slub.c 110 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688
  1. /*
  2. * SLUB: A slab allocator that limits cache line use instead of queuing
  3. * objects in per cpu and per node lists.
  4. *
  5. * The allocator synchronizes using per slab locks and only
  6. * uses a centralized lock to manage a pool of partial slabs.
  7. *
  8. * (C) 2007 SGI, Christoph Lameter
  9. */
  10. #include <linux/mm.h>
  11. #include <linux/swap.h> /* struct reclaim_state */
  12. #include <linux/module.h>
  13. #include <linux/bit_spinlock.h>
  14. #include <linux/interrupt.h>
  15. #include <linux/bitops.h>
  16. #include <linux/slab.h>
  17. #include <linux/proc_fs.h>
  18. #include <linux/seq_file.h>
  19. #include <linux/kmemtrace.h>
  20. #include <linux/kmemcheck.h>
  21. #include <linux/cpu.h>
  22. #include <linux/cpuset.h>
  23. #include <linux/mempolicy.h>
  24. #include <linux/ctype.h>
  25. #include <linux/debugobjects.h>
  26. #include <linux/kallsyms.h>
  27. #include <linux/memory.h>
  28. #include <linux/math64.h>
  29. #include <linux/fault-inject.h>
  30. /*
  31. * Lock order:
  32. * 1. slab_lock(page)
  33. * 2. slab->list_lock
  34. *
  35. * The slab_lock protects operations on the object of a particular
  36. * slab and its metadata in the page struct. If the slab lock
  37. * has been taken then no allocations nor frees can be performed
  38. * on the objects in the slab nor can the slab be added or removed
  39. * from the partial or full lists since this would mean modifying
  40. * the page_struct of the slab.
  41. *
  42. * The list_lock protects the partial and full list on each node and
  43. * the partial slab counter. If taken then no new slabs may be added or
  44. * removed from the lists nor make the number of partial slabs be modified.
  45. * (Note that the total number of slabs is an atomic value that may be
  46. * modified without taking the list lock).
  47. *
  48. * The list_lock is a centralized lock and thus we avoid taking it as
  49. * much as possible. As long as SLUB does not have to handle partial
  50. * slabs, operations can continue without any centralized lock. F.e.
  51. * allocating a long series of objects that fill up slabs does not require
  52. * the list lock.
  53. *
  54. * The lock order is sometimes inverted when we are trying to get a slab
  55. * off a list. We take the list_lock and then look for a page on the list
  56. * to use. While we do that objects in the slabs may be freed. We can
  57. * only operate on the slab if we have also taken the slab_lock. So we use
  58. * a slab_trylock() on the slab. If trylock was successful then no frees
  59. * can occur anymore and we can use the slab for allocations etc. If the
  60. * slab_trylock() does not succeed then frees are in progress in the slab and
  61. * we must stay away from it for a while since we may cause a bouncing
  62. * cacheline if we try to acquire the lock. So go onto the next slab.
  63. * If all pages are busy then we may allocate a new slab instead of reusing
  64. * a partial slab. A new slab has noone operating on it and thus there is
  65. * no danger of cacheline contention.
  66. *
  67. * Interrupts are disabled during allocation and deallocation in order to
  68. * make the slab allocator safe to use in the context of an irq. In addition
  69. * interrupts are disabled to ensure that the processor does not change
  70. * while handling per_cpu slabs, due to kernel preemption.
  71. *
  72. * SLUB assigns one slab for allocation to each processor.
  73. * Allocations only occur from these slabs called cpu slabs.
  74. *
  75. * Slabs with free elements are kept on a partial list and during regular
  76. * operations no list for full slabs is used. If an object in a full slab is
  77. * freed then the slab will show up again on the partial lists.
  78. * We track full slabs for debugging purposes though because otherwise we
  79. * cannot scan all objects.
  80. *
  81. * Slabs are freed when they become empty. Teardown and setup is
  82. * minimal so we rely on the page allocators per cpu caches for
  83. * fast frees and allocs.
  84. *
  85. * Overloading of page flags that are otherwise used for LRU management.
  86. *
  87. * PageActive The slab is frozen and exempt from list processing.
  88. * This means that the slab is dedicated to a purpose
  89. * such as satisfying allocations for a specific
  90. * processor. Objects may be freed in the slab while
  91. * it is frozen but slab_free will then skip the usual
  92. * list operations. It is up to the processor holding
  93. * the slab to integrate the slab into the slab lists
  94. * when the slab is no longer needed.
  95. *
  96. * One use of this flag is to mark slabs that are
  97. * used for allocations. Then such a slab becomes a cpu
  98. * slab. The cpu slab may be equipped with an additional
  99. * freelist that allows lockless access to
  100. * free objects in addition to the regular freelist
  101. * that requires the slab lock.
  102. *
  103. * PageError Slab requires special handling due to debug
  104. * options set. This moves slab handling out of
  105. * the fast path and disables lockless freelists.
  106. */
  107. #ifdef CONFIG_SLUB_DEBUG
  108. #define SLABDEBUG 1
  109. #else
  110. #define SLABDEBUG 0
  111. #endif
  112. /*
  113. * Issues still to be resolved:
  114. *
  115. * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
  116. *
  117. * - Variable sizing of the per node arrays
  118. */
  119. /* Enable to test recovery from slab corruption on boot */
  120. #undef SLUB_RESILIENCY_TEST
  121. /*
  122. * Mininum number of partial slabs. These will be left on the partial
  123. * lists even if they are empty. kmem_cache_shrink may reclaim them.
  124. */
  125. #define MIN_PARTIAL 5
  126. /*
  127. * Maximum number of desirable partial slabs.
  128. * The existence of more partial slabs makes kmem_cache_shrink
  129. * sort the partial list by the number of objects in the.
  130. */
  131. #define MAX_PARTIAL 10
  132. #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
  133. SLAB_POISON | SLAB_STORE_USER)
  134. /*
  135. * Debugging flags that require metadata to be stored in the slab. These get
  136. * disabled when slub_debug=O is used and a cache's min order increases with
  137. * metadata.
  138. */
  139. #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
  140. /*
  141. * Set of flags that will prevent slab merging
  142. */
  143. #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
  144. SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
  145. SLAB_FAILSLAB)
  146. #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
  147. SLAB_CACHE_DMA | SLAB_NOTRACK)
  148. #define OO_SHIFT 16
  149. #define OO_MASK ((1 << OO_SHIFT) - 1)
  150. #define MAX_OBJS_PER_PAGE 65535 /* since page.objects is u16 */
  151. /* Internal SLUB flags */
  152. #define __OBJECT_POISON 0x80000000 /* Poison object */
  153. #define __SYSFS_ADD_DEFERRED 0x40000000 /* Not yet visible via sysfs */
  154. static int kmem_size = sizeof(struct kmem_cache);
  155. #ifdef CONFIG_SMP
  156. static struct notifier_block slab_notifier;
  157. #endif
  158. static enum {
  159. DOWN, /* No slab functionality available */
  160. PARTIAL, /* kmem_cache_open() works but kmalloc does not */
  161. UP, /* Everything works but does not show up in sysfs */
  162. SYSFS /* Sysfs up */
  163. } slab_state = DOWN;
  164. /* A list of all slab caches on the system */
  165. static DECLARE_RWSEM(slub_lock);
  166. static LIST_HEAD(slab_caches);
  167. /*
  168. * Tracking user of a slab.
  169. */
  170. struct track {
  171. unsigned long addr; /* Called from address */
  172. int cpu; /* Was running on cpu */
  173. int pid; /* Pid context */
  174. unsigned long when; /* When did the operation occur */
  175. };
  176. enum track_item { TRACK_ALLOC, TRACK_FREE };
  177. #ifdef CONFIG_SLUB_DEBUG
  178. static int sysfs_slab_add(struct kmem_cache *);
  179. static int sysfs_slab_alias(struct kmem_cache *, const char *);
  180. static void sysfs_slab_remove(struct kmem_cache *);
  181. #else
  182. static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
  183. static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
  184. { return 0; }
  185. static inline void sysfs_slab_remove(struct kmem_cache *s)
  186. {
  187. kfree(s);
  188. }
  189. #endif
  190. static inline void stat(struct kmem_cache *s, enum stat_item si)
  191. {
  192. #ifdef CONFIG_SLUB_STATS
  193. __this_cpu_inc(s->cpu_slab->stat[si]);
  194. #endif
  195. }
  196. /********************************************************************
  197. * Core slab cache functions
  198. *******************************************************************/
  199. int slab_is_available(void)
  200. {
  201. return slab_state >= UP;
  202. }
  203. static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
  204. {
  205. #ifdef CONFIG_NUMA
  206. return s->node[node];
  207. #else
  208. return &s->local_node;
  209. #endif
  210. }
  211. /* Verify that a pointer has an address that is valid within a slab page */
  212. static inline int check_valid_pointer(struct kmem_cache *s,
  213. struct page *page, const void *object)
  214. {
  215. void *base;
  216. if (!object)
  217. return 1;
  218. base = page_address(page);
  219. if (object < base || object >= base + page->objects * s->size ||
  220. (object - base) % s->size) {
  221. return 0;
  222. }
  223. return 1;
  224. }
  225. static inline void *get_freepointer(struct kmem_cache *s, void *object)
  226. {
  227. return *(void **)(object + s->offset);
  228. }
  229. static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
  230. {
  231. *(void **)(object + s->offset) = fp;
  232. }
  233. /* Loop over all objects in a slab */
  234. #define for_each_object(__p, __s, __addr, __objects) \
  235. for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
  236. __p += (__s)->size)
  237. /* Scan freelist */
  238. #define for_each_free_object(__p, __s, __free) \
  239. for (__p = (__free); __p; __p = get_freepointer((__s), __p))
  240. /* Determine object index from a given position */
  241. static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
  242. {
  243. return (p - addr) / s->size;
  244. }
  245. static inline struct kmem_cache_order_objects oo_make(int order,
  246. unsigned long size)
  247. {
  248. struct kmem_cache_order_objects x = {
  249. (order << OO_SHIFT) + (PAGE_SIZE << order) / size
  250. };
  251. return x;
  252. }
  253. static inline int oo_order(struct kmem_cache_order_objects x)
  254. {
  255. return x.x >> OO_SHIFT;
  256. }
  257. static inline int oo_objects(struct kmem_cache_order_objects x)
  258. {
  259. return x.x & OO_MASK;
  260. }
  261. #ifdef CONFIG_SLUB_DEBUG
  262. /*
  263. * Debug settings:
  264. */
  265. #ifdef CONFIG_SLUB_DEBUG_ON
  266. static int slub_debug = DEBUG_DEFAULT_FLAGS;
  267. #else
  268. static int slub_debug;
  269. #endif
  270. static char *slub_debug_slabs;
  271. static int disable_higher_order_debug;
  272. /*
  273. * Object debugging
  274. */
  275. static void print_section(char *text, u8 *addr, unsigned int length)
  276. {
  277. int i, offset;
  278. int newline = 1;
  279. char ascii[17];
  280. ascii[16] = 0;
  281. for (i = 0; i < length; i++) {
  282. if (newline) {
  283. printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
  284. newline = 0;
  285. }
  286. printk(KERN_CONT " %02x", addr[i]);
  287. offset = i % 16;
  288. ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
  289. if (offset == 15) {
  290. printk(KERN_CONT " %s\n", ascii);
  291. newline = 1;
  292. }
  293. }
  294. if (!newline) {
  295. i %= 16;
  296. while (i < 16) {
  297. printk(KERN_CONT " ");
  298. ascii[i] = ' ';
  299. i++;
  300. }
  301. printk(KERN_CONT " %s\n", ascii);
  302. }
  303. }
  304. static struct track *get_track(struct kmem_cache *s, void *object,
  305. enum track_item alloc)
  306. {
  307. struct track *p;
  308. if (s->offset)
  309. p = object + s->offset + sizeof(void *);
  310. else
  311. p = object + s->inuse;
  312. return p + alloc;
  313. }
  314. static void set_track(struct kmem_cache *s, void *object,
  315. enum track_item alloc, unsigned long addr)
  316. {
  317. struct track *p = get_track(s, object, alloc);
  318. if (addr) {
  319. p->addr = addr;
  320. p->cpu = smp_processor_id();
  321. p->pid = current->pid;
  322. p->when = jiffies;
  323. } else
  324. memset(p, 0, sizeof(struct track));
  325. }
  326. static void init_tracking(struct kmem_cache *s, void *object)
  327. {
  328. if (!(s->flags & SLAB_STORE_USER))
  329. return;
  330. set_track(s, object, TRACK_FREE, 0UL);
  331. set_track(s, object, TRACK_ALLOC, 0UL);
  332. }
  333. static void print_track(const char *s, struct track *t)
  334. {
  335. if (!t->addr)
  336. return;
  337. printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
  338. s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
  339. }
  340. static void print_tracking(struct kmem_cache *s, void *object)
  341. {
  342. if (!(s->flags & SLAB_STORE_USER))
  343. return;
  344. print_track("Allocated", get_track(s, object, TRACK_ALLOC));
  345. print_track("Freed", get_track(s, object, TRACK_FREE));
  346. }
  347. static void print_page_info(struct page *page)
  348. {
  349. printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
  350. page, page->objects, page->inuse, page->freelist, page->flags);
  351. }
  352. static void slab_bug(struct kmem_cache *s, char *fmt, ...)
  353. {
  354. va_list args;
  355. char buf[100];
  356. va_start(args, fmt);
  357. vsnprintf(buf, sizeof(buf), fmt, args);
  358. va_end(args);
  359. printk(KERN_ERR "========================================"
  360. "=====================================\n");
  361. printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
  362. printk(KERN_ERR "----------------------------------------"
  363. "-------------------------------------\n\n");
  364. }
  365. static void slab_fix(struct kmem_cache *s, char *fmt, ...)
  366. {
  367. va_list args;
  368. char buf[100];
  369. va_start(args, fmt);
  370. vsnprintf(buf, sizeof(buf), fmt, args);
  371. va_end(args);
  372. printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
  373. }
  374. static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
  375. {
  376. unsigned int off; /* Offset of last byte */
  377. u8 *addr = page_address(page);
  378. print_tracking(s, p);
  379. print_page_info(page);
  380. printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
  381. p, p - addr, get_freepointer(s, p));
  382. if (p > addr + 16)
  383. print_section("Bytes b4", p - 16, 16);
  384. print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE));
  385. if (s->flags & SLAB_RED_ZONE)
  386. print_section("Redzone", p + s->objsize,
  387. s->inuse - s->objsize);
  388. if (s->offset)
  389. off = s->offset + sizeof(void *);
  390. else
  391. off = s->inuse;
  392. if (s->flags & SLAB_STORE_USER)
  393. off += 2 * sizeof(struct track);
  394. if (off != s->size)
  395. /* Beginning of the filler is the free pointer */
  396. print_section("Padding", p + off, s->size - off);
  397. dump_stack();
  398. }
  399. static void object_err(struct kmem_cache *s, struct page *page,
  400. u8 *object, char *reason)
  401. {
  402. slab_bug(s, "%s", reason);
  403. print_trailer(s, page, object);
  404. }
  405. static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
  406. {
  407. va_list args;
  408. char buf[100];
  409. va_start(args, fmt);
  410. vsnprintf(buf, sizeof(buf), fmt, args);
  411. va_end(args);
  412. slab_bug(s, "%s", buf);
  413. print_page_info(page);
  414. dump_stack();
  415. }
  416. static void init_object(struct kmem_cache *s, void *object, int active)
  417. {
  418. u8 *p = object;
  419. if (s->flags & __OBJECT_POISON) {
  420. memset(p, POISON_FREE, s->objsize - 1);
  421. p[s->objsize - 1] = POISON_END;
  422. }
  423. if (s->flags & SLAB_RED_ZONE)
  424. memset(p + s->objsize,
  425. active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
  426. s->inuse - s->objsize);
  427. }
  428. static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
  429. {
  430. while (bytes) {
  431. if (*start != (u8)value)
  432. return start;
  433. start++;
  434. bytes--;
  435. }
  436. return NULL;
  437. }
  438. static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
  439. void *from, void *to)
  440. {
  441. slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
  442. memset(from, data, to - from);
  443. }
  444. static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
  445. u8 *object, char *what,
  446. u8 *start, unsigned int value, unsigned int bytes)
  447. {
  448. u8 *fault;
  449. u8 *end;
  450. fault = check_bytes(start, value, bytes);
  451. if (!fault)
  452. return 1;
  453. end = start + bytes;
  454. while (end > fault && end[-1] == value)
  455. end--;
  456. slab_bug(s, "%s overwritten", what);
  457. printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
  458. fault, end - 1, fault[0], value);
  459. print_trailer(s, page, object);
  460. restore_bytes(s, what, value, fault, end);
  461. return 0;
  462. }
  463. /*
  464. * Object layout:
  465. *
  466. * object address
  467. * Bytes of the object to be managed.
  468. * If the freepointer may overlay the object then the free
  469. * pointer is the first word of the object.
  470. *
  471. * Poisoning uses 0x6b (POISON_FREE) and the last byte is
  472. * 0xa5 (POISON_END)
  473. *
  474. * object + s->objsize
  475. * Padding to reach word boundary. This is also used for Redzoning.
  476. * Padding is extended by another word if Redzoning is enabled and
  477. * objsize == inuse.
  478. *
  479. * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
  480. * 0xcc (RED_ACTIVE) for objects in use.
  481. *
  482. * object + s->inuse
  483. * Meta data starts here.
  484. *
  485. * A. Free pointer (if we cannot overwrite object on free)
  486. * B. Tracking data for SLAB_STORE_USER
  487. * C. Padding to reach required alignment boundary or at mininum
  488. * one word if debugging is on to be able to detect writes
  489. * before the word boundary.
  490. *
  491. * Padding is done using 0x5a (POISON_INUSE)
  492. *
  493. * object + s->size
  494. * Nothing is used beyond s->size.
  495. *
  496. * If slabcaches are merged then the objsize and inuse boundaries are mostly
  497. * ignored. And therefore no slab options that rely on these boundaries
  498. * may be used with merged slabcaches.
