skbuff.h 77 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784
  1. /*
  2. * Definitions for the 'struct sk_buff' memory handlers.
  3. *
  4. * Authors:
  5. * Alan Cox, <gw4pts@gw4pts.ampr.org>
  6. * Florian La Roche, <rzsfl@rz.uni-sb.de>
  7. *
  8. * This program is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU General Public License
  10. * as published by the Free Software Foundation; either version
  11. * 2 of the License, or (at your option) any later version.
  12. */
  13. #ifndef _LINUX_SKBUFF_H
  14. #define _LINUX_SKBUFF_H
  15. #include <linux/kernel.h>
  16. #include <linux/kmemcheck.h>
  17. #include <linux/compiler.h>
  18. #include <linux/time.h>
  19. #include <linux/bug.h>
  20. #include <linux/cache.h>
  21. #include <linux/atomic.h>
  22. #include <asm/types.h>
  23. #include <linux/spinlock.h>
  24. #include <linux/net.h>
  25. #include <linux/textsearch.h>
  26. #include <net/checksum.h>
  27. #include <linux/rcupdate.h>
  28. #include <linux/dmaengine.h>
  29. #include <linux/hrtimer.h>
  30. #include <linux/dma-mapping.h>
  31. #include <linux/netdev_features.h>
  32. /* Don't change this without changing skb_csum_unnecessary! */
  33. #define CHECKSUM_NONE 0
  34. #define CHECKSUM_UNNECESSARY 1
  35. #define CHECKSUM_COMPLETE 2
  36. #define CHECKSUM_PARTIAL 3
  37. #define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \
  38. ~(SMP_CACHE_BYTES - 1))
  39. #define SKB_WITH_OVERHEAD(X) \
  40. ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
  41. #define SKB_MAX_ORDER(X, ORDER) \
  42. SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
  43. #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
  44. #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
  45. /* return minimum truesize of one skb containing X bytes of data */
  46. #define SKB_TRUESIZE(X) ((X) + \
  47. SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \
  48. SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
  49. /* A. Checksumming of received packets by device.
  50. *
  51. * NONE: device failed to checksum this packet.
  52. * skb->csum is undefined.
  53. *
  54. * UNNECESSARY: device parsed packet and wouldbe verified checksum.
  55. * skb->csum is undefined.
  56. * It is bad option, but, unfortunately, many of vendors do this.
  57. * Apparently with secret goal to sell you new device, when you
  58. * will add new protocol to your host. F.e. IPv6. 8)
  59. *
  60. * COMPLETE: the most generic way. Device supplied checksum of _all_
  61. * the packet as seen by netif_rx in skb->csum.
  62. * NOTE: Even if device supports only some protocols, but
  63. * is able to produce some skb->csum, it MUST use COMPLETE,
  64. * not UNNECESSARY.
  65. *
  66. * PARTIAL: identical to the case for output below. This may occur
  67. * on a packet received directly from another Linux OS, e.g.,
  68. * a virtualised Linux kernel on the same host. The packet can
  69. * be treated in the same way as UNNECESSARY except that on
  70. * output (i.e., forwarding) the checksum must be filled in
  71. * by the OS or the hardware.
  72. *
  73. * B. Checksumming on output.
  74. *
  75. * NONE: skb is checksummed by protocol or csum is not required.
  76. *
  77. * PARTIAL: device is required to csum packet as seen by hard_start_xmit
  78. * from skb->csum_start to the end and to record the checksum
  79. * at skb->csum_start + skb->csum_offset.
  80. *
  81. * Device must show its capabilities in dev->features, set
  82. * at device setup time.
  83. * NETIF_F_HW_CSUM - it is clever device, it is able to checksum
  84. * everything.
  85. * NETIF_F_IP_CSUM - device is dumb. It is able to csum only
  86. * TCP/UDP over IPv4. Sigh. Vendors like this
  87. * way by an unknown reason. Though, see comment above
  88. * about CHECKSUM_UNNECESSARY. 8)
  89. * NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead.
  90. *
  91. * UNNECESSARY: device will do per protocol specific csum. Protocol drivers
  92. * that do not want net to perform the checksum calculation should use
  93. * this flag in their outgoing skbs.
  94. * NETIF_F_FCOE_CRC this indicates the device can do FCoE FC CRC
  95. * offload. Correspondingly, the FCoE protocol driver
  96. * stack should use CHECKSUM_UNNECESSARY.
  97. *
  98. * Any questions? No questions, good. --ANK
  99. */
  100. struct net_device;
  101. struct scatterlist;
  102. struct pipe_inode_info;
  103. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  104. struct nf_conntrack {
  105. atomic_t use;
  106. };
  107. #endif
  108. #ifdef CONFIG_BRIDGE_NETFILTER
  109. struct nf_bridge_info {
  110. atomic_t use;
  111. unsigned int mask;
  112. struct net_device *physindev;
  113. struct net_device *physoutdev;
  114. unsigned long data[32 / sizeof(unsigned long)];
  115. };
  116. #endif
  117. struct sk_buff_head {
  118. /* These two members must be first. */
  119. struct sk_buff *next;
  120. struct sk_buff *prev;
  121. __u32 qlen;
  122. spinlock_t lock;
  123. };
  124. struct sk_buff;
  125. /* To allow 64K frame to be packed as single skb without frag_list we
  126. * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
  127. * buffers which do not start on a page boundary.
  128. *
  129. * Since GRO uses frags we allocate at least 16 regardless of page
  130. * size.
  131. */
  132. #if (65536/PAGE_SIZE + 1) < 16
  133. #define MAX_SKB_FRAGS 16UL
  134. #else
  135. #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
  136. #endif
  137. typedef struct skb_frag_struct skb_frag_t;
  138. struct skb_frag_struct {
  139. struct {
  140. struct page *p;
  141. } page;
  142. #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
  143. __u32 page_offset;
  144. __u32 size;
  145. #else
  146. __u16 page_offset;
  147. __u16 size;
  148. #endif
  149. };
  150. static inline unsigned int skb_frag_size(const skb_frag_t *frag)
  151. {
  152. return frag->size;
  153. }
  154. static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
  155. {
  156. frag->size = size;
  157. }
  158. static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
  159. {
  160. frag->size += delta;
  161. }
  162. static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
  163. {
  164. frag->size -= delta;
  165. }
  166. #define HAVE_HW_TIME_STAMP
  167. /**
  168. * struct skb_shared_hwtstamps - hardware time stamps
  169. * @hwtstamp: hardware time stamp transformed into duration
  170. * since arbitrary point in time
  171. * @syststamp: hwtstamp transformed to system time base
  172. *
  173. * Software time stamps generated by ktime_get_real() are stored in
  174. * skb->tstamp. The relation between the different kinds of time
  175. * stamps is as follows:
  176. *
  177. * syststamp and tstamp can be compared against each other in
  178. * arbitrary combinations. The accuracy of a
  179. * syststamp/tstamp/"syststamp from other device" comparison is
  180. * limited by the accuracy of the transformation into system time
  181. * base. This depends on the device driver and its underlying
  182. * hardware.
  183. *
  184. * hwtstamps can only be compared against other hwtstamps from
  185. * the same device.
  186. *
  187. * This structure is attached to packets as part of the
  188. * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
  189. */
  190. struct skb_shared_hwtstamps {
  191. ktime_t hwtstamp;
  192. ktime_t syststamp;
  193. };
  194. /* Definitions for tx_flags in struct skb_shared_info */
  195. enum {
  196. /* generate hardware time stamp */
  197. SKBTX_HW_TSTAMP = 1 << 0,
  198. /* generate software time stamp */
  199. SKBTX_SW_TSTAMP = 1 << 1,
  200. /* device driver is going to provide hardware time stamp */
  201. SKBTX_IN_PROGRESS = 1 << 2,
  202. /* device driver supports TX zero-copy buffers */
  203. SKBTX_DEV_ZEROCOPY = 1 << 3,
  204. /* generate wifi status information (where possible) */
  205. SKBTX_WIFI_STATUS = 1 << 4,
  206. };
  207. /*
  208. * The callback notifies userspace to release buffers when skb DMA is done in
  209. * lower device, the skb last reference should be 0 when calling this.
  210. * The zerocopy_success argument is true if zero copy transmit occurred,
  211. * false on data copy or out of memory error caused by data copy attempt.
  212. * The ctx field is used to track device context.
  213. * The desc field is used to track userspace buffer index.
  214. */
  215. struct ubuf_info {
  216. void (*callback)(struct ubuf_info *, bool zerocopy_success);
  217. void *ctx;
  218. unsigned long desc;
  219. };
  220. /* This data is invariant across clones and lives at
  221. * the end of the header data, ie. at skb->end.
  222. */
  223. struct skb_shared_info {
  224. unsigned char nr_frags;
  225. __u8 tx_flags;
  226. unsigned short gso_size;
  227. /* Warning: this field is not always filled in (UFO)! */
  228. unsigned short gso_segs;
  229. unsigned short gso_type;
  230. struct sk_buff *frag_list;
  231. struct skb_shared_hwtstamps hwtstamps;
  232. __be32 ip6_frag_id;
  233. /*
  234. * Warning : all fields before dataref are cleared in __alloc_skb()
  235. */
  236. atomic_t dataref;
  237. /* Intermediate layers must ensure that destructor_arg
  238. * remains valid until skb destructor */
  239. void * destructor_arg;
  240. /* must be last field, see pskb_expand_head() */
  241. skb_frag_t frags[MAX_SKB_FRAGS];
  242. };
  243. /* We divide dataref into two halves. The higher 16 bits hold references
  244. * to the payload part of skb->data. The lower 16 bits hold references to
  245. * the entire skb->data. A clone of a headerless skb holds the length of
  246. * the header in skb->hdr_len.
  247. *
  248. * All users must obey the rule that the skb->data reference count must be
  249. * greater than or equal to the payload reference count.
  250. *
  251. * Holding a reference to the payload part means that the user does not
  252. * care about modifications to the header part of skb->data.
  253. */
  254. #define SKB_DATAREF_SHIFT 16
  255. #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
  256. enum {
  257. SKB_FCLONE_UNAVAILABLE,
  258. SKB_FCLONE_ORIG,
  259. SKB_FCLONE_CLONE,
  260. };
  261. enum {
  262. SKB_GSO_TCPV4 = 1 << 0,
  263. SKB_GSO_UDP = 1 << 1,
  264. /* This indicates the skb is from an untrusted source. */
  265. SKB_GSO_DODGY = 1 << 2,
  266. /* This indicates the tcp segment has CWR set. */
  267. SKB_GSO_TCP_ECN = 1 << 3,
  268. SKB_GSO_TCPV6 = 1 << 4,
  269. SKB_GSO_FCOE = 1 << 5,
  270. /* This indicates at least one fragment might be overwritten
  271. * (as in vmsplice(), sendfile() ...)
