sb_lock);
  363. if (!xfs_sb_version_hasattr2(&mp->m_sb)) {
  364. xfs_sb_version_addattr2(&mp->m_sb);
  365. spin_unlock(&mp->m_sb_lock);
  366. xfs_mod_sb(tp, XFS_SB_VERSIONNUM | XFS_SB_FEATURES2);
  367. } else
  368. spin_unlock(&mp->m_sb_lock);
  369. }
  370. }
  371. /*
  372. * Create the initial contents of a shortform attribute list.
  373. */
  374. void
  375. xfs_attr_shortform_create(xfs_da_args_t *args)
  376. {
  377. xfs_attr_sf_hdr_t *hdr;
  378. xfs_inode_t *dp;
  379. xfs_ifork_t *ifp;
  380. trace_xfs_attr_sf_create(args);
  381. dp = args->dp;
  382. ASSERT(dp != NULL);
  383. ifp = dp->i_afp;
  384. ASSERT(ifp != NULL);
  385. ASSERT(ifp->if_bytes == 0);
  386. if (dp->i_d.di_aformat == XFS_DINODE_FMT_EXTENTS) {
  387. ifp->if_flags &= ~XFS_IFEXTENTS; /* just in case */
  388. dp->i_d.di_aformat = XFS_DINODE_FMT_LOCAL;
  389. ifp->if_flags |= XFS_IFINLINE;
  390. } else {
  391. ASSERT(ifp->if_flags & XFS_IFINLINE);
  392. }
  393. xfs_idata_realloc(dp, sizeof(*hdr), XFS_ATTR_FORK);
  394. hdr = (xfs_attr_sf_hdr_t *)ifp->if_u1.if_data;
  395. hdr->count = 0;
  396. hdr->totsize = cpu_to_be16(sizeof(*hdr));
  397. xfs_trans_log_inode(args->trans, dp, XFS_ILOG_CORE | XFS_ILOG_ADATA);
  398. }
  399. /*
  400. * Add a name/value pair to the shortform attribute list.
  401. * Overflow from the inode has already been checked for.
  402. */
  403. void
  404. xfs_attr_shortform_add(xfs_da_args_t *args, int forkoff)
  405. {
  406. xfs_attr_shortform_t *sf;
  407. xfs_attr_sf_entry_t *sfe;
  408. int i, offset, size;
  409. xfs_mount_t *mp;
  410. xfs_inode_t *dp;
  411. xfs_ifork_t *ifp;
  412. trace_xfs_attr_sf_add(args);
  413. dp = args->dp;
  414. mp = dp->i_mount;
  415. dp->i_d.di_forkoff = forkoff;
  416. ifp = dp->i_afp;
  417. ASSERT(ifp->if_flags & XFS_IFINLINE);
  418. sf = (xfs_attr_shortform_t *)ifp->if_u1.if_data;
  419. sfe = &sf->list[0];
  420. for (i = 0; i < sf->hdr.count; sfe = XFS_ATTR_SF_NEXTENTRY(sfe), i++) {
  421. #ifdef DEBUG
  422. if (sfe->namelen != args->namelen)
  423. continue;
  424. if (memcmp(args->name, sfe->nameval, args->namelen) != 0)
  425. continue;
  426. if (!xfs_attr_namesp_match(args->flags, sfe->flags))
  427. continue;
  428. ASSERT(0);
  429. #endif
  430. }
  431. offset = (char *)sfe - (char *)sf;
  432. size = XFS_ATTR_SF_ENTSIZE_BYNAME(args->namelen, args->valuelen);
  433. xfs_idata_realloc(dp, size, XFS_ATTR_FORK);
  434. sf = (xfs_attr_shortform_t *)ifp->if_u1.if_data;
  435. sfe = (xfs_attr_sf_entry_t *)((char *)sf + offset);
  436. sfe->namelen = args->namelen;
  437. sfe->valuelen = args->valuelen;
  438. sfe->flags = XFS_ATTR_NSP_ARGS_TO_ONDISK(args->flags);
  439. memcpy(sfe->nameval, args->name, args->namelen);
  440. memcpy(&sfe->nameval[args->namelen], args->value, args->valuelen);
  441. sf->hdr.count++;
  442. be16_add_cpu(&sf->hdr.totsize, size);
  443. xfs_trans_log_inode(args->trans, dp, XFS_ILOG_CORE | XFS_ILOG_ADATA);
  444. xfs_sbversion_add_attr2(mp, args->trans);
  445. }
  446. /*
  447. * After the last attribute is removed revert to original inode format,
  448. * making all literal area available to the data fork once more.
  449. */
  450. STATIC void
  451. xfs_attr_fork_reset(
  452. struct xfs_inode *ip,
  453. struct xfs_trans *tp)
  454. {
  455. xfs_idestroy_fork(ip, XFS_ATTR_FORK);
  456. ip->i_d.di_forkoff = 0;
  457. ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
  458. ASSERT(ip->i_d.di_anextents == 0);
  459. ASSERT(ip->i_afp == NULL);
  460. xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
  461. }
  462. /*
  463. * Remove an attribute from the shortform attribute list structure.
  464. */
  465. int
  466. xfs_attr_shortform_remove(xfs_da_args_t *args)
  467. {
  468. xfs_attr_shortform_t *sf;
  469. xfs_attr_sf_entry_t *sfe;
  470. int base, size=0, end, totsize, i;
  471. xfs_mount_t *mp;
  472. xfs_inode_t *dp;
  473. trace_xfs_attr_sf_remove(args);
  474. dp = args->dp;
  475. mp = dp->i_mount;
  476. base = sizeof(xfs_attr_sf_hdr_t);
  477. sf = (xfs_attr_shortform_t *)dp->i_afp->if_u1.if_data;
  478. sfe = &sf->list[0];
  479. end = sf->hdr.count;
  480. for (i = 0; i < end; sfe = XFS_ATTR_SF_NEXTENTRY(sfe),
  481. base += size, i++) {
  482. size = XFS_ATTR_SF_ENTSIZE(sfe);
  483. if (sfe->namelen != args->namelen)
  484. continue;
  485. if (memcmp(sfe->nameval, args->name, args->namelen) != 0)
  486. continue;
  487. if (!xfs_attr_namesp_match(args->flags, sfe->flags))
  488. continue;
  489. break;
  490. }
  491. if (i == end)
  492. return(XFS_ERROR(ENOATTR));
  493. /*
  494. * Fix up the attribute fork data, covering the hole
  495. */
  496. end = base + size;
  497. totsize = be16_to_cpu(sf->hdr.totsize);
  498. if (end != totsize)
  499. memmove(&((char *)sf)[base], &((char *)sf)[end], totsize - end);
  500. sf->hdr.count--;
  501. be16_add_cpu(&sf->hdr.totsize, -size);
  502. /*
  503. * Fix up the start offset of the attribute fork
  504. */
  505. totsize -= size;
  506. if (totsize == sizeof(xfs_attr_sf_hdr_t) &&
  507. (mp->m_flags & XFS_MOUNT_ATTR2) &&
  508. (dp->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
  509. !(args->op_flags & XFS_DA_OP_ADDNAME)) {
  510. xfs_attr_fork_reset(dp, args->trans);
  511. } else {
  512. xfs_idata_realloc(dp, -size, XFS_ATTR_FORK);
  513. dp->i_d.di_forkoff = xfs_attr_shortform_bytesfit(dp, totsize);
  514. ASSERT(dp->i_d.di_forkoff);
  515. ASSERT(totsize > sizeof(xfs_attr_sf_hdr_t) ||
  516. (args->op_flags & XFS_DA_OP_ADDNAME) ||
  517. !(mp->m_flags & XFS_MOUNT_ATTR2) ||
  518. dp->i_d.di_format == XFS_DINODE_FMT_BTREE);
  519. xfs_trans_log_inode(args->trans, dp,
  520. XFS_ILOG_CORE | XFS_ILOG_ADATA);
  521. }
  522. xfs_sbversion_add_attr2(mp, args->trans);
  523. return(0);
  524. }
  525. /*
  526. * Look up a name in a shortform attribute list structure.
  527. */
  528. /*ARGSUSED*/
  529. int
  530. xfs_attr_shortform_lookup(xfs_da_args_t *args)
  531. {
  532. xfs_attr_shortform_t *sf;
  533. xfs_attr_sf_entry_t *sfe;
  534. int i;
  535. xfs_ifork_t *ifp;
  536. trace_xfs_attr_sf_lookup(args);
  537. ifp = args->dp->i_afp;
  538. ASSERT(ifp->if_flags & XFS_IFINLINE);
  539. sf = (xfs_attr_shortform_t *)ifp->if_u1.if_data;
  540. sfe = &sf->list[0];
  541. for (i = 0; i < sf->hdr.count;
  542. sfe = XFS_ATTR_SF_NEXTENTRY(sfe), i++) {
  543. if (sfe->namelen != args->namelen)
  544. continue;
  545. if (memcmp(args->name, sfe->nameval, args->namelen) != 0)
  546. continue;
  547. if (!xfs_attr_namesp_match(args->flags, sfe->flags))
  548. continue;
  549. return(XFS_ERROR(EEXIST));
  550. }
  551. return(XFS_ERROR(ENOATTR));
  552. }
  553. /*
  554. * Look up a name in a shortform attribute list structure.
  555. */
  556. /*ARGSUSED*/
  557. int
  558. xfs_attr_shortform_getvalue(xfs_da_args_t *args)
  559. {
  560. xfs_attr_shortform_t *sf;
  561. xfs_attr_sf_entry_t *sfe;
  562. int i;
  563. ASSERT(args->dp->i_d.di_aformat == XFS_IFINLINE);
  564. sf = (xfs_attr_shortform_t *)args->dp->i_afp->if_u1.if_data;
  565. sfe = &sf->list[0];
  566. for (i = 0; i < sf->hdr.count;
  567. sfe = XFS_ATTR_SF_NEXTENTRY(sfe), i++) {
  568. if (sfe->namelen != args->namelen)
  569. continue;
  570. if (memcmp(args->name, sfe->nameval, args->namelen) != 0)
  571. continue;
  572. if (!xfs_attr_namesp_match(args->flags, sfe->flags))
  573. continue;
  574. if (args->flags & ATTR_KERNOVAL) {
  575. args->valuelen = sfe->valuelen;
  576. return(XFS_ERROR(EEXIST));
  577. }
  578. if (args->valuelen < sfe->valuelen) {
  579. args->valuelen = sfe->valuelen;
  580. return(XFS_ERROR(ERANGE));
  581. }
  582. args->valuelen = sfe->valuelen;
  583. memcpy(args->value, &sfe->nameval[args->namelen],
  584. args->valuelen);
  585. return(XFS_ERROR(EEXIST));
  586. }
  587. return(XFS_ERROR(ENOATTR));
  588. }
  589. /*
  590. * Convert from using the shortform to the leaf.
  591. */
  592. int
  593. xfs_attr_shortform_to_leaf(xfs_da_args_t *args)
  594. {
  595. xfs_inode_t *dp;
  596. xfs_attr_shortform_t *sf;
  597. xfs_attr_sf_entry_t *sfe;
  598. xfs_da_args_t nargs;
  599. char *tmpbuffer;
  600. int error, i, size;
  601. xfs_dablk_t blkno;
  602. struct xfs_buf *bp;
  603. xfs_ifork_t *ifp;
  604. trace_xfs_attr_sf_to_leaf(args);
  605. dp = args->dp;
  606. ifp = dp->i_afp;
  607. sf = (xfs_attr_shortform_t *)ifp->if_u1.if_data;
  608. size = be16_to_cpu(sf->hdr.totsize);
  609. tmpbuffer = kmem_alloc(size, KM_SLEEP);
  610. ASSERT(tmpbuffer != NULL);
  611. memcpy(tmpbuffer, ifp->if_u1.if_data, size);
  612. sf = (xfs_attr_shortform_t *)tmpbuffer;
  613. xfs_idata_realloc(dp, -size, XFS_ATTR_FORK);
  614. bp = NULL;
  615. error = xfs_da_grow_inode(args, &blkno);
  616. if (error) {
  617. /*
  618. * If we hit an IO error middle of the transaction inside
  619. * grow_inode(), we may have inconsistent data. Bail out.
  620. */
  621. if (error == EIO)
  622. goto out;
  623. xfs_idata_realloc(dp, size, XFS_ATTR_FORK); /* try to put */
  624. memcpy(ifp->if_u1.if_data, tmpbuffer, size); /* it back */
  625. goto out;
  626. }
  627. ASSERT(blkno == 0);
  628. error = xfs_attr3_leaf_create(args, blkno, &bp);
  629. if (error) {
  630. error = xfs_da_shrink_inode(args, 0, bp);
  631. bp = NULL;
  632. if (error)
  633. goto out;
  634. xfs_idata_realloc(dp, size, XFS_ATTR_FORK); /* try to put */
  635. memcpy(ifp->if_u1.if_data, tmpbuffer, size); /* it back */
  636. goto out;
  637. }
  638. memset((char *)&nargs, 0, sizeof(nargs));
  639. nargs.dp = dp;
  640. nargs.firstblock = args->firstblock;
  641. nargs.flist = args->flist;
  642. nargs.total = args->total;
  643. nargs.whichfork = XFS_ATTR_FORK;
  644. nargs.trans = args->trans;
  645. nargs.op_flags = XFS_DA_OP_OKNOENT;
  646. sfe = &sf->list[0];
  647. for (i = 0; i < sf->hdr.count; i++) {
  648. nargs.name = sfe->nameval;
  649. nargs.namelen = sfe->namelen;
  650. nargs.value = &sfe->nameval[nargs.namelen];
  651. nargs.valuelen = sfe->valuelen;
  652. nargs.hashval = xfs_da_hashname(sfe->nameval,
  653. sfe->namelen);
  654. nargs.flags = XFS_ATTR_NSP_ONDISK_TO_ARGS(sfe->flags);
  655. error = xfs_attr3_leaf_lookup_int(bp, &nargs); /* set a->index */
  656. ASSERT(error == ENOATTR);
  657. error = xfs_attr3_leaf_add(bp, &nargs);
  658. ASSERT(error != ENOSPC);
  659. if (error)
  660. goto out;
  661. sfe = XFS_ATTR_SF_NEXTENTRY(sfe);
  662. }
  663. error = 0;
  664. out:
  665. kmem_free(tmpbuffer);
  666. return(error);
  667. }
  668. STATIC int
  669. xfs_attr_shortform_compare(const void *a, const void *b)
  670. {
  671. xfs_attr_sf_sort_t *sa, *sb;
  672. sa = (xfs_attr_sf_sort_t *)a;
  673. sb = (xfs_attr_sf_sort_t *)b;
  674. if (sa->hash < sb->hash) {
  675. return(-1);
  676. } else if (sa->hash > sb->hash) {
  677. return(1);
  678. } else {
  679. return(sa->entno - sb->entno);
  680. }
  681. }
  682. #define XFS_ISRESET_CURSOR(cursor) \
  683. (!((cursor)->initted) && !((cursor)->hashval) && \
  684. !((cursor)->blkno) && !((cursor)->offset))
  685. /*
  686. * Copy out entries of shortform attribute lists for attr_list().
  687. * Shortform attribute lists are not stored in hashval sorted order.
  688. * If the output buffer is not large enough to hold them all, then we
  689. * we have to calculate each entries' hashvalue and sort them before
  690. * we can begin returning them to the user.