  499. */
  500. static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
  501. {
  502. unsigned long off = s->inuse; /* The end of info */
  503. if (s->offset)
  504. /* Freepointer is placed after the object. */
  505. off += sizeof(void *);
  506. if (s->flags & SLAB_STORE_USER)
  507. /* We also have user information there */
  508. off += 2 * sizeof(struct track);
  509. if (s->size == off)
  510. return 1;
  511. return check_bytes_and_report(s, page, p, "Object padding",
  512. p + off, POISON_INUSE, s->size - off);
  513. }
  514. /* Check the pad bytes at the end of a slab page */
  515. static int slab_pad_check(struct kmem_cache *s, struct page *page)
  516. {
  517. u8 *start;
  518. u8 *fault;
  519. u8 *end;
  520. int length;
  521. int remainder;
  522. if (!(s->flags & SLAB_POISON))
  523. return 1;
  524. start = page_address(page);
  525. length = (PAGE_SIZE << compound_order(page));
  526. end = start + length;
  527. remainder = length % s->size;
  528. if (!remainder)
  529. return 1;
  530. fault = check_bytes(end - remainder, POISON_INUSE, remainder);
  531. if (!fault)
  532. return 1;
  533. while (end > fault && end[-1] == POISON_INUSE)
  534. end--;
  535. slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
  536. print_section("Padding", end - remainder, remainder);
  537. restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
  538. return 0;
  539. }
  540. static int check_object(struct kmem_cache *s, struct page *page,
  541. void *object, int active)
  542. {
  543. u8 *p = object;
  544. u8 *endobject = object + s->objsize;
  545. if (s->flags & SLAB_RED_ZONE) {
  546. unsigned int red =
  547. active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
  548. if (!check_bytes_and_report(s, page, object, "Redzone",
  549. endobject, red, s->inuse - s->objsize))
  550. return 0;
  551. } else {
  552. if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
  553. check_bytes_and_report(s, page, p, "Alignment padding",
  554. endobject, POISON_INUSE, s->inuse - s->objsize);
  555. }
  556. }
  557. if (s->flags & SLAB_POISON) {
  558. if (!active && (s->flags & __OBJECT_POISON) &&
  559. (!check_bytes_and_report(s, page, p, "Poison", p,
  560. POISON_FREE, s->objsize - 1) ||
  561. !check_bytes_and_report(s, page, p, "Poison",
  562. p + s->objsize - 1, POISON_END, 1)))
  563. return 0;
  564. /*
  565. * check_pad_bytes cleans up on its own.
  566. */
  567. check_pad_bytes(s, page, p);
  568. }
  569. if (!s->offset && active)
  570. /*
  571. * Object and freepointer overlap. Cannot check
  572. * freepointer while object is allocated.
  573. */
  574. return 1;
  575. /* Check free pointer validity */
  576. if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
  577. object_err(s, page, p, "Freepointer corrupt");
  578. /*
  579. * No choice but to zap it and thus lose the remainder
  580. * of the free objects in this slab. May cause
  581. * another error because the object count is now wrong.
  582. */
  583. set_freepointer(s, p, NULL);
  584. return 0;
  585. }
  586. return 1;
  587. }
  588. static int check_slab(struct kmem_cache *s, struct page *page)
  589. {
  590. int maxobj;
  591. VM_BUG_ON(!irqs_disabled());
  592. if (!PageSlab(page)) {
  593. slab_err(s, page, "Not a valid slab page");
  594. return 0;
  595. }
  596. maxobj = (PAGE_SIZE << compound_order(page)) / s->size;
  597. if (page->objects > maxobj) {
  598. slab_err(s, page, "objects %u > max %u",
  599. s->name, page->objects, maxobj);
  600. return 0;
  601. }
  602. if (page->inuse > page->objects) {
  603. slab_err(s, page, "inuse %u > max %u",
  604. s->name, page->inuse, page->objects);
  605. return 0;
  606. }
  607. /* Slab_pad_check fixes things up after itself */
  608. slab_pad_check(s, page);
  609. return 1;
  610. }
  611. /*
  612. * Determine if a certain object on a page is on the freelist. Must hold the
  613. * slab lock to guarantee that the chains are in a consistent state.
  614. */
  615. static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
  616. {
  617. int nr = 0;
  618. void *fp = page->freelist;
  619. void *object = NULL;
  620. unsigned long max_objects;
  621. while (fp && nr <= page->objects) {
  622. if (fp == search)
  623. return 1;
  624. if (!check_valid_pointer(s, page, fp)) {
  625. if (object) {
  626. object_err(s, page, object,
  627. "Freechain corrupt");
  628. set_freepointer(s, object, NULL);
  629. break;
  630. } else {
  631. slab_err(s, page, "Freepointer corrupt");
  632. page->freelist = NULL;
  633. page->inuse = page->objects;
  634. slab_fix(s, "Freelist cleared");
  635. return 0;
  636. }
  637. break;
  638. }
  639. object = fp;
  640. fp = get_freepointer(s, object);
  641. nr++;
  642. }
  643. max_objects = (PAGE_SIZE << compound_order(page)) / s->size;
  644. if (max_objects > MAX_OBJS_PER_PAGE)
  645. max_objects = MAX_OBJS_PER_PAGE;
  646. if (page->objects != max_objects) {
  647. slab_err(s, page, "Wrong number of objects. Found %d but "
  648. "should be %d", page->objects, max_objects);
  649. page->objects = max_objects;
  650. slab_fix(s, "Number of objects adjusted.");
  651. }
  652. if (page->inuse != page->objects - nr) {
  653. slab_err(s, page, "Wrong object count. Counter is %d but "
  654. "counted were %d", page->inuse, page->objects - nr);
  655. page->inuse = page->objects - nr;
  656. slab_fix(s, "Object count adjusted.");
  657. }
  658. return search == NULL;
  659. }
  660. static void trace(struct kmem_cache *s, struct page *page, void *object,
  661. int alloc)
  662. {
  663. if (s->flags & SLAB_TRACE) {
  664. printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
  665. s->name,
  666. alloc ? "alloc" : "free",
  667. object, page->inuse,
  668. page->freelist);
  669. if (!alloc)
  670. print_section("Object", (void *)object, s->objsize);
  671. dump_stack();
  672. }
  673. }
  674. /*
  675. * Tracking of fully allocated slabs for debugging purposes.
  676. */
  677. static void add_full(struct kmem_cache_node *n, struct page *page)
  678. {
  679. spin_lock(&n->list_lock);
  680. list_add(&page->lru, &n->full);
  681. spin_unlock(&n->list_lock);
  682. }
  683. static void remove_full(struct kmem_cache *s, struct page *page)
  684. {
  685. struct kmem_cache_node *n;
  686. if (!(s->flags & SLAB_STORE_USER))
  687. return;
  688. n = get_node(s, page_to_nid(page));
  689. spin_lock(&n->list_lock);
  690. list_del(&page->lru);
  691. spin_unlock(&n->list_lock);
  692. }
  693. /* Tracking of the number of slabs for debugging purposes */
  694. static inline unsigned long slabs_node(struct kmem_cache *s, int node)
  695. {
  696. struct kmem_cache_node *n = get_node(s, node);
  697. return atomic_long_read(&n->nr_slabs);
  698. }
  699. static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
  700. {
  701. return atomic_long_read(&n->nr_slabs);
  702. }
  703. static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
  704. {
  705. struct kmem_cache_node *n = get_node(s, node);
  706. /*
  707. * May be called early in order to allocate a slab for the
  708. * kmem_cache_node structure. Solve the chicken-egg
  709. * dilemma by deferring the increment of the count during
  710. * bootstrap (see early_kmem_cache_node_alloc).
  711. */
  712. if (!NUMA_BUILD || n) {
  713. atomic_long_inc(&n->nr_slabs);
  714. atomic_long_add(objects, &n->total_objects);
  715. }
  716. }
  717. static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
  718. {
  719. struct kmem_cache_node *n = get_node(s, node);
  720. atomic_long_dec(&n->nr_slabs);
  721. atomic_long_sub(objects, &n->total_objects);
  722. }
  723. /* Object debug checks for alloc/free paths */
  724. static void setup_object_debug(struct kmem_cache *s, struct page *page,
  725. void *object)
  726. {
  727. if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
  728. return;
  729. init_object(s, object, 0);
  730. init_tracking(s, object);
  731. }
  732. static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
  733. void *object, unsigned long addr)
  734. {
  735. if (!check_slab(s, page))
  736. goto bad;
  737. if (!on_freelist(s, page, object)) {
  738. object_err(s, page, object, "Object already allocated");
  739. goto bad;
  740. }
  741. if (!check_valid_pointer(s, page, object)) {
  742. object_err(s, page, object, "Freelist Pointer check fails");
  743. goto bad;
  744. }
  745. if (!check_object(s, page, object, 0))
  746. goto bad;
  747. /* Success perform special debug activities for allocs */
  748. if (s->flags & SLAB_STORE_USER)
  749. set_track(s, object, TRACK_ALLOC, addr);
  750. trace(s, page, object, 1);
  751. init_object(s, object, 1);
  752. return 1;
  753. bad:
  754. if (PageSlab(page)) {
  755. /*
  756. * If this is a slab page then lets do the best we can
  757. * to avoid issues in the future. Marking all objects
  758. * as used avoids touching the remaining objects.
  759. */
  760. slab_fix(s, "Marking all objects used");
  761. page->inuse = page->objects;
  762. page->freelist = NULL;
  763. }
  764. return 0;
  765. }
  766. static int free_debug_processing(struct kmem_cache *s, struct page *page,
  767. void *object, unsigned long addr)
  768. {
  769. if (!check_slab(s, page))
  770. goto fail;
  771. if (!check_valid_pointer(s, page, object)) {
  772. slab_err(s, page, "Invalid object pointer 0x%p", object);
  773. goto fail;
  774. }
  775. if (on_freelist(s, page, object)) {
  776. object_err(s, page, object, "Object already free");
  777. goto fail;
  778. }
  779. if (!check_object(s, page, object, 1))
  780. return 0;
  781. if (unlikely(s != page->slab)) {
  782. if (!PageSlab(page)) {
  783. slab_err(s, page, "Attempt to free object(0x%p) "
  784. "outside of slab", object);
  785. } else if (!page->slab) {
  786. printk(KERN_ERR
  787. "SLUB <none>: no slab for object 0x%p.\n",
  788. object);
  789. dump_stack();
  790. } else
  791. object_err(s, page, object,
  792. "page slab pointer corrupt.");
  793. goto fail;
  794. }
  795. /* Special debug activities for freeing objects */
  796. if (!PageSlubFrozen(page) && !page->freelist)
  797. remove_full(s, page);
  798. if (s->flags & SLAB_STORE_USER)
  799. set_track(s, object, TRACK_FREE, addr);
  800. trace(s, page, object, 0);
  801. init_object(s, object, 0);
  802. return 1;
  803. fail:
  804. slab_fix(s, "Object at 0x%p not freed", object);
  805. return 0;
  806. }
  807. static int __init setup_slub_debug(char *str)
  808. {
  809. slub_debug = DEBUG_DEFAULT_FLAGS;
  810. if (*str++ != '=' || !*str)
  811. /*
  812. * No options specified. Switch on full debugging.
  813. */
  814. goto out;
  815. if (*str == ',')
  816. /*
  817. * No options but restriction on slabs. This means full
  818. * debugging for slabs matching a pattern.
  819. */
  820. goto check_slabs;
  821. if (tolower(*str) == 'o') {
  822. /*
  823. * Avoid enabling debugging on caches if its minimum order
  824. * would increase as a result.
  825. */
  826. disable_higher_order_debug = 1;
  827. goto out;
  828. }
  829. slub_debug = 0;
  830. if (*str == '-')
  831. /*
  832. * Switch off all debugging measures.
  833. */
  834. goto out;
  835. /*
  836. * Determine which debug features should be switched on
  837. */
  838. for (; *str && *str != ','; str++) {
  839. switch (tolower(*str)) {
  840. case 'f':
  841. slub_debug |= SLAB_DEBUG_FREE;
  842. break;
  843. case 'z':
  844. slub_debug |= SLAB_RED_ZONE;
  845. break;
  846. case 'p':
  847. slub_debug |= SLAB_POISON;
  848. break;
  849. case 'u':
  850. slub_debug |= SLAB_STORE_USER;
  851. break;
  852. case 't':
  853. slub_debug |= SLAB_TRACE;
  854. break;
  855. case 'a':
  856. slub_debug |= SLAB_FAILSLAB;
  857. break;
  858. default:
  859. printk(KERN_ERR "slub_debug option '%c' "
  860. "unknown. skipped\n", *str);
  861. }
  862. }
  863. check_slabs:
  864. if (*str == ',')
  865. slub_debug_slabs = str + 1;
  866. out:
  867. return 1;
  868. }
  869. __setup("slub_debug", setup_slub_debug);
  870. static unsigned long kmem_cache_flags(unsigned long objsize,
  871. unsigned long flags, const char *name,
  872. void (*ctor)(void *))
  873. {
  874. /*
  875. * Enable debugging if selected on the kernel commandline.
  876. */
  877. if (slub_debug && (!slub_debug_slabs ||
  878. !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
  879. flags |= slub_debug;
  880. return flags;
  881. }
  882. #else
  883. static inline void setup_object_debug(struct kmem_cache *s,
  884. struct page *page, void *object) {}
  885. static inline int alloc_debug_processing(struct kmem_cache *s,
  886. struct page *page, void *object, unsigned long addr) { return 0; }
  887. static inline int free_debug_processing(struct kmem_cache *s,
  888. struct page *page, void *object, unsigned long addr) { return 0; }
  889. static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
  890. { return 1; }
  891. static inline int check_object(struct kmem_cache *s, struct page *page,
  892. void *object, int active) { return 1; }
  893. static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
  894. static inline unsigned long kmem_cache_flags(unsigned long objsize,
  895. unsigned long flags, const char *name,
  896. void (*ctor)(void *))
  897. {
  898. return flags;
  899. }
  900. #define slub_debug 0
  901. #define disable_higher_order_debug 0
  902. static inline unsigned long slabs_node(struct kmem_cache *s, int node)
  903. { return 0; }
  904. static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
  905. { return 0; }
  906. static inline void inc_slabs_node(struct kmem_cache *s, int node,
  907. int objects) {}
  908. static inline void dec_slabs_node(struct kmem_cache *s, int node,
  909. int objects) {}
  910. #endif
  911. /*
  912. * Slab allocation and freeing
  913. */
  914. static inline struct page *alloc_slab_page(gfp_t flags, int node,
  915. struct kmem_cache_order_objects oo)
  916. {
  917. int order = oo_order(oo);
  918. flags |= __GFP_NOTRACK;
  919. if (node == -1)
  920. return alloc_pages(flags, order);
  921. else
  922. return alloc_pages_exact_node(node, flags, order);
  923. }
  924. static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
  925. {
  926. struct page *page;
  927. struct kmem_cache_order_objects oo = s->oo;
  928. gfp_t alloc_gfp;
  929. flags |= s->allocflags;
  930. /*
  931. * Let the initial higher-order allocation fail under memory pressure
  932. * so we fall-back to the minimum order allocation.
  933. */
  934. alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
  935. page = alloc_slab_page(alloc_gfp, node, oo);
  936. if (unlikely(!page)) {
  937. oo = s->min;
  938. /*
  939. * Allocation may have failed due to fragmentation.
  940. * Try a lower order alloc if possible
  941. */
  942. page = alloc_slab_page(flags, node, oo);
  943. if (!page)
  944. return NULL;
  945. stat(s, ORDER_FALLBACK);
  946. }
  947. if (kmemcheck_enabled
  948. && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
  949. int pages = 1 << oo_order(oo);
  950. kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
  951. /*
  952. * Objects from caches that have a constructor don't get
  953. * cleared when they're allocated, so we need to do it here.
  954. */
  955. if (s->ctor)
  956. kmemcheck_mark_uninitialized_pages(page, pages);
  957. else
  958. kmemcheck_mark_unallocated_pages(page, pages);
  959. }
  960. page->objects = oo_objects(oo);
  961. mod_zone_page_state(page_zone(page),
  962. (s->flags & SLAB_RECLAIM_ACCOUNT) ?
  963. NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
  964. 1 << oo_order(oo));
  965. return page;
  966. }
  967. static void setup_object(struct kmem_cache *s, struct page *page,
  968. void *object)
  969. {
  970. setup_object_debug(s, page, object);
  971. if (unlikely(s->ctor))
  972. s->ctor(object);
  973. }
  974. static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
  975. {
  976. struct page *page;
  977. void *start;
  978. void *last;
  979. void *p;
  980. BUG_ON(flags & GFP_SLAB_BUG_MASK);
  981. page = allocate_slab(s,
  982. flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
  983. if (!page)
  984. goto out;
  985. inc_slabs_node(s, page_to_nid(page), page->objects);
  986. page->slab = s;
  987. page->flags |= 1 << PG_slab;
  988. if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
  989. SLAB_STORE_USER | SLAB_TRACE))
  990. __SetPageSlubDebug(page);
  991. start = page_address(page);
  992. if (unlikely(s->flags & SLAB_POISON))
  993. memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
  994. last = start;
  995. for_each_object(p, s, start, page->objects) {
  996. setup_object(s, page, last);
  997. set_freepointer(s, last, p);
  998. last = p;
  999. }
  1000. setup_object(s, page, last);
  1001. set_freepointer(s, last, NULL);
  1002. page->freelist = start;
  1003. page->inuse = 0;
  1004. out:
  1005. return page;
  1006. }
  1007. static void __free_slab(struct kmem_cache *s, struct page *page)
  1008. {
  1009. int order = compound_order(page);
  1010. int pages = 1 << order;
  1011. if (unlikely(SLABDEBUG && PageSlubDebug(page))) {
  1012. void *p;
  1013. slab_pad_check(s, page);
  1014. for_each_object(p, s, page_address(page),
  1015. page->objects)
  1016. check_object(s, page, p, 0);
  1017. __ClearPageSlubDebug(page);
  1018. }
  1019. kmemcheck_free_shadow(page, compound_order(page));
  1020. mod_zone_page_state(page_zone(page),
  1021. (s->flags & SLAB_RECLAIM_ACCOUNT) ?