  272. * If we need to compute a TX checksum, we'll need to copy
  273. * all frags to avoid possible bad checksum
  274. */
  275. SKB_GSO_SHARED_FRAG = 1 << 6,
  276. };
  277. #if BITS_PER_LONG > 32
  278. #define NET_SKBUFF_DATA_USES_OFFSET 1
  279. #endif
  280. #ifdef NET_SKBUFF_DATA_USES_OFFSET
  281. typedef unsigned int sk_buff_data_t;
  282. #else
  283. typedef unsigned char *sk_buff_data_t;
  284. #endif
  285. #if defined(CONFIG_NF_DEFRAG_IPV4) || defined(CONFIG_NF_DEFRAG_IPV4_MODULE) || \
  286. defined(CONFIG_NF_DEFRAG_IPV6) || defined(CONFIG_NF_DEFRAG_IPV6_MODULE)
  287. #define NET_SKBUFF_NF_DEFRAG_NEEDED 1
  288. #endif
  289. /**
  290. * struct sk_buff - socket buffer
  291. * @next: Next buffer in list
  292. * @prev: Previous buffer in list
  293. * @tstamp: Time we arrived
  294. * @sk: Socket we are owned by
  295. * @dev: Device we arrived on/are leaving by
  296. * @cb: Control buffer. Free for use by every layer. Put private vars here
  297. * @_skb_refdst: destination entry (with norefcount bit)
  298. * @sp: the security path, used for xfrm
  299. * @len: Length of actual data
  300. * @data_len: Data length
  301. * @mac_len: Length of link layer header
  302. * @hdr_len: writable header length of cloned skb
  303. * @csum: Checksum (must include start/offset pair)
  304. * @csum_start: Offset from skb->head where checksumming should start
  305. * @csum_offset: Offset from csum_start where checksum should be stored
  306. * @priority: Packet queueing priority
  307. * @local_df: allow local fragmentation
  308. * @cloned: Head may be cloned (check refcnt to be sure)
  309. * @ip_summed: Driver fed us an IP checksum
  310. * @nohdr: Payload reference only, must not modify header
  311. * @nfctinfo: Relationship of this skb to the connection
  312. * @pkt_type: Packet class
  313. * @fclone: skbuff clone status
  314. * @ipvs_property: skbuff is owned by ipvs
  315. * @peeked: this packet has been seen already, so stats have been
  316. * done for it, don't do them again
  317. * @nf_trace: netfilter packet trace flag
  318. * @protocol: Packet protocol from driver
  319. * @destructor: Destruct function
  320. * @nfct: Associated connection, if any
  321. * @nfct_reasm: netfilter conntrack re-assembly pointer
  322. * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
  323. * @skb_iif: ifindex of device we arrived on
  324. * @tc_index: Traffic control index
  325. * @tc_verd: traffic control verdict
  326. * @rxhash: the packet hash computed on receive
  327. * @queue_mapping: Queue mapping for multiqueue devices
  328. * @ndisc_nodetype: router type (from link layer)
  329. * @ooo_okay: allow the mapping of a socket to a queue to be changed
  330. * @l4_rxhash: indicate rxhash is a canonical 4-tuple hash over transport
  331. * ports.
  332. * @wifi_acked_valid: wifi_acked was set
  333. * @wifi_acked: whether frame was acked on wifi or not
  334. * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS
  335. * @dma_cookie: a cookie to one of several possible DMA operations
  336. * done by skb DMA functions
  337. * @secmark: security marking
  338. * @mark: Generic packet mark
  339. * @dropcount: total number of sk_receive_queue overflows
  340. * @vlan_tci: vlan tag control information
  341. * @inner_transport_header: Inner transport layer header (encapsulation)
  342. * @inner_network_header: Network layer header (encapsulation)
  343. * @transport_header: Transport layer header
  344. * @network_header: Network layer header
  345. * @mac_header: Link layer header
  346. * @tail: Tail pointer
  347. * @end: End pointer
  348. * @head: Head of buffer
  349. * @data: Data head pointer
  350. * @truesize: Buffer size
  351. * @users: User count - see {datagram,tcp}.c
  352. */
  353. struct sk_buff {
  354. /* These two members must be first. */
  355. struct sk_buff *next;
  356. struct sk_buff *prev;
  357. ktime_t tstamp;
  358. struct sock *sk;
  359. struct net_device *dev;
  360. /*
  361. * This is the control buffer. It is free to use for every
  362. * layer. Please put your private variables there. If you
  363. * want to keep them across layers you have to do a skb_clone()
  364. * first. This is owned by whoever has the skb queued ATM.
  365. */
  366. char cb[48] __aligned(8);
  367. unsigned long _skb_refdst;
  368. #ifdef CONFIG_XFRM
  369. struct sec_path *sp;
  370. #endif
  371. unsigned int len,
  372. data_len;
  373. __u16 mac_len,
  374. hdr_len;
  375. union {
  376. __wsum csum;
  377. struct {
  378. __u16 csum_start;
  379. __u16 csum_offset;
  380. };
  381. };
  382. __u32 priority;
  383. kmemcheck_bitfield_begin(flags1);
  384. __u8 local_df:1,
  385. cloned:1,
  386. ip_summed:2,
  387. nohdr:1,
  388. nfctinfo:3;
  389. __u8 pkt_type:3,
  390. fclone:2,
  391. ipvs_property:1,
  392. peeked:1,
  393. nf_trace:1;
  394. kmemcheck_bitfield_end(flags1);
  395. __be16 protocol;
  396. void (*destructor)(struct sk_buff *skb);
  397. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  398. struct nf_conntrack *nfct;
  399. #endif
  400. #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
  401. struct sk_buff *nfct_reasm;
  402. #endif
  403. #ifdef CONFIG_BRIDGE_NETFILTER
  404. struct nf_bridge_info *nf_bridge;
  405. #endif
  406. int skb_iif;
  407. __u32 rxhash;
  408. __u16 vlan_tci;
  409. #ifdef CONFIG_NET_SCHED
  410. __u16 tc_index; /* traffic control index */
  411. #ifdef CONFIG_NET_CLS_ACT
  412. __u16 tc_verd; /* traffic control verdict */
  413. #endif
  414. #endif
  415. __u16 queue_mapping;
  416. kmemcheck_bitfield_begin(flags2);
  417. #ifdef CONFIG_IPV6_NDISC_NODETYPE
  418. __u8 ndisc_nodetype:2;
  419. #endif
  420. __u8 pfmemalloc:1;
  421. __u8 ooo_okay:1;
  422. __u8 l4_rxhash:1;
  423. __u8 wifi_acked_valid:1;
  424. __u8 wifi_acked:1;
  425. __u8 no_fcs:1;
  426. __u8 head_frag:1;
  427. /* Encapsulation protocol and NIC drivers should use
  428. * this flag to indicate to each other if the skb contains
  429. * encapsulated packet or not and maybe use the inner packet
  430. * headers if needed
  431. */
  432. __u8 encapsulation:1;
  433. /* 7/9 bit hole (depending on ndisc_nodetype presence) */
  434. kmemcheck_bitfield_end(flags2);
  435. #ifdef CONFIG_NET_DMA
  436. dma_cookie_t dma_cookie;
  437. #endif
  438. #ifdef CONFIG_NETWORK_SECMARK
  439. __u32 secmark;
  440. #endif
  441. union {
  442. __u32 mark;
  443. __u32 dropcount;
  444. __u32 avail_size;
  445. };
  446. sk_buff_data_t inner_transport_header;
  447. sk_buff_data_t inner_network_header;
  448. sk_buff_data_t transport_header;
  449. sk_buff_data_t network_header;
  450. sk_buff_data_t mac_header;
  451. /* These elements must be at the end, see alloc_skb() for details. */
  452. sk_buff_data_t tail;
  453. sk_buff_data_t end;
  454. unsigned char *head,
  455. *data;
  456. unsigned int truesize;
  457. atomic_t users;
  458. };
  459. #ifdef __KERNEL__
  460. /*
  461. * Handling routines are only of interest to the kernel
  462. */
  463. #include <linux/slab.h>
  464. #define SKB_ALLOC_FCLONE 0x01
  465. #define SKB_ALLOC_RX 0x02
  466. /* Returns true if the skb was allocated from PFMEMALLOC reserves */
  467. static inline bool skb_pfmemalloc(const struct sk_buff *skb)
  468. {
  469. return unlikely(skb->pfmemalloc);
  470. }
  471. /*
  472. * skb might have a dst pointer attached, refcounted or not.
  473. * _skb_refdst low order bit is set if refcount was _not_ taken
  474. */
  475. #define SKB_DST_NOREF 1UL
  476. #define SKB_DST_PTRMASK ~(SKB_DST_NOREF)
  477. /**
  478. * skb_dst - returns skb dst_entry
  479. * @skb: buffer
  480. *
  481. * Returns skb dst_entry, regardless of reference taken or not.
  482. */
  483. static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
  484. {
  485. /* If refdst was not refcounted, check we still are in a
  486. * rcu_read_lock section
  487. */
  488. WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
  489. !rcu_read_lock_held() &&
  490. !rcu_read_lock_bh_held());
  491. return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
  492. }
  493. /**
  494. * skb_dst_set - sets skb dst
  495. * @skb: buffer
  496. * @dst: dst entry
  497. *
  498. * Sets skb dst, assuming a reference was taken on dst and should
  499. * be released by skb_dst_drop()
  500. */
  501. static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
  502. {
  503. skb->_skb_refdst = (unsigned long)dst;
  504. }
  505. extern void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst);
  506. /**
  507. * skb_dst_is_noref - Test if skb dst isn't refcounted
  508. * @skb: buffer
  509. */
  510. static inline bool skb_dst_is_noref(const struct sk_buff *skb)
  511. {
  512. return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
  513. }
  514. static inline struct rtable *skb_rtable(const struct sk_buff *skb)
  515. {
  516. return (struct rtable *)skb_dst(skb);
  517. }
  518. extern void kfree_skb(struct sk_buff *skb);
  519. extern void skb_tx_error(struct sk_buff *skb);
  520. extern void consume_skb(struct sk_buff *skb);
  521. extern void __kfree_skb(struct sk_buff *skb);
  522. extern struct kmem_cache *skbuff_head_cache;
  523. extern void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
  524. extern bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
  525. bool *fragstolen, int *delta_truesize);
  526. extern struct sk_buff *__alloc_skb(unsigned int size,
  527. gfp_t priority, int flags, int node);
  528. extern struct sk_buff *build_skb(void *data, unsigned int frag_size);
  529. static inline struct sk_buff *alloc_skb(unsigned int size,
  530. gfp_t priority)
  531. {
  532. return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
  533. }
  534. static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
  535. gfp_t priority)
  536. {
  537. return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
  538. }
  539. extern struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
  540. extern int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
  541. extern struct sk_buff *skb_clone(struct sk_buff *skb,
  542. gfp_t priority);
  543. extern struct sk_buff *skb_copy(const struct sk_buff *skb,
  544. gfp_t priority);
  545. extern struct sk_buff *__pskb_copy(struct sk_buff *skb,
  546. int headroom, gfp_t gfp_mask);
  547. extern int pskb_expand_head(struct sk_buff *skb,
  548. int nhead, int ntail,
  549. gfp_t gfp_mask);
  550. extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
  551. unsigned int headroom);
  552. extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
  553. int newheadroom, int newtailroom,
  554. gfp_t priority);
  555. extern int skb_to_sgvec(struct sk_buff *skb,
  556. struct scatterlist *sg, int offset,
  557. int len);
  558. extern int skb_cow_data(struct sk_buff *skb, int tailbits,
  559. struct sk_buff **trailer);
  560. extern int skb_pad(struct sk_buff *skb, int pad);
  561. #define dev_kfree_skb(a) consume_skb(a)
  562. extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
  563. int getfrag(void *from, char *to, int offset,
  564. int len,int odd, struct sk_buff *skb),
  565. void *from, int length);
  566. struct skb_seq_state {
  567. __u32 lower_offset;
  568. __u32 upper_offset;
  569. __u32 frag_idx;
  570. __u32 stepped_offset;
  571. struct sk_buff *root_skb;
  572. struct sk_buff *cur_skb;
  573. __u8 *frag_data;
  574. };
  575. extern void skb_prepare_seq_read(struct sk_buff *skb,
  576. unsigned int from, unsigned int to,
  577. struct skb_seq_state *st);
  578. extern unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
  579. struct skb_seq_state *st);
  580. extern void skb_abort_seq_read(struct skb_seq_state *st);
  581. extern unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
  582. unsigned int to, struct ts_config *config,
  583. struct ts_state *state);
  584. extern void __skb_get_rxhash(struct sk_buff *skb);
  585. static inline __u32 skb_get_rxhash(struct sk_buff *skb)
  586. {
  587. if (!skb->l4_rxhash)
  588. __skb_get_rxhash(skb);
  589. return skb->rxhash;
  590. }
  591. #ifdef NET_SKBUFF_DATA_USES_OFFSET
  592. static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
  593. {
  594. return skb->head + skb->end;
  595. }
  596. static inline unsigned int skb_end_offset(const struct sk_buff *skb)
  597. {
  598. return skb->end;
  599. }
  600. #else
  601. static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
  602. {
  603. return skb->end;
  604. }
  605. static inline unsigned int skb_end_offset(const struct sk_buff *skb)
  606. {
  607. return skb->end - skb->head;
  608. }
  609. #endif
  610. /* Internal */
  611. #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
  612. static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
  613. {
  614. return &skb_shinfo(skb)->hwtstamps;
  615. }
  616. /**
  617. * skb_queue_empty - check if a queue is empty
  618. * @list: queue head
  619. *
  620. * Returns true if the queue is empty, false otherwise.