  691. */
  692. /*ARGSUSED*/
  693. int
  694. xfs_attr_shortform_list(xfs_attr_list_context_t *context)
  695. {
  696. attrlist_cursor_kern_t *cursor;
  697. xfs_attr_sf_sort_t *sbuf, *sbp;
  698. xfs_attr_shortform_t *sf;
  699. xfs_attr_sf_entry_t *sfe;
  700. xfs_inode_t *dp;
  701. int sbsize, nsbuf, count, i;
  702. int error;
  703. ASSERT(context != NULL);
  704. dp = context->dp;
  705. ASSERT(dp != NULL);
  706. ASSERT(dp->i_afp != NULL);
  707. sf = (xfs_attr_shortform_t *)dp->i_afp->if_u1.if_data;
  708. ASSERT(sf != NULL);
  709. if (!sf->hdr.count)
  710. return(0);
  711. cursor = context->cursor;
  712. ASSERT(cursor != NULL);
  713. trace_xfs_attr_list_sf(context);
  714. /*
  715. * If the buffer is large enough and the cursor is at the start,
  716. * do not bother with sorting since we will return everything in
  717. * one buffer and another call using the cursor won't need to be
  718. * made.
  719. * Note the generous fudge factor of 16 overhead bytes per entry.
  720. * If bufsize is zero then put_listent must be a search function
  721. * and can just scan through what we have.
  722. */
  723. if (context->bufsize == 0 ||
  724. (XFS_ISRESET_CURSOR(cursor) &&
  725. (dp->i_afp->if_bytes + sf->hdr.count * 16) < context->bufsize)) {
  726. for (i = 0, sfe = &sf->list[0]; i < sf->hdr.count; i++) {
  727. error = context->put_listent(context,
  728. sfe->flags,
  729. sfe->nameval,
  730. (int)sfe->namelen,
  731. (int)sfe->valuelen,
  732. &sfe->nameval[sfe->namelen]);
  733. /*
  734. * Either search callback finished early or
  735. * didn't fit it all in the buffer after all.
  736. */
  737. if (context->seen_enough)
  738. break;
  739. if (error)
  740. return error;
  741. sfe = XFS_ATTR_SF_NEXTENTRY(sfe);
  742. }
  743. trace_xfs_attr_list_sf_all(context);
  744. return(0);
  745. }
  746. /* do no more for a search callback */
  747. if (context->bufsize == 0)
  748. return 0;
  749. /*
  750. * It didn't all fit, so we have to sort everything on hashval.
  751. */
  752. sbsize = sf->hdr.count * sizeof(*sbuf);
  753. sbp = sbuf = kmem_alloc(sbsize, KM_SLEEP | KM_NOFS);
  754. /*
  755. * Scan the attribute list for the rest of the entries, storing
  756. * the relevant info from only those that match into a buffer.
  757. */
  758. nsbuf = 0;
  759. for (i = 0, sfe = &sf->list[0]; i < sf->hdr.count; i++) {
  760. if (unlikely(
  761. ((char *)sfe < (char *)sf) ||
  762. ((char *)sfe >= ((char *)sf + dp->i_afp->if_bytes)))) {
  763. XFS_CORRUPTION_ERROR("xfs_attr_shortform_list",
  764. XFS_ERRLEVEL_LOW,
  765. context->dp->i_mount, sfe);
  766. kmem_free(sbuf);
  767. return XFS_ERROR(EFSCORRUPTED);
  768. }
  769. sbp->entno = i;
  770. sbp->hash = xfs_da_hashname(sfe->nameval, sfe->namelen);
  771. sbp->name = sfe->nameval;
  772. sbp->namelen = sfe->namelen;
  773. /* These are bytes, and both on-disk, don't endian-flip */
  774. sbp->valuelen = sfe->valuelen;
  775. sbp->flags = sfe->flags;
  776. sfe = XFS_ATTR_SF_NEXTENTRY(sfe);
  777. sbp++;
  778. nsbuf++;
  779. }
  780. /*
  781. * Sort the entries on hash then entno.
  782. */
  783. xfs_sort(sbuf, nsbuf, sizeof(*sbuf), xfs_attr_shortform_compare);
  784. /*
  785. * Re-find our place IN THE SORTED LIST.
  786. */
  787. count = 0;
  788. cursor->initted = 1;
  789. cursor->blkno = 0;
  790. for (sbp = sbuf, i = 0; i < nsbuf; i++, sbp++) {
  791. if (sbp->hash == cursor->hashval) {
  792. if (cursor->offset == count) {
  793. break;
  794. }
  795. count++;
  796. } else if (sbp->hash > cursor->hashval) {
  797. break;
  798. }
  799. }
  800. if (i == nsbuf) {
  801. kmem_free(sbuf);
  802. return(0);
  803. }
  804. /*
  805. * Loop putting entries into the user buffer.
  806. */
  807. for ( ; i < nsbuf; i++, sbp++) {
  808. if (cursor->hashval != sbp->hash) {
  809. cursor->hashval = sbp->hash;
  810. cursor->offset = 0;
  811. }
  812. error = context->put_listent(context,
  813. sbp->flags,
  814. sbp->name,
  815. sbp->namelen,
  816. sbp->valuelen,
  817. &sbp->name[sbp->namelen]);
  818. if (error)
  819. return error;
  820. if (context->seen_enough)
  821. break;
  822. cursor->offset++;
  823. }
  824. kmem_free(sbuf);
  825. return(0);
  826. }
  827. /*
  828. * Check a leaf attribute block to see if all the entries would fit into
  829. * a shortform attribute list.
  830. */
  831. int
  832. xfs_attr_shortform_allfit(
  833. struct xfs_buf *bp,
  834. struct xfs_inode *dp)
  835. {
  836. struct xfs_attr_leafblock *leaf;
  837. struct xfs_attr_leaf_entry *entry;
  838. xfs_attr_leaf_name_local_t *name_loc;
  839. struct xfs_attr3_icleaf_hdr leafhdr;
  840. int bytes;
  841. int i;
  842. leaf = bp->b_addr;
  843. xfs_attr3_leaf_hdr_from_disk(&leafhdr, leaf);
  844. entry = xfs_attr3_leaf_entryp(leaf);
  845. bytes = sizeof(struct xfs_attr_sf_hdr);
  846. for (i = 0; i < leafhdr.count; entry++, i++) {
  847. if (entry->flags & XFS_ATTR_INCOMPLETE)
  848. continue; /* don't copy partial entries */
  849. if (!(entry->flags & XFS_ATTR_LOCAL))
  850. return(0);
  851. name_loc = xfs_attr3_leaf_name_local(leaf, i);
  852. if (name_loc->namelen >= XFS_ATTR_SF_ENTSIZE_MAX)
  853. return(0);
  854. if (be16_to_cpu(name_loc->valuelen) >= XFS_ATTR_SF_ENTSIZE_MAX)
  855. return(0);
  856. bytes += sizeof(struct xfs_attr_sf_entry) - 1
  857. + name_loc->namelen
  858. + be16_to_cpu(name_loc->valuelen);
  859. }
  860. if ((dp->i_mount->m_flags & XFS_MOUNT_ATTR2) &&
  861. (dp->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
  862. (bytes == sizeof(struct xfs_attr_sf_hdr)))
  863. return -1;
  864. return xfs_attr_shortform_bytesfit(dp, bytes);
  865. }
  866. /*
  867. * Convert a leaf attribute list to shortform attribute list
  868. */
  869. int
  870. xfs_attr3_leaf_to_shortform(
  871. struct xfs_buf *bp,
  872. struct xfs_da_args *args,
  873. int forkoff)
  874. {
  875. struct xfs_attr_leafblock *leaf;
  876. struct xfs_attr3_icleaf_hdr ichdr;
  877. struct xfs_attr_leaf_entry *entry;
  878. struct xfs_attr_leaf_name_local *name_loc;
  879. struct xfs_da_args nargs;
  880. struct xfs_inode *dp = args->dp;
  881. char *tmpbuffer;
  882. int error;
  883. int i;
  884. trace_xfs_attr_leaf_to_sf(args);
  885. tmpbuffer = kmem_alloc(XFS_LBSIZE(dp->i_mount), KM_SLEEP);
  886. if (!tmpbuffer)
  887. return ENOMEM;
  888. memcpy(tmpbuffer, bp->b_addr, XFS_LBSIZE(dp->i_mount));
  889. leaf = (xfs_attr_leafblock_t *)tmpbuffer;
  890. xfs_attr3_leaf_hdr_from_disk(&ichdr, leaf);
  891. entry = xfs_attr3_leaf_entryp(leaf);
  892. /* XXX (dgc): buffer is about to be marked stale - why zero it? */
  893. memset(bp->b_addr, 0, XFS_LBSIZE(dp->i_mount));
  894. /*
  895. * Clean out the prior contents of the attribute list.
  896. */
  897. error = xfs_da_shrink_inode(args, 0, bp);
  898. if (error)
  899. goto out;
  900. if (forkoff == -1) {
  901. ASSERT(dp->i_mount->m_flags & XFS_MOUNT_ATTR2);
  902. ASSERT(dp->i_d.di_format != XFS_DINODE_FMT_BTREE);
  903. xfs_attr_fork_reset(dp, args->trans);
  904. goto out;
  905. }
  906. xfs_attr_shortform_create(args);
  907. /*
  908. * Copy the attributes
  909. */
  910. memset((char *)&nargs, 0, sizeof(nargs));
  911. nargs.dp = dp;
  912. nargs.firstblock = args->firstblock;
  913. nargs.flist = args->flist;
  914. nargs.total = args->total;
  915. nargs.whichfork = XFS_ATTR_FORK;
  916. nargs.trans = args->trans;
  917. nargs.op_flags = XFS_DA_OP_OKNOENT;
  918. for (i = 0; i < ichdr.count; entry++, i++) {
  919. if (entry->flags & XFS_ATTR_INCOMPLETE)
  920. continue; /* don't copy partial entries */
  921. if (!entry->nameidx)
  922. continue;
  923. ASSERT(entry->flags & XFS_ATTR_LOCAL);
  924. name_loc = xfs_attr3_leaf_name_local(leaf, i);
  925. nargs.name = name_loc->nameval;
  926. nargs.namelen = name_loc->namelen;
  927. nargs.value = &name_loc->nameval[nargs.namelen];
  928. nargs.valuelen = be16_to_cpu(name_loc->valuelen);
  929. nargs.hashval = be32_to_cpu(entry->hashval);
  930. nargs.flags = XFS_ATTR_NSP_ONDISK_TO_ARGS(entry->flags);
  931. xfs_attr_shortform_add(&nargs, forkoff);
  932. }
  933. error = 0;
  934. out:
  935. kmem_free(tmpbuffer);
  936. return error;
  937. }
  938. /*
  939. * Convert from using a single leaf to a root node and a leaf.
  940. */
  941. int
  942. xfs_attr3_leaf_to_node(
  943. struct xfs_da_args *args)
  944. {
  945. struct xfs_attr_leafblock *leaf;
  946. struct xfs_attr3_icleaf_hdr icleafhdr;
  947. struct xfs_attr_leaf_entry *entries;
  948. struct xfs_da_node_entry *btree;
  949. struct xfs_da3_icnode_hdr icnodehdr;
  950. struct xfs_da_intnode *node;
  951. struct xfs_inode *dp = args->dp;
  952. struct xfs_mount *mp = dp->i_mount;
  953. struct xfs_buf *bp1 = NULL;
  954. struct xfs_buf *bp2 = NULL;
  955. xfs_dablk_t blkno;
  956. int error;
  957. trace_xfs_attr_leaf_to_node(args);
  958. error = xfs_da_grow_inode(args, &blkno);
  959. if (error)
  960. goto out;
  961. error = xfs_attr3_leaf_read(args->trans, dp, 0, -1, &bp1);
  962. if (error)
  963. goto out;
  964. error = xfs_da_get_buf(args->trans, dp, blkno, -1, &bp2, XFS_ATTR_FORK);
  965. if (error)
  966. goto out;
  967. /* copy leaf to new buffer, update identifiers */
  968. xfs_trans_buf_set_type(args->trans, bp2, XFS_BLFT_ATTR_LEAF_BUF);
  969. bp2->b_ops = bp1->b_ops;
  970. memcpy(bp2->b_addr, bp1->b_addr, XFS_LBSIZE(mp));
  971. if (xfs_sb_version_hascrc(&mp->m_sb)) {
  972. struct xfs_da3_blkinfo *hdr3 = bp2->b_addr;
  973. hdr3->blkno = cpu_to_be64(bp2->b_bn);
  974. }
  975. xfs_trans_log_buf(args->trans, bp2, 0, XFS_LBSIZE(mp) - 1);
  976. /*
  977. * Set up the new root node.
  978. */
  979. error = xfs_da3_node_create(args, 0, 1, &bp1, XFS_ATTR_FORK);
  980. if (error)
  981. goto out;
  982. node = bp1->b_addr;
  983. xfs_da3_node_hdr_from_disk(&icnodehdr, node);
  984. btree = xfs_da3_node_tree_p(node);
  985. leaf = bp2->b_addr;
  986. xfs_attr3_leaf_hdr_from_disk(&icleafhdr, leaf);
  987. entries = xfs_attr3_leaf_entryp(leaf);
  988. /* both on-disk, don't endian-flip twice */
  989. btree[0].hashval = entries[icleafhdr.count - 1].hashval;
  990. btree[0].before = cpu_to_be32(blkno);
  991. icnodehdr.count = 1;
  992. xfs_da3_node_hdr_to_disk(node, &icnodehdr);
  993. xfs_trans_log_buf(args->trans, bp1, 0, XFS_LBSIZE(mp) - 1);
  994. error = 0;
  995. out:
  996. return error;
  997. }
  998. /*========================================================================
  999. * Routines used for growing the Btree.
  1000. *========================================================================*/
  1001. /*
  1002. * Create the initial contents of a leaf attribute list
  1003. * or a leaf in a node attribute list.
  1004. */
  1005. STATIC int
  1006. xfs_attr3_leaf_create(
  1007. struct xfs_da_args *args,
  1008. xfs_dablk_t blkno,
  1009. struct xfs_buf **bpp)
  1010. {
  1011. struct xfs_attr_leafblock *leaf;
  1012. struct xfs_attr3_icleaf_hdr ichdr;
  1013. struct xfs_inode *dp = args->dp;
  1014. struct xfs_mount *mp = dp->i_mount;
  1015. struct xfs_buf *bp;
  1016. int error;
  1017. trace_xfs_attr_leaf_create(args);
  1018. error = xfs_da_get_buf(args->trans, args->dp, blkno, -1, &bp,
  1019. XFS_ATTR_FORK);
  1020. if (error)
  1021. return error;
  1022. bp->b_ops = &xfs_attr3_leaf_buf_ops;
  1023. xfs_trans_buf_set_type(args->trans, bp, XFS_BLFT_ATTR_LEAF_BUF);
  1024. leaf = bp->b_addr;
  1025. memset(leaf, 0, XFS_LBSIZE(mp));
  1026. memset(&ichdr, 0, sizeof(ichdr));
  1027. ichdr.firstused = XFS_LBSIZE(mp);
  1028. if (xfs_sb_version_hascrc(&mp->m_sb)) {
  1029. struct xfs_da3_blkinfo *hdr3 = bp->b_addr;
  1030. ichdr.magic = XFS_ATTR3_LEAF_MAGIC;
  1031. hdr3->blkno = cpu_to_be64(bp->b_bn);
  1032. hdr3->owner = cpu_to_be64(dp->i_ino);
  1033. uuid_copy(&hdr3->uuid, &mp->m_sb.sb_uuid);
  1034. ichdr.freemap[0].base = sizeof(struct xfs_attr3_leaf_hdr);
  1035. } else {
  1036. ichdr.magic = XFS_ATTR_LEAF_MAGIC;
  1037. ichdr.freemap[0].base = sizeof(struct xfs_attr_leaf_hdr);
  1038. }
  1039. ichdr.freemap[0].size = ichdr.firstused - ichdr.freemap[0].base;
  1040. xfs_attr3_leaf_hdr_to_disk(leaf, &ichdr);
  1041. xfs_trans_log_buf(args->trans, bp, 0, XFS_LBSIZE(mp) - 1);
  1042. *bpp = bp;
  1043. return 0;
  1044. }
  1045. /*
  1046. * Split the leaf node, rebalance, then add the new entry.