  1022. NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
  1023. -pages);
  1024. __ClearPageSlab(page);
  1025. reset_page_mapcount(page);
  1026. if (current->reclaim_state)
  1027. current->reclaim_state->reclaimed_slab += pages;
  1028. __free_pages(page, order);
  1029. }
  1030. static void rcu_free_slab(struct rcu_head *h)
  1031. {
  1032. struct page *page;
  1033. page = container_of((struct list_head *)h, struct page, lru);
  1034. __free_slab(page->slab, page);
  1035. }
  1036. static void free_slab(struct kmem_cache *s, struct page *page)
  1037. {
  1038. if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
  1039. /*
  1040. * RCU free overloads the RCU head over the LRU
  1041. */
  1042. struct rcu_head *head = (void *)&page->lru;
  1043. call_rcu(head, rcu_free_slab);
  1044. } else
  1045. __free_slab(s, page);
  1046. }
  1047. static void discard_slab(struct kmem_cache *s, struct page *page)
  1048. {
  1049. dec_slabs_node(s, page_to_nid(page), page->objects);
  1050. free_slab(s, page);
  1051. }
  1052. /*
  1053. * Per slab locking using the pagelock
  1054. */
  1055. static __always_inline void slab_lock(struct page *page)
  1056. {
  1057. bit_spin_lock(PG_locked, &page->flags);
  1058. }
  1059. static __always_inline void slab_unlock(struct page *page)
  1060. {
  1061. __bit_spin_unlock(PG_locked, &page->flags);
  1062. }
  1063. static __always_inline int slab_trylock(struct page *page)
  1064. {
  1065. int rc = 1;
  1066. rc = bit_spin_trylock(PG_locked, &page->flags);
  1067. return rc;
  1068. }
  1069. /*
  1070. * Management of partially allocated slabs
  1071. */
  1072. static void add_partial(struct kmem_cache_node *n,
  1073. struct page *page, int tail)
  1074. {
  1075. spin_lock(&n->list_lock);
  1076. n->nr_partial++;
  1077. if (tail)
  1078. list_add_tail(&page->lru, &n->partial);
  1079. else
  1080. list_add(&page->lru, &n->partial);
  1081. spin_unlock(&n->list_lock);
  1082. }
  1083. static void remove_partial(struct kmem_cache *s, struct page *page)
  1084. {
  1085. struct kmem_cache_node *n = get_node(s, page_to_nid(page));
  1086. spin_lock(&n->list_lock);
  1087. list_del(&page->lru);
  1088. n->nr_partial--;
  1089. spin_unlock(&n->list_lock);
  1090. }
  1091. /*
  1092. * Lock slab and remove from the partial list.
  1093. *
  1094. * Must hold list_lock.
  1095. */
  1096. static inline int lock_and_freeze_slab(struct kmem_cache_node *n,
  1097. struct page *page)
  1098. {
  1099. if (slab_trylock(page)) {
  1100. list_del(&page->lru);
  1101. n->nr_partial--;
  1102. __SetPageSlubFrozen(page);
  1103. return 1;
  1104. }
  1105. return 0;
  1106. }
  1107. /*
  1108. * Try to allocate a partial slab from a specific node.
  1109. */
  1110. static struct page *get_partial_node(struct kmem_cache_node *n)
  1111. {
  1112. struct page *page;
  1113. /*
  1114. * Racy check. If we mistakenly see no partial slabs then we
  1115. * just allocate an empty slab. If we mistakenly try to get a
  1116. * partial slab and there is none available then get_partials()
  1117. * will return NULL.
  1118. */
  1119. if (!n || !n->nr_partial)
  1120. return NULL;
  1121. spin_lock(&n->list_lock);
  1122. list_for_each_entry(page, &n->partial, lru)
  1123. if (lock_and_freeze_slab(n, page))
  1124. goto out;
  1125. page = NULL;
  1126. out:
  1127. spin_unlock(&n->list_lock);
  1128. return page;
  1129. }
  1130. /*
  1131. * Get a page from somewhere. Search in increasing NUMA distances.
  1132. */
  1133. static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
  1134. {
  1135. #ifdef CONFIG_NUMA
  1136. struct zonelist *zonelist;
  1137. struct zoneref *z;
  1138. struct zone *zone;
  1139. enum zone_type high_zoneidx = gfp_zone(flags);
  1140. struct page *page;
  1141. /*
  1142. * The defrag ratio allows a configuration of the tradeoffs between
  1143. * inter node defragmentation and node local allocations. A lower
  1144. * defrag_ratio increases the tendency to do local allocations
  1145. * instead of attempting to obtain partial slabs from other nodes.
  1146. *
  1147. * If the defrag_ratio is set to 0 then kmalloc() always
  1148. * returns node local objects. If the ratio is higher then kmalloc()
  1149. * may return off node objects because partial slabs are obtained
  1150. * from other nodes and filled up.
  1151. *
  1152. * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
  1153. * defrag_ratio = 1000) then every (well almost) allocation will
  1154. * first attempt to defrag slab caches on other nodes. This means
  1155. * scanning over all nodes to look for partial slabs which may be
  1156. * expensive if we do it every time we are trying to find a slab
  1157. * with available objects.
  1158. */
  1159. if (!s->remote_node_defrag_ratio ||
  1160. get_cycles() % 1024 > s->remote_node_defrag_ratio)
  1161. return NULL;
  1162. zonelist = node_zonelist(slab_node(current->mempolicy), flags);
  1163. for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
  1164. struct kmem_cache_node *n;
  1165. n = get_node(s, zone_to_nid(zone));
  1166. if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
  1167. n->nr_partial > s->min_partial) {
  1168. page = get_partial_node(n);
  1169. if (page)
  1170. return page;
  1171. }
  1172. }
  1173. #endif
  1174. return NULL;
  1175. }
  1176. /*
  1177. * Get a partial page, lock it and return it.
  1178. */
  1179. static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
  1180. {
  1181. struct page *page;
  1182. int searchnode = (node == -1) ? numa_node_id() : node;
  1183. page = get_partial_node(get_node(s, searchnode));
  1184. if (page || (flags & __GFP_THISNODE))
  1185. return page;
  1186. return get_any_partial(s, flags);
  1187. }
  1188. /*
  1189. * Move a page back to the lists.
  1190. *
  1191. * Must be called with the slab lock held.
  1192. *
  1193. * On exit the slab lock will have been dropped.
  1194. */
  1195. static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
  1196. {
  1197. struct kmem_cache_node *n = get_node(s, page_to_nid(page));
  1198. __ClearPageSlubFrozen(page);
  1199. if (page->inuse) {
  1200. if (page->freelist) {
  1201. add_partial(n, page, tail);
  1202. stat(s, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
  1203. } else {
  1204. stat(s, DEACTIVATE_FULL);
  1205. if (SLABDEBUG && PageSlubDebug(page) &&
  1206. (s->flags & SLAB_STORE_USER))
  1207. add_full(n, page);
  1208. }
  1209. slab_unlock(page);
  1210. } else {
  1211. stat(s, DEACTIVATE_EMPTY);
  1212. if (n->nr_partial < s->min_partial) {
  1213. /*
  1214. * Adding an empty slab to the partial slabs in order
  1215. * to avoid page allocator overhead. This slab needs
  1216. * to come after the other slabs with objects in
  1217. * so that the others get filled first. That way the
  1218. * size of the partial list stays small.
  1219. *
  1220. * kmem_cache_shrink can reclaim any empty slabs from
  1221. * the partial list.
  1222. */
  1223. add_partial(n, page, 1);
  1224. slab_unlock(page);
  1225. } else {
  1226. slab_unlock(page);
  1227. stat(s, FREE_SLAB);
  1228. discard_slab(s, page);
  1229. }
  1230. }
  1231. }
  1232. /*
  1233. * Remove the cpu slab
  1234. */
  1235. static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
  1236. {
  1237. struct page *page = c->page;
  1238. int tail = 1;
  1239. if (page->freelist)
  1240. stat(s, DEACTIVATE_REMOTE_FREES);
  1241. /*
  1242. * Merge cpu freelist into slab freelist. Typically we get here
  1243. * because both freelists are empty. So this is unlikely
  1244. * to occur.
  1245. */
  1246. while (unlikely(c->freelist)) {
  1247. void **object;
  1248. tail = 0; /* Hot objects. Put the slab first */
  1249. /* Retrieve object from cpu_freelist */
  1250. object = c->freelist;
  1251. c->freelist = get_freepointer(s, c->freelist);
  1252. /* And put onto the regular freelist */
  1253. set_freepointer(s, object, page->freelist);
  1254. page->freelist = object;
  1255. page->inuse--;
  1256. }
  1257. c->page = NULL;
  1258. unfreeze_slab(s, page, tail);
  1259. }
  1260. static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
  1261. {
  1262. stat(s, CPUSLAB_FLUSH);
  1263. slab_lock(c->page);
  1264. deactivate_slab(s, c);
  1265. }
  1266. /*
  1267. * Flush cpu slab.
  1268. *
  1269. * Called from IPI handler with interrupts disabled.
  1270. */
  1271. static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
  1272. {
  1273. struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
  1274. if (likely(c && c->page))
  1275. flush_slab(s, c);
  1276. }
  1277. static void flush_cpu_slab(void *d)
  1278. {
  1279. struct kmem_cache *s = d;
  1280. __flush_cpu_slab(s, smp_processor_id());
  1281. }
  1282. static void flush_all(struct kmem_cache *s)
  1283. {
  1284. on_each_cpu(flush_cpu_slab, s, 1);
  1285. }
  1286. /*
  1287. * Check if the objects in a per cpu structure fit numa
  1288. * locality expectations.
  1289. */
  1290. static inline int node_match(struct kmem_cache_cpu *c, int node)
  1291. {
  1292. #ifdef CONFIG_NUMA
  1293. if (node != -1 && c->node != node)
  1294. return 0;
  1295. #endif
  1296. return 1;
  1297. }
  1298. static int count_free(struct page *page)
  1299. {
  1300. return page->objects - page->inuse;
  1301. }
  1302. static unsigned long count_partial(struct kmem_cache_node *n,
  1303. int (*get_count)(struct page *))
  1304. {
  1305. unsigned long flags;
  1306. unsigned long x = 0;
  1307. struct page *page;
  1308. spin_lock_irqsave(&n->list_lock, flags);
  1309. list_for_each_entry(page, &n->partial, lru)
  1310. x += get_count(page);
  1311. spin_unlock_irqrestore(&n->list_lock, flags);
  1312. return x;
  1313. }
  1314. static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
  1315. {
  1316. #ifdef CONFIG_SLUB_DEBUG
  1317. return atomic_long_read(&n->total_objects);
  1318. #else
  1319. return 0;
  1320. #endif
  1321. }
  1322. static noinline void
  1323. slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
  1324. {
  1325. int node;
  1326. printk(KERN_WARNING
  1327. "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
  1328. nid, gfpflags);
  1329. printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
  1330. "default order: %d, min order: %d\n", s->name, s->objsize,
  1331. s->size, oo_order(s->oo), oo_order(s->min));
  1332. if (oo_order(s->min) > get_order(s->objsize))
  1333. printk(KERN_WARNING " %s debugging increased min order, use "
  1334. "slub_debug=O to disable.\n", s->name);
  1335. for_each_online_node(node) {
  1336. struct kmem_cache_node *n = get_node(s, node);
  1337. unsigned long nr_slabs;
  1338. unsigned long nr_objs;
  1339. unsigned long nr_free;
  1340. if (!n)
  1341. continue;
  1342. nr_free = count_partial(n, count_free);
  1343. nr_slabs = node_nr_slabs(n);
  1344. nr_objs = node_nr_objs(n);
  1345. printk(KERN_WARNING
  1346. " node %d: slabs: %ld, objs: %ld, free: %ld\n",
  1347. node, nr_slabs, nr_objs, nr_free);
  1348. }
  1349. }
  1350. /*
  1351. * Slow path. The lockless freelist is empty or we need to perform
  1352. * debugging duties.
  1353. *
  1354. * Interrupts are disabled.
  1355. *
  1356. * Processing is still very fast if new objects have been freed to the
  1357. * regular freelist. In that case we simply take over the regular freelist
  1358. * as the lockless freelist and zap the regular freelist.
  1359. *
  1360. * If that is not working then we fall back to the partial lists. We take the
  1361. * first element of the freelist as the object to allocate now and move the
  1362. * rest of the freelist to the lockless freelist.
  1363. *
  1364. * And if we were unable to get a new slab from the partial slab lists then
  1365. * we need to allocate a new slab. This is the slowest path since it involves
  1366. * a call to the page allocator and the setup of a new slab.
  1367. */
  1368. static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
  1369. unsigned long addr, struct kmem_cache_cpu *c)
  1370. {
  1371. void **object;
  1372. struct page *new;
  1373. /* We handle __GFP_ZERO in the caller */
  1374. gfpflags &= ~__GFP_ZERO;
  1375. if (!c->page)
  1376. goto new_slab;
  1377. slab_lock(c->page);
  1378. if (unlikely(!node_match(c, node)))
  1379. goto another_slab;
  1380. stat(s, ALLOC_REFILL);
  1381. load_freelist:
  1382. object = c->page->freelist;
  1383. if (unlikely(!object))
  1384. goto another_slab;
  1385. if (unlikely(SLABDEBUG && PageSlubDebug(c->page)))
  1386. goto debug;
  1387. c->freelist = get_freepointer(s, object);
  1388. c->page->inuse = c->page->objects;
  1389. c->page->freelist = NULL;
  1390. c->node = page_to_nid(c->page);
  1391. unlock_out:
  1392. slab_unlock(c->page);
  1393. stat(s, ALLOC_SLOWPATH);
  1394. return object;
  1395. another_slab:
  1396. deactivate_slab(s, c);
  1397. new_slab:
  1398. new = get_partial(s, gfpflags, node);
  1399. if (new) {
  1400. c->page = new;
  1401. stat(s, ALLOC_FROM_PARTIAL);
  1402. goto load_freelist;
  1403. }
  1404. if (gfpflags & __GFP_WAIT)
  1405. local_irq_enable();
  1406. new = new_slab(s, gfpflags, node);
  1407. if (gfpflags & __GFP_WAIT)
  1408. local_irq_disable();
  1409. if (new) {
  1410. c = __this_cpu_ptr(s->cpu_slab);
  1411. stat(s, ALLOC_SLAB);
  1412. if (c->page)
  1413. flush_slab(s, c);
  1414. slab_lock(new);
  1415. __SetPageSlubFrozen(new);
  1416. c->page = new;
  1417. goto load_freelist;
  1418. }
  1419. if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
  1420. slab_out_of_memory(s, gfpflags, node);
  1421. return NULL;
  1422. debug:
  1423. if (!alloc_debug_processing(s, c->page, object, addr))
  1424. goto another_slab;
  1425. c->page->inuse++;
  1426. c->page->freelist = get_freepointer(s, object);
  1427. c->node = -1;
  1428. goto unlock_out;
  1429. }
  1430. /*
  1431. * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
  1432. * have the fastpath folded into their functions. So no function call
  1433. * overhead for requests that can be satisfied on the fastpath.
  1434. *
  1435. * The fastpath works by first checking if the lockless freelist can be used.
  1436. * If not then __slab_alloc is called for slow processing.
  1437. *
  1438. * Otherwise we can simply pick the next object from the lockless free list.
  1439. */
  1440. static __always_inline void *slab_alloc(struct kmem_cache *s,
  1441. gfp_t gfpflags, int node, unsigned long addr)
  1442. {
  1443. void **object;
  1444. struct kmem_cache_cpu *c;
  1445. unsigned long flags;
  1446. gfpflags &= gfp_allowed_mask;
  1447. lockdep_trace_alloc(gfpflags);
  1448. might_sleep_if(gfpflags & __GFP_WAIT);
  1449. if (should_failslab(s->objsize, gfpflags, s->flags))
  1450. return NULL;
  1451. local_irq_save(flags);
  1452. c = __this_cpu_ptr(s->cpu_slab);
  1453. object = c->freelist;
  1454. if (unlikely(!object || !node_match(c, node)))
  1455. object = __slab_alloc(s, gfpflags, node, addr, c);
  1456. else {
  1457. c->freelist = get_freepointer(s, object);
  1458. stat(s, ALLOC_FASTPATH);
  1459. }
  1460. local_irq_restore(flags);
  1461. if (unlikely(gfpflags & __GFP_ZERO) && object)
  1462. memset(object, 0, s->objsize);
  1463. kmemcheck_slab_alloc(s, gfpflags, object, s->objsize);
  1464. kmemleak_alloc_recursive(object, s->objsize, 1, s->flags, gfpflags);
  1465. return object;
  1466. }
  1467. void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
  1468. {
  1469. void *ret = slab_alloc(s, gfpflags, -1, _RET_IP_);
  1470. trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags);
  1471. return ret;
  1472. }
  1473. EXPORT_SYMBOL(kmem_cache_alloc);
  1474. #ifdef CONFIG_TRACING
  1475. void *kmem_cache_alloc_notrace(struct kmem_cache *s, gfp_t gfpflags)
  1476. {
  1477. return slab_alloc(s, gfpflags, -1, _RET_IP_);
  1478. }
  1479. EXPORT_SYMBOL(kmem_cache_alloc_notrace);
  1480. #endif
  1481. #ifdef CONFIG_NUMA
  1482. void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
  1483. {
  1484. void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
  1485. trace_kmem_cache_alloc_node(_RET_IP_, ret,
  1486. s->objsize, s->size, gfpflags, node);
  1487. return ret;
  1488. }
  1489. EXPORT_SYMBOL(kmem_cache_alloc_node);
  1490. #endif
  1491. #ifdef CONFIG_TRACING
  1492. void *kmem_cache_alloc_node_notrace(struct kmem_cache *s,
  1493. gfp_t gfpflags,
  1494. int node)
  1495. {
  1496. return slab_alloc(s, gfpflags, node, _RET_IP_);
  1497. }
  1498. EXPORT_SYMBOL(kmem_cache_alloc_node_notrace);
  1499. #endif
  1500. /*
  1501. * Slow patch handling. This may still be called frequently since objects
  1502. * have a longer lifetime than the cpu slabs in most processing loads.
  1503. *
  1504. * So we still attempt to reduce cache line usage. Just take the slab
  1505. * lock and free the item. If there is no additional partial page
  1506. * handling required then we can return immediately.
  1507. */
  1508. static void __slab_free(struct kmem_cache *s, struct page *page,
  1509. void *x, unsigned long addr)
  1510. {
  1511. void *prior;
  1512. void **object = (void *)x;
  1513. stat(s, FREE_SLOWPATH);
  1514. slab_lock(page);
  1515. if (unlikely(SLABDEBUG && PageSlubDebug(page)))
  1516. goto debug;
  1517. checks_ok:
  1518. prior = page->freelist;
  1519. set_freepointer(s, object, prior);
  1520. page->freelist = object;
  1521. page->inuse--;
  1522. if (unlikely(PageSlubFrozen(page))) {
  1523. stat(s, FREE_FROZEN);
  1524. goto out_unlock;
  1525. }
  1526. if (unlikely(!page->inuse))
  1527. goto slab_empty;
  1528. /*
  1529. * Objects left in the slab. If it was not on the partial list before
  1530. * then add it.