  621. */
  622. static inline int skb_queue_empty(const struct sk_buff_head *list)
  623. {
  624. return list->next == (struct sk_buff *)list;
  625. }
  626. /**
  627. * skb_queue_is_last - check if skb is the last entry in the queue
  628. * @list: queue head
  629. * @skb: buffer
  630. *
  631. * Returns true if @skb is the last buffer on the list.
  632. */
  633. static inline bool skb_queue_is_last(const struct sk_buff_head *list,
  634. const struct sk_buff *skb)
  635. {
  636. return skb->next == (struct sk_buff *)list;
  637. }
  638. /**
  639. * skb_queue_is_first - check if skb is the first entry in the queue
  640. * @list: queue head
  641. * @skb: buffer
  642. *
  643. * Returns true if @skb is the first buffer on the list.
  644. */
  645. static inline bool skb_queue_is_first(const struct sk_buff_head *list,
  646. const struct sk_buff *skb)
  647. {
  648. return skb->prev == (struct sk_buff *)list;
  649. }
  650. /**
  651. * skb_queue_next - return the next packet in the queue
  652. * @list: queue head
  653. * @skb: current buffer
  654. *
  655. * Return the next packet in @list after @skb. It is only valid to
  656. * call this if skb_queue_is_last() evaluates to false.
  657. */
  658. static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
  659. const struct sk_buff *skb)
  660. {
  661. /* This BUG_ON may seem severe, but if we just return then we
  662. * are going to dereference garbage.
  663. */
  664. BUG_ON(skb_queue_is_last(list, skb));
  665. return skb->next;
  666. }
  667. /**
  668. * skb_queue_prev - return the prev packet in the queue
  669. * @list: queue head
  670. * @skb: current buffer
  671. *
  672. * Return the prev packet in @list before @skb. It is only valid to
  673. * call this if skb_queue_is_first() evaluates to false.
  674. */
  675. static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
  676. const struct sk_buff *skb)
  677. {
  678. /* This BUG_ON may seem severe, but if we just return then we
  679. * are going to dereference garbage.
  680. */
  681. BUG_ON(skb_queue_is_first(list, skb));
  682. return skb->prev;
  683. }
  684. /**
  685. * skb_get - reference buffer
  686. * @skb: buffer to reference
  687. *
  688. * Makes another reference to a socket buffer and returns a pointer
  689. * to the buffer.
  690. */
  691. static inline struct sk_buff *skb_get(struct sk_buff *skb)
  692. {
  693. atomic_inc(&skb->users);
  694. return skb;
  695. }
  696. /*
  697. * If users == 1, we are the only owner and are can avoid redundant
  698. * atomic change.
  699. */
  700. /**
  701. * skb_cloned - is the buffer a clone
  702. * @skb: buffer to check
  703. *
  704. * Returns true if the buffer was generated with skb_clone() and is
  705. * one of multiple shared copies of the buffer. Cloned buffers are
  706. * shared data so must not be written to under normal circumstances.
  707. */
  708. static inline int skb_cloned(const struct sk_buff *skb)
  709. {
  710. return skb->cloned &&
  711. (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
  712. }
  713. /**
  714. * skb_header_cloned - is the header a clone
  715. * @skb: buffer to check
  716. *
  717. * Returns true if modifying the header part of the buffer requires
  718. * the data to be copied.
  719. */
  720. static inline int skb_header_cloned(const struct sk_buff *skb)
  721. {
  722. int dataref;
  723. if (!skb->cloned)
  724. return 0;
  725. dataref = atomic_read(&skb_shinfo(skb)->dataref);
  726. dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
  727. return dataref != 1;
  728. }
  729. /**
  730. * skb_header_release - release reference to header
  731. * @skb: buffer to operate on
  732. *
  733. * Drop a reference to the header part of the buffer. This is done
  734. * by acquiring a payload reference. You must not read from the header
  735. * part of skb->data after this.
  736. */
  737. static inline void skb_header_release(struct sk_buff *skb)
  738. {
  739. BUG_ON(skb->nohdr);
  740. skb->nohdr = 1;
  741. atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
  742. }
  743. /**
  744. * skb_shared - is the buffer shared
  745. * @skb: buffer to check
  746. *
  747. * Returns true if more than one person has a reference to this
  748. * buffer.
  749. */
  750. static inline int skb_shared(const struct sk_buff *skb)
  751. {
  752. return atomic_read(&skb->users) != 1;
  753. }
  754. /**
  755. * skb_share_check - check if buffer is shared and if so clone it
  756. * @skb: buffer to check
  757. * @pri: priority for memory allocation
  758. *
  759. * If the buffer is shared the buffer is cloned and the old copy
  760. * drops a reference. A new clone with a single reference is returned.
  761. * If the buffer is not shared the original buffer is returned. When
  762. * being called from interrupt status or with spinlocks held pri must
  763. * be GFP_ATOMIC.
  764. *
  765. * NULL is returned on a memory allocation failure.
  766. */
  767. static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
  768. {
  769. might_sleep_if(pri & __GFP_WAIT);
  770. if (skb_shared(skb)) {
  771. struct sk_buff *nskb = skb_clone(skb, pri);
  772. if (likely(nskb))
  773. consume_skb(skb);
  774. else
  775. kfree_skb(skb);
  776. skb = nskb;
  777. }
  778. return skb;
  779. }
  780. /*
  781. * Copy shared buffers into a new sk_buff. We effectively do COW on
  782. * packets to handle cases where we have a local reader and forward
  783. * and a couple of other messy ones. The normal one is tcpdumping
  784. * a packet thats being forwarded.
  785. */
  786. /**
  787. * skb_unshare - make a copy of a shared buffer
  788. * @skb: buffer to check
  789. * @pri: priority for memory allocation
  790. *
  791. * If the socket buffer is a clone then this function creates a new
  792. * copy of the data, drops a reference count on the old copy and returns
  793. * the new copy with the reference count at 1. If the buffer is not a clone
  794. * the original buffer is returned. When called with a spinlock held or
  795. * from interrupt state @pri must be %GFP_ATOMIC
  796. *
  797. * %NULL is returned on a memory allocation failure.
  798. */
  799. static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
  800. gfp_t pri)
  801. {
  802. might_sleep_if(pri & __GFP_WAIT);
  803. if (skb_cloned(skb)) {
  804. struct sk_buff *nskb = skb_copy(skb, pri);
  805. kfree_skb(skb); /* Free our shared copy */
  806. skb = nskb;
  807. }
  808. return skb;
  809. }
  810. /**
  811. * skb_peek - peek at the head of an &sk_buff_head
  812. * @list_: list to peek at
  813. *
  814. * Peek an &sk_buff. Unlike most other operations you _MUST_
  815. * be careful with this one. A peek leaves the buffer on the
  816. * list and someone else may run off with it. You must hold
  817. * the appropriate locks or have a private queue to do this.
  818. *
  819. * Returns %NULL for an empty list or a pointer to the head element.
  820. * The reference count is not incremented and the reference is therefore
  821. * volatile. Use with caution.
  822. */
  823. static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
  824. {
  825. struct sk_buff *skb = list_->next;
  826. if (skb == (struct sk_buff *)list_)
  827. skb = NULL;
  828. return skb;
  829. }
  830. /**
  831. * skb_peek_next - peek skb following the given one from a queue
  832. * @skb: skb to start from
  833. * @list_: list to peek at
  834. *
  835. * Returns %NULL when the end of the list is met or a pointer to the
  836. * next element. The reference count is not incremented and the
  837. * reference is therefore volatile. Use with caution.
  838. */
  839. static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
  840. const struct sk_buff_head *list_)
  841. {
  842. struct sk_buff *next = skb->next;
  843. if (next == (struct sk_buff *)list_)
  844. next = NULL;
  845. return next;
  846. }
  847. /**
  848. * skb_peek_tail - peek at the tail of an &sk_buff_head
  849. * @list_: list to peek at
  850. *
  851. * Peek an &sk_buff. Unlike most other operations you _MUST_
  852. * be careful with this one. A peek leaves the buffer on the
  853. * list and someone else may run off with it. You must hold
  854. * the appropriate locks or have a private queue to do this.
  855. *
  856. * Returns %NULL for an empty list or a pointer to the tail element.
  857. * The reference count is not incremented and the reference is therefore
  858. * volatile. Use with caution.
  859. */
  860. static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
  861. {
  862. struct sk_buff *skb = list_->prev;
  863. if (skb == (struct sk_buff *)list_)
  864. skb = NULL;
  865. return skb;
  866. }
  867. /**
  868. * skb_queue_len - get queue length
  869. * @list_: list to measure
  870. *
  871. * Return the length of an &sk_buff queue.
  872. */
  873. static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
  874. {
  875. return list_->qlen;
  876. }
  877. /**
  878. * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
  879. * @list: queue to initialize
  880. *
  881. * This initializes only the list and queue length aspects of
  882. * an sk_buff_head object. This allows to initialize the list
  883. * aspects of an sk_buff_head without reinitializing things like
  884. * the spinlock. It can also be used for on-stack sk_buff_head
  885. * objects where the spinlock is known to not be used.
  886. */
  887. static inline void __skb_queue_head_init(struct sk_buff_head *list)
  888. {
  889. list->prev = list->next = (struct sk_buff *)list;
  890. list->qlen = 0;
  891. }
  892. /*
  893. * This function creates a split out lock class for each invocation;
  894. * this is needed for now since a whole lot of users of the skb-queue
  895. * infrastructure in drivers have different locking usage (in hardirq)
  896. * than the networking core (in softirq only). In the long run either the
  897. * network layer or drivers should need annotation to consolidate the
  898. * main types of usage into 3 classes.
  899. */
  900. static inline void skb_queue_head_init(struct sk_buff_head *list)
  901. {
  902. spin_lock_init(&list->lock);
  903. __skb_queue_head_init(list);
  904. }
  905. static inline void skb_queue_head_init_class(struct sk_buff_head *list,
  906. struct lock_class_key *class)
  907. {
  908. skb_queue_head_init(list);
  909. lockdep_set_class(&list->lock, class);
  910. }
  911. /*
  912. * Insert an sk_buff on a list.