  1047. */
  1048. int
  1049. xfs_attr3_leaf_split(
  1050. struct xfs_da_state *state,
  1051. struct xfs_da_state_blk *oldblk,
  1052. struct xfs_da_state_blk *newblk)
  1053. {
  1054. xfs_dablk_t blkno;
  1055. int error;
  1056. trace_xfs_attr_leaf_split(state->args);
  1057. /*
  1058. * Allocate space for a new leaf node.
  1059. */
  1060. ASSERT(oldblk->magic == XFS_ATTR_LEAF_MAGIC);
  1061. error = xfs_da_grow_inode(state->args, &blkno);
  1062. if (error)
  1063. return(error);
  1064. error = xfs_attr3_leaf_create(state->args, blkno, &newblk->bp);
  1065. if (error)
  1066. return(error);
  1067. newblk->blkno = blkno;
  1068. newblk->magic = XFS_ATTR_LEAF_MAGIC;
  1069. /*
  1070. * Rebalance the entries across the two leaves.
  1071. * NOTE: rebalance() currently depends on the 2nd block being empty.
  1072. */
  1073. xfs_attr3_leaf_rebalance(state, oldblk, newblk);
  1074. error = xfs_da3_blk_link(state, oldblk, newblk);
  1075. if (error)
  1076. return(error);
  1077. /*
  1078. * Save info on "old" attribute for "atomic rename" ops, leaf_add()
  1079. * modifies the index/blkno/rmtblk/rmtblkcnt fields to show the
  1080. * "new" attrs info. Will need the "old" info to remove it later.
  1081. *
  1082. * Insert the "new" entry in the correct block.
  1083. */
  1084. if (state->inleaf) {
  1085. trace_xfs_attr_leaf_add_old(state->args);
  1086. error = xfs_attr3_leaf_add(oldblk->bp, state->args);
  1087. } else {
  1088. trace_xfs_attr_leaf_add_new(state->args);
  1089. error = xfs_attr3_leaf_add(newblk->bp, state->args);
  1090. }
  1091. /*
  1092. * Update last hashval in each block since we added the name.
  1093. */
  1094. oldblk->hashval = xfs_attr_leaf_lasthash(oldblk->bp, NULL);
  1095. newblk->hashval = xfs_attr_leaf_lasthash(newblk->bp, NULL);
  1096. return(error);
  1097. }
  1098. /*
  1099. * Add a name to the leaf attribute list structure.
  1100. */
  1101. int
  1102. xfs_attr3_leaf_add(
  1103. struct xfs_buf *bp,
  1104. struct xfs_da_args *args)
  1105. {
  1106. struct xfs_attr_leafblock *leaf;
  1107. struct xfs_attr3_icleaf_hdr ichdr;
  1108. int tablesize;
  1109. int entsize;
  1110. int sum;
  1111. int tmp;
  1112. int i;
  1113. trace_xfs_attr_leaf_add(args);
  1114. leaf = bp->b_addr;
  1115. xfs_attr3_leaf_hdr_from_disk(&ichdr, leaf);
  1116. ASSERT(args->index >= 0 && args->index <= ichdr.count);
  1117. entsize = xfs_attr_leaf_newentsize(args->namelen, args->valuelen,
  1118. args->trans->t_mountp->m_sb.sb_blocksize, NULL);
  1119. /*
  1120. * Search through freemap for first-fit on new name length.
  1121. * (may need to figure in size of entry struct too)
  1122. */
  1123. tablesize = (ichdr.count + 1) * sizeof(xfs_attr_leaf_entry_t)
  1124. + xfs_attr3_leaf_hdr_size(leaf);
  1125. for (sum = 0, i = XFS_ATTR_LEAF_MAPSIZE - 1; i >= 0; i--) {
  1126. if (tablesize > ichdr.firstused) {
  1127. sum += ichdr.freemap[i].size;
  1128. continue;
  1129. }
  1130. if (!ichdr.freemap[i].size)
  1131. continue; /* no space in this map */
  1132. tmp = entsize;
  1133. if (ichdr.freemap[i].base < ichdr.firstused)
  1134. tmp += sizeof(xfs_attr_leaf_entry_t);
  1135. if (ichdr.freemap[i].size >= tmp) {
  1136. tmp = xfs_attr3_leaf_add_work(bp, &ichdr, args, i);
  1137. goto out_log_hdr;
  1138. }
  1139. sum += ichdr.freemap[i].size;
  1140. }
  1141. /*
  1142. * If there are no holes in the address space of the block,
  1143. * and we don't have enough freespace, then compaction will do us
  1144. * no good and we should just give up.
  1145. */
  1146. if (!ichdr.holes && sum < entsize)
  1147. return XFS_ERROR(ENOSPC);
  1148. /*
  1149. * Compact the entries to coalesce free space.
  1150. * This may change the hdr->count via dropping INCOMPLETE entries.
  1151. */
  1152. xfs_attr3_leaf_compact(args, &ichdr, bp);
  1153. /*
  1154. * After compaction, the block is guaranteed to have only one
  1155. * free region, in freemap[0]. If it is not big enough, give up.
  1156. */
  1157. if (ichdr.freemap[0].size < (entsize + sizeof(xfs_attr_leaf_entry_t))) {
  1158. tmp = ENOSPC;
  1159. goto out_log_hdr;
  1160. }
  1161. tmp = xfs_attr3_leaf_add_work(bp, &ichdr, args, 0);
  1162. out_log_hdr:
  1163. xfs_attr3_leaf_hdr_to_disk(leaf, &ichdr);
  1164. xfs_trans_log_buf(args->trans, bp,
  1165. XFS_DA_LOGRANGE(leaf, &leaf->hdr,
  1166. xfs_attr3_leaf_hdr_size(leaf)));
  1167. return tmp;
  1168. }
  1169. /*
  1170. * Add a name to a leaf attribute list structure.
  1171. */
  1172. STATIC int
  1173. xfs_attr3_leaf_add_work(
  1174. struct xfs_buf *bp,
  1175. struct xfs_attr3_icleaf_hdr *ichdr,
  1176. struct xfs_da_args *args,
  1177. int mapindex)
  1178. {
  1179. struct xfs_attr_leafblock *leaf;
  1180. struct xfs_attr_leaf_entry *entry;
  1181. struct xfs_attr_leaf_name_local *name_loc;
  1182. struct xfs_attr_leaf_name_remote *name_rmt;
  1183. struct xfs_mount *mp;
  1184. int tmp;
  1185. int i;
  1186. trace_xfs_attr_leaf_add_work(args);
  1187. leaf = bp->b_addr;
  1188. ASSERT(mapindex >= 0 && mapindex < XFS_ATTR_LEAF_MAPSIZE);
  1189. ASSERT(args->index >= 0 && args->index <= ichdr->count);
  1190. /*
  1191. * Force open some space in the entry array and fill it in.
  1192. */
  1193. entry = &xfs_attr3_leaf_entryp(leaf)[args->index];
  1194. if (args->index < ichdr->count) {
  1195. tmp = ichdr->count - args->index;
  1196. tmp *= sizeof(xfs_attr_leaf_entry_t);
  1197. memmove(entry + 1, entry, tmp);
  1198. xfs_trans_log_buf(args->trans, bp,
  1199. XFS_DA_LOGRANGE(leaf, entry, tmp + sizeof(*entry)));
  1200. }
  1201. ichdr->count++;
  1202. /*
  1203. * Allocate space for the new string (at the end of the run).
  1204. */
  1205. mp = args->trans->t_mountp;
  1206. ASSERT(ichdr->freemap[mapindex].base < XFS_LBSIZE(mp));
  1207. ASSERT((ichdr->freemap[mapindex].base & 0x3) == 0);
  1208. ASSERT(ichdr->freemap[mapindex].size >=
  1209. xfs_attr_leaf_newentsize(args->namelen, args->valuelen,
  1210. mp->m_sb.sb_blocksize, NULL));
  1211. ASSERT(ichdr->freemap[mapindex].size < XFS_LBSIZE(mp));
  1212. ASSERT((ichdr->freemap[mapindex].size & 0x3) == 0);
  1213. ichdr->freemap[mapindex].size -=
  1214. xfs_attr_leaf_newentsize(args->namelen, args->valuelen,
  1215. mp->m_sb.sb_blocksize, &tmp);
  1216. entry->nameidx = cpu_to_be16(ichdr->freemap[mapindex].base +
  1217. ichdr->freemap[mapindex].size);
  1218. entry->hashval = cpu_to_be32(args->hashval);
  1219. entry->flags = tmp ? XFS_ATTR_LOCAL : 0;
  1220. entry->flags |= XFS_ATTR_NSP_ARGS_TO_ONDISK(args->flags);
  1221. if (args->op_flags & XFS_DA_OP_RENAME) {
  1222. entry->flags |= XFS_ATTR_INCOMPLETE;
  1223. if ((args->blkno2 == args->blkno) &&
  1224. (args->index2 <= args->index)) {
  1225. args->index2++;
  1226. }
  1227. }
  1228. xfs_trans_log_buf(args->trans, bp,
  1229. XFS_DA_LOGRANGE(leaf, entry, sizeof(*entry)));
  1230. ASSERT((args->index == 0) ||
  1231. (be32_to_cpu(entry->hashval) >= be32_to_cpu((entry-1)->hashval)));
  1232. ASSERT((args->index == ichdr->count - 1) ||
  1233. (be32_to_cpu(entry->hashval) <= be32_to_cpu((entry+1)->hashval)));
  1234. /*
  1235. * For "remote" attribute values, simply note that we need to
  1236. * allocate space for the "remote" value. We can't actually
  1237. * allocate the extents in this transaction, and we can't decide
  1238. * which blocks they should be as we might allocate more blocks
  1239. * as part of this transaction (a split operation for example).
  1240. */
  1241. if (entry->flags & XFS_ATTR_LOCAL) {
  1242. name_loc = xfs_attr3_leaf_name_local(leaf, args->index);
  1243. name_loc->namelen = args->namelen;
  1244. name_loc->valuelen = cpu_to_be16(args->valuelen);
  1245. memcpy((char *)name_loc->nameval, args->name, args->namelen);
  1246. memcpy((char *)&name_loc->nameval[args->namelen], args->value,
  1247. be16_to_cpu(name_loc->valuelen));
  1248. } else {
  1249. name_rmt = xfs_attr3_leaf_name_remote(leaf, args->index);
  1250. name_rmt->namelen = args->namelen;
  1251. memcpy((char *)name_rmt->name, args->name, args->namelen);
  1252. entry->flags |= XFS_ATTR_INCOMPLETE;
  1253. /* just in case */
  1254. name_rmt->valuelen = 0;
  1255. name_rmt->valueblk = 0;
  1256. args->rmtblkno = 1;
  1257. args->rmtblkcnt = XFS_B_TO_FSB(mp, args->valuelen);
  1258. }
  1259. xfs_trans_log_buf(args->trans, bp,
  1260. XFS_DA_LOGRANGE(leaf, xfs_attr3_leaf_name(leaf, args->index),
  1261. xfs_attr_leaf_entsize(leaf, args->index)));
  1262. /*
  1263. * Update the control info for this leaf node
  1264. */
  1265. if (be16_to_cpu(entry->nameidx) < ichdr->firstused)
  1266. ichdr->firstused = be16_to_cpu(entry->nameidx);
  1267. ASSERT(ichdr->firstused >= ichdr->count * sizeof(xfs_attr_leaf_entry_t)
  1268. + xfs_attr3_leaf_hdr_size(leaf));
  1269. tmp = (ichdr->count - 1) * sizeof(xfs_attr_leaf_entry_t)
  1270. + xfs_attr3_leaf_hdr_size(leaf);
  1271. for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) {
  1272. if (ichdr->freemap[i].base == tmp) {
  1273. ichdr->freemap[i].base += sizeof(xfs_attr_leaf_entry_t);
  1274. ichdr->freemap[i].size -= sizeof(xfs_attr_leaf_entry_t);
  1275. }
  1276. }
  1277. ichdr->usedbytes += xfs_attr_leaf_entsize(leaf, args->index);
  1278. return 0;
  1279. }
  1280. /*
  1281. * Garbage collect a leaf attribute list block by copying it to a new buffer.
  1282. */
  1283. STATIC void
  1284. xfs_attr3_leaf_compact(
  1285. struct xfs_da_args *args,
  1286. struct xfs_attr3_icleaf_hdr *ichdr_d,
  1287. struct xfs_buf *bp)
  1288. {
  1289. xfs_attr_leafblock_t *leaf_s, *leaf_d;
  1290. struct xfs_attr3_icleaf_hdr ichdr_s;
  1291. struct xfs_trans *trans = args->trans;
  1292. struct xfs_mount *mp = trans->t_mountp;
  1293. char *tmpbuffer;
  1294. trace_xfs_attr_leaf_compact(args);
  1295. tmpbuffer = kmem_alloc(XFS_LBSIZE(mp), KM_SLEEP);
  1296. ASSERT(tmpbuffer != NULL);
  1297. memcpy(tmpbuffer, bp->b_addr, XFS_LBSIZE(mp));
  1298. memset(bp->b_addr, 0, XFS_LBSIZE(mp));
  1299. /*
  1300. * Copy basic information
  1301. */
  1302. leaf_s = (xfs_attr_leafblock_t *)tmpbuffer;
  1303. leaf_d = bp->b_addr;
  1304. ichdr_s = *ichdr_d; /* struct copy */
  1305. ichdr_d->firstused = XFS_LBSIZE(mp);
  1306. ichdr_d->usedbytes = 0;
  1307. ichdr_d->count = 0;
  1308. ichdr_d->holes = 0;
  1309. ichdr_d->freemap[0].base = xfs_attr3_leaf_hdr_size(leaf_s);
  1310. ichdr_d->freemap[0].size = ichdr_d->firstused - ichdr_d->freemap[0].base;
  1311. /*
  1312. * Copy all entry's in the same (sorted) order,
  1313. * but allocate name/value pairs packed and in sequence.
  1314. */
  1315. xfs_attr3_leaf_moveents(leaf_s, &ichdr_s, 0, leaf_d, ichdr_d, 0,
  1316. ichdr_s.count, mp);
  1317. /*
  1318. * this logs the entire buffer, but the caller must write the header
  1319. * back to the buffer when it is finished modifying it.
  1320. */
  1321. xfs_trans_log_buf(trans, bp, 0, XFS_LBSIZE(mp) - 1);
  1322. kmem_free(tmpbuffer);
  1323. }
  1324. /*
  1325. * Compare two leaf blocks "order".
  1326. * Return 0 unless leaf2 should go before leaf1.