  1531. */
  1532. if (unlikely(!prior)) {
  1533. add_partial(get_node(s, page_to_nid(page)), page, 1);
  1534. stat(s, FREE_ADD_PARTIAL);
  1535. }
  1536. out_unlock:
  1537. slab_unlock(page);
  1538. return;
  1539. slab_empty:
  1540. if (prior) {
  1541. /*
  1542. * Slab still on the partial list.
  1543. */
  1544. remove_partial(s, page);
  1545. stat(s, FREE_REMOVE_PARTIAL);
  1546. }
  1547. slab_unlock(page);
  1548. stat(s, FREE_SLAB);
  1549. discard_slab(s, page);
  1550. return;
  1551. debug:
  1552. if (!free_debug_processing(s, page, x, addr))
  1553. goto out_unlock;
  1554. goto checks_ok;
  1555. }
  1556. /*
  1557. * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
  1558. * can perform fastpath freeing without additional function calls.
  1559. *
  1560. * The fastpath is only possible if we are freeing to the current cpu slab
  1561. * of this processor. This typically the case if we have just allocated
  1562. * the item before.
  1563. *
  1564. * If fastpath is not possible then fall back to __slab_free where we deal
  1565. * with all sorts of special processing.
  1566. */
  1567. static __always_inline void slab_free(struct kmem_cache *s,
  1568. struct page *page, void *x, unsigned long addr)
  1569. {
  1570. void **object = (void *)x;
  1571. struct kmem_cache_cpu *c;
  1572. unsigned long flags;
  1573. kmemleak_free_recursive(x, s->flags);
  1574. local_irq_save(flags);
  1575. c = __this_cpu_ptr(s->cpu_slab);
  1576. kmemcheck_slab_free(s, object, s->objsize);
  1577. debug_check_no_locks_freed(object, s->objsize);
  1578. if (!(s->flags & SLAB_DEBUG_OBJECTS))
  1579. debug_check_no_obj_freed(object, s->objsize);
  1580. if (likely(page == c->page && c->node >= 0)) {
  1581. set_freepointer(s, object, c->freelist);
  1582. c->freelist = object;
  1583. stat(s, FREE_FASTPATH);
  1584. } else
  1585. __slab_free(s, page, x, addr);
  1586. local_irq_restore(flags);
  1587. }
  1588. void kmem_cache_free(struct kmem_cache *s, void *x)
  1589. {
  1590. struct page *page;
  1591. page = virt_to_head_page(x);
  1592. slab_free(s, page, x, _RET_IP_);
  1593. trace_kmem_cache_free(_RET_IP_, x);
  1594. }
  1595. EXPORT_SYMBOL(kmem_cache_free);
  1596. /* Figure out on which slab page the object resides */
  1597. static struct page *get_object_page(const void *x)
  1598. {
  1599. struct page *page = virt_to_head_page(x);
  1600. if (!PageSlab(page))
  1601. return NULL;
  1602. return page;
  1603. }
  1604. /*
  1605. * Object placement in a slab is made very easy because we always start at
  1606. * offset 0. If we tune the size of the object to the alignment then we can
  1607. * get the required alignment by putting one properly sized object after
  1608. * another.
  1609. *
  1610. * Notice that the allocation order determines the sizes of the per cpu
  1611. * caches. Each processor has always one slab available for allocations.
  1612. * Increasing the allocation order reduces the number of times that slabs
  1613. * must be moved on and off the partial lists and is therefore a factor in
  1614. * locking overhead.
  1615. */
  1616. /*
  1617. * Mininum / Maximum order of slab pages. This influences locking overhead
  1618. * and slab fragmentation. A higher order reduces the number of partial slabs
  1619. * and increases the number of allocations possible without having to
  1620. * take the list_lock.
  1621. */
  1622. static int slub_min_order;
  1623. static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
  1624. static int slub_min_objects;
  1625. /*
  1626. * Merge control. If this is set then no merging of slab caches will occur.
  1627. * (Could be removed. This was introduced to pacify the merge skeptics.)
  1628. */
  1629. static int slub_nomerge;
  1630. /*
  1631. * Calculate the order of allocation given an slab object size.
  1632. *
  1633. * The order of allocation has significant impact on performance and other
  1634. * system components. Generally order 0 allocations should be preferred since
  1635. * order 0 does not cause fragmentation in the page allocator. Larger objects
  1636. * be problematic to put into order 0 slabs because there may be too much
  1637. * unused space left. We go to a higher order if more than 1/16th of the slab
  1638. * would be wasted.
  1639. *
  1640. * In order to reach satisfactory performance we must ensure that a minimum
  1641. * number of objects is in one slab. Otherwise we may generate too much
  1642. * activity on the partial lists which requires taking the list_lock. This is
  1643. * less a concern for large slabs though which are rarely used.
  1644. *
  1645. * slub_max_order specifies the order where we begin to stop considering the
  1646. * number of objects in a slab as critical. If we reach slub_max_order then
  1647. * we try to keep the page order as low as possible. So we accept more waste
  1648. * of space in favor of a small page order.
  1649. *
  1650. * Higher order allocations also allow the placement of more objects in a
  1651. * slab and thereby reduce object handling overhead. If the user has
  1652. * requested a higher mininum order then we start with that one instead of
  1653. * the smallest order which will fit the object.
  1654. */
  1655. static inline int slab_order(int size, int min_objects,
  1656. int max_order, int fract_leftover)
  1657. {
  1658. int order;
  1659. int rem;
  1660. int min_order = slub_min_order;
  1661. if ((PAGE_SIZE << min_order) / size > MAX_OBJS_PER_PAGE)
  1662. return get_order(size * MAX_OBJS_PER_PAGE) - 1;
  1663. for (order = max(min_order,
  1664. fls(min_objects * size - 1) - PAGE_SHIFT);
  1665. order <= max_order; order++) {
  1666. unsigned long slab_size = PAGE_SIZE << order;
  1667. if (slab_size < min_objects * size)
  1668. continue;
  1669. rem = slab_size % size;
  1670. if (rem <= slab_size / fract_leftover)
  1671. break;
  1672. }
  1673. return order;
  1674. }
  1675. static inline int calculate_order(int size)
  1676. {
  1677. int order;
  1678. int min_objects;
  1679. int fraction;
  1680. int max_objects;
  1681. /*
  1682. * Attempt to find best configuration for a slab. This
  1683. * works by first attempting to generate a layout with
  1684. * the best configuration and backing off gradually.
  1685. *
  1686. * First we reduce the acceptable waste in a slab. Then
  1687. * we reduce the minimum objects required in a slab.
  1688. */
  1689. min_objects = slub_min_objects;
  1690. if (!min_objects)
  1691. min_objects = 4 * (fls(nr_cpu_ids) + 1);
  1692. max_objects = (PAGE_SIZE << slub_max_order)/size;
  1693. min_objects = min(min_objects, max_objects);
  1694. while (min_objects > 1) {
  1695. fraction = 16;
  1696. while (fraction >= 4) {
  1697. order = slab_order(size, min_objects,
  1698. slub_max_order, fraction);
  1699. if (order <= slub_max_order)
  1700. return order;
  1701. fraction /= 2;
  1702. }
  1703. min_objects--;
  1704. }
  1705. /*
  1706. * We were unable to place multiple objects in a slab. Now
  1707. * lets see if we can place a single object there.
  1708. */
  1709. order = slab_order(size, 1, slub_max_order, 1);
  1710. if (order <= slub_max_order)
  1711. return order;
  1712. /*
  1713. * Doh this slab cannot be placed using slub_max_order.
  1714. */
  1715. order = slab_order(size, 1, MAX_ORDER, 1);
  1716. if (order < MAX_ORDER)
  1717. return order;
  1718. return -ENOSYS;
  1719. }
  1720. /*
  1721. * Figure out what the alignment of the objects will be.
  1722. */
  1723. static unsigned long calculate_alignment(unsigned long flags,
  1724. unsigned long align, unsigned long size)
  1725. {
  1726. /*
  1727. * If the user wants hardware cache aligned objects then follow that
  1728. * suggestion if the object is sufficiently large.
  1729. *
  1730. * The hardware cache alignment cannot override the specified
  1731. * alignment though. If that is greater then use it.
  1732. */
  1733. if (flags & SLAB_HWCACHE_ALIGN) {
  1734. unsigned long ralign = cache_line_size();
  1735. while (size <= ralign / 2)
  1736. ralign /= 2;
  1737. align = max(align, ralign);
  1738. }
  1739. if (align < ARCH_SLAB_MINALIGN)
  1740. align = ARCH_SLAB_MINALIGN;
  1741. return ALIGN(align, sizeof(void *));
  1742. }
  1743. static void
  1744. init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
  1745. {
  1746. n->nr_partial = 0;
  1747. spin_lock_init(&n->list_lock);
  1748. INIT_LIST_HEAD(&n->partial);
  1749. #ifdef CONFIG_SLUB_DEBUG
  1750. atomic_long_set(&n->nr_slabs, 0);
  1751. atomic_long_set(&n->total_objects, 0);
  1752. INIT_LIST_HEAD(&n->full);
  1753. #endif
  1754. }
  1755. static DEFINE_PER_CPU(struct kmem_cache_cpu, kmalloc_percpu[KMALLOC_CACHES]);
  1756. static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
  1757. {
  1758. if (s < kmalloc_caches + KMALLOC_CACHES && s >= kmalloc_caches)
  1759. /*
  1760. * Boot time creation of the kmalloc array. Use static per cpu data
  1761. * since the per cpu allocator is not available yet.
  1762. */
  1763. s->cpu_slab = kmalloc_percpu + (s - kmalloc_caches);
  1764. else
  1765. s->cpu_slab = alloc_percpu(struct kmem_cache_cpu);
  1766. if (!s->cpu_slab)
  1767. return 0;
  1768. return 1;
  1769. }
  1770. #ifdef CONFIG_NUMA
  1771. /*
  1772. * No kmalloc_node yet so do it by hand. We know that this is the first
  1773. * slab on the node for this slabcache. There are no concurrent accesses
  1774. * possible.
  1775. *
  1776. * Note that this function only works on the kmalloc_node_cache
  1777. * when allocating for the kmalloc_node_cache. This is used for bootstrapping
  1778. * memory on a fresh node that has no slab structures yet.
  1779. */
  1780. static void early_kmem_cache_node_alloc(gfp_t gfpflags, int node)
  1781. {
  1782. struct page *page;
  1783. struct kmem_cache_node *n;
  1784. unsigned long flags;
  1785. BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
  1786. page = new_slab(kmalloc_caches, gfpflags, node);
  1787. BUG_ON(!page);
  1788. if (page_to_nid(page) != node) {
  1789. printk(KERN_ERR "SLUB: Unable to allocate memory from "
  1790. "node %d\n", node);
  1791. printk(KERN_ERR "SLUB: Allocating a useless per node structure "
  1792. "in order to be able to continue\n");
  1793. }
  1794. n = page->freelist;
  1795. BUG_ON(!n);
  1796. page->freelist = get_freepointer(kmalloc_caches, n);
  1797. page->inuse++;
  1798. kmalloc_caches->node[node] = n;
  1799. #ifdef CONFIG_SLUB_DEBUG
  1800. init_object(kmalloc_caches, n, 1);
  1801. init_tracking(kmalloc_caches, n);
  1802. #endif
  1803. init_kmem_cache_node(n, kmalloc_caches);
  1804. inc_slabs_node(kmalloc_caches, node, page->objects);
  1805. /*
  1806. * lockdep requires consistent irq usage for each lock
  1807. * so even though there cannot be a race this early in
  1808. * the boot sequence, we still disable irqs.
  1809. */
  1810. local_irq_save(flags);
  1811. add_partial(n, page, 0);
  1812. local_irq_restore(flags);
  1813. }
  1814. static void free_kmem_cache_nodes(struct kmem_cache *s)
  1815. {
  1816. int node;
  1817. for_each_node_state(node, N_NORMAL_MEMORY) {
  1818. struct kmem_cache_node *n = s->node[node];
  1819. if (n && n != &s->local_node)
  1820. kmem_cache_free(kmalloc_caches, n);
  1821. s->node[node] = NULL;
  1822. }
  1823. }
  1824. static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
  1825. {
  1826. int node;
  1827. int local_node;
  1828. if (slab_state >= UP && (s < kmalloc_caches ||
  1829. s >= kmalloc_caches + KMALLOC_CACHES))
  1830. local_node = page_to_nid(virt_to_page(s));
  1831. else
  1832. local_node = 0;
  1833. for_each_node_state(node, N_NORMAL_MEMORY) {
  1834. struct kmem_cache_node *n;
  1835. if (local_node == node)
  1836. n = &s->local_node;
  1837. else {
  1838. if (slab_state == DOWN) {
  1839. early_kmem_cache_node_alloc(gfpflags, node);
  1840. continue;
  1841. }
  1842. n = kmem_cache_alloc_node(kmalloc_caches,
  1843. gfpflags, node);
  1844. if (!n) {
  1845. free_kmem_cache_nodes(s);
  1846. return 0;
  1847. }
  1848. }
  1849. s->node[node] = n;
  1850. init_kmem_cache_node(n, s);
  1851. }
  1852. return 1;
  1853. }
  1854. #else
  1855. static void free_kmem_cache_nodes(struct kmem_cache *s)
  1856. {
  1857. }
  1858. static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
  1859. {
  1860. init_kmem_cache_node(&s->local_node, s);
  1861. return 1;
  1862. }
  1863. #endif
  1864. static void set_min_partial(struct kmem_cache *s, unsigned long min)
  1865. {
  1866. if (min < MIN_PARTIAL)
  1867. min = MIN_PARTIAL;
  1868. else if (min > MAX_PARTIAL)
  1869. min = MAX_PARTIAL;
  1870. s->min_partial = min;
  1871. }
  1872. /*
  1873. * calculate_sizes() determines the order and the distribution of data within
  1874. * a slab object.
  1875. */
  1876. static int calculate_sizes(struct kmem_cache *s, int forced_order)
  1877. {
  1878. unsigned long flags = s->flags;
  1879. unsigned long size = s->objsize;
  1880. unsigned long align = s->align;
  1881. int order;
  1882. /*
  1883. * Round up object size to the next word boundary. We can only
  1884. * place the free pointer at word boundaries and this determines
  1885. * the possible location of the free pointer.
  1886. */
  1887. size = ALIGN(size, sizeof(void *));
  1888. #ifdef CONFIG_SLUB_DEBUG
  1889. /*
  1890. * Determine if we can poison the object itself. If the user of
  1891. * the slab may touch the object after free or before allocation
  1892. * then we should never poison the object itself.
  1893. */
  1894. if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
  1895. !s->ctor)
  1896. s->flags |= __OBJECT_POISON;
  1897. else
  1898. s->flags &= ~__OBJECT_POISON;
  1899. /*
  1900. * If we are Redzoning then check if there is some space between the
  1901. * end of the object and the free pointer. If not then add an
  1902. * additional word to have some bytes to store Redzone information.
  1903. */
  1904. if ((flags & SLAB_RED_ZONE) && size == s->objsize)
  1905. size += sizeof(void *);
  1906. #endif
  1907. /*
  1908. * With that we have determined the number of bytes in actual use
  1909. * by the object. This is the potential offset to the free pointer.
  1910. */
  1911. s->inuse = size;
  1912. if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
  1913. s->ctor)) {
  1914. /*
  1915. * Relocate free pointer after the object if it is not
  1916. * permitted to overwrite the first word of the object on
  1917. * kmem_cache_free.
  1918. *
  1919. * This is the case if we do RCU, have a constructor or
  1920. * destructor or are poisoning the objects.
  1921. */
  1922. s->offset = size;
  1923. size += sizeof(void *);
  1924. }
  1925. #ifdef CONFIG_SLUB_DEBUG
  1926. if (flags & SLAB_STORE_USER)
  1927. /*
  1928. * Need to store information about allocs and frees after
  1929. * the object.
  1930. */
  1931. size += 2 * sizeof(struct track);
  1932. if (flags & SLAB_RED_ZONE)
  1933. /*
  1934. * Add some empty padding so that we can catch
  1935. * overwrites from earlier objects rather than let
  1936. * tracking information or the free pointer be
  1937. * corrupted if a user writes before the start
  1938. * of the object.
  1939. */
  1940. size += sizeof(void *);
  1941. #endif
  1942. /*
  1943. * Determine the alignment based on various parameters that the
  1944. * user specified and the dynamic determination of cache line size
  1945. * on bootup.
  1946. */
  1947. align = calculate_alignment(flags, align, s->objsize);
  1948. s->align = align;
  1949. /*
  1950. * SLUB stores one object immediately after another beginning from
  1951. * offset 0. In order to align the objects we have to simply size
  1952. * each object to conform to the alignment.
  1953. */
  1954. size = ALIGN(size, align);
  1955. s->size = size;
  1956. if (forced_order >= 0)
  1957. order = forced_order;
  1958. else
  1959. order = calculate_order(size);
  1960. if (order < 0)
  1961. return 0;
  1962. s->allocflags = 0;
  1963. if (order)
  1964. s->allocflags |= __GFP_COMP;
  1965. if (s->flags & SLAB_CACHE_DMA)
  1966. s->allocflags |= SLUB_DMA;
  1967. if (s->flags & SLAB_RECLAIM_ACCOUNT)
  1968. s->allocflags |= __GFP_RECLAIMABLE;
  1969. /*
  1970. * Determine the number of objects per slab
  1971. */
  1972. s->oo = oo_make(order, size);
  1973. s->min = oo_make(get_order(size), size);
  1974. if (oo_objects(s->oo) > oo_objects(s->max))
  1975. s->max = s->oo;
  1976. return !!oo_objects(s->oo);
  1977. }
  1978. static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
  1979. const char *name, size_t size,
  1980. size_t align, unsigned long flags,
  1981. void (*ctor)(void *))
  1982. {
  1983. memset(s, 0, kmem_size);
  1984. s->name = name;
  1985. s->ctor = ctor;
  1986. s->objsize = size;
  1987. s->align = align;
  1988. s->flags = kmem_cache_flags(size, flags, name, ctor);
  1989. if (!calculate_sizes(s, -1))
  1990. goto error;
  1991. if (disable_higher_order_debug) {
  1992. /*
  1993. * Disable debugging flags that store metadata if the min slab
  1994. * order increased.