  913. *
  914. * The "__skb_xxxx()" functions are the non-atomic ones that
  915. * can only be called with interrupts disabled.
  916. */
  917. extern void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
  918. static inline void __skb_insert(struct sk_buff *newsk,
  919. struct sk_buff *prev, struct sk_buff *next,
  920. struct sk_buff_head *list)
  921. {
  922. newsk->next = next;
  923. newsk->prev = prev;
  924. next->prev = prev->next = newsk;
  925. list->qlen++;
  926. }
  927. static inline void __skb_queue_splice(const struct sk_buff_head *list,
  928. struct sk_buff *prev,
  929. struct sk_buff *next)
  930. {
  931. struct sk_buff *first = list->next;
  932. struct sk_buff *last = list->prev;
  933. first->prev = prev;
  934. prev->next = first;
  935. last->next = next;
  936. next->prev = last;
  937. }
  938. /**
  939. * skb_queue_splice - join two skb lists, this is designed for stacks
  940. * @list: the new list to add
  941. * @head: the place to add it in the first list
  942. */
  943. static inline void skb_queue_splice(const struct sk_buff_head *list,
  944. struct sk_buff_head *head)
  945. {
  946. if (!skb_queue_empty(list)) {
  947. __skb_queue_splice(list, (struct sk_buff *) head, head->next);
  948. head->qlen += list->qlen;
  949. }
  950. }
  951. /**
  952. * skb_queue_splice_init - join two skb lists and reinitialise the emptied list
  953. * @list: the new list to add
  954. * @head: the place to add it in the first list
  955. *
  956. * The list at @list is reinitialised
  957. */
  958. static inline void skb_queue_splice_init(struct sk_buff_head *list,
  959. struct sk_buff_head *head)
  960. {
  961. if (!skb_queue_empty(list)) {
  962. __skb_queue_splice(list, (struct sk_buff *) head, head->next);
  963. head->qlen += list->qlen;
  964. __skb_queue_head_init(list);
  965. }
  966. }
  967. /**
  968. * skb_queue_splice_tail - join two skb lists, each list being a queue
  969. * @list: the new list to add
  970. * @head: the place to add it in the first list
  971. */
  972. static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
  973. struct sk_buff_head *head)
  974. {
  975. if (!skb_queue_empty(list)) {
  976. __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
  977. head->qlen += list->qlen;
  978. }
  979. }
  980. /**
  981. * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
  982. * @list: the new list to add
  983. * @head: the place to add it in the first list
  984. *
  985. * Each of the lists is a queue.
  986. * The list at @list is reinitialised
  987. */
  988. static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
  989. struct sk_buff_head *head)
  990. {
  991. if (!skb_queue_empty(list)) {
  992. __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
  993. head->qlen += list->qlen;
  994. __skb_queue_head_init(list);
  995. }
  996. }
  997. /**
  998. * __skb_queue_after - queue a buffer at the list head
  999. * @list: list to use
  1000. * @prev: place after this buffer
  1001. * @newsk: buffer to queue
  1002. *
  1003. * Queue a buffer int the middle of a list. This function takes no locks
  1004. * and you must therefore hold required locks before calling it.
  1005. *
  1006. * A buffer cannot be placed on two lists at the same time.
  1007. */
  1008. static inline void __skb_queue_after(struct sk_buff_head *list,
  1009. struct sk_buff *prev,
  1010. struct sk_buff *newsk)
  1011. {
  1012. __skb_insert(newsk, prev, prev->next, list);
  1013. }
  1014. extern void skb_append(struct sk_buff *old, struct sk_buff *newsk,
  1015. struct sk_buff_head *list);
  1016. static inline void __skb_queue_before(struct sk_buff_head *list,
  1017. struct sk_buff *next,
  1018. struct sk_buff *newsk)
  1019. {
  1020. __skb_insert(newsk, next->prev, next, list);
  1021. }
  1022. /**
  1023. * __skb_queue_head - queue a buffer at the list head
  1024. * @list: list to use
  1025. * @newsk: buffer to queue
  1026. *
  1027. * Queue a buffer at the start of a list. This function takes no locks
  1028. * and you must therefore hold required locks before calling it.
  1029. *
  1030. * A buffer cannot be placed on two lists at the same time.
  1031. */
  1032. extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
  1033. static inline void __skb_queue_head(struct sk_buff_head *list,
  1034. struct sk_buff *newsk)
  1035. {
  1036. __skb_queue_after(list, (struct sk_buff *)list, newsk);
  1037. }
  1038. /**
  1039. * __skb_queue_tail - queue a buffer at the list tail
  1040. * @list: list to use
  1041. * @newsk: buffer to queue
  1042. *
  1043. * Queue a buffer at the end of a list. This function takes no locks
  1044. * and you must therefore hold required locks before calling it.
  1045. *
  1046. * A buffer cannot be placed on two lists at the same time.
  1047. */
  1048. extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
  1049. static inline void __skb_queue_tail(struct sk_buff_head *list,
  1050. struct sk_buff *newsk)
  1051. {
  1052. __skb_queue_before(list, (struct sk_buff *)list, newsk);
  1053. }
  1054. /*
  1055. * remove sk_buff from list. _Must_ be called atomically, and with
  1056. * the list known..
  1057. */
  1058. extern void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
  1059. static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
  1060. {
  1061. struct sk_buff *next, *prev;
  1062. list->qlen--;
  1063. next = skb->next;
  1064. prev = skb->prev;
  1065. skb->next = skb->prev = NULL;
  1066. next->prev = prev;
  1067. prev->next = next;
  1068. }
  1069. /**
  1070. * __skb_dequeue - remove from the head of the queue
  1071. * @list: list to dequeue from
  1072. *
  1073. * Remove the head of the list. This function does not take any locks
  1074. * so must be used with appropriate locks held only. The head item is
  1075. * returned or %NULL if the list is empty.
  1076. */
  1077. extern struct sk_buff *skb_dequeue(struct sk_buff_head *list);
  1078. static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
  1079. {
  1080. struct sk_buff *skb = skb_peek(list);
  1081. if (skb)
  1082. __skb_unlink(skb, list);
  1083. return skb;
  1084. }
  1085. /**
  1086. * __skb_dequeue_tail - remove from the tail of the queue
  1087. * @list: list to dequeue from
  1088. *
  1089. * Remove the tail of the list. This function does not take any locks
  1090. * so must be used with appropriate locks held only. The tail item is
  1091. * returned or %NULL if the list is empty.
  1092. */
  1093. extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
  1094. static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
  1095. {
  1096. struct sk_buff *skb = skb_peek_tail(list);
  1097. if (skb)
  1098. __skb_unlink(skb, list);
  1099. return skb;
  1100. }
  1101. static inline bool skb_is_nonlinear(const struct sk_buff *skb)
  1102. {
  1103. return skb->data_len;
  1104. }
  1105. static inline unsigned int skb_headlen(const struct sk_buff *skb)
  1106. {
  1107. return skb->len - skb->data_len;
  1108. }
  1109. static inline int skb_pagelen(const struct sk_buff *skb)
  1110. {
  1111. int i, len = 0;
  1112. for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
  1113. len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
  1114. return len + skb_headlen(skb);
  1115. }
  1116. /**
  1117. * __skb_fill_page_desc - initialise a paged fragment in an skb
  1118. * @skb: buffer containing fragment to be initialised
  1119. * @i: paged fragment index to initialise
  1120. * @page: the page to use for this fragment
  1121. * @off: the offset to the data with @page
  1122. * @size: the length of the data
  1123. *
  1124. * Initialises the @i'th fragment of @skb to point to &size bytes at
  1125. * offset @off within @page.
  1126. *
  1127. * Does not take any additional reference on the fragment.
  1128. */
  1129. static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
  1130. struct page *page, int off, int size)
  1131. {
  1132. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  1133. /*
  1134. * Propagate page->pfmemalloc to the skb if we can. The problem is
  1135. * that not all callers have unique ownership of the page. If
  1136. * pfmemalloc is set, we check the mapping as a mapping implies
  1137. * page->index is set (index and pfmemalloc share space).
  1138. * If it's a valid mapping, we cannot use page->pfmemalloc but we
  1139. * do not lose pfmemalloc information as the pages would not be
  1140. * allocated using __GFP_MEMALLOC.
  1141. */
  1142. if (page->pfmemalloc && !page->mapping)
  1143. skb->pfmemalloc = true;
  1144. frag->page.p = page;
  1145. frag->page_offset = off;
  1146. skb_frag_size_set(frag, size);
  1147. }
  1148. /**
  1149. * skb_fill_page_desc - initialise a paged fragment in an skb
  1150. * @skb: buffer containing fragment to be initialised
  1151. * @i: paged fragment index to initialise
  1152. * @page: the page to use for this fragment
  1153. * @off: the offset to the data with @page
  1154. * @size: the length of the data
  1155. *
  1156. * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
  1157. * @skb to point to &size bytes at offset @off within @page. In
  1158. * addition updates @skb such that @i is the last fragment.
  1159. *
  1160. * Does not take any additional reference on the fragment.
  1161. */
  1162. static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
  1163. struct page *page, int off, int size)
  1164. {
  1165. __skb_fill_page_desc(skb, i, page, off, size);
  1166. skb_shinfo(skb)->nr_frags = i + 1;
  1167. }
  1168. extern void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page,
  1169. int off, int size, unsigned int truesize);
  1170. #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
  1171. #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_has_frag_list(skb))
  1172. #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
  1173. #ifdef NET_SKBUFF_DATA_USES_OFFSET
  1174. static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
  1175. {
  1176. return skb->head + skb->tail;
  1177. }
  1178. static inline void skb_reset_tail_pointer(struct sk_buff *skb)
  1179. {
  1180. skb->tail = skb->data - skb->head;
  1181. }
  1182. static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
  1183. {
  1184. skb_reset_tail_pointer(skb);
  1185. skb->tail += offset;
  1186. }
  1187. #else /* NET_SKBUFF_DATA_USES_OFFSET */
  1188. static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
  1189. {
  1190. return skb->tail;
  1191. }
  1192. static inline void skb_reset_tail_pointer(struct sk_buff *skb)
  1193. {
  1194. skb->tail = skb->data;
  1195. }
  1196. static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
  1197. {
  1198. skb->tail = skb->data + offset;
  1199. }
  1200. #endif /* NET_SKBUFF_DATA_USES_OFFSET */
  1201. /*
  1202. * Add data to an sk_buff
  1203. */
  1204. extern unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
  1205. static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
  1206. {
  1207. unsigned char *tmp = skb_tail_pointer(skb);
  1208. SKB_LINEAR_ASSERT(skb);
  1209. skb->tail += len;
  1210. skb->len += len;
  1211. return tmp;
  1212. }
  1213. extern unsigned char *skb_push(struct sk_buff *skb, unsigned int len);
  1214. static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
  1215. {
  1216. skb->data -= len;
  1217. skb->len += len;
  1218. return skb->data;
  1219. }
  1220. extern unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
  1221. static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
  1222. {
  1223. skb->len -= len;
  1224. BUG_ON(skb->len < skb->data_len);
  1225. return skb->data += len;
  1226. }
  1227. static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len)
  1228. {
  1229. return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
  1230. }
  1231. extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
  1232. static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
  1233. {
  1234. if (len > skb_headlen(skb) &&
  1235. !__pskb_pull_tail(skb, len - skb_headlen(skb)))
  1236. return NULL;
  1237. skb->len -= len;
  1238. return skb->data += len;
  1239. }
  1240. static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
  1241. {
  1242. return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
  1243. }
  1244. static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
  1245. {
  1246. if (likely(len <= skb_headlen(skb)))
  1247. return 1;
  1248. if (unlikely(len > skb->len))
  1249. return 0;
  1250. return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
  1251. }
  1252. /**
  1253. * skb_headroom - bytes at buffer head
  1254. * @skb: buffer to check
  1255. *
  1256. * Return the number of bytes of free space at the head of an &sk_buff.