  1327. */
  1328. static int
  1329. xfs_attr3_leaf_order(
  1330. struct xfs_buf *leaf1_bp,
  1331. struct xfs_attr3_icleaf_hdr *leaf1hdr,
  1332. struct xfs_buf *leaf2_bp,
  1333. struct xfs_attr3_icleaf_hdr *leaf2hdr)
  1334. {
  1335. struct xfs_attr_leaf_entry *entries1;
  1336. struct xfs_attr_leaf_entry *entries2;
  1337. entries1 = xfs_attr3_leaf_entryp(leaf1_bp->b_addr);
  1338. entries2 = xfs_attr3_leaf_entryp(leaf2_bp->b_addr);
  1339. if (leaf1hdr->count > 0 && leaf2hdr->count > 0 &&
  1340. ((be32_to_cpu(entries2[0].hashval) <
  1341. be32_to_cpu(entries1[0].hashval)) ||
  1342. (be32_to_cpu(entries2[leaf2hdr->count - 1].hashval) <
  1343. be32_to_cpu(entries1[leaf1hdr->count - 1].hashval)))) {
  1344. return 1;
  1345. }
  1346. return 0;
  1347. }
  1348. int
  1349. xfs_attr_leaf_order(
  1350. struct xfs_buf *leaf1_bp,
  1351. struct xfs_buf *leaf2_bp)
  1352. {
  1353. struct xfs_attr3_icleaf_hdr ichdr1;
  1354. struct xfs_attr3_icleaf_hdr ichdr2;
  1355. xfs_attr3_leaf_hdr_from_disk(&ichdr1, leaf1_bp->b_addr);
  1356. xfs_attr3_leaf_hdr_from_disk(&ichdr2, leaf2_bp->b_addr);
  1357. return xfs_attr3_leaf_order(leaf1_bp, &ichdr1, leaf2_bp, &ichdr2);
  1358. }
  1359. /*
  1360. * Redistribute the attribute list entries between two leaf nodes,
  1361. * taking into account the size of the new entry.
  1362. *
  1363. * NOTE: if new block is empty, then it will get the upper half of the
  1364. * old block. At present, all (one) callers pass in an empty second block.
  1365. *
  1366. * This code adjusts the args->index/blkno and args->index2/blkno2 fields
  1367. * to match what it is doing in splitting the attribute leaf block. Those
  1368. * values are used in "atomic rename" operations on attributes. Note that
  1369. * the "new" and "old" values can end up in different blocks.
  1370. */
  1371. STATIC void
  1372. xfs_attr3_leaf_rebalance(
  1373. struct xfs_da_state *state,
  1374. struct xfs_da_state_blk *blk1,
  1375. struct xfs_da_state_blk *blk2)
  1376. {
  1377. struct xfs_da_args *args;
  1378. struct xfs_attr_leafblock *leaf1;
  1379. struct xfs_attr_leafblock *leaf2;
  1380. struct xfs_attr3_icleaf_hdr ichdr1;
  1381. struct xfs_attr3_icleaf_hdr ichdr2;
  1382. struct xfs_attr_leaf_entry *entries1;
  1383. struct xfs_attr_leaf_entry *entries2;
  1384. int count;
  1385. int totallen;
  1386. int max;
  1387. int space;
  1388. int swap;
  1389. /*
  1390. * Set up environment.
  1391. */
  1392. ASSERT(blk1->magic == XFS_ATTR_LEAF_MAGIC);
  1393. ASSERT(blk2->magic == XFS_ATTR_LEAF_MAGIC);
  1394. leaf1 = blk1->bp->b_addr;
  1395. leaf2 = blk2->bp->b_addr;
  1396. xfs_attr3_leaf_hdr_from_disk(&ichdr1, leaf1);
  1397. xfs_attr3_leaf_hdr_from_disk(&ichdr2, leaf2);
  1398. ASSERT(ichdr2.count == 0);
  1399. args = state->args;
  1400. trace_xfs_attr_leaf_rebalance(args);
  1401. /*
  1402. * Check ordering of blocks, reverse if it makes things simpler.
  1403. *
  1404. * NOTE: Given that all (current) callers pass in an empty
  1405. * second block, this code should never set "swap".
  1406. */
  1407. swap = 0;
  1408. if (xfs_attr3_leaf_order(blk1->bp, &ichdr1, blk2->bp, &ichdr2)) {
  1409. struct xfs_da_state_blk *tmp_blk;
  1410. struct xfs_attr3_icleaf_hdr tmp_ichdr;
  1411. tmp_blk = blk1;
  1412. blk1 = blk2;
  1413. blk2 = tmp_blk;
  1414. /* struct copies to swap them rather than reconverting */
  1415. tmp_ichdr = ichdr1;
  1416. ichdr1 = ichdr2;
  1417. ichdr2 = tmp_ichdr;
  1418. leaf1 = blk1->bp->b_addr;
  1419. leaf2 = blk2->bp->b_addr;
  1420. swap = 1;
  1421. }
  1422. /*
  1423. * Examine entries until we reduce the absolute difference in
  1424. * byte usage between the two blocks to a minimum. Then get
  1425. * the direction to copy and the number of elements to move.
  1426. *
  1427. * "inleaf" is true if the new entry should be inserted into blk1.
  1428. * If "swap" is also true, then reverse the sense of "inleaf".
  1429. */
  1430. state->inleaf = xfs_attr3_leaf_figure_balance(state, blk1, &ichdr1,
  1431. blk2, &ichdr2,
  1432. &count, &totallen);
  1433. if (swap)
  1434. state->inleaf = !state->inleaf;
  1435. /*
  1436. * Move any entries required from leaf to leaf:
  1437. */
  1438. if (count < ichdr1.count) {
  1439. /*
  1440. * Figure the total bytes to be added to the destination leaf.
  1441. */
  1442. /* number entries being moved */
  1443. count = ichdr1.count - count;
  1444. space = ichdr1.usedbytes - totallen;
  1445. space += count * sizeof(xfs_attr_leaf_entry_t);
  1446. /*
  1447. * leaf2 is the destination, compact it if it looks tight.
  1448. */
  1449. max = ichdr2.firstused - xfs_attr3_leaf_hdr_size(leaf1);
  1450. max -= ichdr2.count * sizeof(xfs_attr_leaf_entry_t);
  1451. if (space > max)
  1452. xfs_attr3_leaf_compact(args, &ichdr2, blk2->bp);
  1453. /*
  1454. * Move high entries from leaf1 to low end of leaf2.
  1455. */
  1456. xfs_attr3_leaf_moveents(leaf1, &ichdr1, ichdr1.count - count,
  1457. leaf2, &ichdr2, 0, count, state->mp);
  1458. } else if (count > ichdr1.count) {
  1459. /*
  1460. * I assert that since all callers pass in an empty
  1461. * second buffer, this code should never execute.
  1462. */
  1463. ASSERT(0);
  1464. /*
  1465. * Figure the total bytes to be added to the destination leaf.
  1466. */
  1467. /* number entries being moved */
  1468. count -= ichdr1.count;
  1469. space = totallen - ichdr1.usedbytes;
  1470. space += count * sizeof(xfs_attr_leaf_entry_t);
  1471. /*
  1472. * leaf1 is the destination, compact it if it looks tight.
  1473. */
  1474. max = ichdr1.firstused - xfs_attr3_leaf_hdr_size(leaf1);
  1475. max -= ichdr1.count * sizeof(xfs_attr_leaf_entry_t);
  1476. if (space > max)
  1477. xfs_attr3_leaf_compact(args, &ichdr1, blk1->bp);
  1478. /*
  1479. * Move low entries from leaf2 to high end of leaf1.
  1480. */
  1481. xfs_attr3_leaf_moveents(leaf2, &ichdr2, 0, leaf1, &ichdr1,
  1482. ichdr1.count, count, state->mp);
  1483. }
  1484. xfs_attr3_leaf_hdr_to_disk(leaf1, &ichdr1);
  1485. xfs_attr3_leaf_hdr_to_disk(leaf2, &ichdr2);
  1486. xfs_trans_log_buf(args->trans, blk1->bp, 0, state->blocksize-1);
  1487. xfs_trans_log_buf(args->trans, blk2->bp, 0, state->blocksize-1);
  1488. /*
  1489. * Copy out last hashval in each block for B-tree code.
  1490. */
  1491. entries1 = xfs_attr3_leaf_entryp(leaf1);
  1492. entries2 = xfs_attr3_leaf_entryp(leaf2);
  1493. blk1->hashval = be32_to_cpu(entries1[ichdr1.count - 1].hashval);
  1494. blk2->hashval = be32_to_cpu(entries2[ichdr2.count - 1].hashval);
  1495. /*
  1496. * Adjust the expected index for insertion.
  1497. * NOTE: this code depends on the (current) situation that the
  1498. * second block was originally empty.
  1499. *
  1500. * If the insertion point moved to the 2nd block, we must adjust
  1501. * the index. We must also track the entry just following the
  1502. * new entry for use in an "atomic rename" operation, that entry
  1503. * is always the "old" entry and the "new" entry is what we are
  1504. * inserting. The index/blkno fields refer to the "old" entry,
  1505. * while the index2/blkno2 fields refer to the "new" entry.
  1506. */
  1507. if (blk1->index > ichdr1.count) {
  1508. ASSERT(state->inleaf == 0);
  1509. blk2->index = blk1->index - ichdr1.count;
  1510. args->index = args->index2 = blk2->index;
  1511. args->blkno = args->blkno2 = blk2->blkno;
  1512. } else if (blk1->index == ichdr1.count) {
  1513. if (state->inleaf) {
  1514. args->index = blk1->index;
  1515. args->blkno = blk1->blkno;
  1516. args->index2 = 0;
  1517. args->blkno2 = blk2->blkno;
  1518. } else {
  1519. /*
  1520. * On a double leaf split, the original attr location
  1521. * is already stored in blkno2/index2, so don't
  1522. * overwrite it overwise we corrupt the tree.
  1523. */
  1524. blk2->index = blk1->index - ichdr1.count;
  1525. args->index = blk2->index;
  1526. args->blkno = blk2->blkno;
  1527. if (!state->extravalid) {
  1528. /*
  1529. * set the new attr location to match the old
  1530. * one and let the higher level split code
  1531. * decide where in the leaf to place it.
  1532. */
  1533. args->index2 = blk2->index;
  1534. args->blkno2 = blk2->blkno;
  1535. }
  1536. }
  1537. } else {
  1538. ASSERT(state->inleaf == 1);
  1539. args->index = args->index2 = blk1->index;
  1540. args->blkno = args->blkno2 = blk1->blkno;
  1541. }
  1542. }
  1543. /*
  1544. * Examine entries until we reduce the absolute difference in
  1545. * byte usage between the two blocks to a minimum.
  1546. * GROT: Is this really necessary? With other than a 512 byte blocksize,
  1547. * GROT: there will always be enough room in either block for a new entry.
  1548. * GROT: Do a double-split for this case?
  1549. */
  1550. STATIC int
  1551. xfs_attr3_leaf_figure_balance(
  1552. struct xfs_da_state *state,
  1553. struct xfs_da_state_blk *blk1,
  1554. struct xfs_attr3_icleaf_hdr *ichdr1,
  1555. struct xfs_da_state_blk *blk2,
  1556. struct xfs_attr3_icleaf_hdr *ichdr2,
  1557. int *countarg,
  1558. int *usedbytesarg)
  1559. {
  1560. struct xfs_attr_leafblock *leaf1 = blk1->bp->b_addr;
  1561. struct xfs_attr_leafblock *leaf2 = blk2->bp->b_addr;
  1562. struct xfs_attr_leaf_entry *entry;
  1563. int count;
  1564. int max;
  1565. int index;
  1566. int totallen = 0;
  1567. int half;
  1568. int lastdelta;
  1569. int foundit = 0;
  1570. int tmp;
  1571. /*
  1572. * Examine entries until we reduce the absolute difference in
  1573. * byte usage between the two blocks to a minimum.
  1574. */
  1575. max = ichdr1->count + ichdr2->count;
  1576. half = (max + 1) * sizeof(*entry);
  1577. half += ichdr1->usedbytes + ichdr2->usedbytes +
  1578. xfs_attr_leaf_newentsize(state->args->namelen,
  1579. state->args->valuelen,
  1580. state->blocksize, NULL);
  1581. half /= 2;
  1582. lastdelta = state->blocksize;
  1583. entry = xfs_attr3_leaf_entryp(leaf1);
  1584. for (count = index = 0; count < max; entry++, index++, count++) {
  1585. #define XFS_ATTR_ABS(A) (((A) < 0) ? -(A) : (A))
  1586. /*
  1587. * The new entry is in the first block, account for it.
  1588. */
  1589. if (count == blk1->index) {
  1590. tmp = totallen + sizeof(*entry) +
  1591. xfs_attr_leaf_newentsize(
  1592. state->args->namelen,
  1593. state->args->valuelen,
  1594. state->blocksize, NULL);
  1595. if (XFS_ATTR_ABS(half - tmp) > lastdelta)
  1596. break;
  1597. lastdelta = XFS_ATTR_ABS(half - tmp);
  1598. totallen = tmp;
  1599. foundit = 1;
  1600. }
  1601. /*
  1602. * Wrap around into the second block if necessary.
  1603. */
  1604. if (count == ichdr1->count) {
  1605. leaf1 = leaf2;
  1606. entry = xfs_attr3_leaf_entryp(leaf1);
  1607. index = 0;
  1608. }
  1609. /*
  1610. * Figure out if next leaf entry would be too much.
  1611. */
  1612. tmp = totallen + sizeof(*entry) + xfs_attr_leaf_entsize(leaf1,
  1613. index);
  1614. if (XFS_ATTR_ABS(half - tmp) > lastdelta)
  1615. break;
  1616. lastdelta = XFS_ATTR_ABS(half - tmp);
  1617. totallen = tmp;
  1618. #undef XFS_ATTR_ABS
  1619. }
  1620. /*
  1621. * Calculate the number of usedbytes that will end up in lower block.
  1622. * If new entry not in lower block, fix up the count.
  1623. */
  1624. totallen -= count * sizeof(*entry);
  1625. if (foundit) {
  1626. totallen -= sizeof(*entry) +
  1627. xfs_attr_leaf_newentsize(
  1628. state->args->namelen,
  1629. state->args->valuelen,
  1630. state->blocksize, NULL);
  1631. }
  1632. *countarg = count;
  1633. *usedbytesarg = totallen;
  1634. return foundit;
  1635. }
  1636. /*========================================================================
  1637. * Routines used for shrinking the Btree.
  1638. *========================================================================*/
  1639. /*
  1640. * Check a leaf block and its neighbors to see if the block should be
  1641. * collapsed into one or the other neighbor. Always keep the block
  1642. * with the smaller block number.
  1643. * If the current block is over 50% full, don't try to join it, return 0.
  1644. * If the block is empty, fill in the state structure and return 2.
  1645. * If it can be collapsed, fill in the state structure and return 1.
  1646. * If nothing can be done, return 0.
  1647. *
  1648. * GROT: allow for INCOMPLETE entries in calculation.
  1649. */
  1650. int
  1651. xfs_attr3_leaf_toosmall(
  1652. struct xfs_da_state *state,
  1653. int *action)
  1654. {
  1655. struct xfs_attr_leafblock *leaf;
  1656. struct xfs_da_state_blk *blk;
  1657. struct xfs_attr3_icleaf_hdr ichdr;
  1658. struct xfs_buf *bp;
  1659. xfs_dablk_t blkno;
  1660. int bytes;
  1661. int forward;
  1662. int error;
  1663. int retval;
  1664. int i;
  1665. trace_xfs_attr_leaf_toosmall(state->args);
  1666. /*
  1667. * Check for the degenerate case of the block being over 50% full.
  1668. * If so, it's not worth even looking to see if we might be able
  1669. * to coalesce with a sibling.
