smiapp-pll.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417
  1. /*
  2. * drivers/media/video/smiapp-pll.c
  3. *
  4. * Generic driver for SMIA/SMIA++ compliant camera modules
  5. *
  6. * Copyright (C) 2011--2012 Nokia Corporation
  7. * Contact: Sakari Ailus <sakari.ailus@maxwell.research.nokia.com>
  8. *
  9. * This program is free software; you can redistribute it and/or
  10. * modify it under the terms of the GNU General Public License
  11. * version 2 as published by the Free Software Foundation.
  12. *
  13. * This program is distributed in the hope that it will be useful, but
  14. * WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
  21. * 02110-1301 USA
  22. *
  23. */
  24. #include <linux/gcd.h>
  25. #include <linux/lcm.h>
  26. #include <linux/module.h>
  27. #include "smiapp-pll.h"
  28. /* Return an even number or one. */
  29. static inline uint32_t clk_div_even(uint32_t a)
  30. {
  31. return max_t(uint32_t, 1, a & ~1);
  32. }
  33. /* Return an even number or one. */
  34. static inline uint32_t clk_div_even_up(uint32_t a)
  35. {
  36. if (a == 1)
  37. return 1;
  38. return (a + 1) & ~1;
  39. }
  40. static inline uint32_t is_one_or_even(uint32_t a)
  41. {
  42. if (a == 1)
  43. return 1;
  44. if (a & 1)
  45. return 0;
  46. return 1;
  47. }
  48. static int bounds_check(struct device *dev, uint32_t val,
  49. uint32_t min, uint32_t max, char *str)
  50. {
  51. if (val >= min && val <= max)
  52. return 0;
  53. dev_warn(dev, "%s out of bounds: %d (%d--%d)\n", str, val, min, max);
  54. return -EINVAL;
  55. }
  56. static void print_pll(struct device *dev, struct smiapp_pll *pll)
  57. {
  58. dev_dbg(dev, "pre_pll_clk_div\t%d\n", pll->pre_pll_clk_div);
  59. dev_dbg(dev, "pll_multiplier \t%d\n", pll->pll_multiplier);
  60. if (pll->flags != SMIAPP_PLL_FLAG_NO_OP_CLOCKS) {
  61. dev_dbg(dev, "op_sys_clk_div \t%d\n", pll->op_sys_clk_div);
  62. dev_dbg(dev, "op_pix_clk_div \t%d\n", pll->op_pix_clk_div);
  63. }
  64. dev_dbg(dev, "vt_sys_clk_div \t%d\n", pll->vt_sys_clk_div);
  65. dev_dbg(dev, "vt_pix_clk_div \t%d\n", pll->vt_pix_clk_div);
  66. dev_dbg(dev, "ext_clk_freq_hz \t%d\n", pll->ext_clk_freq_hz);
  67. dev_dbg(dev, "pll_ip_clk_freq_hz \t%d\n", pll->pll_ip_clk_freq_hz);
  68. dev_dbg(dev, "pll_op_clk_freq_hz \t%d\n", pll->pll_op_clk_freq_hz);
  69. if (pll->flags & SMIAPP_PLL_FLAG_NO_OP_CLOCKS) {
  70. dev_dbg(dev, "op_sys_clk_freq_hz \t%d\n",
  71. pll->op_sys_clk_freq_hz);
  72. dev_dbg(dev, "op_pix_clk_freq_hz \t%d\n",
  73. pll->op_pix_clk_freq_hz);
  74. }
  75. dev_dbg(dev, "vt_sys_clk_freq_hz \t%d\n", pll->vt_sys_clk_freq_hz);