  1257. */
  1258. static inline unsigned int skb_headroom(const struct sk_buff *skb)
  1259. {
  1260. return skb->data - skb->head;
  1261. }
  1262. /**
  1263. * skb_tailroom - bytes at buffer end
  1264. * @skb: buffer to check
  1265. *
  1266. * Return the number of bytes of free space at the tail of an sk_buff
  1267. */
  1268. static inline int skb_tailroom(const struct sk_buff *skb)
  1269. {
  1270. return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
  1271. }
  1272. /**
  1273. * skb_availroom - bytes at buffer end
  1274. * @skb: buffer to check
  1275. *
  1276. * Return the number of bytes of free space at the tail of an sk_buff
  1277. * allocated by sk_stream_alloc()
  1278. */
  1279. static inline int skb_availroom(const struct sk_buff *skb)
  1280. {
  1281. return skb_is_nonlinear(skb) ? 0 : skb->avail_size - skb->len;
  1282. }
  1283. /**
  1284. * skb_reserve - adjust headroom
  1285. * @skb: buffer to alter
  1286. * @len: bytes to move
  1287. *
  1288. * Increase the headroom of an empty &sk_buff by reducing the tail
  1289. * room. This is only allowed for an empty buffer.
  1290. */
  1291. static inline void skb_reserve(struct sk_buff *skb, int len)
  1292. {
  1293. skb->data += len;
  1294. skb->tail += len;
  1295. }
  1296. static inline void skb_reset_inner_headers(struct sk_buff *skb)
  1297. {
  1298. skb->inner_network_header = skb->network_header;
  1299. skb->inner_transport_header = skb->transport_header;
  1300. }
  1301. static inline void skb_reset_mac_len(struct sk_buff *skb)
  1302. {
  1303. skb->mac_len = skb->network_header - skb->mac_header;
  1304. }
  1305. #ifdef NET_SKBUFF_DATA_USES_OFFSET
  1306. static inline unsigned char *skb_inner_transport_header(const struct sk_buff
  1307. *skb)
  1308. {
  1309. return skb->head + skb->inner_transport_header;
  1310. }
  1311. static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
  1312. {
  1313. skb->inner_transport_header = skb->data - skb->head;
  1314. }
  1315. static inline void skb_set_inner_transport_header(struct sk_buff *skb,
  1316. const int offset)
  1317. {
  1318. skb_reset_inner_transport_header(skb);
  1319. skb->inner_transport_header += offset;
  1320. }
  1321. static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
  1322. {
  1323. return skb->head + skb->inner_network_header;
  1324. }
  1325. static inline void skb_reset_inner_network_header(struct sk_buff *skb)
  1326. {
  1327. skb->inner_network_header = skb->data - skb->head;
  1328. }
  1329. static inline void skb_set_inner_network_header(struct sk_buff *skb,
  1330. const int offset)
  1331. {
  1332. skb_reset_inner_network_header(skb);
  1333. skb->inner_network_header += offset;
  1334. }
  1335. static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
  1336. {
  1337. return skb->transport_header != ~0U;
  1338. }
  1339. static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
  1340. {
  1341. return skb->head + skb->transport_header;
  1342. }
  1343. static inline void skb_reset_transport_header(struct sk_buff *skb)
  1344. {
  1345. skb->transport_header = skb->data - skb->head;
  1346. }
  1347. static inline void skb_set_transport_header(struct sk_buff *skb,
  1348. const int offset)
  1349. {
  1350. skb_reset_transport_header(skb);
  1351. skb->transport_header += offset;
  1352. }
  1353. static inline unsigned char *skb_network_header(const struct sk_buff *skb)
  1354. {
  1355. return skb->head + skb->network_header;
  1356. }
  1357. static inline void skb_reset_network_header(struct sk_buff *skb)
  1358. {
  1359. skb->network_header = skb->data - skb->head;
  1360. }
  1361. static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
  1362. {
  1363. skb_reset_network_header(skb);
  1364. skb->network_header += offset;
  1365. }
  1366. static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
  1367. {
  1368. return skb->head + skb->mac_header;
  1369. }
  1370. static inline int skb_mac_header_was_set(const struct sk_buff *skb)
  1371. {
  1372. return skb->mac_header != ~0U;
  1373. }
  1374. static inline void skb_reset_mac_header(struct sk_buff *skb)
  1375. {
  1376. skb->mac_header = skb->data - skb->head;
  1377. }
  1378. static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
  1379. {
  1380. skb_reset_mac_header(skb);
  1381. skb->mac_header += offset;
  1382. }
  1383. #else /* NET_SKBUFF_DATA_USES_OFFSET */
  1384. static inline unsigned char *skb_inner_transport_header(const struct sk_buff
  1385. *skb)
  1386. {
  1387. return skb->inner_transport_header;
  1388. }
  1389. static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
  1390. {
  1391. skb->inner_transport_header = skb->data;
  1392. }
  1393. static inline void skb_set_inner_transport_header(struct sk_buff *skb,
  1394. const int offset)
  1395. {
  1396. skb->inner_transport_header = skb->data + offset;
  1397. }
  1398. static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
  1399. {
  1400. return skb->inner_network_header;
  1401. }
  1402. static inline void skb_reset_inner_network_header(struct sk_buff *skb)
  1403. {
  1404. skb->inner_network_header = skb->data;
  1405. }
  1406. static inline void skb_set_inner_network_header(struct sk_buff *skb,
  1407. const int offset)
  1408. {
  1409. skb->inner_network_header = skb->data + offset;
  1410. }
  1411. static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
  1412. {
  1413. return skb->transport_header != NULL;
  1414. }
  1415. static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
  1416. {
  1417. return skb->transport_header;
  1418. }
  1419. static inline void skb_reset_transport_header(struct sk_buff *skb)
  1420. {
  1421. skb->transport_header = skb->data;
  1422. }
  1423. static inline void skb_set_transport_header(struct sk_buff *skb,
  1424. const int offset)
  1425. {
  1426. skb->transport_header = skb->data + offset;
  1427. }
  1428. static inline unsigned char *skb_network_header(const struct sk_buff *skb)
  1429. {
  1430. return skb->network_header;
  1431. }
  1432. static inline void skb_reset_network_header(struct sk_buff *skb)
  1433. {
  1434. skb->network_header = skb->data;
  1435. }
  1436. static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
  1437. {
  1438. skb->network_header = skb->data + offset;
  1439. }
  1440. static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
  1441. {
  1442. return skb->mac_header;
  1443. }
  1444. static inline int skb_mac_header_was_set(const struct sk_buff *skb)
  1445. {
  1446. return skb->mac_header != NULL;
  1447. }
  1448. static inline void skb_reset_mac_header(struct sk_buff *skb)
  1449. {
  1450. skb->mac_header = skb->data;
  1451. }
  1452. static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
  1453. {
  1454. skb->mac_header = skb->data + offset;
  1455. }
  1456. #endif /* NET_SKBUFF_DATA_USES_OFFSET */
  1457. static inline void skb_mac_header_rebuild(struct sk_buff *skb)
  1458. {
  1459. if (skb_mac_header_was_set(skb)) {
  1460. const unsigned char *old_mac = skb_mac_header(skb);
  1461. skb_set_mac_header(skb, -skb->mac_len);
  1462. memmove(skb_mac_header(skb), old_mac, skb->mac_len);
  1463. }
  1464. }
  1465. static inline int skb_checksum_start_offset(const struct sk_buff *skb)
  1466. {
  1467. return skb->csum_start - skb_headroom(skb);
  1468. }
  1469. static inline int skb_transport_offset(const struct sk_buff *skb)
  1470. {
  1471. return skb_transport_header(skb) - skb->data;
  1472. }
  1473. static inline u32 skb_network_header_len(const struct sk_buff *skb)
  1474. {
  1475. return skb->transport_header - skb->network_header;
  1476. }
  1477. static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
  1478. {
  1479. return skb->inner_transport_header - skb->inner_network_header;
  1480. }
  1481. static inline int skb_network_offset(const struct sk_buff *skb)
  1482. {
  1483. return skb_network_header(skb) - skb->data;
  1484. }
  1485. static inline int skb_inner_network_offset(const struct sk_buff *skb)
  1486. {
  1487. return skb_inner_network_header(skb) - skb->data;
  1488. }
  1489. static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
  1490. {
  1491. return pskb_may_pull(skb, skb_network_offset(skb) + len);
  1492. }
  1493. /*
  1494. * CPUs often take a performance hit when accessing unaligned memory
  1495. * locations. The actual performance hit varies, it can be small if the
  1496. * hardware handles it or large if we have to take an exception and fix it
  1497. * in software.
  1498. *
  1499. * Since an ethernet header is 14 bytes network drivers often end up with
  1500. * the IP header at an unaligned offset. The IP header can be aligned by
  1501. * shifting the start of the packet by 2 bytes. Drivers should do this
  1502. * with:
  1503. *
  1504. * skb_reserve(skb, NET_IP_ALIGN);
  1505. *
  1506. * The downside to this alignment of the IP header is that the DMA is now
  1507. * unaligned. On some architectures the cost of an unaligned DMA is high
  1508. * and this cost outweighs the gains made by aligning the IP header.
  1509. *
  1510. * Since this trade off varies between architectures, we allow NET_IP_ALIGN
  1511. * to be overridden.
  1512. */
  1513. #ifndef NET_IP_ALIGN
  1514. #define NET_IP_ALIGN 2
  1515. #endif
  1516. /*
  1517. * The networking layer reserves some headroom in skb data (via
  1518. * dev_alloc_skb). This is used to avoid having to reallocate skb data when
  1519. * the header has to grow. In the default case, if the header has to grow
  1520. * 32 bytes or less we avoid the reallocation.
  1521. *
  1522. * Unfortunately this headroom changes the DMA alignment of the resulting
  1523. * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
  1524. * on some architectures. An architecture can override this value,
  1525. * perhaps setting it to a cacheline in size (since that will maintain
  1526. * cacheline alignment of the DMA). It must be a power of 2.
  1527. *
  1528. * Various parts of the networking layer expect at least 32 bytes of
  1529. * headroom, you should not reduce this.
  1530. *
  1531. * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
  1532. * to reduce average number of cache lines per packet.
  1533. * get_rps_cpus() for example only access one 64 bytes aligned block :
  1534. * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
  1535. */
  1536. #ifndef NET_SKB_PAD
  1537. #define NET_SKB_PAD max(32, L1_CACHE_BYTES)
  1538. #endif
  1539. extern int ___pskb_trim(struct sk_buff *skb, unsigned int len);
  1540. static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
  1541. {
  1542. if (unlikely(skb_is_nonlinear(skb))) {
  1543. WARN_ON(1);
  1544. return;
  1545. }
  1546. skb->len = len;
  1547. skb_set_tail_pointer(skb, len);
  1548. }
  1549. extern void skb_trim(struct sk_buff *skb, unsigned int len);
  1550. static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
  1551. {
  1552. if (skb->data_len)
  1553. return ___pskb_trim(skb, len);
  1554. __skb_trim(skb, len);
  1555. return 0;
  1556. }
  1557. static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
  1558. {
  1559. return (len < skb->len) ? __pskb_trim(skb, len) : 0;
  1560. }
  1561. /**
  1562. * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
  1563. * @skb: buffer to alter
  1564. * @len: new length
  1565. *
  1566. * This is identical to pskb_trim except that the caller knows that
  1567. * the skb is not cloned so we should never get an error due to out-
  1568. * of-memory.