  1995. */
  1996. if (get_order(s->size) > get_order(s->objsize)) {
  1997. s->flags &= ~DEBUG_METADATA_FLAGS;
  1998. s->offset = 0;
  1999. if (!calculate_sizes(s, -1))
  2000. goto error;
  2001. }
  2002. }
  2003. /*
  2004. * The larger the object size is, the more pages we want on the partial
  2005. * list to avoid pounding the page allocator excessively.
  2006. */
  2007. set_min_partial(s, ilog2(s->size));
  2008. s->refcount = 1;
  2009. #ifdef CONFIG_NUMA
  2010. s->remote_node_defrag_ratio = 1000;
  2011. #endif
  2012. if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
  2013. goto error;
  2014. if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA))
  2015. return 1;
  2016. free_kmem_cache_nodes(s);
  2017. error:
  2018. if (flags & SLAB_PANIC)
  2019. panic("Cannot create slab %s size=%lu realsize=%u "
  2020. "order=%u offset=%u flags=%lx\n",
  2021. s->name, (unsigned long)size, s->size, oo_order(s->oo),
  2022. s->offset, flags);
  2023. return 0;
  2024. }
  2025. /*
  2026. * Check if a given pointer is valid
  2027. */
  2028. int kmem_ptr_validate(struct kmem_cache *s, const void *object)
  2029. {
  2030. struct page *page;
  2031. if (!kern_ptr_validate(object, s->size))
  2032. return 0;
  2033. page = get_object_page(object);
  2034. if (!page || s != page->slab)
  2035. /* No slab or wrong slab */
  2036. return 0;
  2037. if (!check_valid_pointer(s, page, object))
  2038. return 0;
  2039. /*
  2040. * We could also check if the object is on the slabs freelist.
  2041. * But this would be too expensive and it seems that the main
  2042. * purpose of kmem_ptr_valid() is to check if the object belongs
  2043. * to a certain slab.
  2044. */
  2045. return 1;
  2046. }
  2047. EXPORT_SYMBOL(kmem_ptr_validate);
  2048. /*
  2049. * Determine the size of a slab object
  2050. */
  2051. unsigned int kmem_cache_size(struct kmem_cache *s)
  2052. {
  2053. return s->objsize;
  2054. }
  2055. EXPORT_SYMBOL(kmem_cache_size);
  2056. const char *kmem_cache_name(struct kmem_cache *s)
  2057. {
  2058. return s->name;
  2059. }
  2060. EXPORT_SYMBOL(kmem_cache_name);
  2061. static void list_slab_objects(struct kmem_cache *s, struct page *page,
  2062. const char *text)
  2063. {
  2064. #ifdef CONFIG_SLUB_DEBUG
  2065. void *addr = page_address(page);
  2066. void *p;
  2067. long *map = kzalloc(BITS_TO_LONGS(page->objects) * sizeof(long),
  2068. GFP_ATOMIC);
  2069. if (!map)
  2070. return;
  2071. slab_err(s, page, "%s", text);
  2072. slab_lock(page);
  2073. for_each_free_object(p, s, page->freelist)
  2074. set_bit(slab_index(p, s, addr), map);
  2075. for_each_object(p, s, addr, page->objects) {
  2076. if (!test_bit(slab_index(p, s, addr), map)) {
  2077. printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
  2078. p, p - addr);
  2079. print_tracking(s, p);
  2080. }
  2081. }
  2082. slab_unlock(page);
  2083. kfree(map);
  2084. #endif
  2085. }
  2086. /*
  2087. * Attempt to free all partial slabs on a node.
  2088. */
  2089. static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
  2090. {
  2091. unsigned long flags;
  2092. struct page *page, *h;
  2093. spin_lock_irqsave(&n->list_lock, flags);
  2094. list_for_each_entry_safe(page, h, &n->partial, lru) {
  2095. if (!page->inuse) {
  2096. list_del(&page->lru);
  2097. discard_slab(s, page);
  2098. n->nr_partial--;
  2099. } else {
  2100. list_slab_objects(s, page,
  2101. "Objects remaining on kmem_cache_close()");
  2102. }
  2103. }
  2104. spin_unlock_irqrestore(&n->list_lock, flags);
  2105. }
  2106. /*
  2107. * Release all resources used by a slab cache.
  2108. */
  2109. static inline int kmem_cache_close(struct kmem_cache *s)
  2110. {
  2111. int node;
  2112. flush_all(s);
  2113. free_percpu(s->cpu_slab);
  2114. /* Attempt to free all objects */
  2115. for_each_node_state(node, N_NORMAL_MEMORY) {
  2116. struct kmem_cache_node *n = get_node(s, node);
  2117. free_partial(s, n);
  2118. if (n->nr_partial || slabs_node(s, node))
  2119. return 1;
  2120. }
  2121. free_kmem_cache_nodes(s);
  2122. return 0;
  2123. }
  2124. /*
  2125. * Close a cache and release the kmem_cache structure
  2126. * (must be used for caches created using kmem_cache_create)
  2127. */
  2128. void kmem_cache_destroy(struct kmem_cache *s)
  2129. {
  2130. down_write(&slub_lock);
  2131. s->refcount--;
  2132. if (!s->refcount) {
  2133. list_del(&s->list);
  2134. up_write(&slub_lock);
  2135. if (kmem_cache_close(s)) {
  2136. printk(KERN_ERR "SLUB %s: %s called for cache that "
  2137. "still has objects.\n", s->name, __func__);
  2138. dump_stack();
  2139. }
  2140. if (s->flags & SLAB_DESTROY_BY_RCU)
  2141. rcu_barrier();
  2142. sysfs_slab_remove(s);
  2143. } else
  2144. up_write(&slub_lock);
  2145. }
  2146. EXPORT_SYMBOL(kmem_cache_destroy);
  2147. /********************************************************************
  2148. * Kmalloc subsystem
  2149. *******************************************************************/
  2150. struct kmem_cache kmalloc_caches[KMALLOC_CACHES] __cacheline_aligned;
  2151. EXPORT_SYMBOL(kmalloc_caches);
  2152. static int __init setup_slub_min_order(char *str)
  2153. {
  2154. get_option(&str, &slub_min_order);
  2155. return 1;
  2156. }
  2157. __setup("slub_min_order=", setup_slub_min_order);
  2158. static int __init setup_slub_max_order(char *str)
  2159. {
  2160. get_option(&str, &slub_max_order);
  2161. slub_max_order = min(slub_max_order, MAX_ORDER - 1);
  2162. return 1;
  2163. }
  2164. __setup("slub_max_order=", setup_slub_max_order);
  2165. static int __init setup_slub_min_objects(char *str)
  2166. {
  2167. get_option(&str, &slub_min_objects);
  2168. return 1;
  2169. }
  2170. __setup("slub_min_objects=", setup_slub_min_objects);
  2171. static int __init setup_slub_nomerge(char *str)
  2172. {
  2173. slub_nomerge = 1;
  2174. return 1;
  2175. }
  2176. __setup("slub_nomerge", setup_slub_nomerge);
  2177. static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
  2178. const char *name, int size, gfp_t gfp_flags)
  2179. {
  2180. unsigned int flags = 0;
  2181. if (gfp_flags & SLUB_DMA)
  2182. flags = SLAB_CACHE_DMA;
  2183. /*
  2184. * This function is called with IRQs disabled during early-boot on
  2185. * single CPU so there's no need to take slub_lock here.
  2186. */
  2187. if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
  2188. flags, NULL))
  2189. goto panic;
  2190. list_add(&s->list, &slab_caches);
  2191. if (sysfs_slab_add(s))
  2192. goto panic;
  2193. return s;
  2194. panic:
  2195. panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
  2196. }
  2197. #ifdef CONFIG_ZONE_DMA
  2198. static struct kmem_cache *kmalloc_caches_dma[SLUB_PAGE_SHIFT];
  2199. static void sysfs_add_func(struct work_struct *w)
  2200. {
  2201. struct kmem_cache *s;
  2202. down_write(&slub_lock);
  2203. list_for_each_entry(s, &slab_caches, list) {
  2204. if (s->flags & __SYSFS_ADD_DEFERRED) {
  2205. s->flags &= ~__SYSFS_ADD_DEFERRED;
  2206. sysfs_slab_add(s);
  2207. }
  2208. }
  2209. up_write(&slub_lock);
  2210. }
  2211. static DECLARE_WORK(sysfs_add_work, sysfs_add_func);
  2212. static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
  2213. {
  2214. struct kmem_cache *s;
  2215. char *text;
  2216. size_t realsize;
  2217. unsigned long slabflags;
  2218. int i;
  2219. s = kmalloc_caches_dma[index];
  2220. if (s)
  2221. return s;
  2222. /* Dynamically create dma cache */
  2223. if (flags & __GFP_WAIT)
  2224. down_write(&slub_lock);
  2225. else {
  2226. if (!down_write_trylock(&slub_lock))
  2227. goto out;
  2228. }
  2229. if (kmalloc_caches_dma[index])
  2230. goto unlock_out;
  2231. realsize = kmalloc_caches[index].objsize;
  2232. text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
  2233. (unsigned int)realsize);
  2234. s = NULL;
  2235. for (i = 0; i < KMALLOC_CACHES; i++)
  2236. if (!kmalloc_caches[i].size)
  2237. break;
  2238. BUG_ON(i >= KMALLOC_CACHES);
  2239. s = kmalloc_caches + i;
  2240. /*
  2241. * Must defer sysfs creation to a workqueue because we don't know
  2242. * what context we are called from. Before sysfs comes up, we don't
  2243. * need to do anything because our sysfs initcall will start by
  2244. * adding all existing slabs to sysfs.
  2245. */
  2246. slabflags = SLAB_CACHE_DMA|SLAB_NOTRACK;
  2247. if (slab_state >= SYSFS)
  2248. slabflags |= __SYSFS_ADD_DEFERRED;
  2249. if (!text || !kmem_cache_open(s, flags, text,
  2250. realsize, ARCH_KMALLOC_MINALIGN, slabflags, NULL)) {
  2251. s->size = 0;
  2252. kfree(text);
  2253. goto unlock_out;
  2254. }
  2255. list_add(&s->list, &slab_caches);
  2256. kmalloc_caches_dma[index] = s;
  2257. if (slab_state >= SYSFS)
  2258. schedule_work(&sysfs_add_work);
  2259. unlock_out:
  2260. up_write(&slub_lock);
  2261. out:
  2262. return kmalloc_caches_dma[index];
  2263. }
  2264. #endif
  2265. /*
  2266. * Conversion table for small slabs sizes / 8 to the index in the
  2267. * kmalloc array. This is necessary for slabs < 192 since we have non power
  2268. * of two cache sizes there. The size of larger slabs can be determined using
  2269. * fls.
  2270. */
  2271. static s8 size_index[24] = {
  2272. 3, /* 8 */
  2273. 4, /* 16 */
  2274. 5, /* 24 */
  2275. 5, /* 32 */
  2276. 6, /* 40 */
  2277. 6, /* 48 */
  2278. 6, /* 56 */
  2279. 6, /* 64 */
  2280. 1, /* 72 */
  2281. 1, /* 80 */
  2282. 1, /* 88 */
  2283. 1, /* 96 */
  2284. 7, /* 104 */
  2285. 7, /* 112 */
  2286. 7, /* 120 */
  2287. 7, /* 128 */
  2288. 2, /* 136 */
  2289. 2, /* 144 */
  2290. 2, /* 152 */
  2291. 2, /* 160 */
  2292. 2, /* 168 */
  2293. 2, /* 176 */
  2294. 2, /* 184 */
  2295. 2 /* 192 */
  2296. };
  2297. static inline int size_index_elem(size_t bytes)
  2298. {
  2299. return (bytes - 1) / 8;
  2300. }
  2301. static struct kmem_cache *get_slab(size_t size, gfp_t flags)
  2302. {
  2303. int index;
  2304. if (size <= 192) {
  2305. if (!size)
  2306. return ZERO_SIZE_PTR;
  2307. index = size_index[size_index_elem(size)];
  2308. } else
  2309. index = fls(size - 1);
  2310. #ifdef CONFIG_ZONE_DMA
  2311. if (unlikely((flags & SLUB_DMA)))
  2312. return dma_kmalloc_cache(index, flags);
  2313. #endif
  2314. return &kmalloc_caches[index];
  2315. }
  2316. void *__kmalloc(size_t size, gfp_t flags)
  2317. {
  2318. struct kmem_cache *s;
  2319. void *ret;
  2320. if (unlikely(size > SLUB_MAX_SIZE))
  2321. return kmalloc_large(size, flags);
  2322. s = get_slab(size, flags);
  2323. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2324. return s;
  2325. ret = slab_alloc(s, flags, -1, _RET_IP_);
  2326. trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
  2327. return ret;
  2328. }
  2329. EXPORT_SYMBOL(__kmalloc);
  2330. static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
  2331. {
  2332. struct page *page;
  2333. void *ptr = NULL;
  2334. flags |= __GFP_COMP | __GFP_NOTRACK;
  2335. page = alloc_pages_node(node, flags, get_order(size));
  2336. if (page)
  2337. ptr = page_address(page);
  2338. kmemleak_alloc(ptr, size, 1, flags);
  2339. return ptr;
  2340. }
  2341. #ifdef CONFIG_NUMA
  2342. void *__kmalloc_node(size_t size, gfp_t flags, int node)
  2343. {
  2344. struct kmem_cache *s;
  2345. void *ret;
  2346. if (unlikely(size > SLUB_MAX_SIZE)) {
  2347. ret = kmalloc_large_node(size, flags, node);
  2348. trace_kmalloc_node(_RET_IP_, ret,
  2349. size, PAGE_SIZE << get_order(size),
  2350. flags, node);
  2351. return ret;
  2352. }
  2353. s = get_slab(size, flags);
  2354. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2355. return s;
  2356. ret = slab_alloc(s, flags, node, _RET_IP_);
  2357. trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
  2358. return ret;
  2359. }
  2360. EXPORT_SYMBOL(__kmalloc_node);
  2361. #endif
  2362. size_t ksize(const void *object)
  2363. {
  2364. struct page *page;
  2365. struct kmem_cache *s;
  2366. if (unlikely(object == ZERO_SIZE_PTR))
  2367. return 0;
  2368. page = virt_to_head_page(object);
  2369. if (unlikely(!PageSlab(page))) {
  2370. WARN_ON(!PageCompound(page));
  2371. return PAGE_SIZE << compound_order(page);
  2372. }
  2373. s = page->slab;
  2374. #ifdef CONFIG_SLUB_DEBUG
  2375. /*
  2376. * Debugging requires use of the padding between object
  2377. * and whatever may come after it.
  2378. */
  2379. if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
  2380. return s->objsize;
  2381. #endif
  2382. /*
  2383. * If we have the need to store the freelist pointer
  2384. * back there or track user information then we can
  2385. * only use the space before that information.
  2386. */
  2387. if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
  2388. return s->inuse;
  2389. /*
  2390. * Else we can use all the padding etc for the allocation
  2391. */
  2392. return s->size;
  2393. }
  2394. EXPORT_SYMBOL(ksize);
  2395. void kfree(const void *x)
  2396. {
  2397. struct page *page;
  2398. void *object = (void *)x;
  2399. trace_kfree(_RET_IP_, x);
  2400. if (unlikely(ZERO_OR_NULL_PTR(x)))
  2401. return;
  2402. page = virt_to_head_page(x);
  2403. if (unlikely(!PageSlab(page))) {
  2404. BUG_ON(!PageCompound(page));
  2405. kmemleak_free(x);
  2406. put_page(page);
  2407. return;
  2408. }
  2409. slab_free(page->slab, page, object, _RET_IP_);
  2410. }
  2411. EXPORT_SYMBOL(kfree);
  2412. /*
  2413. * kmem_cache_shrink removes empty slabs from the partial lists and sorts
  2414. * the remaining slabs by the number of items in use. The slabs with the
  2415. * most items in use come first. New allocations will then fill those up
  2416. * and thus they can be removed from the partial lists.
  2417. *
  2418. * The slabs with the least items are placed last. This results in them
  2419. * being allocated from last increasing the chance that the last objects
  2420. * are freed in them.
  2421. */
  2422. int kmem_cache_shrink(struct kmem_cache *s)
  2423. {
  2424. int node;
  2425. int i;
  2426. struct kmem_cache_node *n;
  2427. struct page *page;
  2428. struct page *t;
  2429. int objects = oo_objects(s->max);
  2430. struct list_head *slabs_by_inuse =
  2431. kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
  2432. unsigned long flags;
  2433. if (!slabs_by_inuse)
  2434. return -ENOMEM;
  2435. flush_all(s);
  2436. for_each_node_state(node, N_NORMAL_MEMORY) {
  2437. n = get_node(s, node);
  2438. if (!n->nr_partial)
  2439. continue;
  2440. for (i = 0; i < objects; i++)
  2441. INIT_LIST_HEAD(slabs_by_inuse + i);
  2442. spin_lock_irqsave(&n->list_lock, flags);
  2443. /*
  2444. * Build lists indexed by the items in use in each slab.
  2445. *
  2446. * Note that concurrent frees may occur while we hold the
  2447. * list_lock. page->inuse here is the upper limit.
  2448. */
  2449. list_for_each_entry_safe(page, t, &n->partial, lru) {
  2450. if (!page->inuse && slab_trylock(page)) {
  2451. /*
  2452. * Must hold slab lock here because slab_free
  2453. * may have freed the last object and be
  2454. * waiting to release the slab.
  2455. */
  2456. list_del(&page->lru);
  2457. n->nr_partial--;
  2458. slab_unlock(page);
  2459. discard_slab(s, page);
  2460. } else {
  2461. list_move(&page->lru,
  2462. slabs_by_inuse + page->inuse);
  2463. }
  2464. }
  2465. /*
  2466. * Rebuild the partial list with the slabs filled up most
  2467. * first and the least used slabs at the end.