  76. dev_dbg(dev, "vt_pix_clk_freq_hz \t%d\n", pll->vt_pix_clk_freq_hz);
  77. }
  78. int smiapp_pll_calculate(struct device *dev, struct smiapp_pll_limits *limits,
  79. struct smiapp_pll *pll)
  80. {
  81. uint32_t sys_div;
  82. uint32_t best_pix_div = INT_MAX >> 1;
  83. uint32_t vt_op_binning_div;
  84. uint32_t lane_op_clock_ratio;
  85. uint32_t mul, div;
  86. uint32_t more_mul_min, more_mul_max;
  87. uint32_t more_mul_factor;
  88. uint32_t min_vt_div, max_vt_div, vt_div;
  89. uint32_t min_sys_div, max_sys_div;
  90. unsigned int i;
  91. int rval;
  92. if (pll->flags & SMIAPP_PLL_FLAG_OP_PIX_CLOCK_PER_LANE)
  93. lane_op_clock_ratio = pll->lanes;
  94. else
  95. lane_op_clock_ratio = 1;
  96. dev_dbg(dev, "lane_op_clock_ratio: %d\n", lane_op_clock_ratio);
  97. dev_dbg(dev, "binning: %dx%d\n", pll->binning_horizontal,
  98. pll->binning_vertical);
  99. /* CSI transfers 2 bits per clock per lane; thus times 2 */
  100. pll->pll_op_clk_freq_hz = pll->link_freq * 2
  101. * (pll->lanes / lane_op_clock_ratio);
  102. /* Figure out limits for pre-pll divider based on extclk */
  103. dev_dbg(dev, "min / max pre_pll_clk_div: %d / %d\n",
  104. limits->min_pre_pll_clk_div, limits->max_pre_pll_clk_div);
  105. limits->max_pre_pll_clk_div =
  106. min_t(uint16_t, limits->max_pre_pll_clk_div,
  107. clk_div_even(pll->ext_clk_freq_hz /
  108. limits->min_pll_ip_freq_hz));
  109. limits->min_pre_pll_clk_div =
  110. max_t(uint16_t, limits->min_pre_pll_clk_div,
  111. clk_div_even(pll->ext_clk_freq_hz /
  112. limits->max_pll_ip_freq_hz));
  113. dev_dbg(dev, "pre-pll check: min / max pre_pll_clk_div: %d / %d\n",
  114. limits->min_pre_pll_clk_div, limits->max_pre_pll_clk_div);
  115. i = gcd(pll->pll_op_clk_freq_hz, pll->ext_clk_freq_hz);
  116. mul = div_u64(pll->pll_op_clk_freq_hz, i);
  117. div = pll->ext_clk_freq_hz / i;
  118. dev_dbg(dev, "mul %d / div %d\n", mul, div);
  119. limits->min_pre_pll_clk_div =
  120. max_t(uint16_t, limits->min_pre_pll_clk_div,
  121. clk_div_even_up(
  122. DIV_ROUND_UP(mul * pll->ext_clk_freq_hz,
  123. limits->max_pll_op_freq_hz)));
  124. dev_dbg(dev, "pll_op check: min / max pre_pll_clk_div: %d / %d\n",
  125. limits->min_pre_pll_clk_div, limits->max_pre_pll_clk_div);
  126. if (limits->min_pre_pll_clk_div > limits->max_pre_pll_clk_div) {
  127. dev_err(dev, "unable to compute pre_pll divisor\n");
  128. return -EINVAL;
  129. }
  130. pll->pre_pll_clk_div = limits->min_pre_pll_clk_div;
  131. /*
  132. * Get pre_pll_clk_div so that our pll_op_clk_freq_hz won't be
  133. * too high.