  1569. */
  1570. static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
  1571. {
  1572. int err = pskb_trim(skb, len);
  1573. BUG_ON(err);
  1574. }
  1575. /**
  1576. * skb_orphan - orphan a buffer
  1577. * @skb: buffer to orphan
  1578. *
  1579. * If a buffer currently has an owner then we call the owner's
  1580. * destructor function and make the @skb unowned. The buffer continues
  1581. * to exist but is no longer charged to its former owner.
  1582. */
  1583. static inline void skb_orphan(struct sk_buff *skb)
  1584. {
  1585. if (skb->destructor)
  1586. skb->destructor(skb);
  1587. skb->destructor = NULL;
  1588. skb->sk = NULL;
  1589. }
  1590. /**
  1591. * skb_orphan_frags - orphan the frags contained in a buffer
  1592. * @skb: buffer to orphan frags from
  1593. * @gfp_mask: allocation mask for replacement pages
  1594. *
  1595. * For each frag in the SKB which needs a destructor (i.e. has an
  1596. * owner) create a copy of that frag and release the original
  1597. * page by calling the destructor.
  1598. */
  1599. static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
  1600. {
  1601. if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY)))
  1602. return 0;
  1603. return skb_copy_ubufs(skb, gfp_mask);
  1604. }
  1605. /**
  1606. * __skb_queue_purge - empty a list
  1607. * @list: list to empty
  1608. *
  1609. * Delete all buffers on an &sk_buff list. Each buffer is removed from
  1610. * the list and one reference dropped. This function does not take the
  1611. * list lock and the caller must hold the relevant locks to use it.
  1612. */
  1613. extern void skb_queue_purge(struct sk_buff_head *list);
  1614. static inline void __skb_queue_purge(struct sk_buff_head *list)
  1615. {
  1616. struct sk_buff *skb;
  1617. while ((skb = __skb_dequeue(list)) != NULL)
  1618. kfree_skb(skb);
  1619. }
  1620. extern void *netdev_alloc_frag(unsigned int fragsz);
  1621. extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
  1622. unsigned int length,
  1623. gfp_t gfp_mask);
  1624. /**
  1625. * netdev_alloc_skb - allocate an skbuff for rx on a specific device
  1626. * @dev: network device to receive on
  1627. * @length: length to allocate
  1628. *
  1629. * Allocate a new &sk_buff and assign it a usage count of one. The
  1630. * buffer has unspecified headroom built in. Users should allocate
  1631. * the headroom they think they need without accounting for the
  1632. * built in space. The built in space is used for optimisations.
  1633. *
  1634. * %NULL is returned if there is no free memory. Although this function
  1635. * allocates memory it can be called from an interrupt.
  1636. */
  1637. static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
  1638. unsigned int length)
  1639. {
  1640. return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
  1641. }
  1642. /* legacy helper around __netdev_alloc_skb() */
  1643. static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
  1644. gfp_t gfp_mask)
  1645. {
  1646. return __netdev_alloc_skb(NULL, length, gfp_mask);
  1647. }
  1648. /* legacy helper around netdev_alloc_skb() */
  1649. static inline struct sk_buff *dev_alloc_skb(unsigned int length)
  1650. {
  1651. return netdev_alloc_skb(NULL, length);
  1652. }
  1653. static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
  1654. unsigned int length, gfp_t gfp)
  1655. {
  1656. struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
  1657. if (NET_IP_ALIGN && skb)
  1658. skb_reserve(skb, NET_IP_ALIGN);
  1659. return skb;
  1660. }
  1661. static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
  1662. unsigned int length)
  1663. {
  1664. return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
  1665. }
  1666. /*
  1667. * __skb_alloc_page - allocate pages for ps-rx on a skb and preserve pfmemalloc data
  1668. * @gfp_mask: alloc_pages_node mask. Set __GFP_NOMEMALLOC if not for network packet RX
  1669. * @skb: skb to set pfmemalloc on if __GFP_MEMALLOC is used
  1670. * @order: size of the allocation
  1671. *
  1672. * Allocate a new page.
  1673. *
  1674. * %NULL is returned if there is no free memory.
  1675. */
  1676. static inline struct page *__skb_alloc_pages(gfp_t gfp_mask,
  1677. struct sk_buff *skb,
  1678. unsigned int order)
  1679. {
  1680. struct page *page;
  1681. gfp_mask |= __GFP_COLD;
  1682. if (!(gfp_mask & __GFP_NOMEMALLOC))
  1683. gfp_mask |= __GFP_MEMALLOC;
  1684. page = alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
  1685. if (skb && page && page->pfmemalloc)
  1686. skb->pfmemalloc = true;
  1687. return page;
  1688. }
  1689. /**
  1690. * __skb_alloc_page - allocate a page for ps-rx for a given skb and preserve pfmemalloc data
  1691. * @gfp_mask: alloc_pages_node mask. Set __GFP_NOMEMALLOC if not for network packet RX
  1692. * @skb: skb to set pfmemalloc on if __GFP_MEMALLOC is used
  1693. *
  1694. * Allocate a new page.
  1695. *
  1696. * %NULL is returned if there is no free memory.
  1697. */
  1698. static inline struct page *__skb_alloc_page(gfp_t gfp_mask,
  1699. struct sk_buff *skb)
  1700. {
  1701. return __skb_alloc_pages(gfp_mask, skb, 0);
  1702. }
  1703. /**
  1704. * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
  1705. * @page: The page that was allocated from skb_alloc_page
  1706. * @skb: The skb that may need pfmemalloc set
  1707. */
  1708. static inline void skb_propagate_pfmemalloc(struct page *page,
  1709. struct sk_buff *skb)
  1710. {
  1711. if (page && page->pfmemalloc)
  1712. skb->pfmemalloc = true;
  1713. }
  1714. /**
  1715. * skb_frag_page - retrieve the page refered to by a paged fragment
  1716. * @frag: the paged fragment
  1717. *
  1718. * Returns the &struct page associated with @frag.
  1719. */
  1720. static inline struct page *skb_frag_page(const skb_frag_t *frag)
  1721. {
  1722. return frag->page.p;
  1723. }
  1724. /**
  1725. * __skb_frag_ref - take an addition reference on a paged fragment.
  1726. * @frag: the paged fragment
  1727. *
  1728. * Takes an additional reference on the paged fragment @frag.
  1729. */
  1730. static inline void __skb_frag_ref(skb_frag_t *frag)
  1731. {
  1732. get_page(skb_frag_page(frag));
  1733. }
  1734. /**
  1735. * skb_frag_ref - take an addition reference on a paged fragment of an skb.
  1736. * @skb: the buffer
  1737. * @f: the fragment offset.
  1738. *
  1739. * Takes an additional reference on the @f'th paged fragment of @skb.
  1740. */
  1741. static inline void skb_frag_ref(struct sk_buff *skb, int f)
  1742. {
  1743. __skb_frag_ref(&skb_shinfo(skb)->frags[f]);
  1744. }
  1745. /**
  1746. * __skb_frag_unref - release a reference on a paged fragment.
  1747. * @frag: the paged fragment
  1748. *
  1749. * Releases a reference on the paged fragment @frag.
  1750. */
  1751. static inline void __skb_frag_unref(skb_frag_t *frag)
  1752. {
  1753. put_page(skb_frag_page(frag));
  1754. }
  1755. /**
  1756. * skb_frag_unref - release a reference on a paged fragment of an skb.
  1757. * @skb: the buffer
  1758. * @f: the fragment offset
  1759. *
  1760. * Releases a reference on the @f'th paged fragment of @skb.
  1761. */
  1762. static inline void skb_frag_unref(struct sk_buff *skb, int f)
  1763. {
  1764. __skb_frag_unref(&skb_shinfo(skb)->frags[f]);
  1765. }
  1766. /**
  1767. * skb_frag_address - gets the address of the data contained in a paged fragment
  1768. * @frag: the paged fragment buffer
  1769. *
  1770. * Returns the address of the data within @frag. The page must already
  1771. * be mapped.
  1772. */
  1773. static inline void *skb_frag_address(const skb_frag_t *frag)
  1774. {
  1775. return page_address(skb_frag_page(frag)) + frag->page_offset;
  1776. }
  1777. /**
  1778. * skb_frag_address_safe - gets the address of the data contained in a paged fragment
  1779. * @frag: the paged fragment buffer
  1780. *
  1781. * Returns the address of the data within @frag. Checks that the page
  1782. * is mapped and returns %NULL otherwise.
  1783. */
  1784. static inline void *skb_frag_address_safe(const skb_frag_t *frag)
  1785. {
  1786. void *ptr = page_address(skb_frag_page(frag));
  1787. if (unlikely(!ptr))
  1788. return NULL;
  1789. return ptr + frag->page_offset;
  1790. }
  1791. /**
  1792. * __skb_frag_set_page - sets the page contained in a paged fragment
  1793. * @frag: the paged fragment
  1794. * @page: the page to set
  1795. *
  1796. * Sets the fragment @frag to contain @page.
  1797. */
  1798. static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
  1799. {
  1800. frag->page.p = page;
  1801. }
  1802. /**
  1803. * skb_frag_set_page - sets the page contained in a paged fragment of an skb
  1804. * @skb: the buffer
  1805. * @f: the fragment offset
  1806. * @page: the page to set
  1807. *
  1808. * Sets the @f'th fragment of @skb to contain @page.
  1809. */
  1810. static inline void skb_frag_set_page(struct sk_buff *skb, int f,
  1811. struct page *page)
  1812. {
  1813. __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
  1814. }
  1815. /**
  1816. * skb_frag_dma_map - maps a paged fragment via the DMA API
  1817. * @dev: the device to map the fragment to
  1818. * @frag: the paged fragment to map
  1819. * @offset: the offset within the fragment (starting at the
  1820. * fragment's own offset)
  1821. * @size: the number of bytes to map
  1822. * @dir: the direction of the mapping (%PCI_DMA_*)
  1823. *
  1824. * Maps the page associated with @frag to @device.
  1825. */
  1826. static inline dma_addr_t skb_frag_dma_map(struct device *dev,
  1827. const skb_frag_t *frag,
  1828. size_t offset, size_t size,
  1829. enum dma_data_direction dir)
  1830. {
  1831. return dma_map_page(dev, skb_frag_page(frag),
  1832. frag->page_offset + offset, size, dir);
  1833. }
  1834. static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
  1835. gfp_t gfp_mask)
  1836. {
  1837. return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
  1838. }
  1839. /**
  1840. * skb_clone_writable - is the header of a clone writable
  1841. * @skb: buffer to check
  1842. * @len: length up to which to write
  1843. *
  1844. * Returns true if modifying the header part of the cloned buffer
  1845. * does not requires the data to be copied.