  1670. */
  1671. blk = &state->path.blk[ state->path.active-1 ];
  1672. leaf = blk->bp->b_addr;
  1673. xfs_attr3_leaf_hdr_from_disk(&ichdr, leaf);
  1674. bytes = xfs_attr3_leaf_hdr_size(leaf) +
  1675. ichdr.count * sizeof(xfs_attr_leaf_entry_t) +
  1676. ichdr.usedbytes;
  1677. if (bytes > (state->blocksize >> 1)) {
  1678. *action = 0; /* blk over 50%, don't try to join */
  1679. return(0);
  1680. }
  1681. /*
  1682. * Check for the degenerate case of the block being empty.
  1683. * If the block is empty, we'll simply delete it, no need to
  1684. * coalesce it with a sibling block. We choose (arbitrarily)
  1685. * to merge with the forward block unless it is NULL.
  1686. */
  1687. if (ichdr.count == 0) {
  1688. /*
  1689. * Make altpath point to the block we want to keep and
  1690. * path point to the block we want to drop (this one).
  1691. */
  1692. forward = (ichdr.forw != 0);
  1693. memcpy(&state->altpath, &state->path, sizeof(state->path));
  1694. error = xfs_da3_path_shift(state, &state->altpath, forward,
  1695. 0, &retval);
  1696. if (error)
  1697. return(error);
  1698. if (retval) {
  1699. *action = 0;
  1700. } else {
  1701. *action = 2;
  1702. }
  1703. return 0;
  1704. }
  1705. /*
  1706. * Examine each sibling block to see if we can coalesce with
  1707. * at least 25% free space to spare. We need to figure out
  1708. * whether to merge with the forward or the backward block.
  1709. * We prefer coalescing with the lower numbered sibling so as
  1710. * to shrink an attribute list over time.
  1711. */
  1712. /* start with smaller blk num */
  1713. forward = ichdr.forw < ichdr.back;
  1714. for (i = 0; i < 2; forward = !forward, i++) {
  1715. struct xfs_attr3_icleaf_hdr ichdr2;
  1716. if (forward)
  1717. blkno = ichdr.forw;
  1718. else
  1719. blkno = ichdr.back;
  1720. if (blkno == 0)
  1721. continue;
  1722. error = xfs_attr3_leaf_read(state->args->trans, state->args->dp,
  1723. blkno, -1, &bp);
  1724. if (error)
  1725. return(error);
  1726. xfs_attr3_leaf_hdr_from_disk(&ichdr2, bp->b_addr);
  1727. bytes = state->blocksize - (state->blocksize >> 2) -
  1728. ichdr.usedbytes - ichdr2.usedbytes -
  1729. ((ichdr.count + ichdr2.count) *
  1730. sizeof(xfs_attr_leaf_entry_t)) -
  1731. xfs_attr3_leaf_hdr_size(leaf);
  1732. xfs_trans_brelse(state->args->trans, bp);
  1733. if (bytes >= 0)
  1734. break; /* fits with at least 25% to spare */
  1735. }
  1736. if (i >= 2) {
  1737. *action = 0;
  1738. return(0);
  1739. }
  1740. /*
  1741. * Make altpath point to the block we want to keep (the lower
  1742. * numbered block) and path point to the block we want to drop.
  1743. */
  1744. memcpy(&state->altpath, &state->path, sizeof(state->path));
  1745. if (blkno < blk->blkno) {
  1746. error = xfs_da3_path_shift(state, &state->altpath, forward,
  1747. 0, &retval);
  1748. } else {
  1749. error = xfs_da3_path_shift(state, &state->path, forward,
  1750. 0, &retval);
  1751. }
  1752. if (error)
  1753. return(error);
  1754. if (retval) {
  1755. *action = 0;
  1756. } else {
  1757. *action = 1;
  1758. }
  1759. return(0);
  1760. }
  1761. /*
  1762. * Remove a name from the leaf attribute list structure.
  1763. *
  1764. * Return 1 if leaf is less than 37% full, 0 if >= 37% full.
  1765. * If two leaves are 37% full, when combined they will leave 25% free.
  1766. */
  1767. int
  1768. xfs_attr3_leaf_remove(
  1769. struct xfs_buf *bp,
  1770. struct xfs_da_args *args)
  1771. {
  1772. struct xfs_attr_leafblock *leaf;
  1773. struct xfs_attr3_icleaf_hdr ichdr;
  1774. struct xfs_attr_leaf_entry *entry;
  1775. struct xfs_mount *mp = args->trans->t_mountp;
  1776. int before;
  1777. int after;
  1778. int smallest;
  1779. int entsize;
  1780. int tablesize;
  1781. int tmp;
  1782. int i;
  1783. trace_xfs_attr_leaf_remove(args);
  1784. leaf = bp->b_addr;
  1785. xfs_attr3_leaf_hdr_from_disk(&ichdr, leaf);
  1786. ASSERT(ichdr.count > 0 && ichdr.count < XFS_LBSIZE(mp) / 8);
  1787. ASSERT(args->index >= 0 && args->index < ichdr.count);
  1788. ASSERT(ichdr.firstused >= ichdr.count * sizeof(*entry) +
  1789. xfs_attr3_leaf_hdr_size(leaf));
  1790. entry = &xfs_attr3_leaf_entryp(leaf)[args->index];
  1791. ASSERT(be16_to_cpu(entry->nameidx) >= ichdr.firstused);
  1792. ASSERT(be16_to_cpu(entry->nameidx) < XFS_LBSIZE(mp));
  1793. /*
  1794. * Scan through free region table:
  1795. * check for adjacency of free'd entry with an existing one,
  1796. * find smallest free region in case we need to replace it,
  1797. * adjust any map that borders the entry table,
  1798. */
  1799. tablesize = ichdr.count * sizeof(xfs_attr_leaf_entry_t)
  1800. + xfs_attr3_leaf_hdr_size(leaf);
  1801. tmp = ichdr.freemap[0].size;
  1802. before = after = -1;
  1803. smallest = XFS_ATTR_LEAF_MAPSIZE - 1;
  1804. entsize = xfs_attr_leaf_entsize(leaf, args->index);
  1805. for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) {
  1806. ASSERT(ichdr.freemap[i].base < XFS_LBSIZE(mp));
  1807. ASSERT(ichdr.freemap[i].size < XFS_LBSIZE(mp));
  1808. if (ichdr.freemap[i].base == tablesize) {
  1809. ichdr.freemap[i].base -= sizeof(xfs_attr_leaf_entry_t);
  1810. ichdr.freemap[i].size += sizeof(xfs_attr_leaf_entry_t);
  1811. }
  1812. if (ichdr.freemap[i].base + ichdr.freemap[i].size ==
  1813. be16_to_cpu(entry->nameidx)) {
  1814. before = i;
  1815. } else if (ichdr.freemap[i].base ==
  1816. (be16_to_cpu(entry->nameidx) + entsize)) {
  1817. after = i;
  1818. } else if (ichdr.freemap[i].size < tmp) {
  1819. tmp = ichdr.freemap[i].size;
  1820. smallest = i;
  1821. }
  1822. }
  1823. /*
  1824. * Coalesce adjacent freemap regions,
  1825. * or replace the smallest region.
  1826. */
  1827. if ((before >= 0) || (after >= 0)) {
  1828. if ((before >= 0) && (after >= 0)) {
  1829. ichdr.freemap[before].size += entsize;
  1830. ichdr.freemap[before].size += ichdr.freemap[after].size;
  1831. ichdr.freemap[after].base = 0;
  1832. ichdr.freemap[after].size = 0;
  1833. } else if (before >= 0) {
  1834. ichdr.freemap[before].size += entsize;
  1835. } else {
  1836. ichdr.freemap[after].base = be16_to_cpu(entry->nameidx);
  1837. ichdr.freemap[after].size += entsize;
  1838. }
  1839. } else {
  1840. /*
  1841. * Replace smallest region (if it is smaller than free'd entry)
  1842. */
  1843. if (ichdr.freemap[smallest].size < entsize) {
  1844. ichdr.freemap[smallest].base = be16_to_cpu(entry->nameidx);
  1845. ichdr.freemap[smallest].size = entsize;
  1846. }
  1847. }
  1848. /*
  1849. * Did we remove the first entry?
  1850. */
  1851. if (be16_to_cpu(entry->nameidx) == ichdr.firstused)
  1852. smallest = 1;
  1853. else
  1854. smallest = 0;
  1855. /*
  1856. * Compress the remaining entries and zero out the removed stuff.
  1857. */
  1858. memset(xfs_attr3_leaf_name(leaf, args->index), 0, entsize);
  1859. ichdr.usedbytes -= entsize;
  1860. xfs_trans_log_buf(args->trans, bp,
  1861. XFS_DA_LOGRANGE(leaf, xfs_attr3_leaf_name(leaf, args->index),
  1862. entsize));
  1863. tmp = (ichdr.count - args->index) * sizeof(xfs_attr_leaf_entry_t);
  1864. memmove(entry, entry + 1, tmp);
  1865. ichdr.count--;
  1866. xfs_trans_log_buf(args->trans, bp,
  1867. XFS_DA_LOGRANGE(leaf, entry, tmp + sizeof(xfs_attr_leaf_entry_t)));
  1868. entry = &xfs_attr3_leaf_entryp(leaf)[ichdr.count];
  1869. memset(entry, 0, sizeof(xfs_attr_leaf_entry_t));
  1870. /*
  1871. * If we removed the first entry, re-find the first used byte
  1872. * in the name area. Note that if the entry was the "firstused",
  1873. * then we don't have a "hole" in our block resulting from
  1874. * removing the name.
  1875. */
  1876. if (smallest) {
  1877. tmp = XFS_LBSIZE(mp);
  1878. entry = xfs_attr3_leaf_entryp(leaf);
  1879. for (i = ichdr.count - 1; i >= 0; entry++, i--) {
  1880. ASSERT(be16_to_cpu(entry->nameidx) >= ichdr.firstused);
  1881. ASSERT(be16_to_cpu(entry->nameidx) < XFS_LBSIZE(mp));
  1882. if (be16_to_cpu(entry->nameidx) < tmp)
  1883. tmp = be16_to_cpu(entry->nameidx);
  1884. }
  1885. ichdr.firstused = tmp;
  1886. if (!ichdr.firstused)
  1887. ichdr.firstused = tmp - XFS_ATTR_LEAF_NAME_ALIGN;
  1888. } else {
  1889. ichdr.holes = 1; /* mark as needing compaction */
  1890. }
  1891. xfs_attr3_leaf_hdr_to_disk(leaf, &ichdr);
  1892. xfs_trans_log_buf(args->trans, bp,
  1893. XFS_DA_LOGRANGE(leaf, &leaf->hdr,
  1894. xfs_attr3_leaf_hdr_size(leaf)));
  1895. /*
  1896. * Check if leaf is less than 50% full, caller may want to
  1897. * "join" the leaf with a sibling if so.
  1898. */
  1899. tmp = ichdr.usedbytes + xfs_attr3_leaf_hdr_size(leaf) +
  1900. ichdr.count * sizeof(xfs_attr_leaf_entry_t);
  1901. return tmp < mp->m_attr_magicpct; /* leaf is < 37% full */
  1902. }
  1903. /*
  1904. * Move all the attribute list entries from drop_leaf into save_leaf.
  1905. */
  1906. void
  1907. xfs_attr3_leaf_unbalance(
  1908. struct xfs_da_state *state,
  1909. struct xfs_da_state_blk *drop_blk,
  1910. struct xfs_da_state_blk *save_blk)
  1911. {
  1912. struct xfs_attr_leafblock *drop_leaf = drop_blk->bp->b_addr;
  1913. struct xfs_attr_leafblock *save_leaf = save_blk->bp->b_addr;
  1914. struct xfs_attr3_icleaf_hdr drophdr;
  1915. struct xfs_attr3_icleaf_hdr savehdr;
  1916. struct xfs_attr_leaf_entry *entry;
  1917. struct xfs_mount *mp = state->mp;
  1918. trace_xfs_attr_leaf_unbalance(state->args);
  1919. drop_leaf = drop_blk->bp->b_addr;
  1920. save_leaf = save_blk->bp->b_addr;
  1921. xfs_attr3_leaf_hdr_from_disk(&drophdr, drop_leaf);
  1922. xfs_attr3_leaf_hdr_from_disk(&savehdr, save_leaf);
  1923. entry = xfs_attr3_leaf_entryp(drop_leaf);
  1924. /*
  1925. * Save last hashval from dying block for later Btree fixup.
  1926. */
  1927. drop_blk->hashval = be32_to_cpu(entry[drophdr.count - 1].hashval);
  1928. /*
  1929. * Check if we need a temp buffer, or can we do it in place.
  1930. * Note that we don't check "leaf" for holes because we will
  1931. * always be dropping it, toosmall() decided that for us already.
  1932. */
  1933. if (savehdr.holes == 0) {
  1934. /*
  1935. * dest leaf has no holes, so we add there. May need
  1936. * to make some room in the entry array.
  1937. */
  1938. if (xfs_attr3_leaf_order(save_blk->bp, &savehdr,
  1939. drop_blk->bp, &drophdr)) {
  1940. xfs_attr3_leaf_moveents(drop_leaf, &drophdr, 0,
  1941. save_leaf, &savehdr, 0,
  1942. drophdr.count, mp);
  1943. } else {
  1944. xfs_attr3_leaf_moveents(drop_leaf, &drophdr, 0,
  1945. save_leaf, &savehdr,
  1946. savehdr.count, drophdr.count, mp);
  1947. }
  1948. } else {
  1949. /*
  1950. * Destination has holes, so we make a temporary copy
  1951. * of the leaf and add them both to that.
  1952. */
  1953. struct xfs_attr_leafblock *tmp_leaf;
  1954. struct xfs_attr3_icleaf_hdr tmphdr;
  1955. tmp_leaf = kmem_alloc(state->blocksize, KM_SLEEP);
  1956. memset(tmp_leaf, 0, state->blocksize);
  1957. memset(&tmphdr, 0, sizeof(tmphdr));
  1958. tmphdr.magic = savehdr.magic;
  1959. tmphdr.forw = savehdr.forw;
  1960. tmphdr.back = savehdr.back;
  1961. tmphdr.firstused = state->blocksize;
  1962. if (xfs_attr3_leaf_order(save_blk->bp, &savehdr,
  1963. drop_blk->bp, &drophdr)) {
  1964. xfs_attr3_leaf_moveents(drop_leaf, &drophdr, 0,
  1965. tmp_leaf, &tmphdr, 0,
  1966. drophdr.count, mp);
  1967. xfs_attr3_leaf_moveents(save_leaf, &savehdr, 0,
  1968. tmp_leaf, &tmphdr, tmphdr.count,
  1969. savehdr.count, mp);
  1970. } else {
  1971. xfs_attr3_leaf_moveents(save_leaf, &savehdr, 0,
  1972. tmp_leaf, &tmphdr, 0,
  1973. savehdr.count, mp);
  1974. xfs_attr3_leaf_moveents(drop_leaf, &drophdr, 0,
  1975. tmp_leaf, &tmphdr, tmphdr.count,
  1976. drophdr.count, mp);
  1977. }
  1978. memcpy(save_leaf, tmp_leaf, state->blocksize);
  1979. savehdr = tmphdr; /* struct copy */
  1980. kmem_free(tmp_leaf);
  1981. }
  1982. xfs_attr3_leaf_hdr_to_disk(save_leaf, &savehdr);
  1983. xfs_trans_log_buf(state->args->trans, save_blk->bp, 0,
  1984. state->blocksize - 1);
  1985. /*
  1986. * Copy out last hashval in each block for B-tree code.