  134. */
  135. dev_dbg(dev, "pre_pll_clk_div %d\n", pll->pre_pll_clk_div);
  136. /* Don't go above max pll multiplier. */
  137. more_mul_max = limits->max_pll_multiplier / mul;
  138. dev_dbg(dev, "more_mul_max: max_pll_multiplier check: %d\n",
  139. more_mul_max);
  140. /* Don't go above max pll op frequency. */
  141. more_mul_max =
  142. min_t(int,
  143. more_mul_max,
  144. limits->max_pll_op_freq_hz
  145. / (pll->ext_clk_freq_hz / pll->pre_pll_clk_div * mul));
  146. dev_dbg(dev, "more_mul_max: max_pll_op_freq_hz check: %d\n",
  147. more_mul_max);
  148. /* Don't go above the division capability of op sys clock divider. */
  149. more_mul_max = min(more_mul_max,
  150. limits->max_op_sys_clk_div * pll->pre_pll_clk_div
  151. / div);
  152. dev_dbg(dev, "more_mul_max: max_op_sys_clk_div check: %d\n",
  153. more_mul_max);
  154. /* Ensure we won't go above min_pll_multiplier. */
  155. more_mul_max = min(more_mul_max,
  156. DIV_ROUND_UP(limits->max_pll_multiplier, mul));
  157. dev_dbg(dev, "more_mul_max: min_pll_multiplier check: %d\n",
  158. more_mul_max);
  159. /* Ensure we won't go below min_pll_op_freq_hz. */
  160. more_mul_min = DIV_ROUND_UP(limits->min_pll_op_freq_hz,
  161. pll->ext_clk_freq_hz / pll->pre_pll_clk_div
  162. * mul);
  163. dev_dbg(dev, "more_mul_min: min_pll_op_freq_hz check: %d\n",
  164. more_mul_min);
  165. /* Ensure we won't go below min_pll_multiplier. */
  166. more_mul_min = max(more_mul_min,
  167. DIV_ROUND_UP(limits->min_pll_multiplier, mul));
  168. dev_dbg(dev, "more_mul_min: min_pll_multiplier check: %d\n",
  169. more_mul_min);
  170. if (more_mul_min > more_mul_max) {
  171. dev_warn(dev,
  172. "unable to compute more_mul_min and more_mul_max");
  173. return -EINVAL;
  174. }
  175. more_mul_factor = lcm(div, pll->pre_pll_clk_div) / div;
  176. dev_dbg(dev, "more_mul_factor: %d\n", more_mul_factor);
  177. more_mul_factor = lcm(more_mul_factor, limits->min_op_sys_clk_div);
  178. dev_dbg(dev, "more_mul_factor: min_op_sys_clk_div: %d\n",
  179. more_mul_factor);
  180. i = roundup(more_mul_min, more_mul_factor);
  181. if (!is_one_or_even(i))
  182. i <<= 1;
  183. dev_dbg(dev, "final more_mul: %d\n", i);
  184. if (i > more_mul_max) {
  185. dev_warn(dev, "final more_mul is bad, max %d", more_mul_max);
  186. return -EINVAL;
  187. }
  188. pll->pll_multiplier = mul * i;
  189. pll->op_sys_clk_div = div * i / pll->pre_pll_clk_div;
  190. dev_dbg(dev, "op_sys_clk_div: %d\n", pll->op_sys_clk_div);
  191. pll->pll_ip_clk_freq_hz = pll->ext_clk_freq_hz
  192. / pll->pre_pll_clk_div;
  193. pll->pll_op_clk_freq_hz = pll->pll_ip_clk_freq_hz
  194. * pll->pll_multiplier;
  195. /* Derive pll_op_clk_freq_hz. */
  196. pll->op_sys_clk_freq_hz =
  197. pll->pll_op_clk_freq_hz / pll->op_sys_clk_div;
  198. pll->op_pix_clk_div = pll->bits_per_pixel;
  199. dev_dbg(dev, "op_pix_clk_div: %d\n", pll->op_pix_clk_div);
  200. pll->op_pix_clk_freq_hz =
  201. pll->op_sys_clk_freq_hz / pll->op_pix_clk_div;
  202. /*
  203. * Some sensors perform analogue binning and some do this
  204. * digitally. The ones doing this digitally can be roughly be
  205. * found out using this formula. The ones doing this digitally
  206. * should run at higher clock rate, so smaller divisor is used
  207. * on video timing side.
  208. */
  209. if (limits->min_line_length_pck_bin > limits->min_line_length_pck
  210. / pll->binning_horizontal)
  211. vt_op_binning_div = pll->binning_horizontal;
  212. else
  213. vt_op_binning_div = 1;
  214. dev_dbg(dev, "vt_op_binning_div: %d\n", vt_op_binning_div);
  215. /*
  216. * Profile 2 supports vt_pix_clk_div E [4, 10]
  217. *
  218. * Horizontal binning can be used as a base for difference in
  219. * divisors. One must make sure that horizontal blanking is
  220. * enough to accommodate the CSI-2 sync codes.