  1846. */
  1847. static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
  1848. {
  1849. return !skb_header_cloned(skb) &&
  1850. skb_headroom(skb) + len <= skb->hdr_len;
  1851. }
  1852. static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
  1853. int cloned)
  1854. {
  1855. int delta = 0;
  1856. if (headroom > skb_headroom(skb))
  1857. delta = headroom - skb_headroom(skb);
  1858. if (delta || cloned)
  1859. return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
  1860. GFP_ATOMIC);
  1861. return 0;
  1862. }
  1863. /**
  1864. * skb_cow - copy header of skb when it is required
  1865. * @skb: buffer to cow
  1866. * @headroom: needed headroom
  1867. *
  1868. * If the skb passed lacks sufficient headroom or its data part
  1869. * is shared, data is reallocated. If reallocation fails, an error
  1870. * is returned and original skb is not changed.
  1871. *
  1872. * The result is skb with writable area skb->head...skb->tail
  1873. * and at least @headroom of space at head.
  1874. */
  1875. static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
  1876. {
  1877. return __skb_cow(skb, headroom, skb_cloned(skb));
  1878. }
  1879. /**
  1880. * skb_cow_head - skb_cow but only making the head writable
  1881. * @skb: buffer to cow
  1882. * @headroom: needed headroom
  1883. *
  1884. * This function is identical to skb_cow except that we replace the
  1885. * skb_cloned check by skb_header_cloned. It should be used when
  1886. * you only need to push on some header and do not need to modify
  1887. * the data.
  1888. */
  1889. static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
  1890. {
  1891. return __skb_cow(skb, headroom, skb_header_cloned(skb));
  1892. }
  1893. /**
  1894. * skb_padto - pad an skbuff up to a minimal size
  1895. * @skb: buffer to pad
  1896. * @len: minimal length
  1897. *
  1898. * Pads up a buffer to ensure the trailing bytes exist and are
  1899. * blanked. If the buffer already contains sufficient data it
  1900. * is untouched. Otherwise it is extended. Returns zero on
  1901. * success. The skb is freed on error.
  1902. */
  1903. static inline int skb_padto(struct sk_buff *skb, unsigned int len)
  1904. {
  1905. unsigned int size = skb->len;
  1906. if (likely(size >= len))
  1907. return 0;
  1908. return skb_pad(skb, len - size);
  1909. }
  1910. static inline int skb_add_data(struct sk_buff *skb,
  1911. char __user *from, int copy)
  1912. {
  1913. const int off = skb->len;
  1914. if (skb->ip_summed == CHECKSUM_NONE) {
  1915. int err = 0;
  1916. __wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy),
  1917. copy, 0, &err);
  1918. if (!err) {
  1919. skb->csum = csum_block_add(skb->csum, csum, off);
  1920. return 0;
  1921. }
  1922. } else if (!copy_from_user(skb_put(skb, copy), from, copy))
  1923. return 0;
  1924. __skb_trim(skb, off);
  1925. return -EFAULT;
  1926. }
  1927. static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
  1928. const struct page *page, int off)
  1929. {
  1930. if (i) {
  1931. const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
  1932. return page == skb_frag_page(frag) &&
  1933. off == frag->page_offset + skb_frag_size(frag);
  1934. }
  1935. return false;
  1936. }
  1937. static inline int __skb_linearize(struct sk_buff *skb)
  1938. {
  1939. return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
  1940. }
  1941. /**
  1942. * skb_linearize - convert paged skb to linear one
  1943. * @skb: buffer to linarize
  1944. *
  1945. * If there is no free memory -ENOMEM is returned, otherwise zero
  1946. * is returned and the old skb data released.
  1947. */
  1948. static inline int skb_linearize(struct sk_buff *skb)
  1949. {
  1950. return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
  1951. }
  1952. /**
  1953. * skb_has_shared_frag - can any frag be overwritten
  1954. * @skb: buffer to test
  1955. *
  1956. * Return true if the skb has at least one frag that might be modified
  1957. * by an external entity (as in vmsplice()/sendfile())
  1958. */
  1959. static inline bool skb_has_shared_frag(const struct sk_buff *skb)
  1960. {
  1961. return skb_shinfo(skb)->gso_type & SKB_GSO_SHARED_FRAG;
  1962. }
  1963. /**
  1964. * skb_linearize_cow - make sure skb is linear and writable
  1965. * @skb: buffer to process
  1966. *
  1967. * If there is no free memory -ENOMEM is returned, otherwise zero
  1968. * is returned and the old skb data released.
  1969. */
  1970. static inline int skb_linearize_cow(struct sk_buff *skb)
  1971. {
  1972. return skb_is_nonlinear(skb) || skb_cloned(skb) ?
  1973. __skb_linearize(skb) : 0;
  1974. }
  1975. /**
  1976. * skb_postpull_rcsum - update checksum for received skb after pull
  1977. * @skb: buffer to update
  1978. * @start: start of data before pull
  1979. * @len: length of data pulled
  1980. *
  1981. * After doing a pull on a received packet, you need to call this to
  1982. * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
  1983. * CHECKSUM_NONE so that it can be recomputed from scratch.
  1984. */
  1985. static inline void skb_postpull_rcsum(struct sk_buff *skb,
  1986. const void *start, unsigned int len)
  1987. {
  1988. if (skb->ip_summed == CHECKSUM_COMPLETE)
  1989. skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
  1990. }
  1991. unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
  1992. /**
  1993. * pskb_trim_rcsum - trim received skb and update checksum
  1994. * @skb: buffer to trim
  1995. * @len: new length
  1996. *
  1997. * This is exactly the same as pskb_trim except that it ensures the
  1998. * checksum of received packets are still valid after the operation.
  1999. */
  2000. static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
  2001. {
  2002. if (likely(len >= skb->len))
  2003. return 0;
  2004. if (skb->ip_summed == CHECKSUM_COMPLETE)
  2005. skb->ip_summed = CHECKSUM_NONE;
  2006. return __pskb_trim(skb, len);
  2007. }
  2008. #define skb_queue_walk(queue, skb) \
  2009. for (skb = (queue)->next; \
  2010. skb != (struct sk_buff *)(queue); \
  2011. skb = skb->next)
  2012. #define skb_queue_walk_safe(queue, skb, tmp) \
  2013. for (skb = (queue)->next, tmp = skb->next; \
  2014. skb != (struct sk_buff *)(queue); \
  2015. skb = tmp, tmp = skb->next)
  2016. #define skb_queue_walk_from(queue, skb) \
  2017. for (; skb != (struct sk_buff *)(queue); \
  2018. skb = skb->next)
  2019. #define skb_queue_walk_from_safe(queue, skb, tmp) \
  2020. for (tmp = skb->next; \
  2021. skb != (struct sk_buff *)(queue); \
  2022. skb = tmp, tmp = skb->next)
  2023. #define skb_queue_reverse_walk(queue, skb) \
  2024. for (skb = (queue)->prev; \
  2025. skb != (struct sk_buff *)(queue); \
  2026. skb = skb->prev)
  2027. #define skb_queue_reverse_walk_safe(queue, skb, tmp) \
  2028. for (skb = (queue)->prev, tmp = skb->prev; \
  2029. skb != (struct sk_buff *)(queue); \
  2030. skb = tmp, tmp = skb->prev)
  2031. #define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \
  2032. for (tmp = skb->prev; \
  2033. skb != (struct sk_buff *)(queue); \
  2034. skb = tmp, tmp = skb->prev)
  2035. static inline bool skb_has_frag_list(const struct sk_buff *skb)
  2036. {
  2037. return skb_shinfo(skb)->frag_list != NULL;
  2038. }
  2039. static inline void skb_frag_list_init(struct sk_buff *skb)
  2040. {
  2041. skb_shinfo(skb)->frag_list = NULL;
  2042. }
  2043. static inline void skb_frag_add_head(struct sk_buff *skb, struct sk_buff *frag)
  2044. {
  2045. frag->next = skb_shinfo(skb)->frag_list;
  2046. skb_shinfo(skb)->frag_list = frag;
  2047. }
  2048. #define skb_walk_frags(skb, iter) \
  2049. for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
  2050. extern struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
  2051. int *peeked, int *off, int *err);
  2052. extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags,
  2053. int noblock, int *err);
  2054. extern unsigned int datagram_poll(struct file *file, struct socket *sock,
  2055. struct poll_table_struct *wait);
  2056. extern int skb_copy_datagram_iovec(const struct sk_buff *from,
  2057. int offset, struct iovec *to,
  2058. int size);
  2059. extern int skb_copy_and_csum_datagram_iovec(struct sk_buff *skb,
  2060. int hlen,
  2061. struct iovec *iov);
  2062. extern int skb_copy_datagram_from_iovec(struct sk_buff *skb,
  2063. int offset,
  2064. const struct iovec *from,
  2065. int from_offset,
  2066. int len);
  2067. extern int skb_copy_datagram_const_iovec(const struct sk_buff *from,
  2068. int offset,
  2069. const struct iovec *to,
  2070. int to_offset,
  2071. int size);
  2072. extern void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
  2073. extern void skb_free_datagram_locked(struct sock *sk,
  2074. struct sk_buff *skb);
  2075. extern int skb_kill_datagram(struct sock *sk, struct sk_buff *skb,
  2076. unsigned int flags);
  2077. extern __wsum skb_checksum(const struct sk_buff *skb, int offset,
  2078. int len, __wsum csum);
  2079. extern int skb_copy_bits(const struct sk_buff *skb, int offset,
  2080. void *to, int len);
  2081. extern int skb_store_bits(struct sk_buff *skb, int offset,
  2082. const void *from, int len);
  2083. extern __wsum skb_copy_and_csum_bits(const struct sk_buff *skb,
  2084. int offset, u8 *to, int len,
  2085. __wsum csum);
  2086. extern int skb_splice_bits(struct sk_buff *skb,
  2087. unsigned int offset,
  2088. struct pipe_inode_info *pipe,
  2089. unsigned int len,
  2090. unsigned int flags);
  2091. extern void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
  2092. extern void skb_split(struct sk_buff *skb,
  2093. struct sk_buff *skb1, const u32 len);
  2094. extern int skb_shift(struct sk_buff *tgt, struct sk_buff *skb,
  2095. int shiftlen);
  2096. extern struct sk_buff *skb_segment(struct sk_buff *skb,
  2097. netdev_features_t features);
  2098. static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
  2099. int len, void *buffer)
  2100. {
  2101. int hlen = skb_headlen(skb);
  2102. if (hlen - offset >= len)
  2103. return skb->data + offset;
  2104. if (skb_copy_bits(skb, offset, buffer, len) < 0)
  2105. return NULL;
  2106. return buffer;
  2107. }
  2108. static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
  2109. void *to,
  2110. const unsigned int len)
  2111. {
  2112. memcpy(to, skb->data, len);
  2113. }
  2114. static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
  2115. const int offset, void *to,
  2116. const unsigned int len)
  2117. {
  2118. memcpy(to, skb->data + offset, len);
  2119. }
  2120. static inline void skb_copy_to_linear_data(struct sk_buff *skb,
  2121. const void *from,
  2122. const unsigned int len)
  2123. {
  2124. memcpy(skb->data, from, len);
  2125. }
  2126. static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
  2127. const int offset,
  2128. const void *from,
  2129. const unsigned int len)
  2130. {
  2131. memcpy(skb->data + offset, from, len);
  2132. }
  2133. extern void skb_init(void);
  2134. static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
  2135. {
  2136. return skb->tstamp;
  2137. }
  2138. /**
  2139. * skb_get_timestamp - get timestamp from a skb
  2140. * @skb: skb to get stamp from
  2141. * @stamp: pointer to struct timeval to store stamp in
  2142. *
  2143. * Timestamps are stored in the skb as offsets to a base timestamp.
  2144. * This function converts the offset back to a struct timeval and stores
  2145. * it in stamp.