  2468. */
  2469. for (i = objects - 1; i >= 0; i--)
  2470. list_splice(slabs_by_inuse + i, n->partial.prev);
  2471. spin_unlock_irqrestore(&n->list_lock, flags);
  2472. }
  2473. kfree(slabs_by_inuse);
  2474. return 0;
  2475. }
  2476. EXPORT_SYMBOL(kmem_cache_shrink);
  2477. #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
  2478. static int slab_mem_going_offline_callback(void *arg)
  2479. {
  2480. struct kmem_cache *s;
  2481. down_read(&slub_lock);
  2482. list_for_each_entry(s, &slab_caches, list)
  2483. kmem_cache_shrink(s);
  2484. up_read(&slub_lock);
  2485. return 0;
  2486. }
  2487. static void slab_mem_offline_callback(void *arg)
  2488. {
  2489. struct kmem_cache_node *n;
  2490. struct kmem_cache *s;
  2491. struct memory_notify *marg = arg;
  2492. int offline_node;
  2493. offline_node = marg->status_change_nid;
  2494. /*
  2495. * If the node still has available memory. we need kmem_cache_node
  2496. * for it yet.
  2497. */
  2498. if (offline_node < 0)
  2499. return;
  2500. down_read(&slub_lock);
  2501. list_for_each_entry(s, &slab_caches, list) {
  2502. n = get_node(s, offline_node);
  2503. if (n) {
  2504. /*
  2505. * if n->nr_slabs > 0, slabs still exist on the node
  2506. * that is going down. We were unable to free them,
  2507. * and offline_pages() function shouldn't call this
  2508. * callback. So, we must fail.
  2509. */
  2510. BUG_ON(slabs_node(s, offline_node));
  2511. s->node[offline_node] = NULL;
  2512. kmem_cache_free(kmalloc_caches, n);
  2513. }
  2514. }
  2515. up_read(&slub_lock);
  2516. }
  2517. static int slab_mem_going_online_callback(void *arg)
  2518. {
  2519. struct kmem_cache_node *n;
  2520. struct kmem_cache *s;
  2521. struct memory_notify *marg = arg;
  2522. int nid = marg->status_change_nid;
  2523. int ret = 0;
  2524. /*
  2525. * If the node's memory is already available, then kmem_cache_node is
  2526. * already created. Nothing to do.
  2527. */
  2528. if (nid < 0)
  2529. return 0;
  2530. /*
  2531. * We are bringing a node online. No memory is available yet. We must
  2532. * allocate a kmem_cache_node structure in order to bring the node
  2533. * online.
  2534. */
  2535. down_read(&slub_lock);
  2536. list_for_each_entry(s, &slab_caches, list) {
  2537. /*
  2538. * XXX: kmem_cache_alloc_node will fallback to other nodes
  2539. * since memory is not yet available from the node that
  2540. * is brought up.
  2541. */
  2542. n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL);
  2543. if (!n) {
  2544. ret = -ENOMEM;
  2545. goto out;
  2546. }
  2547. init_kmem_cache_node(n, s);
  2548. s->node[nid] = n;
  2549. }
  2550. out:
  2551. up_read(&slub_lock);
  2552. return ret;
  2553. }
  2554. static int slab_memory_callback(struct notifier_block *self,
  2555. unsigned long action, void *arg)
  2556. {
  2557. int ret = 0;
  2558. switch (action) {
  2559. case MEM_GOING_ONLINE:
  2560. ret = slab_mem_going_online_callback(arg);
  2561. break;
  2562. case MEM_GOING_OFFLINE:
  2563. ret = slab_mem_going_offline_callback(arg);
  2564. break;
  2565. case MEM_OFFLINE:
  2566. case MEM_CANCEL_ONLINE:
  2567. slab_mem_offline_callback(arg);
  2568. break;
  2569. case MEM_ONLINE:
  2570. case MEM_CANCEL_OFFLINE:
  2571. break;
  2572. }
  2573. if (ret)
  2574. ret = notifier_from_errno(ret);
  2575. else
  2576. ret = NOTIFY_OK;
  2577. return ret;
  2578. }
  2579. #endif /* CONFIG_MEMORY_HOTPLUG */
  2580. /********************************************************************
  2581. * Basic setup of slabs
  2582. *******************************************************************/
  2583. void __init kmem_cache_init(void)
  2584. {
  2585. int i;
  2586. int caches = 0;
  2587. #ifdef CONFIG_NUMA
  2588. /*
  2589. * Must first have the slab cache available for the allocations of the
  2590. * struct kmem_cache_node's. There is special bootstrap code in
  2591. * kmem_cache_open for slab_state == DOWN.
  2592. */
  2593. create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
  2594. sizeof(struct kmem_cache_node), GFP_NOWAIT);
  2595. kmalloc_caches[0].refcount = -1;
  2596. caches++;
  2597. hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
  2598. #endif
  2599. /* Able to allocate the per node structures */
  2600. slab_state = PARTIAL;
  2601. /* Caches that are not of the two-to-the-power-of size */
  2602. if (KMALLOC_MIN_SIZE <= 32) {
  2603. create_kmalloc_cache(&kmalloc_caches[1],
  2604. "kmalloc-96", 96, GFP_NOWAIT);
  2605. caches++;
  2606. }
  2607. if (KMALLOC_MIN_SIZE <= 64) {
  2608. create_kmalloc_cache(&kmalloc_caches[2],
  2609. "kmalloc-192", 192, GFP_NOWAIT);
  2610. caches++;
  2611. }
  2612. for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
  2613. create_kmalloc_cache(&kmalloc_caches[i],
  2614. "kmalloc", 1 << i, GFP_NOWAIT);
  2615. caches++;
  2616. }
  2617. /*
  2618. * Patch up the size_index table if we have strange large alignment
  2619. * requirements for the kmalloc array. This is only the case for
  2620. * MIPS it seems. The standard arches will not generate any code here.
  2621. *
  2622. * Largest permitted alignment is 256 bytes due to the way we
  2623. * handle the index determination for the smaller caches.
  2624. *
  2625. * Make sure that nothing crazy happens if someone starts tinkering
  2626. * around with ARCH_KMALLOC_MINALIGN
  2627. */
  2628. BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
  2629. (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
  2630. for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
  2631. int elem = size_index_elem(i);
  2632. if (elem >= ARRAY_SIZE(size_index))
  2633. break;
  2634. size_index[elem] = KMALLOC_SHIFT_LOW;
  2635. }
  2636. if (KMALLOC_MIN_SIZE == 64) {
  2637. /*
  2638. * The 96 byte size cache is not used if the alignment
  2639. * is 64 byte.
  2640. */
  2641. for (i = 64 + 8; i <= 96; i += 8)
  2642. size_index[size_index_elem(i)] = 7;
  2643. } else if (KMALLOC_MIN_SIZE == 128) {
  2644. /*
  2645. * The 192 byte sized cache is not used if the alignment
  2646. * is 128 byte. Redirect kmalloc to use the 256 byte cache
  2647. * instead.
  2648. */
  2649. for (i = 128 + 8; i <= 192; i += 8)
  2650. size_index[size_index_elem(i)] = 8;
  2651. }
  2652. slab_state = UP;
  2653. /* Provide the correct kmalloc names now that the caches are up */
  2654. for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++)
  2655. kmalloc_caches[i]. name =
  2656. kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
  2657. #ifdef CONFIG_SMP
  2658. register_cpu_notifier(&slab_notifier);
  2659. #endif
  2660. #ifdef CONFIG_NUMA
  2661. kmem_size = offsetof(struct kmem_cache, node) +
  2662. nr_node_ids * sizeof(struct kmem_cache_node *);
  2663. #else
  2664. kmem_size = sizeof(struct kmem_cache);
  2665. #endif
  2666. printk(KERN_INFO
  2667. "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
  2668. " CPUs=%d, Nodes=%d\n",
  2669. caches, cache_line_size(),
  2670. slub_min_order, slub_max_order, slub_min_objects,
  2671. nr_cpu_ids, nr_node_ids);
  2672. }
  2673. void __init kmem_cache_init_late(void)
  2674. {
  2675. }
  2676. /*
  2677. * Find a mergeable slab cache
  2678. */
  2679. static int slab_unmergeable(struct kmem_cache *s)
  2680. {
  2681. if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
  2682. return 1;
  2683. if (s->ctor)
  2684. return 1;
  2685. /*
  2686. * We may have set a slab to be unmergeable during bootstrap.
  2687. */
  2688. if (s->refcount < 0)
  2689. return 1;
  2690. return 0;
  2691. }
  2692. static struct kmem_cache *find_mergeable(size_t size,
  2693. size_t align, unsigned long flags, const char *name,
  2694. void (*ctor)(void *))
  2695. {
  2696. struct kmem_cache *s;
  2697. if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
  2698. return NULL;
  2699. if (ctor)
  2700. return NULL;
  2701. size = ALIGN(size, sizeof(void *));
  2702. align = calculate_alignment(flags, align, size);
  2703. size = ALIGN(size, align);
  2704. flags = kmem_cache_flags(size, flags, name, NULL);
  2705. list_for_each_entry(s, &slab_caches, list) {
  2706. if (slab_unmergeable(s))
  2707. continue;
  2708. if (size > s->size)
  2709. continue;
  2710. if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
  2711. continue;
  2712. /*
  2713. * Check if alignment is compatible.
  2714. * Courtesy of Adrian Drzewiecki
  2715. */
  2716. if ((s->size & ~(align - 1)) != s->size)
  2717. continue;
  2718. if (s->size - size >= sizeof(void *))
  2719. continue;
  2720. return s;
  2721. }
  2722. return NULL;
  2723. }
  2724. struct kmem_cache *kmem_cache_create(const char *name, size_t size,
  2725. size_t align, unsigned long flags, void (*ctor)(void *))
  2726. {
  2727. struct kmem_cache *s;
  2728. if (WARN_ON(!name))
  2729. return NULL;
  2730. down_write(&slub_lock);
  2731. s = find_mergeable(size, align, flags, name, ctor);
  2732. if (s) {
  2733. s->refcount++;
  2734. /*
  2735. * Adjust the object sizes so that we clear
  2736. * the complete object on kzalloc.
  2737. */
  2738. s->objsize = max(s->objsize, (int)size);
  2739. s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
  2740. up_write(&slub_lock);
  2741. if (sysfs_slab_alias(s, name)) {
  2742. down_write(&slub_lock);
  2743. s->refcount--;
  2744. up_write(&slub_lock);
  2745. goto err;
  2746. }
  2747. return s;
  2748. }
  2749. s = kmalloc(kmem_size, GFP_KERNEL);
  2750. if (s) {
  2751. if (kmem_cache_open(s, GFP_KERNEL, name,
  2752. size, align, flags, ctor)) {
  2753. list_add(&s->list, &slab_caches);
  2754. up_write(&slub_lock);
  2755. if (sysfs_slab_add(s)) {
  2756. down_write(&slub_lock);
  2757. list_del(&s->list);
  2758. up_write(&slub_lock);
  2759. kfree(s);
  2760. goto err;
  2761. }
  2762. return s;
  2763. }
  2764. kfree(s);
  2765. }
  2766. up_write(&slub_lock);
  2767. err:
  2768. if (flags & SLAB_PANIC)
  2769. panic("Cannot create slabcache %s\n", name);
  2770. else
  2771. s = NULL;
  2772. return s;
  2773. }
  2774. EXPORT_SYMBOL(kmem_cache_create);
  2775. #ifdef CONFIG_SMP
  2776. /*
  2777. * Use the cpu notifier to insure that the cpu slabs are flushed when
  2778. * necessary.
  2779. */
  2780. static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
  2781. unsigned long action, void *hcpu)
  2782. {
  2783. long cpu = (long)hcpu;
  2784. struct kmem_cache *s;
  2785. unsigned long flags;
  2786. switch (action) {
  2787. case CPU_UP_CANCELED:
  2788. case CPU_UP_CANCELED_FROZEN:
  2789. case CPU_DEAD:
  2790. case CPU_DEAD_FROZEN:
  2791. down_read(&slub_lock);
  2792. list_for_each_entry(s, &slab_caches, list) {
  2793. local_irq_save(flags);
  2794. __flush_cpu_slab(s, cpu);
  2795. local_irq_restore(flags);
  2796. }
  2797. up_read(&slub_lock);
  2798. break;
  2799. default:
  2800. break;
  2801. }
  2802. return NOTIFY_OK;
  2803. }
  2804. static struct notifier_block __cpuinitdata slab_notifier = {
  2805. .notifier_call = slab_cpuup_callback
  2806. };
  2807. #endif
  2808. void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
  2809. {
  2810. struct kmem_cache *s;
  2811. void *ret;
  2812. if (unlikely(size > SLUB_MAX_SIZE))
  2813. return kmalloc_large(size, gfpflags);
  2814. s = get_slab(size, gfpflags);
  2815. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2816. return s;
  2817. ret = slab_alloc(s, gfpflags, -1, caller);
  2818. /* Honor the call site pointer we recieved. */
  2819. trace_kmalloc(caller, ret, size, s->size, gfpflags);
  2820. return ret;
  2821. }
  2822. void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
  2823. int node, unsigned long caller)
  2824. {
  2825. struct kmem_cache *s;
  2826. void *ret;
  2827. if (unlikely(size > SLUB_MAX_SIZE)) {
  2828. ret = kmalloc_large_node(size, gfpflags, node);
  2829. trace_kmalloc_node(caller, ret,
  2830. size, PAGE_SIZE << get_order(size),
  2831. gfpflags, node);
  2832. return ret;
  2833. }
  2834. s = get_slab(size, gfpflags);
  2835. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2836. return s;
  2837. ret = slab_alloc(s, gfpflags, node, caller);
  2838. /* Honor the call site pointer we recieved. */
  2839. trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
  2840. return ret;
  2841. }
  2842. #ifdef CONFIG_SLUB_DEBUG
  2843. static int count_inuse(struct page *page)
  2844. {
  2845. return page->inuse;
  2846. }
  2847. static int count_total(struct page *page)
  2848. {
  2849. return page->objects;
  2850. }
  2851. static int validate_slab(struct kmem_cache *s, struct page *page,
  2852. unsigned long *map)
  2853. {
  2854. void *p;
  2855. void *addr = page_address(page);
  2856. if (!check_slab(s, page) ||
  2857. !on_freelist(s, page, NULL))
  2858. return 0;
  2859. /* Now we know that a valid freelist exists */
  2860. bitmap_zero(map, page->objects);
  2861. for_each_free_object(p, s, page->freelist) {
  2862. set_bit(slab_index(p, s, addr), map);
  2863. if (!check_object(s, page, p, 0))
  2864. return 0;
  2865. }
  2866. for_each_object(p, s, addr, page->objects)
  2867. if (!test_bit(slab_index(p, s, addr), map))
  2868. if (!check_object(s, page, p, 1))
  2869. return 0;
  2870. return 1;
  2871. }
  2872. static void validate_slab_slab(struct kmem_cache *s, struct page *page,
  2873. unsigned long *map)
  2874. {
  2875. if (slab_trylock(page)) {
  2876. validate_slab(s, page, map);
  2877. slab_unlock(page);
  2878. } else
  2879. printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
  2880. s->name, page);
  2881. if (s->flags & DEBUG_DEFAULT_FLAGS) {
  2882. if (!PageSlubDebug(page))
  2883. printk(KERN_ERR "SLUB %s: SlubDebug not set "
  2884. "on slab 0x%p\n", s->name, page);
  2885. } else {
  2886. if (PageSlubDebug(page))
  2887. printk(KERN_ERR "SLUB %s: SlubDebug set on "
  2888. "slab 0x%p\n", s->name, page);
  2889. }
  2890. }
  2891. static int validate_slab_node(struct kmem_cache *s,
  2892. struct kmem_cache_node *n, unsigned long *map)
  2893. {
  2894. unsigned long count = 0;
  2895. struct page *page;
  2896. unsigned long flags;
  2897. spin_lock_irqsave(&n->list_lock, flags);
  2898. list_for_each_entry(page, &n->partial, lru) {
  2899. validate_slab_slab(s, page, map);
  2900. count++;
  2901. }
  2902. if (count != n->nr_partial)
  2903. printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
  2904. "counter=%ld\n", s->name, count, n->nr_partial);
  2905. if (!(s->flags & SLAB_STORE_USER))
  2906. goto out;
  2907. list_for_each_entry(page, &n->full, lru) {
  2908. validate_slab_slab(s, page, map);
  2909. count++;
  2910. }
  2911. if (count != atomic_long_read(&n->nr_slabs))
  2912. printk(KERN_ERR "SLUB: %s %ld slabs counted but "
  2913. "counter=%ld\n", s->name, count,
  2914. atomic_long_read(&n->nr_slabs));
  2915. out:
  2916. spin_unlock_irqrestore(&n->list_lock, flags);
  2917. return count;
  2918. }
  2919. static long validate_slab_cache(struct kmem_cache *s)
  2920. {
  2921. int node;
  2922. unsigned long count = 0;
  2923. unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
  2924. sizeof(unsigned long), GFP_KERNEL);
  2925. if (!map)
  2926. return -ENOMEM;
  2927. flush_all(s);
  2928. for_each_node_state(node, N_NORMAL_MEMORY) {
  2929. struct kmem_cache_node *n = get_node(s, node);
  2930. count += validate_slab_node(s, n, map);
  2931. }
  2932. kfree(map);
  2933. return count;
  2934. }
  2935. #ifdef SLUB_RESILIENCY_TEST
  2936. static void resiliency_test(void)
  2937. {
  2938. u8 *p;
  2939. printk(KERN_ERR "SLUB resiliency testing\n");
  2940. printk(KERN_ERR "-----------------------\n");
  2941. printk(KERN_ERR "A. Corruption after allocation\n");
  2942. p = kzalloc(16, GFP_KERNEL);
  2943. p[16] = 0x12;
  2944. printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
  2945. " 0x12->0x%p\n\n", p + 16);
  2946. validate_slab_cache(kmalloc_caches + 4);
  2947. /* Hmmm... The next two are dangerous */
  2948. p = kzalloc(32, GFP_KERNEL);
  2949. p[32 + sizeof(void *)] = 0x34;
  2950. printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
  2951. " 0x34 -> -0x%p\n", p);
  2952. printk(KERN_ERR
  2953. "If allocated object is overwritten then not detectable\n\n");
  2954. validate_slab_cache(kmalloc_caches + 5);
  2955. p = kzalloc(64, GFP_KERNEL);
  2956. p += 64 + (get_cycles() & 0xff) * sizeof(void *);
  2957. *p = 0x56;
  2958. printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
  2959. p);
  2960. printk(KERN_ERR
  2961. "If allocated object is overwritten then not detectable\n\n");
  2962. validate_slab_cache(kmalloc_caches + 6);
  2963. printk(KERN_ERR "\nB. Corruption after free\n");
  2964. p = kzalloc(128, GFP_KERNEL);
  2965. kfree(p);
  2966. *p = 0x78;
  2967. printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
  2968. validate_slab_cache(kmalloc_caches + 7);
  2969. p = kzalloc(256, GFP_KERNEL);
  2970. kfree(p);
  2971. p[50] = 0x9a;
  2972. printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
  2973. p);
  2974. validate_slab_cache(kmalloc_caches + 8);
  2975. p = kzalloc(512, GFP_KERNEL);
  2976. kfree(p);
  2977. p[512] = 0xab;
  2978. printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
  2979. validate_slab_cache(kmalloc_caches + 9);
  2980. }
  2981. #else
  2982. static void resiliency_test(void) {};
  2983. #endif
  2984. /*
  2985. * Generate lists of code addresses where slabcache objects are allocated
  2986. * and freed.