  1987. */
  1988. entry = xfs_attr3_leaf_entryp(save_leaf);
  1989. save_blk->hashval = be32_to_cpu(entry[savehdr.count - 1].hashval);
  1990. }
  1991. /*========================================================================
  1992. * Routines used for finding things in the Btree.
  1993. *========================================================================*/
  1994. /*
  1995. * Look up a name in a leaf attribute list structure.
  1996. * This is the internal routine, it uses the caller's buffer.
  1997. *
  1998. * Note that duplicate keys are allowed, but only check within the
  1999. * current leaf node. The Btree code must check in adjacent leaf nodes.
  2000. *
  2001. * Return in args->index the index into the entry[] array of either
  2002. * the found entry, or where the entry should have been (insert before
  2003. * that entry).
  2004. *
  2005. * Don't change the args->value unless we find the attribute.
  2006. */
  2007. int
  2008. xfs_attr3_leaf_lookup_int(
  2009. struct xfs_buf *bp,
  2010. struct xfs_da_args *args)
  2011. {
  2012. struct xfs_attr_leafblock *leaf;
  2013. struct xfs_attr3_icleaf_hdr ichdr;
  2014. struct xfs_attr_leaf_entry *entry;
  2015. struct xfs_attr_leaf_entry *entries;
  2016. struct xfs_attr_leaf_name_local *name_loc;
  2017. struct xfs_attr_leaf_name_remote *name_rmt;
  2018. xfs_dahash_t hashval;
  2019. int probe;
  2020. int span;
  2021. trace_xfs_attr_leaf_lookup(args);
  2022. leaf = bp->b_addr;
  2023. xfs_attr3_leaf_hdr_from_disk(&ichdr, leaf);
  2024. entries = xfs_attr3_leaf_entryp(leaf);
  2025. ASSERT(ichdr.count < XFS_LBSIZE(args->dp->i_mount) / 8);
  2026. /*
  2027. * Binary search. (note: small blocks will skip this loop)
  2028. */
  2029. hashval = args->hashval;
  2030. probe = span = ichdr.count / 2;
  2031. for (entry = &entries[probe]; span > 4; entry = &entries[probe]) {
  2032. span /= 2;
  2033. if (be32_to_cpu(entry->hashval) < hashval)
  2034. probe += span;
  2035. else if (be32_to_cpu(entry->hashval) > hashval)
  2036. probe -= span;
  2037. else
  2038. break;
  2039. }
  2040. ASSERT(probe >= 0 && (!ichdr.count || probe < ichdr.count));
  2041. ASSERT(span <= 4 || be32_to_cpu(entry->hashval) == hashval);
  2042. /*
  2043. * Since we may have duplicate hashval's, find the first matching
  2044. * hashval in the leaf.
  2045. */
  2046. while (probe > 0 && be32_to_cpu(entry->hashval) >= hashval) {
  2047. entry--;
  2048. probe--;
  2049. }
  2050. while (probe < ichdr.count &&
  2051. be32_to_cpu(entry->hashval) < hashval) {
  2052. entry++;
  2053. probe++;
  2054. }
  2055. if (probe == ichdr.count || be32_to_cpu(entry->hashval) != hashval) {
  2056. args->index = probe;
  2057. return XFS_ERROR(ENOATTR);
  2058. }
  2059. /*
  2060. * Duplicate keys may be present, so search all of them for a match.
  2061. */
  2062. for (; probe < ichdr.count && (be32_to_cpu(entry->hashval) == hashval);
  2063. entry++, probe++) {
  2064. /*
  2065. * GROT: Add code to remove incomplete entries.
  2066. */
  2067. /*
  2068. * If we are looking for INCOMPLETE entries, show only those.
  2069. * If we are looking for complete entries, show only those.
  2070. */
  2071. if ((args->flags & XFS_ATTR_INCOMPLETE) !=
  2072. (entry->flags & XFS_ATTR_INCOMPLETE)) {
  2073. continue;
  2074. }
  2075. if (entry->flags & XFS_ATTR_LOCAL) {
  2076. name_loc = xfs_attr3_leaf_name_local(leaf, probe);
  2077. if (name_loc->namelen != args->namelen)
  2078. continue;
  2079. if (memcmp(args->name, name_loc->nameval,
  2080. args->namelen) != 0)
  2081. continue;
  2082. if (!xfs_attr_namesp_match(args->flags, entry->flags))
  2083. continue;
  2084. args->index = probe;
  2085. return XFS_ERROR(EEXIST);
  2086. } else {
  2087. name_rmt = xfs_attr3_leaf_name_remote(leaf, probe);
  2088. if (name_rmt->namelen != args->namelen)
  2089. continue;
  2090. if (memcmp(args->name, name_rmt->name,
  2091. args->namelen) != 0)
  2092. continue;
  2093. if (!xfs_attr_namesp_match(args->flags, entry->flags))
  2094. continue;
  2095. args->index = probe;
  2096. args->rmtblkno = be32_to_cpu(name_rmt->valueblk);
  2097. args->rmtblkcnt = XFS_B_TO_FSB(args->dp->i_mount,
  2098. be32_to_cpu(name_rmt->valuelen));
  2099. return XFS_ERROR(EEXIST);
  2100. }
  2101. }
  2102. args->index = probe;
  2103. return XFS_ERROR(ENOATTR);
  2104. }
  2105. /*
  2106. * Get the value associated with an attribute name from a leaf attribute
  2107. * list structure.
  2108. */
  2109. int
  2110. xfs_attr3_leaf_getvalue(
  2111. struct xfs_buf *bp,
  2112. struct xfs_da_args *args)
  2113. {
  2114. struct xfs_attr_leafblock *leaf;
  2115. struct xfs_attr3_icleaf_hdr ichdr;
  2116. struct xfs_attr_leaf_entry *entry;
  2117. struct xfs_attr_leaf_name_local *name_loc;
  2118. struct xfs_attr_leaf_name_remote *name_rmt;
  2119. int valuelen;
  2120. leaf = bp->b_addr;
  2121. xfs_attr3_leaf_hdr_from_disk(&ichdr, leaf);
  2122. ASSERT(ichdr.count < XFS_LBSIZE(args->dp->i_mount) / 8);
  2123. ASSERT(args->index < ichdr.count);
  2124. entry = &xfs_attr3_leaf_entryp(leaf)[args->index];
  2125. if (entry->flags & XFS_ATTR_LOCAL) {
  2126. name_loc = xfs_attr3_leaf_name_local(leaf, args->index);
  2127. ASSERT(name_loc->namelen == args->namelen);
  2128. ASSERT(memcmp(args->name, name_loc->nameval, args->namelen) == 0);
  2129. valuelen = be16_to_cpu(name_loc->valuelen);
  2130. if (args->flags & ATTR_KERNOVAL) {
  2131. args->valuelen = valuelen;
  2132. return 0;
  2133. }
  2134. if (args->valuelen < valuelen) {
  2135. args->valuelen = valuelen;
  2136. return XFS_ERROR(ERANGE);
  2137. }
  2138. args->valuelen = valuelen;
  2139. memcpy(args->value, &name_loc->nameval[args->namelen], valuelen);
  2140. } else {
  2141. name_rmt = xfs_attr3_leaf_name_remote(leaf, args->index);
  2142. ASSERT(name_rmt->namelen == args->namelen);
  2143. ASSERT(memcmp(args->name, name_rmt->name, args->namelen) == 0);
  2144. valuelen = be32_to_cpu(name_rmt->valuelen);
  2145. args->rmtblkno = be32_to_cpu(name_rmt->valueblk);
  2146. args->rmtblkcnt = XFS_B_TO_FSB(args->dp->i_mount, valuelen);
  2147. if (args->flags & ATTR_KERNOVAL) {
  2148. args->valuelen = valuelen;
  2149. return 0;
  2150. }
  2151. if (args->valuelen < valuelen) {
  2152. args->valuelen = valuelen;
  2153. return XFS_ERROR(ERANGE);
  2154. }
  2155. args->valuelen = valuelen;
  2156. }
  2157. return 0;
  2158. }
  2159. /*========================================================================
  2160. * Utility routines.
  2161. *========================================================================*/
  2162. /*
  2163. * Move the indicated entries from one leaf to another.
  2164. * NOTE: this routine modifies both source and destination leaves.
  2165. */
  2166. /*ARGSUSED*/
  2167. STATIC void
  2168. xfs_attr3_leaf_moveents(
  2169. struct xfs_attr_leafblock *leaf_s,
  2170. struct xfs_attr3_icleaf_hdr *ichdr_s,
  2171. int start_s,
  2172. struct xfs_attr_leafblock *leaf_d,
  2173. struct xfs_attr3_icleaf_hdr *ichdr_d,
  2174. int start_d,
  2175. int count,
  2176. struct xfs_mount *mp)
  2177. {
  2178. struct xfs_attr_leaf_entry *entry_s;
  2179. struct xfs_attr_leaf_entry *entry_d;
  2180. int desti;
  2181. int tmp;
  2182. int i;
  2183. /*
  2184. * Check for nothing to do.
  2185. */
  2186. if (count == 0)
  2187. return;
  2188. /*
  2189. * Set up environment.
  2190. */
  2191. ASSERT(ichdr_s->magic == XFS_ATTR_LEAF_MAGIC ||
  2192. ichdr_s->magic == XFS_ATTR3_LEAF_MAGIC);
  2193. ASSERT(ichdr_s->magic == ichdr_d->magic);
  2194. ASSERT(ichdr_s->count > 0 && ichdr_s->count < XFS_LBSIZE(mp) / 8);
  2195. ASSERT(ichdr_s->firstused >= (ichdr_s->count * sizeof(*entry_s))
  2196. + xfs_attr3_leaf_hdr_size(leaf_s));
  2197. ASSERT(ichdr_d->count < XFS_LBSIZE(mp) / 8);
  2198. ASSERT(ichdr_d->firstused >= (ichdr_d->count * sizeof(*entry_d))
  2199. + xfs_attr3_leaf_hdr_size(leaf_d));
  2200. ASSERT(start_s < ichdr_s->count);
  2201. ASSERT(start_d <= ichdr_d->count);
  2202. ASSERT(count <= ichdr_s->count);
  2203. /*
  2204. * Move the entries in the destination leaf up to make a hole?
  2205. */
  2206. if (start_d < ichdr_d->count) {
  2207. tmp = ichdr_d->count - start_d;
  2208. tmp *= sizeof(xfs_attr_leaf_entry_t);
  2209. entry_s = &xfs_attr3_leaf_entryp(leaf_d)[start_d];
  2210. entry_d = &xfs_attr3_leaf_entryp(leaf_d)[start_d + count];
  2211. memmove(entry_d, entry_s, tmp);
  2212. }
  2213. /*
  2214. * Copy all entry's in the same (sorted) order,
  2215. * but allocate attribute info packed and in sequence.
  2216. */
  2217. entry_s = &xfs_attr3_leaf_entryp(leaf_s)[start_s];
  2218. entry_d = &xfs_attr3_leaf_entryp(leaf_d)[start_d];
  2219. desti = start_d;
  2220. for (i = 0; i < count; entry_s++, entry_d++, desti++, i++) {
  2221. ASSERT(be16_to_cpu(entry_s->nameidx) >= ichdr_s->firstused);
  2222. tmp = xfs_attr_leaf_entsize(leaf_s, start_s + i);
  2223. #ifdef GROT
  2224. /*
  2225. * Code to drop INCOMPLETE entries. Difficult to use as we
  2226. * may also need to change the insertion index. Code turned
  2227. * off for 6.2, should be revisited later.
  2228. */
  2229. if (entry_s->flags & XFS_ATTR_INCOMPLETE) { /* skip partials? */
  2230. memset(xfs_attr3_leaf_name(leaf_s, start_s + i), 0, tmp);
  2231. ichdr_s->usedbytes -= tmp;
  2232. ichdr_s->count -= 1;
  2233. entry_d--; /* to compensate for ++ in loop hdr */
  2234. desti--;
  2235. if ((start_s + i) < offset)
  2236. result++; /* insertion index adjustment */
  2237. } else {
  2238. #endif /* GROT */
  2239. ichdr_d->firstused -= tmp;
  2240. /* both on-disk, don't endian flip twice */
  2241. entry_d->hashval = entry_s->hashval;
  2242. entry_d->nameidx = cpu_to_be16(ichdr_d->firstused);
  2243. entry_d->flags = entry_s->flags;
  2244. ASSERT(be16_to_cpu(entry_d->nameidx) + tmp
  2245. <= XFS_LBSIZE(mp));
  2246. memmove(xfs_attr3_leaf_name(leaf_d, desti),
  2247. xfs_attr3_leaf_name(leaf_s, start_s + i), tmp);
  2248. ASSERT(be16_to_cpu(entry_s->nameidx) + tmp
  2249. <= XFS_LBSIZE(mp));
  2250. memset(xfs_attr3_leaf_name(leaf_s, start_s + i), 0, tmp);
  2251. ichdr_s->usedbytes -= tmp;
  2252. ichdr_d->usedbytes += tmp;
  2253. ichdr_s->count -= 1;
  2254. ichdr_d->count += 1;
  2255. tmp = ichdr_d->count * sizeof(xfs_attr_leaf_entry_t)
  2256. + xfs_attr3_leaf_hdr_size(leaf_d);
  2257. ASSERT(ichdr_d->firstused >= tmp);
  2258. #ifdef GROT
  2259. }
  2260. #endif /* GROT */
  2261. }
  2262. /*
  2263. * Zero out the entries we just copied.
  2264. */
  2265. if (start_s == ichdr_s->count) {
  2266. tmp = count * sizeof(xfs_attr_leaf_entry_t);
  2267. entry_s = &xfs_attr3_leaf_entryp(leaf_s)[start_s];
  2268. ASSERT(((char *)entry_s + tmp) <=
  2269. ((char *)leaf_s + XFS_LBSIZE(mp)));
  2270. memset(entry_s, 0, tmp);
  2271. } else {
  2272. /*
  2273. * Move the remaining entries down to fill the hole,
  2274. * then zero the entries at the top.
  2275. */
  2276. tmp = (ichdr_s->count - count) * sizeof(xfs_attr_leaf_entry_t);
  2277. entry_s = &xfs_attr3_leaf_entryp(leaf_s)[start_s + count];
  2278. entry_d = &xfs_attr3_leaf_entryp(leaf_s)[start_s];
  2279. memmove(entry_d, entry_s, tmp);
  2280. tmp = count * sizeof(xfs_attr_leaf_entry_t);
  2281. entry_s = &xfs_attr3_leaf_entryp(leaf_s)[ichdr_s->count];
  2282. ASSERT(((char *)entry_s + tmp) <=
  2283. ((char *)leaf_s + XFS_LBSIZE(mp)));
  2284. memset(entry_s, 0, tmp);
  2285. }
  2286. /*
  2287. * Fill in the freemap information
  2288. */
  2289. ichdr_d->freemap[0].base = xfs_attr3_leaf_hdr_size(leaf_d);
  2290. ichdr_d->freemap[0].base += ichdr_d->count * sizeof(xfs_attr_leaf_entry_t);
  2291. ichdr_d->freemap[0].size = ichdr_d->firstused - ichdr_d->freemap[0].base;
  2292. ichdr_d->freemap[1].base = 0;
  2293. ichdr_d->freemap[2].base = 0;
  2294. ichdr_d->freemap[1].size = 0;
  2295. ichdr_d->freemap[2].size = 0;
  2296. ichdr_s->holes = 1; /* leaf may not be compact */
  2297. }
  2298. /*
  2299. * Pick up the last hashvalue from a leaf block.