  221. *
  222. * Take scaling factor into account as well.
  223. *
  224. * Find absolute limits for the factor of vt divider.
  225. */
  226. dev_dbg(dev, "scale_m: %d\n", pll->scale_m);
  227. min_vt_div = DIV_ROUND_UP(pll->op_pix_clk_div * pll->op_sys_clk_div
  228. * pll->scale_n,
  229. lane_op_clock_ratio * vt_op_binning_div
  230. * pll->scale_m);
  231. /* Find smallest and biggest allowed vt divisor. */
  232. dev_dbg(dev, "min_vt_div: %d\n", min_vt_div);
  233. min_vt_div = max(min_vt_div,
  234. DIV_ROUND_UP(pll->pll_op_clk_freq_hz,
  235. limits->max_vt_pix_clk_freq_hz));
  236. dev_dbg(dev, "min_vt_div: max_vt_pix_clk_freq_hz: %d\n",
  237. min_vt_div);
  238. min_vt_div = max_t(uint32_t, min_vt_div,
  239. limits->min_vt_pix_clk_div
  240. * limits->min_vt_sys_clk_div);
  241. dev_dbg(dev, "min_vt_div: min_vt_clk_div: %d\n", min_vt_div);
  242. max_vt_div = limits->max_vt_sys_clk_div * limits->max_vt_pix_clk_div;
  243. dev_dbg(dev, "max_vt_div: %d\n", max_vt_div);
  244. max_vt_div = min(max_vt_div,
  245. DIV_ROUND_UP(pll->pll_op_clk_freq_hz,
  246. limits->min_vt_pix_clk_freq_hz));
  247. dev_dbg(dev, "max_vt_div: min_vt_pix_clk_freq_hz: %d\n",
  248. max_vt_div);
  249. /*
  250. * Find limitsits for sys_clk_div. Not all values are possible
  251. * with all values of pix_clk_div.
  252. */
  253. min_sys_div = limits->min_vt_sys_clk_div;
  254. dev_dbg(dev, "min_sys_div: %d\n", min_sys_div);
  255. min_sys_div = max(min_sys_div,
  256. DIV_ROUND_UP(min_vt_div,
  257. limits->max_vt_pix_clk_div));
  258. dev_dbg(dev, "min_sys_div: max_vt_pix_clk_div: %d\n", min_sys_div);
  259. min_sys_div = max(min_sys_div,
  260. pll->pll_op_clk_freq_hz
  261. / limits->max_vt_sys_clk_freq_hz);
  262. dev_dbg(dev, "min_sys_div: max_pll_op_clk_freq_hz: %d\n", min_sys_div);
  263. min_sys_div = clk_div_even_up(min_sys_div);
  264. dev_dbg(dev, "min_sys_div: one or even: %d\n", min_sys_div);
  265. max_sys_div = limits->max_vt_sys_clk_div;
  266. dev_dbg(dev, "max_sys_div: %d\n", max_sys_div);
  267. max_sys_div = min(max_sys_div,
  268. DIV_ROUND_UP(max_vt_div,
  269. limits->min_vt_pix_clk_div));
  270. dev_dbg(dev, "max_sys_div: min_vt_pix_clk_div: %d\n", max_sys_div);
  271. max_sys_div = min(max_sys_div,
  272. DIV_ROUND_UP(pll->pll_op_clk_freq_hz,
  273. limits->min_vt_pix_clk_freq_hz));
  274. dev_dbg(dev, "max_sys_div: min_vt_pix_clk_freq_hz: %d\n", max_sys_div);
  275. /*
  276. * Find pix_div such that a legal pix_div * sys_div results
  277. * into a value which is not smaller than div, the desired
  278. * divisor.