  2987. */
  2988. struct location {
  2989. unsigned long count;
  2990. unsigned long addr;
  2991. long long sum_time;
  2992. long min_time;
  2993. long max_time;
  2994. long min_pid;
  2995. long max_pid;
  2996. DECLARE_BITMAP(cpus, NR_CPUS);
  2997. nodemask_t nodes;
  2998. };
  2999. struct loc_track {
  3000. unsigned long max;
  3001. unsigned long count;
  3002. struct location *loc;
  3003. };
  3004. static void free_loc_track(struct loc_track *t)
  3005. {
  3006. if (t->max)
  3007. free_pages((unsigned long)t->loc,
  3008. get_order(sizeof(struct location) * t->max));
  3009. }
  3010. static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
  3011. {
  3012. struct location *l;
  3013. int order;
  3014. order = get_order(sizeof(struct location) * max);
  3015. l = (void *)__get_free_pages(flags, order);
  3016. if (!l)
  3017. return 0;
  3018. if (t->count) {
  3019. memcpy(l, t->loc, sizeof(struct location) * t->count);
  3020. free_loc_track(t);
  3021. }
  3022. t->max = max;
  3023. t->loc = l;
  3024. return 1;
  3025. }
  3026. static int add_location(struct loc_track *t, struct kmem_cache *s,
  3027. const struct track *track)
  3028. {
  3029. long start, end, pos;
  3030. struct location *l;
  3031. unsigned long caddr;
  3032. unsigned long age = jiffies - track->when;
  3033. start = -1;
  3034. end = t->count;
  3035. for ( ; ; ) {
  3036. pos = start + (end - start + 1) / 2;
  3037. /*
  3038. * There is nothing at "end". If we end up there
  3039. * we need to add something to before end.
  3040. */
  3041. if (pos == end)
  3042. break;
  3043. caddr = t->loc[pos].addr;
  3044. if (track->addr == caddr) {
  3045. l = &t->loc[pos];
  3046. l->count++;
  3047. if (track->when) {
  3048. l->sum_time += age;
  3049. if (age < l->min_time)
  3050. l->min_time = age;
  3051. if (age > l->max_time)
  3052. l->max_time = age;
  3053. if (track->pid < l->min_pid)
  3054. l->min_pid = track->pid;
  3055. if (track->pid > l->max_pid)
  3056. l->max_pid = track->pid;
  3057. cpumask_set_cpu(track->cpu,
  3058. to_cpumask(l->cpus));
  3059. }
  3060. node_set(page_to_nid(virt_to_page(track)), l->nodes);
  3061. return 1;
  3062. }
  3063. if (track->addr < caddr)
  3064. end = pos;
  3065. else
  3066. start = pos;
  3067. }
  3068. /*
  3069. * Not found. Insert new tracking element.
  3070. */
  3071. if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
  3072. return 0;
  3073. l = t->loc + pos;
  3074. if (pos < t->count)
  3075. memmove(l + 1, l,
  3076. (t->count - pos) * sizeof(struct location));
  3077. t->count++;
  3078. l->count = 1;
  3079. l->addr = track->addr;
  3080. l->sum_time = age;
  3081. l->min_time = age;
  3082. l->max_time = age;
  3083. l->min_pid = track->pid;
  3084. l->max_pid = track->pid;
  3085. cpumask_clear(to_cpumask(l->cpus));
  3086. cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
  3087. nodes_clear(l->nodes);
  3088. node_set(page_to_nid(virt_to_page(track)), l->nodes);
  3089. return 1;
  3090. }
  3091. static void process_slab(struct loc_track *t, struct kmem_cache *s,
  3092. struct page *page, enum track_item alloc,
  3093. long *map)
  3094. {
  3095. void *addr = page_address(page);
  3096. void *p;
  3097. bitmap_zero(map, page->objects);
  3098. for_each_free_object(p, s, page->freelist)
  3099. set_bit(slab_index(p, s, addr), map);
  3100. for_each_object(p, s, addr, page->objects)
  3101. if (!test_bit(slab_index(p, s, addr), map))
  3102. add_location(t, s, get_track(s, p, alloc));
  3103. }
  3104. static int list_locations(struct kmem_cache *s, char *buf,
  3105. enum track_item alloc)
  3106. {
  3107. int len = 0;
  3108. unsigned long i;
  3109. struct loc_track t = { 0, 0, NULL };
  3110. int node;
  3111. unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
  3112. sizeof(unsigned long), GFP_KERNEL);
  3113. if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
  3114. GFP_TEMPORARY)) {
  3115. kfree(map);
  3116. return sprintf(buf, "Out of memory\n");
  3117. }
  3118. /* Push back cpu slabs */
  3119. flush_all(s);
  3120. for_each_node_state(node, N_NORMAL_MEMORY) {
  3121. struct kmem_cache_node *n = get_node(s, node);
  3122. unsigned long flags;
  3123. struct page *page;
  3124. if (!atomic_long_read(&n->nr_slabs))
  3125. continue;
  3126. spin_lock_irqsave(&n->list_lock, flags);
  3127. list_for_each_entry(page, &n->partial, lru)
  3128. process_slab(&t, s, page, alloc, map);
  3129. list_for_each_entry(page, &n->full, lru)
  3130. process_slab(&t, s, page, alloc, map);
  3131. spin_unlock_irqrestore(&n->list_lock, flags);
  3132. }
  3133. for (i = 0; i < t.count; i++) {
  3134. struct location *l = &t.loc[i];
  3135. if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
  3136. break;
  3137. len += sprintf(buf + len, "%7ld ", l->count);
  3138. if (l->addr)
  3139. len += sprint_symbol(buf + len, (unsigned long)l->addr);
  3140. else
  3141. len += sprintf(buf + len, "<not-available>");
  3142. if (l->sum_time != l->min_time) {
  3143. len += sprintf(buf + len, " age=%ld/%ld/%ld",
  3144. l->min_time,
  3145. (long)div_u64(l->sum_time, l->count),
  3146. l->max_time);
  3147. } else
  3148. len += sprintf(buf + len, " age=%ld",
  3149. l->min_time);
  3150. if (l->min_pid != l->max_pid)
  3151. len += sprintf(buf + len, " pid=%ld-%ld",
  3152. l->min_pid, l->max_pid);
  3153. else
  3154. len += sprintf(buf + len, " pid=%ld",
  3155. l->min_pid);
  3156. if (num_online_cpus() > 1 &&
  3157. !cpumask_empty(to_cpumask(l->cpus)) &&
  3158. len < PAGE_SIZE - 60) {
  3159. len += sprintf(buf + len, " cpus=");
  3160. len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
  3161. to_cpumask(l->cpus));
  3162. }
  3163. if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
  3164. len < PAGE_SIZE - 60) {
  3165. len += sprintf(buf + len, " nodes=");
  3166. len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
  3167. l->nodes);
  3168. }
  3169. len += sprintf(buf + len, "\n");
  3170. }
  3171. free_loc_track(&t);
  3172. kfree(map);
  3173. if (!t.count)
  3174. len += sprintf(buf, "No data\n");
  3175. return len;
  3176. }
  3177. enum slab_stat_type {
  3178. SL_ALL, /* All slabs */
  3179. SL_PARTIAL, /* Only partially allocated slabs */
  3180. SL_CPU, /* Only slabs used for cpu caches */
  3181. SL_OBJECTS, /* Determine allocated objects not slabs */
  3182. SL_TOTAL /* Determine object capacity not slabs */
  3183. };
  3184. #define SO_ALL (1 << SL_ALL)
  3185. #define SO_PARTIAL (1 << SL_PARTIAL)
  3186. #define SO_CPU (1 << SL_CPU)
  3187. #define SO_OBJECTS (1 << SL_OBJECTS)
  3188. #define SO_TOTAL (1 << SL_TOTAL)
  3189. static ssize_t show_slab_objects(struct kmem_cache *s,
  3190. char *buf, unsigned long flags)
  3191. {
  3192. unsigned long total = 0;
  3193. int node;
  3194. int x;
  3195. unsigned long *nodes;
  3196. unsigned long *per_cpu;
  3197. nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
  3198. if (!nodes)
  3199. return -ENOMEM;
  3200. per_cpu = nodes + nr_node_ids;
  3201. if (flags & SO_CPU) {
  3202. int cpu;
  3203. for_each_possible_cpu(cpu) {
  3204. struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
  3205. if (!c || c->node < 0)
  3206. continue;
  3207. if (c->page) {
  3208. if (flags & SO_TOTAL)
  3209. x = c->page->objects;
  3210. else if (flags & SO_OBJECTS)
  3211. x = c->page->inuse;
  3212. else
  3213. x = 1;
  3214. total += x;
  3215. nodes[c->node] += x;
  3216. }
  3217. per_cpu[c->node]++;
  3218. }
  3219. }
  3220. if (flags & SO_ALL) {
  3221. for_each_node_state(node, N_NORMAL_MEMORY) {
  3222. struct kmem_cache_node *n = get_node(s, node);
  3223. if (flags & SO_TOTAL)
  3224. x = atomic_long_read(&n->total_objects);
  3225. else if (flags & SO_OBJECTS)
  3226. x = atomic_long_read(&n->total_objects) -
  3227. count_partial(n, count_free);
  3228. else
  3229. x = atomic_long_read(&n->nr_slabs);
  3230. total += x;
  3231. nodes[node] += x;
  3232. }
  3233. } else if (flags & SO_PARTIAL) {
  3234. for_each_node_state(node, N_NORMAL_MEMORY) {
  3235. struct kmem_cache_node *n = get_node(s, node);
  3236. if (flags & SO_TOTAL)
  3237. x = count_partial(n, count_total);
  3238. else if (flags & SO_OBJECTS)
  3239. x = count_partial(n, count_inuse);
  3240. else
  3241. x = n->nr_partial;
  3242. total += x;
  3243. nodes[node] += x;
  3244. }
  3245. }
  3246. x = sprintf(buf, "%lu", total);
  3247. #ifdef CONFIG_NUMA
  3248. for_each_node_state(node, N_NORMAL_MEMORY)
  3249. if (nodes[node])
  3250. x += sprintf(buf + x, " N%d=%lu",
  3251. node, nodes[node]);
  3252. #endif
  3253. kfree(nodes);
  3254. return x + sprintf(buf + x, "\n");
  3255. }
  3256. static int any_slab_objects(struct kmem_cache *s)
  3257. {
  3258. int node;
  3259. for_each_online_node(node) {
  3260. struct kmem_cache_node *n = get_node(s, node);
  3261. if (!n)
  3262. continue;
  3263. if (atomic_long_read(&n->total_objects))
  3264. return 1;
  3265. }
  3266. return 0;
  3267. }
  3268. #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
  3269. #define to_slab(n) container_of(n, struct kmem_cache, kobj);
  3270. struct slab_attribute {
  3271. struct attribute attr;
  3272. ssize_t (*show)(struct kmem_cache *s, char *buf);
  3273. ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
  3274. };
  3275. #define SLAB_ATTR_RO(_name) \
  3276. static struct slab_attribute _name##_attr = __ATTR_RO(_name)
  3277. #define SLAB_ATTR(_name) \
  3278. static struct slab_attribute _name##_attr = \
  3279. __ATTR(_name, 0644, _name##_show, _name##_store)
  3280. static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
  3281. {
  3282. return sprintf(buf, "%d\n", s->size);
  3283. }
  3284. SLAB_ATTR_RO(slab_size);
  3285. static ssize_t align_show(struct kmem_cache *s, char *buf)
  3286. {
  3287. return sprintf(buf, "%d\n", s->align);
  3288. }
  3289. SLAB_ATTR_RO(align);
  3290. static ssize_t object_size_show(struct kmem_cache *s, char *buf)
  3291. {
  3292. return sprintf(buf, "%d\n", s->objsize);
  3293. }
  3294. SLAB_ATTR_RO(object_size);
  3295. static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
  3296. {
  3297. return sprintf(buf, "%d\n", oo_objects(s->oo));
  3298. }
  3299. SLAB_ATTR_RO(objs_per_slab);
  3300. static ssize_t order_store(struct kmem_cache *s,
  3301. const char *buf, size_t length)
  3302. {
  3303. unsigned long order;
  3304. int err;
  3305. err = strict_strtoul(buf, 10, &order);
  3306. if (err)
  3307. return err;
  3308. if (order > slub_max_order || order < slub_min_order)
  3309. return -EINVAL;
  3310. calculate_sizes(s, order);
  3311. return length;
  3312. }
  3313. static ssize_t order_show(struct kmem_cache *s, char *buf)
  3314. {
  3315. return sprintf(buf, "%d\n", oo_order(s->oo));
  3316. }
  3317. SLAB_ATTR(order);
  3318. static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
  3319. {
  3320. return sprintf(buf, "%lu\n", s->min_partial);
  3321. }
  3322. static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
  3323. size_t length)
  3324. {
  3325. unsigned long min;
  3326. int err;
  3327. err = strict_strtoul(buf, 10, &min);
  3328. if (err)
  3329. return err;
  3330. set_min_partial(s, min);
  3331. return length;
  3332. }
  3333. SLAB_ATTR(min_partial);
  3334. static ssize_t ctor_show(struct kmem_cache *s, char *buf)
  3335. {
  3336. if (s->ctor) {
  3337. int n = sprint_symbol(buf, (unsigned long)s->ctor);
  3338. return n + sprintf(buf + n, "\n");
  3339. }
  3340. return 0;
  3341. }
  3342. SLAB_ATTR_RO(ctor);
  3343. static ssize_t aliases_show(struct kmem_cache *s, char *buf)
  3344. {
  3345. return sprintf(buf, "%d\n", s->refcount - 1);
  3346. }
  3347. SLAB_ATTR_RO(aliases);
  3348. static ssize_t slabs_show(struct kmem_cache *s, char *buf)
  3349. {
  3350. return show_slab_objects(s, buf, SO_ALL);
  3351. }
  3352. SLAB_ATTR_RO(slabs);
  3353. static ssize_t partial_show(struct kmem_cache *s, char *buf)
  3354. {
  3355. return show_slab_objects(s, buf, SO_PARTIAL);
  3356. }
  3357. SLAB_ATTR_RO(partial);
  3358. static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
  3359. {
  3360. return show_slab_objects(s, buf, SO_CPU);
  3361. }
  3362. SLAB_ATTR_RO(cpu_slabs);
  3363. static ssize_t objects_show(struct kmem_cache *s, char *buf)
  3364. {
  3365. return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
  3366. }
  3367. SLAB_ATTR_RO(objects);
  3368. static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
  3369. {
  3370. return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
  3371. }
  3372. SLAB_ATTR_RO(objects_partial);
  3373. static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
  3374. {
  3375. return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
  3376. }
  3377. SLAB_ATTR_RO(total_objects);
  3378. static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
  3379. {
  3380. return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
  3381. }
  3382. static ssize_t sanity_checks_store(struct kmem_cache *s,
  3383. const char *buf, size_t length)
  3384. {
  3385. s->flags &= ~SLAB_DEBUG_FREE;
  3386. if (buf[0] == '1')
  3387. s->flags |= SLAB_DEBUG_FREE;
  3388. return length;
  3389. }
  3390. SLAB_ATTR(sanity_checks);
  3391. static ssize_t trace_show(struct kmem_cache *s, char *buf)
  3392. {
  3393. return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
  3394. }
  3395. static ssize_t trace_store(struct kmem_cache *s, const char *buf,
  3396. size_t length)
  3397. {
  3398. s->flags &= ~SLAB_TRACE;
  3399. if (buf[0] == '1')
  3400. s->flags |= SLAB_TRACE;
  3401. return length;
  3402. }
  3403. SLAB_ATTR(trace);
  3404. #ifdef CONFIG_FAILSLAB
  3405. static ssize_t failslab_show(struct kmem_cache *s, char *buf)
  3406. {
  3407. return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
  3408. }
  3409. static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
  3410. size_t length)
  3411. {
  3412. s->flags &= ~SLAB_FAILSLAB;
  3413. if (buf[0] == '1')
  3414. s->flags |= SLAB_FAILSLAB;
  3415. return length;
  3416. }
  3417. SLAB_ATTR(failslab);
  3418. #endif
  3419. static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
  3420. {
  3421. return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
  3422. }
  3423. static ssize_t reclaim_account_store(struct kmem_cache *s,
  3424. const char *buf, size_t length)
  3425. {
  3426. s->flags &= ~SLAB_RECLAIM_ACCOUNT;
  3427. if (buf[0] == '1')
  3428. s->flags |= SLAB_RECLAIM_ACCOUNT;
  3429. return length;
  3430. }
  3431. SLAB_ATTR(reclaim_account);
  3432. static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
  3433. {
  3434. return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
  3435. }
  3436. SLAB_ATTR_RO(hwcache_align);
  3437. #ifdef CONFIG_ZONE_DMA
  3438. static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
  3439. {
  3440. return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
  3441. }
  3442. SLAB_ATTR_RO(cache_dma);
  3443. #endif
  3444. static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
  3445. {
  3446. return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
  3447. }
  3448. SLAB_ATTR_RO(destroy_by_rcu);
  3449. static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
  3450. {
  3451. return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
  3452. }
  3453. static ssize_t red_zone_store(struct kmem_cache *s,
  3454. const char *buf, size_t length)
  3455. {
  3456. if (any_slab_objects(s))
  3457. return -EBUSY;
  3458. s->flags &= ~SLAB_RED_ZONE;
  3459. if (buf[0] == '1')
  3460. s->flags |= SLAB_RED_ZONE;
  3461. calculate_sizes(s, -1);
  3462. return length;
  3463. }
  3464. SLAB_ATTR(red_zone);
  3465. static ssize_t poison_show(struct kmem_cache *s, char *buf)
  3466. {
  3467. return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