  2300. */
  2301. xfs_dahash_t
  2302. xfs_attr_leaf_lasthash(
  2303. struct xfs_buf *bp,
  2304. int *count)
  2305. {
  2306. struct xfs_attr3_icleaf_hdr ichdr;
  2307. struct xfs_attr_leaf_entry *entries;
  2308. xfs_attr3_leaf_hdr_from_disk(&ichdr, bp->b_addr);
  2309. entries = xfs_attr3_leaf_entryp(bp->b_addr);
  2310. if (count)
  2311. *count = ichdr.count;
  2312. if (!ichdr.count)
  2313. return 0;
  2314. return be32_to_cpu(entries[ichdr.count - 1].hashval);
  2315. }
  2316. /*
  2317. * Calculate the number of bytes used to store the indicated attribute
  2318. * (whether local or remote only calculate bytes in this block).
  2319. */
  2320. STATIC int
  2321. xfs_attr_leaf_entsize(xfs_attr_leafblock_t *leaf, int index)
  2322. {
  2323. struct xfs_attr_leaf_entry *entries;
  2324. xfs_attr_leaf_name_local_t *name_loc;
  2325. xfs_attr_leaf_name_remote_t *name_rmt;
  2326. int size;
  2327. entries = xfs_attr3_leaf_entryp(leaf);
  2328. if (entries[index].flags & XFS_ATTR_LOCAL) {
  2329. name_loc = xfs_attr3_leaf_name_local(leaf, index);
  2330. size = xfs_attr_leaf_entsize_local(name_loc->namelen,
  2331. be16_to_cpu(name_loc->valuelen));
  2332. } else {
  2333. name_rmt = xfs_attr3_leaf_name_remote(leaf, index);
  2334. size = xfs_attr_leaf_entsize_remote(name_rmt->namelen);
  2335. }
  2336. return size;
  2337. }
  2338. /*
  2339. * Calculate the number of bytes that would be required to store the new
  2340. * attribute (whether local or remote only calculate bytes in this block).
  2341. * This routine decides as a side effect whether the attribute will be
  2342. * a "local" or a "remote" attribute.
  2343. */
  2344. int
  2345. xfs_attr_leaf_newentsize(int namelen, int valuelen, int blocksize, int *local)
  2346. {
  2347. int size;
  2348. size = xfs_attr_leaf_entsize_local(namelen, valuelen);
  2349. if (size < xfs_attr_leaf_entsize_local_max(blocksize)) {
  2350. if (local) {
  2351. *local = 1;
  2352. }
  2353. } else {
  2354. size = xfs_attr_leaf_entsize_remote(namelen);
  2355. if (local) {
  2356. *local = 0;
  2357. }
  2358. }
  2359. return size;
  2360. }
  2361. /*
  2362. * Copy out attribute list entries for attr_list(), for leaf attribute lists.
  2363. */
  2364. int
  2365. xfs_attr3_leaf_list_int(
  2366. struct xfs_buf *bp,
  2367. struct xfs_attr_list_context *context)
  2368. {
  2369. struct attrlist_cursor_kern *cursor;
  2370. struct xfs_attr_leafblock *leaf;
  2371. struct xfs_attr3_icleaf_hdr ichdr;
  2372. struct xfs_attr_leaf_entry *entries;
  2373. struct xfs_attr_leaf_entry *entry;
  2374. int retval;
  2375. int i;
  2376. trace_xfs_attr_list_leaf(context);
  2377. leaf = bp->b_addr;
  2378. xfs_attr3_leaf_hdr_from_disk(&ichdr, leaf);
  2379. entries = xfs_attr3_leaf_entryp(leaf);
  2380. cursor = context->cursor;
  2381. cursor->initted = 1;
  2382. /*
  2383. * Re-find our place in the leaf block if this is a new syscall.
  2384. */
  2385. if (context->resynch) {
  2386. entry = &entries[0];
  2387. for (i = 0; i < ichdr.count; entry++, i++) {
  2388. if (be32_to_cpu(entry->hashval) == cursor->hashval) {
  2389. if (cursor->offset == context->dupcnt) {
  2390. context->dupcnt = 0;
  2391. break;
  2392. }
  2393. context->dupcnt++;
  2394. } else if (be32_to_cpu(entry->hashval) >
  2395. cursor->hashval) {
  2396. context->dupcnt = 0;
  2397. break;
  2398. }
  2399. }
  2400. if (i == ichdr.count) {
  2401. trace_xfs_attr_list_notfound(context);
  2402. return 0;
  2403. }
  2404. } else {
  2405. entry = &entries[0];
  2406. i = 0;
  2407. }
  2408. context->resynch = 0;
  2409. /*
  2410. * We have found our place, start copying out the new attributes.
  2411. */
  2412. retval = 0;
  2413. for (; i < ichdr.count; entry++, i++) {
  2414. if (be32_to_cpu(entry->hashval) != cursor->hashval) {
  2415. cursor->hashval = be32_to_cpu(entry->hashval);
  2416. cursor->offset = 0;
  2417. }
  2418. if (entry->flags & XFS_ATTR_INCOMPLETE)
  2419. continue; /* skip incomplete entries */
  2420. if (entry->flags & XFS_ATTR_LOCAL) {
  2421. xfs_attr_leaf_name_local_t *name_loc =
  2422. xfs_attr3_leaf_name_local(leaf, i);
  2423. retval = context->put_listent(context,
  2424. entry->flags,
  2425. name_loc->nameval,
  2426. (int)name_loc->namelen,
  2427. be16_to_cpu(name_loc->valuelen),
  2428. &name_loc->nameval[name_loc->namelen]);
  2429. if (retval)
  2430. return retval;
  2431. } else {
  2432. xfs_attr_leaf_name_remote_t *name_rmt =
  2433. xfs_attr3_leaf_name_remote(leaf, i);
  2434. int valuelen = be32_to_cpu(name_rmt->valuelen);
  2435. if (context->put_value) {
  2436. xfs_da_args_t args;
  2437. memset((char *)&args, 0, sizeof(args));
  2438. args.dp = context->dp;
  2439. args.whichfork = XFS_ATTR_FORK;
  2440. args.valuelen = valuelen;
  2441. args.value = kmem_alloc(valuelen, KM_SLEEP | KM_NOFS);
  2442. args.rmtblkno = be32_to_cpu(name_rmt->valueblk);
  2443. args.rmtblkcnt = XFS_B_TO_FSB(args.dp->i_mount, valuelen);
  2444. retval = xfs_attr_rmtval_get(&args);
  2445. if (retval)
  2446. return retval;
  2447. retval = context->put_listent(context,
  2448. entry->flags,
  2449. name_rmt->name,
  2450. (int)name_rmt->namelen,
  2451. valuelen,
  2452. args.value);
  2453. kmem_free(args.value);
  2454. } else {
  2455. retval = context->put_listent(context,
  2456. entry->flags,
  2457. name_rmt->name,
  2458. (int)name_rmt->namelen,
  2459. valuelen,
  2460. NULL);
  2461. }
  2462. if (retval)
  2463. return retval;
  2464. }
  2465. if (context->seen_enough)
  2466. break;
  2467. cursor->offset++;
  2468. }
  2469. trace_xfs_attr_list_leaf_end(context);
  2470. return retval;
  2471. }
  2472. /*========================================================================
  2473. * Manage the INCOMPLETE flag in a leaf entry
  2474. *========================================================================*/
  2475. /*
  2476. * Clear the INCOMPLETE flag on an entry in a leaf block.
  2477. */
  2478. int
  2479. xfs_attr3_leaf_clearflag(
  2480. struct xfs_da_args *args)
  2481. {
  2482. struct xfs_attr_leafblock *leaf;
  2483. struct xfs_attr_leaf_entry *entry;
  2484. struct xfs_attr_leaf_name_remote *name_rmt;
  2485. struct xfs_buf *bp;
  2486. int error;
  2487. #ifdef DEBUG
  2488. struct xfs_attr3_icleaf_hdr ichdr;
  2489. xfs_attr_leaf_name_local_t *name_loc;
  2490. int namelen;
  2491. char *name;
  2492. #endif /* DEBUG */
  2493. trace_xfs_attr_leaf_clearflag(args);
  2494. /*
  2495. * Set up the operation.
  2496. */
  2497. error = xfs_attr3_leaf_read(args->trans, args->dp, args->blkno, -1, &bp);
  2498. if (error)
  2499. return(error);
  2500. leaf = bp->b_addr;
  2501. entry = &xfs_attr3_leaf_entryp(leaf)[args->index];
  2502. ASSERT(entry->flags & XFS_ATTR_INCOMPLETE);
  2503. #ifdef DEBUG
  2504. xfs_attr3_leaf_hdr_from_disk(&ichdr, leaf);
  2505. ASSERT(args->index < ichdr.count);
  2506. ASSERT(args->index >= 0);
  2507. if (entry->flags & XFS_ATTR_LOCAL) {
  2508. name_loc = xfs_attr3_leaf_name_local(leaf, args->index);
  2509. namelen = name_loc->namelen;
  2510. name = (char *)name_loc->nameval;
  2511. } else {
  2512. name_rmt = xfs_attr3_leaf_name_remote(leaf, args->index);
  2513. namelen = name_rmt->namelen;
  2514. name = (char *)name_rmt->name;
  2515. }
  2516. ASSERT(be32_to_cpu(entry->hashval) == args->hashval);
  2517. ASSERT(namelen == args->namelen);
  2518. ASSERT(memcmp(name, args->name, namelen) == 0);
  2519. #endif /* DEBUG */
  2520. entry->flags &= ~XFS_ATTR_INCOMPLETE;
  2521. xfs_trans_log_buf(args->trans, bp,
  2522. XFS_DA_LOGRANGE(leaf, entry, sizeof(*entry)));
  2523. if (args->rmtblkno) {
  2524. ASSERT((entry->flags & XFS_ATTR_LOCAL) == 0);
  2525. name_rmt = xfs_attr3_leaf_name_remote(leaf, args->index);
  2526. name_rmt->valueblk = cpu_to_be32(args->rmtblkno);
  2527. name_rmt->valuelen = cpu_to_be32(args->valuelen);
  2528. xfs_trans_log_buf(args->trans, bp,
  2529. XFS_DA_LOGRANGE(leaf, name_rmt, sizeof(*name_rmt)));
  2530. }
  2531. /*
  2532. * Commit the flag value change and start the next trans in series.
  2533. */
  2534. return xfs_trans_roll(&args->trans, args->dp);
  2535. }
  2536. /*
  2537. * Set the INCOMPLETE flag on an entry in a leaf block.
  2538. */
  2539. int
  2540. xfs_attr3_leaf_setflag(
  2541. struct xfs_da_args *args)
  2542. {
  2543. struct xfs_attr_leafblock *leaf;
  2544. struct xfs_attr_leaf_entry *entry;
  2545. struct xfs_attr_leaf_name_remote *name_rmt;
  2546. struct xfs_buf *bp;
  2547. int error;
  2548. #ifdef DEBUG
  2549. struct xfs_attr3_icleaf_hdr ichdr;
  2550. #endif
  2551. trace_xfs_attr_leaf_setflag(args);
  2552. /*
  2553. * Set up the operation.
  2554. */
  2555. error = xfs_attr3_leaf_read(args->trans, args->dp, args->blkno, -1, &bp);
  2556. if (error)
  2557. return(error);
  2558. leaf = bp->b_addr;
  2559. #ifdef DEBUG
  2560. xfs_attr3_leaf_hdr_from_disk(&ichdr, leaf);
  2561. ASSERT(args->index < ichdr.count);
  2562. ASSERT(args->index >= 0);
  2563. #endif
  2564. entry = &xfs_attr3_leaf_entryp(leaf)[args->index];
  2565. ASSERT((entry->flags & XFS_ATTR_INCOMPLETE) == 0);
  2566. entry->flags |= XFS_ATTR_INCOMPLETE;
  2567. xfs_trans_log_buf(args->trans, bp,
  2568. XFS_DA_LOGRANGE(leaf, entry, sizeof(*entry)));
  2569. if ((entry->flags & XFS_ATTR_LOCAL) == 0) {
  2570. name_rmt = xfs_attr3_leaf_name_remote(leaf, args->index);
  2571. name_rmt->valueblk = 0;
  2572. name_rmt->valuelen = 0;
  2573. xfs_trans_log_buf(args->trans, bp,
  2574. XFS_DA_LOGRANGE(leaf, name_rmt, sizeof(*name_rmt)));
  2575. }
  2576. /*
  2577. * Commit the flag value change and start the next trans in series.
  2578. */
  2579. return xfs_trans_roll(&args->trans, args->dp);
  2580. }
  2581. /*
  2582. * In a single transaction, clear the INCOMPLETE flag on the leaf entry
  2583. * given by args->blkno/index and set the INCOMPLETE flag on the leaf
  2584. * entry given by args->blkno2/index2.
  2585. *
  2586. * Note that they could be in different blocks, or in the same block.
  2587. */
  2588. int
  2589. xfs_attr3_leaf_flipflags(
  2590. struct xfs_da_args *args)
  2591. {
  2592. struct xfs_attr_leafblock *leaf1;
  2593. struct xfs_attr_leafblock *leaf2;
  2594. struct xfs_attr_leaf_entry *entry1;
  2595. struct xfs_attr_leaf_entry *entry2;
  2596. struct xfs_attr_leaf_name_remote *name_rmt;
  2597. struct xfs_buf *bp1;
  2598. struct xfs_buf *bp2;
  2599. int error;
  2600. #ifdef DEBUG
  2601. struct xfs_attr3_icleaf_hdr ichdr1;
  2602. struct xfs_attr3_icleaf_hdr ichdr2;
  2603. xfs_attr_leaf_name_local_t *name_loc;
  2604. int namelen1, namelen2;
  2605. char *name1, *name2;
  2606. #endif /* DEBUG */
  2607. trace_xfs_attr_leaf_flipflags(args);
  2608. /*
  2609. * Read the block containing the "old" attr
  2610. */
  2611. error = xfs_attr3_leaf_read(args->trans, args->dp, args->blkno, -1, &bp1);
  2612. if (error)
  2613. return error;
  2614. /*
  2615. * Read the block containing the "new" attr, if it is different
  2616. */
  2617. if (args->blkno2 != args->blkno) {
  2618. error = xfs_attr3_leaf_read(args->trans, args->dp, args->blkno2,
  2619. -1, &bp2);
  2620. if (error)
  2621. return error;
  2622. } else {
  2623. bp2 = bp1;
  2624. }
  2625. leaf1 = bp1->b_addr;
  2626. entry1 = &xfs_attr3_leaf_entryp(leaf1)[args->index];
  2627. leaf2 = bp2->b_addr;
  2628. entry2 = &xfs_attr3_leaf_entryp(leaf2)[args->index2];
  2629. #ifdef DEBUG
  2630. xfs_attr3_leaf_hdr_from_disk(&ichdr1, leaf1);
  2631. ASSERT(args->index < ichdr1.count);
  2632. ASSERT(args->index >= 0);
  2633. xfs_attr3_leaf_hdr_from_disk(&ichdr2, leaf2);
  2634. ASSERT(args->index2 < ichdr2.count);
  2635. ASSERT(args->index2 >= 0);
  2636. if (entry1->flags & XFS_ATTR_LOCAL) {
  2637. name_loc = xfs_attr3_leaf_name_local(leaf1, args->index);
  2638. namelen1 = name_loc->namelen;
  2639. name1 = (char *)name_loc->nameval;
  2640. } else {
  2641. name_rmt = xfs_attr3_leaf_name_remote(leaf1, args->index);
  2642. namelen1 = name_rmt->namelen;
  2643. name1 = (char *)name_rmt->name;
  2644. }
  2645. if (entry2->flags & XFS_ATTR_LOCAL) {
  2646. name_loc = xfs_attr3_leaf_name_local(leaf2, args->index2);
  2647. namelen2 = name_loc->namelen;
  2648. name2 = (char *)name_loc->nameval;
  2649. } else {
  2650. name_rmt = xfs_attr3_leaf_name_remote(leaf2, args->index2);
  2651. namelen2 = name_rmt->namelen;
  2652. name2 = (char *)name_rmt->name;
  2653. }
  2654. ASSERT(be32_to_cpu(entry1->hashval) == be32_to_cpu(entry2->hashval));
  2655. ASSERT(namelen1 == namelen2);
  2656. ASSERT(memcmp(name1, name2, namelen1) == 0);
  2657. #endif /* DEBUG */
  2658. ASSERT(entry1->flags & XFS_ATTR_INCOMPLETE);
  2659. ASSERT((entry2->flags & XFS_ATTR_INCOMPLETE) == 0);
  2660. entry1->flags &= ~XFS_ATTR_INCOMPLETE;
  2661. xfs_trans_log_buf(args->trans, bp1,
  2662. XFS_DA_LOGRANGE(leaf1, entry1, sizeof(*entry1)));
  2663. if (args->rmtblkno) {
  2664. ASSERT((entry1->flags & XFS_ATTR_LOCAL) == 0);
  2665. name_rmt = xfs_attr3_leaf_name_remote(leaf1, args->index);
  2666. name_rmt->valueblk = cpu_to_be32(args->rmtblkno);
  2667. name_rmt->valuelen = cpu_to_be32(args->valuelen);
  2668. xfs_trans_log_buf(args->trans, bp1,
  2669. XFS_DA_LOGRANGE(leaf1, name_rmt, sizeof(*name_rmt)));
  2670. }
  2671. entry2->flags |= XFS_ATTR_INCOMPLETE;
  2672. xfs_trans_log_buf(args->trans, bp2,
  2673. XFS_DA_LOGRANGE(leaf2, entry2, sizeof(*entry2)));
  2674. if ((entry2->flags & XFS_ATTR_LOCAL) == 0) {
  2675. name_rmt = xfs_attr3_leaf_name_remote(leaf2, args->index2);
  2676. name_rmt->valueblk = 0;
  2677. name_rmt->valuelen = 0;
  2678. xfs_trans_log_buf(args->trans, bp2,
  2679. XFS_DA_LOGRANGE(leaf2, name_rmt, sizeof(*name_rmt)));
  2680. }
  2681. /*
  2682. * Commit the flag value change and start the next trans in series.