  2146. */
  2147. static inline void skb_get_timestamp(const struct sk_buff *skb,
  2148. struct timeval *stamp)
  2149. {
  2150. *stamp = ktime_to_timeval(skb->tstamp);
  2151. }
  2152. static inline void skb_get_timestampns(const struct sk_buff *skb,
  2153. struct timespec *stamp)
  2154. {
  2155. *stamp = ktime_to_timespec(skb->tstamp);
  2156. }
  2157. static inline void __net_timestamp(struct sk_buff *skb)
  2158. {
  2159. skb->tstamp = ktime_get_real();
  2160. }
  2161. static inline ktime_t net_timedelta(ktime_t t)
  2162. {
  2163. return ktime_sub(ktime_get_real(), t);
  2164. }
  2165. static inline ktime_t net_invalid_timestamp(void)
  2166. {
  2167. return ktime_set(0, 0);
  2168. }
  2169. extern void skb_timestamping_init(void);
  2170. #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
  2171. extern void skb_clone_tx_timestamp(struct sk_buff *skb);
  2172. extern bool skb_defer_rx_timestamp(struct sk_buff *skb);
  2173. #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
  2174. static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
  2175. {
  2176. }
  2177. static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
  2178. {
  2179. return false;
  2180. }
  2181. #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
  2182. /**
  2183. * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
  2184. *
  2185. * PHY drivers may accept clones of transmitted packets for
  2186. * timestamping via their phy_driver.txtstamp method. These drivers
  2187. * must call this function to return the skb back to the stack, with
  2188. * or without a timestamp.
  2189. *
  2190. * @skb: clone of the the original outgoing packet
  2191. * @hwtstamps: hardware time stamps, may be NULL if not available
  2192. *
  2193. */
  2194. void skb_complete_tx_timestamp(struct sk_buff *skb,
  2195. struct skb_shared_hwtstamps *hwtstamps);
  2196. /**
  2197. * skb_tstamp_tx - queue clone of skb with send time stamps
  2198. * @orig_skb: the original outgoing packet
  2199. * @hwtstamps: hardware time stamps, may be NULL if not available
  2200. *
  2201. * If the skb has a socket associated, then this function clones the
  2202. * skb (thus sharing the actual data and optional structures), stores
  2203. * the optional hardware time stamping information (if non NULL) or
  2204. * generates a software time stamp (otherwise), then queues the clone
  2205. * to the error queue of the socket. Errors are silently ignored.
  2206. */
  2207. extern void skb_tstamp_tx(struct sk_buff *orig_skb,
  2208. struct skb_shared_hwtstamps *hwtstamps);
  2209. static inline void sw_tx_timestamp(struct sk_buff *skb)
  2210. {
  2211. if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP &&
  2212. !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
  2213. skb_tstamp_tx(skb, NULL);
  2214. }
  2215. /**
  2216. * skb_tx_timestamp() - Driver hook for transmit timestamping
  2217. *
  2218. * Ethernet MAC Drivers should call this function in their hard_xmit()
  2219. * function immediately before giving the sk_buff to the MAC hardware.
  2220. *
  2221. * @skb: A socket buffer.
  2222. */
  2223. static inline void skb_tx_timestamp(struct sk_buff *skb)
  2224. {
  2225. skb_clone_tx_timestamp(skb);
  2226. sw_tx_timestamp(skb);
  2227. }
  2228. /**
  2229. * skb_complete_wifi_ack - deliver skb with wifi status
  2230. *
  2231. * @skb: the original outgoing packet
  2232. * @acked: ack status
  2233. *
  2234. */
  2235. void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
  2236. extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
  2237. extern __sum16 __skb_checksum_complete(struct sk_buff *skb);
  2238. static inline int skb_csum_unnecessary(const struct sk_buff *skb)
  2239. {
  2240. return skb->ip_summed & CHECKSUM_UNNECESSARY;
  2241. }
  2242. /**
  2243. * skb_checksum_complete - Calculate checksum of an entire packet
  2244. * @skb: packet to process
  2245. *
  2246. * This function calculates the checksum over the entire packet plus
  2247. * the value of skb->csum. The latter can be used to supply the
  2248. * checksum of a pseudo header as used by TCP/UDP. It returns the
  2249. * checksum.
  2250. *
  2251. * For protocols that contain complete checksums such as ICMP/TCP/UDP,
  2252. * this function can be used to verify that checksum on received
  2253. * packets. In that case the function should return zero if the
  2254. * checksum is correct. In particular, this function will return zero
  2255. * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
  2256. * hardware has already verified the correctness of the checksum.
  2257. */
  2258. static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
  2259. {
  2260. return skb_csum_unnecessary(skb) ?
  2261. 0 : __skb_checksum_complete(skb);
  2262. }
  2263. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  2264. extern void nf_conntrack_destroy(struct nf_conntrack *nfct);
  2265. static inline void nf_conntrack_put(struct nf_conntrack *nfct)
  2266. {
  2267. if (nfct && atomic_dec_and_test(&nfct->use))
  2268. nf_conntrack_destroy(nfct);
  2269. }
  2270. static inline void nf_conntrack_get(struct nf_conntrack *nfct)
  2271. {
  2272. if (nfct)
  2273. atomic_inc(&nfct->use);
  2274. }
  2275. #endif
  2276. #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
  2277. static inline void nf_conntrack_get_reasm(struct sk_buff *skb)
  2278. {
  2279. if (skb)
  2280. atomic_inc(&skb->users);
  2281. }
  2282. static inline void nf_conntrack_put_reasm(struct sk_buff *skb)
  2283. {
  2284. if (skb)
  2285. kfree_skb(skb);
  2286. }
  2287. #endif
  2288. #ifdef CONFIG_BRIDGE_NETFILTER
  2289. static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
  2290. {
  2291. if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
  2292. kfree(nf_bridge);
  2293. }
  2294. static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
  2295. {
  2296. if (nf_bridge)
  2297. atomic_inc(&nf_bridge->use);
  2298. }
  2299. #endif /* CONFIG_BRIDGE_NETFILTER */
  2300. static inline void nf_reset(struct sk_buff *skb)
  2301. {
  2302. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  2303. nf_conntrack_put(skb->nfct);
  2304. skb->nfct = NULL;
  2305. #endif
  2306. #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
  2307. nf_conntrack_put_reasm(skb->nfct_reasm);
  2308. skb->nfct_reasm = NULL;
  2309. #endif
  2310. #ifdef CONFIG_BRIDGE_NETFILTER
  2311. nf_bridge_put(skb->nf_bridge);
  2312. skb->nf_bridge = NULL;
  2313. #endif
  2314. }
  2315. /* Note: This doesn't put any conntrack and bridge info in dst. */
  2316. static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src)
  2317. {
  2318. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  2319. dst->nfct = src->nfct;
  2320. nf_conntrack_get(src->nfct);
  2321. dst->nfctinfo = src->nfctinfo;
  2322. #endif
  2323. #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
  2324. dst->nfct_reasm = src->nfct_reasm;
  2325. nf_conntrack_get_reasm(src->nfct_reasm);
  2326. #endif
  2327. #ifdef CONFIG_BRIDGE_NETFILTER
  2328. dst->nf_bridge = src->nf_bridge;
  2329. nf_bridge_get(src->nf_bridge);
  2330. #endif
  2331. }
  2332. static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
  2333. {
  2334. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  2335. nf_conntrack_put(dst->nfct);
  2336. #endif
  2337. #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
  2338. nf_conntrack_put_reasm(dst->nfct_reasm);
  2339. #endif
  2340. #ifdef CONFIG_BRIDGE_NETFILTER
  2341. nf_bridge_put(dst->nf_bridge);
  2342. #endif
  2343. __nf_copy(dst, src);
  2344. }
  2345. #ifdef CONFIG_NETWORK_SECMARK
  2346. static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
  2347. {
  2348. to->secmark = from->secmark;
  2349. }
  2350. static inline void skb_init_secmark(struct sk_buff *skb)
  2351. {
  2352. skb->secmark = 0;
  2353. }
  2354. #else
  2355. static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
  2356. { }
  2357. static inline void skb_init_secmark(struct sk_buff *skb)
  2358. { }
  2359. #endif
  2360. static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
  2361. {
  2362. skb->queue_mapping = queue_mapping;
  2363. }
  2364. static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
  2365. {
  2366. return skb->queue_mapping;
  2367. }
  2368. static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
  2369. {
  2370. to->queue_mapping = from->queue_mapping;
  2371. }
  2372. static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
  2373. {
  2374. skb->queue_mapping = rx_queue + 1;
  2375. }
  2376. static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
  2377. {
  2378. return skb->queue_mapping - 1;
  2379. }
  2380. static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
  2381. {
  2382. return skb->queue_mapping != 0;
  2383. }
  2384. extern u16 __skb_tx_hash(const struct net_device *dev,
  2385. const struct sk_buff *skb,
  2386. unsigned int num_tx_queues);
  2387. #ifdef CONFIG_XFRM
  2388. static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
  2389. {
  2390. return skb->sp;
  2391. }
  2392. #else
  2393. static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
  2394. {
  2395. return NULL;
  2396. }
  2397. #endif
  2398. static inline bool skb_is_gso(const struct sk_buff *skb)
  2399. {
  2400. return skb_shinfo(skb)->gso_size;
  2401. }
  2402. static inline bool skb_is_gso_v6(const struct sk_buff *skb)
  2403. {
  2404. return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
  2405. }
  2406. extern void __skb_warn_lro_forwarding(const struct sk_buff *skb);
  2407. static inline bool skb_warn_if_lro(const struct sk_buff *skb)
  2408. {
  2409. /* LRO sets gso_size but not gso_type, whereas if GSO is really
  2410. * wanted then gso_type will be set. */
  2411. const struct skb_shared_info *shinfo = skb_shinfo(skb);
  2412. if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
  2413. unlikely(shinfo->gso_type == 0)) {
  2414. __skb_warn_lro_forwarding(skb);
  2415. return true;
  2416. }
  2417. return false;
  2418. }
  2419. static inline void skb_forward_csum(struct sk_buff *skb)
  2420. {
  2421. /* Unfortunately we don't support this one. Any brave souls? */
  2422. if (skb->ip_summed == CHECKSUM_COMPLETE)
  2423. skb->ip_summed = CHECKSUM_NONE;
  2424. }
  2425. /**
  2426. * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
  2427. * @skb: skb to check
  2428. *
  2429. * fresh skbs have their ip_summed set to CHECKSUM_NONE.
  2430. * Instead of forcing ip_summed to CHECKSUM_NONE, we can
  2431. * use this helper, to document places where we make this assertion.
  2432. */
  2433. static inline void skb_checksum_none_assert(const struct sk_buff *skb)
  2434. {
  2435. #ifdef DEBUG
  2436. BUG_ON(skb->ip_summed != CHECKSUM_NONE);
  2437. #endif
  2438. }
  2439. bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
  2440. /**
  2441. * skb_head_is_locked - Determine if the skb->head is locked down
  2442. * @skb: skb to check
  2443. *
  2444. * The head on skbs build around a head frag can be removed if they are
  2445. * not cloned. This function returns true if the skb head is locked down
  2446. * due to either being allocated via kmalloc, or by being a clone with
  2447. * multiple references to the head.
  2448. */
  2449. static inline bool skb_head_is_locked(const struct sk_buff *skb)
  2450. {
  2451. return !skb->head_frag || skb_cloned(skb);
  2452. }
  2453. #endif /* __KERNEL__ */
  2454. #endif /* _LINUX_SKBUFF_H */