  3468. }
  3469. static ssize_t poison_store(struct kmem_cache *s,
  3470. const char *buf, size_t length)
  3471. {
  3472. if (any_slab_objects(s))
  3473. return -EBUSY;
  3474. s->flags &= ~SLAB_POISON;
  3475. if (buf[0] == '1')
  3476. s->flags |= SLAB_POISON;
  3477. calculate_sizes(s, -1);
  3478. return length;
  3479. }
  3480. SLAB_ATTR(poison);
  3481. static ssize_t store_user_show(struct kmem_cache *s, char *buf)
  3482. {
  3483. return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
  3484. }
  3485. static ssize_t store_user_store(struct kmem_cache *s,
  3486. const char *buf, size_t length)
  3487. {
  3488. if (any_slab_objects(s))
  3489. return -EBUSY;
  3490. s->flags &= ~SLAB_STORE_USER;
  3491. if (buf[0] == '1')
  3492. s->flags |= SLAB_STORE_USER;
  3493. calculate_sizes(s, -1);
  3494. return length;
  3495. }
  3496. SLAB_ATTR(store_user);
  3497. static ssize_t validate_show(struct kmem_cache *s, char *buf)
  3498. {
  3499. return 0;
  3500. }
  3501. static ssize_t validate_store(struct kmem_cache *s,
  3502. const char *buf, size_t length)
  3503. {
  3504. int ret = -EINVAL;
  3505. if (buf[0] == '1') {
  3506. ret = validate_slab_cache(s);
  3507. if (ret >= 0)
  3508. ret = length;
  3509. }
  3510. return ret;
  3511. }
  3512. SLAB_ATTR(validate);
  3513. static ssize_t shrink_show(struct kmem_cache *s, char *buf)
  3514. {
  3515. return 0;
  3516. }
  3517. static ssize_t shrink_store(struct kmem_cache *s,
  3518. const char *buf, size_t length)
  3519. {
  3520. if (buf[0] == '1') {
  3521. int rc = kmem_cache_shrink(s);
  3522. if (rc)
  3523. return rc;
  3524. } else
  3525. return -EINVAL;
  3526. return length;
  3527. }
  3528. SLAB_ATTR(shrink);
  3529. static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
  3530. {
  3531. if (!(s->flags & SLAB_STORE_USER))
  3532. return -ENOSYS;
  3533. return list_locations(s, buf, TRACK_ALLOC);
  3534. }
  3535. SLAB_ATTR_RO(alloc_calls);
  3536. static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
  3537. {
  3538. if (!(s->flags & SLAB_STORE_USER))
  3539. return -ENOSYS;
  3540. return list_locations(s, buf, TRACK_FREE);
  3541. }
  3542. SLAB_ATTR_RO(free_calls);
  3543. #ifdef CONFIG_NUMA
  3544. static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
  3545. {
  3546. return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
  3547. }
  3548. static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
  3549. const char *buf, size_t length)
  3550. {
  3551. unsigned long ratio;
  3552. int err;
  3553. err = strict_strtoul(buf, 10, &ratio);
  3554. if (err)
  3555. return err;
  3556. if (ratio <= 100)
  3557. s->remote_node_defrag_ratio = ratio * 10;
  3558. return length;
  3559. }
  3560. SLAB_ATTR(remote_node_defrag_ratio);
  3561. #endif
  3562. #ifdef CONFIG_SLUB_STATS
  3563. static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
  3564. {
  3565. unsigned long sum = 0;
  3566. int cpu;
  3567. int len;
  3568. int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
  3569. if (!data)
  3570. return -ENOMEM;
  3571. for_each_online_cpu(cpu) {
  3572. unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
  3573. data[cpu] = x;
  3574. sum += x;
  3575. }
  3576. len = sprintf(buf, "%lu", sum);
  3577. #ifdef CONFIG_SMP
  3578. for_each_online_cpu(cpu) {
  3579. if (data[cpu] && len < PAGE_SIZE - 20)
  3580. len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
  3581. }
  3582. #endif
  3583. kfree(data);
  3584. return len + sprintf(buf + len, "\n");
  3585. }
  3586. static void clear_stat(struct kmem_cache *s, enum stat_item si)
  3587. {
  3588. int cpu;
  3589. for_each_online_cpu(cpu)
  3590. per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
  3591. }
  3592. #define STAT_ATTR(si, text) \
  3593. static ssize_t text##_show(struct kmem_cache *s, char *buf) \
  3594. { \
  3595. return show_stat(s, buf, si); \
  3596. } \
  3597. static ssize_t text##_store(struct kmem_cache *s, \
  3598. const char *buf, size_t length) \
  3599. { \
  3600. if (buf[0] != '0') \
  3601. return -EINVAL; \
  3602. clear_stat(s, si); \
  3603. return length; \
  3604. } \
  3605. SLAB_ATTR(text); \
  3606. STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
  3607. STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
  3608. STAT_ATTR(FREE_FASTPATH, free_fastpath);
  3609. STAT_ATTR(FREE_SLOWPATH, free_slowpath);
  3610. STAT_ATTR(FREE_FROZEN, free_frozen);
  3611. STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
  3612. STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
  3613. STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
  3614. STAT_ATTR(ALLOC_SLAB, alloc_slab);
  3615. STAT_ATTR(ALLOC_REFILL, alloc_refill);
  3616. STAT_ATTR(FREE_SLAB, free_slab);
  3617. STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
  3618. STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
  3619. STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
  3620. STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
  3621. STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
  3622. STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
  3623. STAT_ATTR(ORDER_FALLBACK, order_fallback);
  3624. #endif
  3625. static struct attribute *slab_attrs[] = {
  3626. &slab_size_attr.attr,
  3627. &object_size_attr.attr,
  3628. &objs_per_slab_attr.attr,
  3629. &order_attr.attr,
  3630. &min_partial_attr.attr,
  3631. &objects_attr.attr,
  3632. &objects_partial_attr.attr,
  3633. &total_objects_attr.attr,
  3634. &slabs_attr.attr,
  3635. &partial_attr.attr,
  3636. &cpu_slabs_attr.attr,
  3637. &ctor_attr.attr,
  3638. &aliases_attr.attr,
  3639. &align_attr.attr,
  3640. &sanity_checks_attr.attr,
  3641. &trace_attr.attr,
  3642. &hwcache_align_attr.attr,
  3643. &reclaim_account_attr.attr,
  3644. &destroy_by_rcu_attr.attr,
  3645. &red_zone_attr.attr,
  3646. &poison_attr.attr,
  3647. &store_user_attr.attr,
  3648. &validate_attr.attr,
  3649. &shrink_attr.attr,
  3650. &alloc_calls_attr.attr,
  3651. &free_calls_attr.attr,
  3652. #ifdef CONFIG_ZONE_DMA
  3653. &cache_dma_attr.attr,
  3654. #endif
  3655. #ifdef CONFIG_NUMA
  3656. &remote_node_defrag_ratio_attr.attr,
  3657. #endif
  3658. #ifdef CONFIG_SLUB_STATS
  3659. &alloc_fastpath_attr.attr,
  3660. &alloc_slowpath_attr.attr,
  3661. &free_fastpath_attr.attr,
  3662. &free_slowpath_attr.attr,
  3663. &free_frozen_attr.attr,
  3664. &free_add_partial_attr.attr,
  3665. &free_remove_partial_attr.attr,
  3666. &alloc_from_partial_attr.attr,
  3667. &alloc_slab_attr.attr,
  3668. &alloc_refill_attr.attr,
  3669. &free_slab_attr.attr,
  3670. &cpuslab_flush_attr.attr,
  3671. &deactivate_full_attr.attr,
  3672. &deactivate_empty_attr.attr,
  3673. &deactivate_to_head_attr.attr,
  3674. &deactivate_to_tail_attr.attr,
  3675. &deactivate_remote_frees_attr.attr,
  3676. &order_fallback_attr.attr,
  3677. #endif
  3678. #ifdef CONFIG_FAILSLAB
  3679. &failslab_attr.attr,
  3680. #endif
  3681. NULL
  3682. };
  3683. static struct attribute_group slab_attr_group = {
  3684. .attrs = slab_attrs,
  3685. };
  3686. static ssize_t slab_attr_show(struct kobject *kobj,
  3687. struct attribute *attr,
  3688. char *buf)
  3689. {
  3690. struct slab_attribute *attribute;
  3691. struct kmem_cache *s;
  3692. int err;
  3693. attribute = to_slab_attr(attr);
  3694. s = to_slab(kobj);
  3695. if (!attribute->show)
  3696. return -EIO;
  3697. err = attribute->show(s, buf);
  3698. return err;
  3699. }
  3700. static ssize_t slab_attr_store(struct kobject *kobj,
  3701. struct attribute *attr,
  3702. const char *buf, size_t len)
  3703. {
  3704. struct slab_attribute *attribute;
  3705. struct kmem_cache *s;
  3706. int err;
  3707. attribute = to_slab_attr(attr);
  3708. s = to_slab(kobj);
  3709. if (!attribute->store)
  3710. return -EIO;
  3711. err = attribute->store(s, buf, len);
  3712. return err;
  3713. }
  3714. static void kmem_cache_release(struct kobject *kobj)
  3715. {
  3716. struct kmem_cache *s = to_slab(kobj);
  3717. kfree(s);
  3718. }
  3719. static const struct sysfs_ops slab_sysfs_ops = {
  3720. .show = slab_attr_show,
  3721. .store = slab_attr_store,
  3722. };
  3723. static struct kobj_type slab_ktype = {
  3724. .sysfs_ops = &slab_sysfs_ops,
  3725. .release = kmem_cache_release
  3726. };
  3727. static int uevent_filter(struct kset *kset, struct kobject *kobj)
  3728. {
  3729. struct kobj_type *ktype = get_ktype(kobj);
  3730. if (ktype == &slab_ktype)
  3731. return 1;
  3732. return 0;
  3733. }
  3734. static const struct kset_uevent_ops slab_uevent_ops = {
  3735. .filter = uevent_filter,
  3736. };
  3737. static struct kset *slab_kset;
  3738. #define ID_STR_LENGTH 64
  3739. /* Create a unique string id for a slab cache:
  3740. *
  3741. * Format :[flags-]size
  3742. */
  3743. static char *create_unique_id(struct kmem_cache *s)
  3744. {
  3745. char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
  3746. char *p = name;
  3747. BUG_ON(!name);
  3748. *p++ = ':';
  3749. /*
  3750. * First flags affecting slabcache operations. We will only
  3751. * get here for aliasable slabs so we do not need to support
  3752. * too many flags. The flags here must cover all flags that
  3753. * are matched during merging to guarantee that the id is
  3754. * unique.
  3755. */
  3756. if (s->flags & SLAB_CACHE_DMA)
  3757. *p++ = 'd';
  3758. if (s->flags & SLAB_RECLAIM_ACCOUNT)
  3759. *p++ = 'a';
  3760. if (s->flags & SLAB_DEBUG_FREE)
  3761. *p++ = 'F';
  3762. if (!(s->flags & SLAB_NOTRACK))
  3763. *p++ = 't';
  3764. if (p != name + 1)
  3765. *p++ = '-';
  3766. p += sprintf(p, "%07d", s->size);
  3767. BUG_ON(p > name + ID_STR_LENGTH - 1);
  3768. return name;
  3769. }
  3770. static int sysfs_slab_add(struct kmem_cache *s)
  3771. {
  3772. int err;
  3773. const char *name;
  3774. int unmergeable;
  3775. if (slab_state < SYSFS)
  3776. /* Defer until later */
  3777. return 0;
  3778. unmergeable = slab_unmergeable(s);
  3779. if (unmergeable) {
  3780. /*
  3781. * Slabcache can never be merged so we can use the name proper.
  3782. * This is typically the case for debug situations. In that
  3783. * case we can catch duplicate names easily.
  3784. */
  3785. sysfs_remove_link(&slab_kset->kobj, s->name);
  3786. name = s->name;
  3787. } else {
  3788. /*
  3789. * Create a unique name for the slab as a target
  3790. * for the symlinks.
  3791. */
  3792. name = create_unique_id(s);
  3793. }
  3794. s->kobj.kset = slab_kset;
  3795. err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
  3796. if (err) {
  3797. kobject_put(&s->kobj);
  3798. return err;
  3799. }
  3800. err = sysfs_create_group(&s->kobj, &slab_attr_group);
  3801. if (err) {
  3802. kobject_del(&s->kobj);
  3803. kobject_put(&s->kobj);
  3804. return err;
  3805. }
  3806. kobject_uevent(&s->kobj, KOBJ_ADD);
  3807. if (!unmergeable) {
  3808. /* Setup first alias */
  3809. sysfs_slab_alias(s, s->name);
  3810. kfree(name);
  3811. }
  3812. return 0;
  3813. }
  3814. static void sysfs_slab_remove(struct kmem_cache *s)
  3815. {
  3816. kobject_uevent(&s->kobj, KOBJ_REMOVE);
  3817. kobject_del(&s->kobj);
  3818. kobject_put(&s->kobj);
  3819. }
  3820. /*
  3821. * Need to buffer aliases during bootup until sysfs becomes
  3822. * available lest we lose that information.
  3823. */
  3824. struct saved_alias {
  3825. struct kmem_cache *s;
  3826. const char *name;
  3827. struct saved_alias *next;
  3828. };
  3829. static struct saved_alias *alias_list;
  3830. static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
  3831. {
  3832. struct saved_alias *al;
  3833. if (slab_state == SYSFS) {
  3834. /*
  3835. * If we have a leftover link then remove it.
  3836. */
  3837. sysfs_remove_link(&slab_kset->kobj, name);
  3838. return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
  3839. }
  3840. al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
  3841. if (!al)
  3842. return -ENOMEM;
  3843. al->s = s;
  3844. al->name = name;
  3845. al->next = alias_list;
  3846. alias_list = al;
  3847. return 0;
  3848. }
  3849. static int __init slab_sysfs_init(void)
  3850. {
  3851. struct kmem_cache *s;
  3852. int err;
  3853. slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
  3854. if (!slab_kset) {
  3855. printk(KERN_ERR "Cannot register slab subsystem.\n");
  3856. return -ENOSYS;
  3857. }
  3858. slab_state = SYSFS;
  3859. list_for_each_entry(s, &slab_caches, list) {
  3860. err = sysfs_slab_add(s);
  3861. if (err)
  3862. printk(KERN_ERR "SLUB: Unable to add boot slab %s"
  3863. " to sysfs\n", s->name);
  3864. }
  3865. while (alias_list) {
  3866. struct saved_alias *al = alias_list;
  3867. alias_list = alias_list->next;
  3868. err = sysfs_slab_alias(al->s, al->name);
  3869. if (err)
  3870. printk(KERN_ERR "SLUB: Unable to add boot slab alias"
  3871. " %s to sysfs\n", s->name);
  3872. kfree(al);
  3873. }
  3874. resiliency_test();
  3875. return 0;
  3876. }
  3877. __initcall(slab_sysfs_init);
  3878. #endif
  3879. /*
  3880. * The /proc/slabinfo ABI
  3881. */
  3882. #ifdef CONFIG_SLABINFO
  3883. static void print_slabinfo_header(struct seq_file *m)
  3884. {
  3885. seq_puts(m, "slabinfo - version: 2.1\n");
  3886. seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
  3887. "<objperslab> <pagesperslab>");
  3888. seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
  3889. seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
  3890. seq_putc(m, '\n');
  3891. }
  3892. static void *s_start(struct seq_file *m, loff_t *pos)
  3893. {
  3894. loff_t n = *pos;
  3895. down_read(&slub_lock);
  3896. if (!n)
  3897. print_slabinfo_header(m);
  3898. return seq_list_start(&slab_caches, *pos);
  3899. }
  3900. static void *s_next(struct seq_file *m, void *p, loff_t *pos)
  3901. {
  3902. return seq_list_next(p, &slab_caches, pos);
  3903. }
  3904. static void s_stop(struct seq_file *m, void *p)
  3905. {
  3906. up_read(&slub_lock);
  3907. }
  3908. static int s_show(struct seq_file *m, void *p)
  3909. {
  3910. unsigned long nr_partials = 0;
  3911. unsigned long nr_slabs = 0;
  3912. unsigned long nr_inuse = 0;
  3913. unsigned long nr_objs = 0;
  3914. unsigned long nr_free = 0;
  3915. struct kmem_cache *s;
  3916. int node;
  3917. s = list_entry(p, struct kmem_cache, list);
  3918. for_each_online_node(node) {
  3919. struct kmem_cache_node *n = get_node(s, node);
  3920. if (!n)
  3921. continue;
  3922. nr_partials += n->nr_partial;
  3923. nr_slabs += atomic_long_read(&n->nr_slabs);
  3924. nr_objs += atomic_long_read(&n->total_objects);
  3925. nr_free += count_partial(n, count_free);
  3926. }
  3927. nr_inuse = nr_objs - nr_free;
  3928. seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
  3929. nr_objs, s->size, oo_objects(s->oo),
  3930. (1 << oo_order(s->oo)));
  3931. seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
  3932. seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
  3933. 0UL);
  3934. seq_putc(m, '\n');
  3935. return 0;
  3936. }
  3937. static const struct seq_operations slabinfo_op = {
  3938. .start = s_start,
  3939. .next = s_next,
  3940. .stop = s_stop,
  3941. .show = s_show,
  3942. };
  3943. static int slabinfo_open(struct inode *inode, struct file *file)
  3944. {
  3945. return seq_open(file, &slabinfo_op);
  3946. }
  3947. static const struct file_operations proc_slabinfo_operations = {
  3948. .open = slabinfo_open,
  3949. .read = seq_read,
  3950. .llseek = seq_lseek,
  3951. .release = seq_release,
  3952. };
  3953. static int __init slab_proc_init(void)
  3954. {
  3955. proc_create("slabinfo", S_IRUGO, NULL, &proc_slabinfo_operations);
  3956. return 0;
  3957. }
  3958. module_init(slab_proc_init);
  3959. #endif /* CONFIG_SLABINFO */