  279. */
  280. for (vt_div = min_vt_div; vt_div <= max_vt_div;
  281. vt_div += 2 - (vt_div & 1)) {
  282. for (sys_div = min_sys_div;
  283. sys_div <= max_sys_div;
  284. sys_div += 2 - (sys_div & 1)) {
  285. int pix_div = DIV_ROUND_UP(vt_div, sys_div);
  286. if (pix_div < limits->min_vt_pix_clk_div
  287. || pix_div > limits->max_vt_pix_clk_div) {
  288. dev_dbg(dev,
  289. "pix_div %d too small or too big (%d--%d)\n",
  290. pix_div,
  291. limits->min_vt_pix_clk_div,
  292. limits->max_vt_pix_clk_div);
  293. continue;
  294. }
  295. /* Check if this one is better. */
  296. if (pix_div * sys_div
  297. <= roundup(min_vt_div, best_pix_div))
  298. best_pix_div = pix_div;
  299. }
  300. if (best_pix_div < INT_MAX >> 1)
  301. break;
  302. }
  303. pll->vt_sys_clk_div = DIV_ROUND_UP(min_vt_div, best_pix_div);
  304. pll->vt_pix_clk_div = best_pix_div;
  305. pll->vt_sys_clk_freq_hz =
  306. pll->pll_op_clk_freq_hz / pll->vt_sys_clk_div;
  307. pll->vt_pix_clk_freq_hz =
  308. pll->vt_sys_clk_freq_hz / pll->vt_pix_clk_div;
  309. pll->pixel_rate_csi =
  310. pll->op_pix_clk_freq_hz * lane_op_clock_ratio;
  311. print_pll(dev, pll);
  312. rval = bounds_check(dev, pll->pre_pll_clk_div,
  313. limits->min_pre_pll_clk_div,
  314. limits->max_pre_pll_clk_div, "pre_pll_clk_div");
  315. if (!rval)
  316. rval = bounds_check(
  317. dev, pll->pll_ip_clk_freq_hz,
  318. limits->min_pll_ip_freq_hz, limits->max_pll_ip_freq_hz,
  319. "pll_ip_clk_freq_hz");
  320. if (!rval)
  321. rval = bounds_check(
  322. dev, pll->pll_multiplier,
  323. limits->min_pll_multiplier, limits->max_pll_multiplier,
  324. "pll_multiplier");
  325. if (!rval)
  326. rval = bounds_check(
  327. dev, pll->pll_op_clk_freq_hz,
  328. limits->min_pll_op_freq_hz, limits->max_pll_op_freq_hz,
  329. "pll_op_clk_freq_hz");
  330. if (!rval)
  331. rval = bounds_check(
  332. dev, pll->op_sys_clk_div,
  333. limits->min_op_sys_clk_div, limits->max_op_sys_clk_div,
  334. "op_sys_clk_div");
  335. if (!rval)
  336. rval = bounds_check(
  337. dev, pll->op_pix_clk_div,
  338. limits->min_op_pix_clk_div, limits->max_op_pix_clk_div,
  339. "op_pix_clk_div");
  340. if (!rval)
  341. rval = bounds_check(
  342. dev, pll->op_sys_clk_freq_hz,
  343. limits->min_op_sys_clk_freq_hz,
  344. limits->max_op_sys_clk_freq_hz,
  345. "op_sys_clk_freq_hz");
  346. if (!rval)
  347. rval = bounds_check(
  348. dev, pll->op_pix_clk_freq_hz,
  349. limits->min_op_pix_clk_freq_hz,
  350. limits->max_op_pix_clk_freq_hz,
  351. "op_pix_clk_freq_hz");
  352. if (!rval)
  353. rval = bounds_check(
  354. dev, pll->vt_sys_clk_freq_hz,
  355. limits->min_vt_sys_clk_freq_hz,
  356. limits->max_vt_sys_clk_freq_hz,
  357. "vt_sys_clk_freq_hz");
  358. if (!rval)
  359. rval = bounds_check(
  360. dev, pll->vt_pix_clk_freq_hz,
  361. limits->min_vt_pix_clk_freq_hz,
  362. limits->max_vt_pix_clk_freq_hz,
  363. "vt_pix_clk_freq_hz");
  364. return rval;
  365. }
  366. EXPORT_SYMBOL_GPL(smiapp_pll_calculate);
  367. MODULE_AUTHOR("Sakari Ailus <sakari.ailus@maxwell.research.nokia.com>");
  368. MODULE_DESCRIPTION("Generic SMIA/SMIA++ PLL calculator");
  369. MODULE_LICENSE("GPL");