  2683. */
  2684. error = xfs_trans_roll(&args->trans, args->dp);
  2685. return error;
  2686. }
  2687. /*========================================================================
  2688. * Indiscriminately delete the entire attribute fork
  2689. *========================================================================*/
  2690. /*
  2691. * Recurse (gasp!) through the attribute nodes until we find leaves.
  2692. * We're doing a depth-first traversal in order to invalidate everything.
  2693. */
  2694. int
  2695. xfs_attr3_root_inactive(
  2696. struct xfs_trans **trans,
  2697. struct xfs_inode *dp)
  2698. {
  2699. struct xfs_da_blkinfo *info;
  2700. struct xfs_buf *bp;
  2701. xfs_daddr_t blkno;
  2702. int error;
  2703. /*
  2704. * Read block 0 to see what we have to work with.
  2705. * We only get here if we have extents, since we remove
  2706. * the extents in reverse order the extent containing
  2707. * block 0 must still be there.
  2708. */
  2709. error = xfs_da3_node_read(*trans, dp, 0, -1, &bp, XFS_ATTR_FORK);
  2710. if (error)
  2711. return error;
  2712. blkno = bp->b_bn;
  2713. /*
  2714. * Invalidate the tree, even if the "tree" is only a single leaf block.
  2715. * This is a depth-first traversal!
  2716. */
  2717. info = bp->b_addr;
  2718. switch (info->magic) {
  2719. case cpu_to_be16(XFS_DA_NODE_MAGIC):
  2720. case cpu_to_be16(XFS_DA3_NODE_MAGIC):
  2721. error = xfs_attr3_node_inactive(trans, dp, bp, 1);
  2722. break;
  2723. case cpu_to_be16(XFS_ATTR_LEAF_MAGIC):
  2724. case cpu_to_be16(XFS_ATTR3_LEAF_MAGIC):
  2725. error = xfs_attr3_leaf_inactive(trans, dp, bp);
  2726. break;
  2727. default:
  2728. error = XFS_ERROR(EIO);
  2729. xfs_trans_brelse(*trans, bp);
  2730. break;
  2731. }
  2732. if (error)
  2733. return error;
  2734. /*
  2735. * Invalidate the incore copy of the root block.
  2736. */
  2737. error = xfs_da_get_buf(*trans, dp, 0, blkno, &bp, XFS_ATTR_FORK);
  2738. if (error)
  2739. return error;
  2740. xfs_trans_binval(*trans, bp); /* remove from cache */
  2741. /*
  2742. * Commit the invalidate and start the next transaction.
  2743. */
  2744. error = xfs_trans_roll(trans, dp);
  2745. return error;
  2746. }
  2747. /*
  2748. * Recurse (gasp!) through the attribute nodes until we find leaves.
  2749. * We're doing a depth-first traversal in order to invalidate everything.
  2750. */
  2751. STATIC int
  2752. xfs_attr3_node_inactive(
  2753. struct xfs_trans **trans,
  2754. struct xfs_inode *dp,
  2755. struct xfs_buf *bp,
  2756. int level)
  2757. {
  2758. xfs_da_blkinfo_t *info;
  2759. xfs_da_intnode_t *node;
  2760. xfs_dablk_t child_fsb;
  2761. xfs_daddr_t parent_blkno, child_blkno;
  2762. int error, i;
  2763. struct xfs_buf *child_bp;
  2764. struct xfs_da_node_entry *btree;
  2765. struct xfs_da3_icnode_hdr ichdr;
  2766. /*
  2767. * Since this code is recursive (gasp!) we must protect ourselves.
  2768. */
  2769. if (level > XFS_DA_NODE_MAXDEPTH) {
  2770. xfs_trans_brelse(*trans, bp); /* no locks for later trans */
  2771. return XFS_ERROR(EIO);
  2772. }
  2773. node = bp->b_addr;
  2774. xfs_da3_node_hdr_from_disk(&ichdr, node);
  2775. parent_blkno = bp->b_bn;
  2776. if (!ichdr.count) {
  2777. xfs_trans_brelse(*trans, bp);
  2778. return 0;
  2779. }
  2780. btree = xfs_da3_node_tree_p(node);
  2781. child_fsb = be32_to_cpu(btree[0].before);
  2782. xfs_trans_brelse(*trans, bp); /* no locks for later trans */
  2783. /*
  2784. * If this is the node level just above the leaves, simply loop
  2785. * over the leaves removing all of them. If this is higher up
  2786. * in the tree, recurse downward.
  2787. */
  2788. for (i = 0; i < ichdr.count; i++) {
  2789. /*
  2790. * Read the subsidiary block to see what we have to work with.
  2791. * Don't do this in a transaction. This is a depth-first
  2792. * traversal of the tree so we may deal with many blocks
  2793. * before we come back to this one.
  2794. */
  2795. error = xfs_da3_node_read(*trans, dp, child_fsb, -2, &child_bp,
  2796. XFS_ATTR_FORK);
  2797. if (error)
  2798. return(error);
  2799. if (child_bp) {
  2800. /* save for re-read later */
  2801. child_blkno = XFS_BUF_ADDR(child_bp);
  2802. /*
  2803. * Invalidate the subtree, however we have to.
  2804. */
  2805. info = child_bp->b_addr;
  2806. switch (info->magic) {
  2807. case cpu_to_be16(XFS_DA_NODE_MAGIC):
  2808. case cpu_to_be16(XFS_DA3_NODE_MAGIC):
  2809. error = xfs_attr3_node_inactive(trans, dp,
  2810. child_bp, level + 1);
  2811. break;
  2812. case cpu_to_be16(XFS_ATTR_LEAF_MAGIC):
  2813. case cpu_to_be16(XFS_ATTR3_LEAF_MAGIC):
  2814. error = xfs_attr3_leaf_inactive(trans, dp,
  2815. child_bp);
  2816. break;
  2817. default:
  2818. error = XFS_ERROR(EIO);
  2819. xfs_trans_brelse(*trans, child_bp);
  2820. break;
  2821. }
  2822. if (error)
  2823. return error;
  2824. /*
  2825. * Remove the subsidiary block from the cache
  2826. * and from the log.
  2827. */
  2828. error = xfs_da_get_buf(*trans, dp, 0, child_blkno,
  2829. &child_bp, XFS_ATTR_FORK);
  2830. if (error)
  2831. return error;
  2832. xfs_trans_binval(*trans, child_bp);
  2833. }
  2834. /*
  2835. * If we're not done, re-read the parent to get the next
  2836. * child block number.
  2837. */
  2838. if (i + 1 < ichdr.count) {
  2839. error = xfs_da3_node_read(*trans, dp, 0, parent_blkno,
  2840. &bp, XFS_ATTR_FORK);
  2841. if (error)
  2842. return error;
  2843. child_fsb = be32_to_cpu(btree[i + 1].before);
  2844. xfs_trans_brelse(*trans, bp);
  2845. }
  2846. /*
  2847. * Atomically commit the whole invalidate stuff.
  2848. */
  2849. error = xfs_trans_roll(trans, dp);
  2850. if (error)
  2851. return error;
  2852. }
  2853. return 0;
  2854. }
  2855. /*
  2856. * Invalidate all of the "remote" value regions pointed to by a particular
  2857. * leaf block.
  2858. * Note that we must release the lock on the buffer so that we are not
  2859. * caught holding something that the logging code wants to flush to disk.
  2860. */
  2861. STATIC int
  2862. xfs_attr3_leaf_inactive(
  2863. struct xfs_trans **trans,
  2864. struct xfs_inode *dp,
  2865. struct xfs_buf *bp)
  2866. {
  2867. struct xfs_attr_leafblock *leaf;
  2868. struct xfs_attr3_icleaf_hdr ichdr;
  2869. struct xfs_attr_leaf_entry *entry;
  2870. struct xfs_attr_leaf_name_remote *name_rmt;
  2871. struct xfs_attr_inactive_list *list;
  2872. struct xfs_attr_inactive_list *lp;
  2873. int error;
  2874. int count;
  2875. int size;
  2876. int tmp;
  2877. int i;
  2878. leaf = bp->b_addr;
  2879. xfs_attr3_leaf_hdr_from_disk(&ichdr, leaf);
  2880. /*
  2881. * Count the number of "remote" value extents.
  2882. */
  2883. count = 0;
  2884. entry = xfs_attr3_leaf_entryp(leaf);
  2885. for (i = 0; i < ichdr.count; entry++, i++) {
  2886. if (be16_to_cpu(entry->nameidx) &&
  2887. ((entry->flags & XFS_ATTR_LOCAL) == 0)) {
  2888. name_rmt = xfs_attr3_leaf_name_remote(leaf, i);
  2889. if (name_rmt->valueblk)
  2890. count++;
  2891. }
  2892. }
  2893. /*
  2894. * If there are no "remote" values, we're done.
  2895. */
  2896. if (count == 0) {
  2897. xfs_trans_brelse(*trans, bp);
  2898. return 0;
  2899. }
  2900. /*
  2901. * Allocate storage for a list of all the "remote" value extents.
  2902. */
  2903. size = count * sizeof(xfs_attr_inactive_list_t);
  2904. list = kmem_alloc(size, KM_SLEEP);
  2905. /*
  2906. * Identify each of the "remote" value extents.
  2907. */
  2908. lp = list;
  2909. entry = xfs_attr3_leaf_entryp(leaf);
  2910. for (i = 0; i < ichdr.count; entry++, i++) {
  2911. if (be16_to_cpu(entry->nameidx) &&
  2912. ((entry->flags & XFS_ATTR_LOCAL) == 0)) {
  2913. name_rmt = xfs_attr3_leaf_name_remote(leaf, i);
  2914. if (name_rmt->valueblk) {
  2915. lp->valueblk = be32_to_cpu(name_rmt->valueblk);
  2916. lp->valuelen = XFS_B_TO_FSB(dp->i_mount,
  2917. be32_to_cpu(name_rmt->valuelen));
  2918. lp++;
  2919. }
  2920. }
  2921. }
  2922. xfs_trans_brelse(*trans, bp); /* unlock for trans. in freextent() */
  2923. /*
  2924. * Invalidate each of the "remote" value extents.
  2925. */
  2926. error = 0;
  2927. for (lp = list, i = 0; i < count; i++, lp++) {
  2928. tmp = xfs_attr3_leaf_freextent(trans, dp,
  2929. lp->valueblk, lp->valuelen);
  2930. if (error == 0)
  2931. error = tmp; /* save only the 1st errno */
  2932. }
  2933. kmem_free(list);
  2934. return error;
  2935. }
  2936. /*
  2937. * Look at all the extents for this logical region,
  2938. * invalidate any buffers that are incore/in transactions.
  2939. */
  2940. STATIC int
  2941. xfs_attr3_leaf_freextent(
  2942. struct xfs_trans **trans,
  2943. struct xfs_inode *dp,
  2944. xfs_dablk_t blkno,
  2945. int blkcnt)
  2946. {
  2947. struct xfs_bmbt_irec map;
  2948. struct xfs_buf *bp;
  2949. xfs_dablk_t tblkno;
  2950. xfs_daddr_t dblkno;
  2951. int tblkcnt;
  2952. int dblkcnt;
  2953. int nmap;
  2954. int error;
  2955. /*
  2956. * Roll through the "value", invalidating the attribute value's
  2957. * blocks.
  2958. */
  2959. tblkno = blkno;
  2960. tblkcnt = blkcnt;
  2961. while (tblkcnt > 0) {
  2962. /*
  2963. * Try to remember where we decided to put the value.
  2964. */
  2965. nmap = 1;
  2966. error = xfs_bmapi_read(dp, (xfs_fileoff_t)tblkno, tblkcnt,
  2967. &map, &nmap, XFS_BMAPI_ATTRFORK);
  2968. if (error) {
  2969. return(error);
  2970. }
  2971. ASSERT(nmap == 1);
  2972. ASSERT(map.br_startblock != DELAYSTARTBLOCK);
  2973. /*
  2974. * If it's a hole, these are already unmapped
  2975. * so there's nothing to invalidate.
  2976. */
  2977. if (map.br_startblock != HOLESTARTBLOCK) {
  2978. dblkno = XFS_FSB_TO_DADDR(dp->i_mount,
  2979. map.br_startblock);
  2980. dblkcnt = XFS_FSB_TO_BB(dp->i_mount,
  2981. map.br_blockcount);
  2982. bp = xfs_trans_get_buf(*trans,
  2983. dp->i_mount->m_ddev_targp,
  2984. dblkno, dblkcnt, 0);
  2985. if (!bp)
  2986. return ENOMEM;
  2987. xfs_trans_binval(*trans, bp);
  2988. /*
  2989. * Roll to next transaction.
  2990. */
  2991. error = xfs_trans_roll(trans, dp);
  2992. if (error)
  2993. return (error);
  2994. }
  2995. tblkno += map.br_blockcount;
  2996. tblkcnt -= map.br_blockcount;
  2997. }
  2998. return(0);
  2999. }